WO2018043153A1 - 細胞培養担体、細胞培養担体作製キット、およびそれらを用いたゲル/細胞ハイブリッド組織の製造方法 - Google Patents

細胞培養担体、細胞培養担体作製キット、およびそれらを用いたゲル/細胞ハイブリッド組織の製造方法 Download PDF

Info

Publication number
WO2018043153A1
WO2018043153A1 PCT/JP2017/029608 JP2017029608W WO2018043153A1 WO 2018043153 A1 WO2018043153 A1 WO 2018043153A1 JP 2017029608 W JP2017029608 W JP 2017029608W WO 2018043153 A1 WO2018043153 A1 WO 2018043153A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell culture
culture carrier
cell
temperature
cells
Prior art date
Application number
PCT/JP2017/029608
Other languages
English (en)
French (fr)
Inventor
明石 満
資訓 柿澤
Original Assignee
国立大学法人大阪大学
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学, 東レ株式会社 filed Critical 国立大学法人大阪大学
Priority to EP17846161.2A priority Critical patent/EP3508564A4/en
Priority to JP2018537125A priority patent/JPWO2018043153A1/ja
Priority to US16/328,370 priority patent/US20210284943A1/en
Publication of WO2018043153A1 publication Critical patent/WO2018043153A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/20Material Coatings
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M25/00Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
    • C12M25/14Scaffolds; Matrices
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M25/00Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
    • C12M25/16Particles; Beads; Granular material; Encapsulation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/12Means for regulation, monitoring, measurement or control, e.g. flow regulation of temperature
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
    • C12N11/02Enzymes or microbial cells immobilised on or in an organic carrier
    • C12N11/04Enzymes or microbial cells immobilised on or in an organic carrier entrapped within the carrier, e.g. gel or hollow fibres
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
    • C12N11/02Enzymes or microbial cells immobilised on or in an organic carrier
    • C12N11/08Enzymes or microbial cells immobilised on or in an organic carrier the carrier being a synthetic polymer
    • C12N11/082Enzymes or microbial cells immobilised on or in an organic carrier the carrier being a synthetic polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
    • C12N11/02Enzymes or microbial cells immobilised on or in an organic carrier
    • C12N11/08Enzymes or microbial cells immobilised on or in an organic carrier the carrier being a synthetic polymer
    • C12N11/089Enzymes or microbial cells immobilised on or in an organic carrier the carrier being a synthetic polymer obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C12N11/096Polyesters; Polyamides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
    • C12N11/02Enzymes or microbial cells immobilised on or in an organic carrier
    • C12N11/10Enzymes or microbial cells immobilised on or in an organic carrier the carrier being a carbohydrate
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0068General culture methods using substrates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2513/003D culture
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/30Synthetic polymers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/70Polysaccharides
    • C12N2533/72Chitin, chitosan
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/70Polysaccharides
    • C12N2533/80Hyaluronan

Definitions

  • the present invention relates to a cell culture carrier, and more particularly to a temperature responsive cell culture carrier containing a predetermined temperature responsive polymer and a water-soluble polymer.
  • the cell culture carrier is used for culturing a cell tissue having a predetermined structure. For example, by culturing cells in a porous scaffold material made of polylactic acid, the cells adhere to the scaffold material, and a cellular tissue having a three-dimensional structure composed of the scaffold material and the cells is obtained (for example, Non-Patent Document 1). ).
  • Such a scaffold material is difficult to remove after the formation of the tissue, and it is difficult to obtain a cell tissue having a high cell content or only cells.
  • a stimulus-responsive material for such a purpose, a temperature-responsive polymer whose state changes in response to temperature has attracted attention. For example, if a temperature-responsive polymer that becomes a gel (solid) above a certain temperature and becomes a sol (liquid) below is used as a scaffold material, the scaffold material can be converted into a sol by lowering the temperature after cell tissue formation. Can be removed.
  • the temperature-responsive polymer attracting attention in this way is the lower critical solution temperature (Lower-Critical-Solution-Temperature) where the polymer in a hydrated state generally dehydrates above a certain temperature and changes its volume, shape, properties, etc. ; Hereinafter abbreviated as “LCST”) and upper critical solution temperature at which the volume, form, properties, etc. change when hydrated at a certain temperature or higher (hereinafter abbreviated as “UCST”). )
  • NIPAM N-isopropylacrylamide
  • PNIPAM poly-N-isopropylacrylamide
  • gels are extensively researched as medical materials and the like because volume transitions of swelling and shrinkage occur around 32 ° C. near body temperature (for example, Patent Document 1). .
  • PNIPAM requires irreversible chemical crosslinking for gel formation and is difficult to remove after tissue formation.
  • poloxamer is not used because it requires a high concentration for gelation and dissolves when added to a medium.
  • Non-Patent Document 2 and Patent Document 2 hydroxyalkylchitosan has an LCST around 25 ° C. and undergoes a sol-gel transition, so it can be removed after tissue formation and is also less toxic, so it is expected to be used as a cell culture carrier.
  • the cell culture carrier has a certain strength.
  • Conventional gels of hydroxyalkyl chitosan have low mechanical strength, so cell proliferation does not occur even when used as a cell culture carrier, and in addition to the difficulty of forming cell tissue in the gel, transplantation of the formed cell tissue, etc. Handling was also difficult.
  • the hydroxyalkyl chitosan gel is also three-dimensionally shaped by a three-dimensional modeling apparatus (3D printer).
  • 3D printer three-dimensional modeling apparatus
  • An object of the present invention is to improve mechanical properties while maintaining temperature responsiveness in a cell culture carrier containing hydroxyalkylchitosan.
  • the present invention is characterized by having a temperature responsiveness including a temperature responsive hydroxyalkylchitosan and a water-soluble polymer selected from polyethylene glycol, derivatives thereof, hyaluronic acid, alginic acid and salts thereof.
  • a cell culture carrier is provided.
  • the present invention it is possible to improve and improve the mechanical strength of a gel composed of a hydroxyalkyl chitosan alone, and to provide a cell culture carrier that achieves both temperature responsiveness and excellent mechanical properties.
  • Photo from above of a gel / cell hybrid tissue consisting of hydroxybutyl chitosan, hyaluronic acid and human fibroblasts A photomicrograph of a cell tissue section obtained by removing hydroxybutylchitosan.
  • a photomicrograph of a gel / cell hybrid tissue consisting of hydroxybutyl chitosan, hyaluronic acid, and human fibroblasts bioprinted in a grid on a 3D printer.
  • the present invention relates to a cell culture characterized by comprising a temperature-responsive hydroxyalkylchitosan and a water-soluble polymer selected from polyethylene glycol, derivatives thereof, hyaluronic acid, alginic acid and salts thereof. Relates to the carrier.
  • the present invention also provides a hydroxyalkyl chitosan alone, characterized in that the temperature-responsive hydroxyalkyl chitosan comprises a water-soluble polymer selected from polyethylene glycol, derivatives thereof, hyaluronic acid, alginic acid and salts thereof.
  • the present invention relates to a method for producing a temperature-responsive cell culture carrier having improved strength compared to the mechanical strength of a cell culture carrier (gel) composed of hydroxyalkyl chitosan alone.
  • the above production method is characterized by containing a water-soluble polymer selected from polyethylene glycol, derivatives thereof, hyaluronic acid, alginic acid and salts thereof together with chitosan.
  • the cell culture carrier of the present invention contains hydroxyalkyl chitosan (hydroxyalkyl group-introduced chitosan).
  • hydroxyalkyl chitosan examples include hydroxyethyl chitosan, hydroxypropyl chitosan, hydroxyisopropyl chitosan, hydroxybutyl chitosan, hydroxypentyl chitosan, and preferably hydroxybutyl chitosan.
  • Hydroxyalkyl chitosan can be produced, for example, by a method in which the amino group and / or hydroxyl group of chitosan is hydroxyalkylated with ethylene oxide, propylene oxide, butylene oxide, propylene oxide or the like.
  • chitin as a starting material which may be hydroxyalkylated and then deacetylated.
  • Hydroxyalkyl chitosan is a temperature-responsive hydroxyalkyl chitosan that is fluid (liquid or sol) below the lower critical solution temperature (LCST) and solid (gel) above LCST.
  • the LCST of the temperature-responsive hydroxyalkyl chitosan can be adjusted according to the application. For example, LCST can be increased by reducing the number of hydroxyalkyl groups introduced per monosaccharide, and can be decreased by increasing the number of introductions.
  • the number of hydroxyalkyl groups introduced per monosaccharide unit of the chitosan molecule is preferably 1.0 to 3.0, and more preferably 1.5 to 2.5.
  • the introduction site of the hydroxyalkyl group may be an amino group or a hydroxyl group of chitosan, but it is desirable that at least one per monosaccharide unit is introduced into the amino group.
  • the degree of deacetylation of hydroxyalkylchitosan is not particularly limited, but is preferably in the range of 50 to 100 mol% per mol of pyranose ring in order to maintain water solubility at a temperature of LCST or lower.
  • the molecular weight of the hydroxyalkyl chitosan is not particularly limited, but the number average molecular weight is preferably 3,000 or more, and preferably 10,000 or more in terms of forming an interpenetrating network by entanglement with the water-soluble polymer. More preferably, it is more preferably 100,000 or more, and further more preferably 150,000 or more.
  • the upper limit of the molecular weight of the hydroxyalkyl chitosan is not particularly limited as long as temperature responsiveness is exhibited, and is up to about 1,000,000, preferably up to about 900,000, more preferably up to about 800,0000. Can be used.
  • the molecular weight of hydroxyalkylchitosan is determined by quantifying the reducing end by the modified Shales method.
  • the weight concentration of the hydroxyalkyl chitosan in the cell culture carrier is preferably 50% by weight or less, and preferably 30% by weight or less, in that changes in shape and / or properties before and after the temperature response can be exhibited more remarkably. More preferably, it is 20% by weight or less, more preferably 10% by weight or less. In addition, 0.10% by weight or more is preferable, 0.50% by weight or more is more preferable, 1.0% by weight or more is further preferable, and 1.5% by weight in that the cell culture carrier maintains necessary and sufficient mechanical properties. % Or more is even more preferable.
  • Water-soluble polymer As the water-soluble polymer used for the cell culture carrier according to the embodiment of the present invention, those selected from polyethylene glycol, derivatives thereof, hyaluronic acid, alginic acid and salts thereof are used.
  • polyethylene glycol and derivatives thereof include polyethylene glycol active derivatives, preferably multi-arm type polyethylene glycol active derivatives, more preferably 2 to 8, even more preferably 4 to 8 branched multi-arm type polyethylene glycol active derivatives.
  • Such a multi-arm type polyethylene glycol active derivative is preferably obtained by mixing (reacting) two kinds of active derivatives having functional groups capable of reacting with each other at the terminal.
  • the two types of functional groups that can react with each other are preferably a combination of an amino group and an active ester, or a combination of a thiol group and a maleimide group.
  • the active ester is preferably a condensate of N-hydroxysuccinimide and carboxylic acid.
  • hyaluronic acid is not particularly limited, and those derived from chicken crowns and ligaments, those produced by lactic acid bacteria and streptococci can be used.
  • the origin of alginic acid is not particularly limited, and those derived from brown algae, red algae, and those produced by bacteria can be used.
  • the molecular weight of the water-soluble polymer used in the present invention is not particularly limited as long as it dissolves in water.
  • the number average molecular weight is 10,000 to 1,500, 000, preferably about 15,000 to 1200,000 can be used.
  • polyethylene glycol and its derivatives can have a number average molecular weight of 10,000 or more, preferably about 15,000 or more.
  • the number average molecular weight is 10,000 or more.
  • the molecular weight of the water-soluble polymer in the present specification is a value determined using gel permeation chromatography (GPC).
  • the weight concentration of the water-soluble polymer in the cell culture carrier is preferably 10% by weight or less from the viewpoint that changes in shape and / or properties before and after the temperature response can be exhibited more significantly. More preferably, it is less than or equal to weight percent, and even more preferably less than or equal to 3.0 weight percent.
  • the content is preferably 0.01% by weight or more, preferably 0.05% by weight or more, and more preferably 0.1% by weight or more.
  • hydroxyalkylchitosan and the water-soluble polymer in the cell culture carrier are in a non-crosslinked state in order to maintain fluidity below the LCST.
  • the fluidity below the LCST it is easy to discharge from the dispensing tip during tissue production by a 3D printer.
  • Temperature responsiveness is a property that responds to a change in external temperature and causes a change between a liquid state and a solid state, that is, a sol-gel transition before and after the temperature change occurs.
  • the cell culture carrier has temperature responsiveness, it is possible to disperse cells in a sol state in which fluidity is maintained as less than LCST.
  • a three-dimensional structure can be maintained as LCST or higher during the culture for forming a three-dimensional cell tissue.
  • the hydroxyalkyl chitosan can be removed by making it into a sol again below LCST.
  • the cell culture carrier in the present invention is preferably in a sol state at room temperature or lower, a gel state at a cell culture temperature and a body temperature from the viewpoint of handling and cell culture, and preferably has an LCST at 4 ° C. to 37 ° C. Preferably it has an LCST between 25 ° C. and 37 ° C.
  • the cell culture carrier has “temperature responsiveness” that the storage elastic modulus at 4 ° C. (G ′ (4 ° C.)) and the storage elastic modulus at 37 ° C. (G ′ (37 ° C.)). ) Ratio (G ′ (37 ° C.) / G ′ (4 ° C.)) shall be greater than 1.0.
  • G ′ (37 ° C.) / G ′ (4 ° C.) is preferably 1.5 or more, more preferably 2.0 or more, further preferably 10 or more, and 100 or more. Is more preferable.
  • the storage elastic modulus at 4 ° C. is preferably less than 50 Pa, and more preferably less than 10 Pa.
  • the pressure is less than 50 Pa, more preferably less than 10 Pa, cell suspension, ejection by a 3D printer, and removal after formation of a cell tissue are facilitated.
  • the maximum storage elastic modulus at 25 to 40 ° C. is preferably 100 Pa or more, more preferably 300 Pa or more, and 1000 Pa or more. More preferably it is.
  • the upper limit of the maximum storage elastic modulus at 25 to 40 ° C. is not particularly limited, but is generally 50000 Pa or less.
  • the maximum storage elastic modulus in the present invention refers to the maximum storage elastic modulus in a predetermined temperature range.
  • the storage elastic modulus (G ′) in the present invention is the strain 1%, the frequency after standing for 5 minutes after putting the sample solution to be measured into a dynamic viscoelasticity measuring apparatus in which parallel plates are attached at a plate interval of 0.5 mm.
  • the storage elastic modulus at 37 ° C. is preferably 100 Pa or more, more preferably 300 Pa or more, and further preferably 1000 Pa or more.
  • the upper limit of the storage elastic modulus at 37 ° C. is not particularly limited, it is generally 50000 Pa or less.
  • the weight concentration ratio of hydroxyalkyl chitosan and water-soluble polymer (hydroxyalkyl chitosan / water-soluble polymer) in the cell culture carrier is preferably 1.0 to 100, more preferably 1.0 to 30. 0.0 to 25 is more preferable.
  • the weight ratio is preferably 1.0 to 100, more preferably 1.0 to 30. 0.0 to 25 is more preferable.
  • the water-soluble polymer is appropriately dispersed in the hydroxyalkylchitosan, and the mechanical properties can be improved.
  • the weight ratio is 0.5 or less, the material composed of hydroxyalkyl chitosan, water-soluble polymer and water may not show temperature responsiveness due to entanglement of water-soluble polymer or decrease in contribution of hydroxyalkyl chitosan. .
  • the water-soluble polymer when the water-soluble polymer is polyethylene glycol, when the hydroxyalkyl chitosan / water-soluble polymer is 1.0 or more and 3.5 or less, the effect of improving the mechanical properties is particularly remarkable.
  • the water-soluble polymer when the water-soluble polymer is hyaluronic acid, when the hydroxyalkyl chitosan / water-soluble polymer is 10 or more and 20 or less, the effect of improving the mechanical properties is particularly remarkable.
  • alginic acid when the hydroxyalkyl chitosan / water-soluble polymer is 5 or more and 20 or less, the effect of improving the mechanical properties is particularly remarkable.
  • the hydroxyalkyl chitosan and the water-soluble polymer are preferably dispersed and / or dissolved, preferably dissolved in the aqueous liquid.
  • aqueous solution include water, aqueous buffer (phosphate buffer, Tris monohydrochloride buffer, acetate buffer, citrate buffer, etc.), physiological saline, sugar aqueous solution (5% by weight glucose aqueous solution, glucose aqueous solution). Etc.) and cell culture medium (for example, D-MEM medium, MEM medium, HamF12 medium, HamF10 medium).
  • the concentration of the buffer, salt, sugar, and other solutes added to the culture solution in the aqueous solution may be any concentration at which a hydrogel of hydroxyalkylchitosan is formed.
  • the following cell culture carrier preparation kit comprises an aqueous solution A containing the first polyethylene glycol active derivative and an aqueous solution B containing the second polyethylene glycol active derivative capable of reacting with the first polyethylene glycol active derivative.
  • the polyethylene glycol active derivative the above-described multi-arm type polyethylene glycol active derivative is preferably used.
  • the cells are dispersed in at least one of the aqueous solution A and the aqueous solution B, both are mixed to form a crosslink between the first and second polyethylene glycol active derivatives.
  • the aqueous solution A contains an active derivative having an amino group
  • an aqueous solution B containing an active derivative having an active ester can be used.
  • an aqueous solution B containing an active derivative having a maleimide group can be used.
  • the ratio between the molar concentration of the polyethylene glycol active derivative in the aqueous solution A and the molar concentration of the polyethylene glycol active derivative in the aqueous solution B is such that the reaction proceeds more efficiently.
  • aqueous solution A / aqueous solution B aqueous solution A / aqueous solution B
  • 0.5 to 2.0 is preferable, and 0.9 to 1.1 is more preferable.
  • additives such as a buffer, a salt, and a sugar suitable for cell culture can be added to the aqueous solutions A and B.
  • Gels / cell hybrids are obtained by dispersing cells in the cell culture carrier of the present invention in a sol state or a liquid state at a temperature lower than LCST, and then heating the cell dispersion to a temperature higher than LCST to cause gelation.
  • a tissue hereinafter simply referred to as “hybrid tissue” can be manufactured.
  • the cells are dispersed in the cell culture carrier of the present invention in a sol state or a liquid state at a temperature lower than the LCST.
  • a cell culture carrier in a sol state or a liquid state in which cells are dispersed is referred to as a “liquid cell composition”.
  • the cell concentration at this time is preferably 1.0 ⁇ 10 6 to 1.0 ⁇ 10 8 cells / ml, more preferably 3.0 ⁇ 10 7 to 1.0 ⁇ 10 8 cells / ml. preferable.
  • the liquid cell composition can be processed into an arbitrary shape using a cell culture substrate having an arbitrary shape.
  • the liquid cell composition can be gelled into a sheet by heating to a temperature of LCST or higher.
  • the liquid cell composition after pouring a liquid cell composition into the base material for cell culture used as a three-dimensional mold
  • Examples of the base material for cell culture include plastics having excellent moldability such as polystyrene, polypropylene, polyolefin, polyethylene, polyvinyl chloride, polylactic acid, polyester, polyvinyl alcohol, cellulose, polyacrylate, polysulfone, polycarbonate, polyurethane and polyimide.
  • plastics having excellent moldability such as polystyrene, polypropylene, polyolefin, polyethylene, polyvinyl chloride, polylactic acid, polyester, polyvinyl alcohol, cellulose, polyacrylate, polysulfone, polycarbonate, polyurethane and polyimide.
  • plastics having excellent moldability such as polystyrene, polypropylene, polyolefin, polyethylene, polyvinyl chloride, polylactic acid, polyester, polyvinyl alcohol, cellulose, polyacrylate, polysulfone, polycarbonate, polyurethane and polyimide.
  • inorganic materials such as glass, gold, platinum, copper, titanium, tant
  • liquid cell composition is spotted on a cell culture substrate using a pipette, spotter, or arrayer, a dot-like pattern can be formed. If a stamp method, a stencil method, a spray method, or the like is used, a more precise pattern can be formed. Such a pattern may be regular or irregular.
  • the temperature at which the shape is fixed is not particularly limited as long as it is higher than the LCST of the cell culture carrier, but is preferably 40 ° C. or lower, more preferably 37 ° C. or lower so as not to damage the cells.
  • the heating time for gelling, that is, fixing the shape is not particularly limited, but is preferably, for example, 10 seconds to 30 minutes, and more preferably 30 seconds to 5 minutes.
  • a culture solution maintained at a temperature higher than LCST is added, and the culture is performed at a temperature suitable for cell culture higher than LCST, whereby the cell culture carrier of the present invention and the cell culture A hybrid tissue composed of cellular tissue held on a carrier is obtained.
  • ⁇ Bio ink> It is also possible to form a three-dimensional modeling of the cell culture carrier using a three-dimensional modeling apparatus (for example, a 3D printer or a bioprinter). That is, a cell dispersion obtained by dispersing cells in the cell culture carrier of the present invention in a sol state or a liquid state at a temperature lower than the lower critical solution temperature has a predetermined three-dimensional structure using a 3D printer.
  • a gel / cell hybrid tissue can be produced through a step of forming a cell culture carrier.
  • bioprinting a liquid cell composition can be accurately placed at an arbitrary position according to a computer program.
  • a cell culture carrier of the present invention in a sol state or a liquid state and cells are mixed to prepare a liquid cell composition (bio ink) and stored in a reservoir. It discharges via the connected dispensing tip (for example, a syringe, a capillary tube, etc.). And the cell culture support
  • carrier is gelatinized by heating the discharged bio ink to the temperature more than LCST instantly.
  • the hybrid structure can be three-dimensionally shaped.
  • bio ink can be ejected in a repeating pattern.
  • the repeating pattern can take any suitable geometric structure, including, for example, circles, squares, rectangles, triangles, polygons, and irregular geometric shapes.
  • repeating patterns can be stacked in layers, and multiple layers are printed adjacent to form a hybrid texture.
  • the cell tissue substantially free of the cell culture carrier can be obtained by lowering the temperature to less than the LCST and resoldering and removing the cell culture carrier.
  • substantially free of cell culture carrier means that the cell culture carrier does not remain at all or even if it remains, it is 1% by weight or less in the whole cell tissue.
  • the temperature for sol formation of the cell culture carrier is not particularly limited as long as it is LCST or lower, and the lower limit temperature is, for example, 4 ° C.
  • the time for removal is not particularly limited, it is preferably 30 seconds to 10 minutes.
  • the cell culture carrier of the present invention is a part of a scaffold molded body used for tissue regeneration such as nerve, heart, blood vessel, cartilage, skin, cornea, kidney, liver, hair, heart muscle, muscle and tendon, or tissue formation for transplantation. Can be used for all.
  • tissue regeneration such as nerve, heart, blood vessel, cartilage, skin, cornea, kidney, liver, hair, heart muscle, muscle and tendon, or tissue formation for transplantation.
  • cells that can be cultured using the cell culture carrier of the present invention include fibroblasts, vascular endothelial cells, chondrocytes, hepatocytes, small intestinal epithelial cells, epidermal keratinocytes, osteoblasts, bone marrow A mesenchymal cell etc. can be illustrated and a fibroblast can be illustrated as a preferable thing.
  • hematopoietic stem cells neural stem cells, mesenchymal stem cells, mesoderm stem cells, ES cells (embryonic stem cells), pluripotent stem cells, CD34 positive cells, immune system cells, blood cells, neurons, pancreatic ⁇ cells, Living body cells such as cardiomyocytes, chondrocytes, myoblasts, amniotic cells and umbilical cord blood cells, NIH3T3 cells, 3T3-L1 cells, 3T3-E1 cells Ewan) cells, Hela cells, PC12 cells, P19 cells, CHO (Chinese hamster oocytes) cells, COS cells, HEK cells, Hep-G2 (Hepsey two) cells, CaCo2 (Kako two) cells, L929 (El Nine two) In) cells, C2C12 (C2C) cells, Daudi cells, Jurkat cells, KG-1a cells, CTLL-2 cells, NS-1 (NS1) cells, MOLT-4 (MOT-4) cells
  • the cell culture carrier of the present invention can be used for regenerating a cell tissue for regenerative medicine.
  • the target to be regenerated includes all organs and tissues such as blood vessels, heart valves, pericardium, bones, cartilage, nerves, skin, mucous membranes, ligaments, tendons, muscles, trachea, esophagus, intestines, and dura mater. It is also possible to remove hydroxyalkylchitosan by temperature change after achieving the purpose as a medical molded body or medical material.
  • the gel / cell hybrid tissue containing the cell culture carrier of the present invention and the cell tissue held on the cell culture carrier may be transplanted as it is in a living body for regenerative medicine, for example.
  • tissue-derived cells can be used as muscle tissue
  • myocardial cells can be used as myocardium
  • vascular endothelial cells can be used as blood vessels as cell culture carriers.
  • the texture can be formed into a shape.
  • the storage elastic modulus in the examples was measured by the following method.
  • the viscoelasticity measurement was performed using a rheometer “Physica MCR302” (registered trademark) manufactured by Anton Paar. The measurement conditions are shown below.
  • ⁇ Plate Parallel plate ( ⁇ 25mm)
  • ⁇ Plate spacing 0.5mm
  • Strain 1%
  • Frequency 1 Hz
  • Temperature change range 4 °C ⁇ 40 °C ⁇
  • Temperature change rate 1.8 °C / min
  • Example 1 Cell culture carrier not containing cells> [Preparation of sample using PEG as water-soluble polymer] Hydroxybutyl chitosan having a hydroxybutyl group introduction number of 2.1 per monosaccharide unit (molecular weight 200,000) and a 4-branched multi-arm polyethylene glycol active derivative having an amino group introduced at the end (manufactured by NOF, molecular weight 20,000) was dissolved in water at 4 ° C. to prepare a solution A.
  • the weight concentration of hydroxybutyl chitosan is 2.5% by weight
  • the weight concentration of the 4-branched multi-arm type polyethylene glycol active derivative is 0, 0.75, 1.0, 1.5, 2.0, 2. 5, 5.0 or 10% by weight.
  • Solution B was prepared by dissolving oil (molecular weight 20,000) in water at 4 ° C.
  • the weight concentration of hydroxybutyl chitosan is 2.5% by weight
  • the weight concentration of the 4-branched multi-arm type polyethylene glycol active derivative is 0, 0.75, 1.0, 1.5, 2.0, 2. 5, 5.0 or 10% by weight.
  • Example preparation when hyaluronic acid or alginic acid is used as the water-soluble polymer Dissolve hydroxybutyl chitosan (molecular weight 200,000) with hyaluronic acid (molecular weight 1 million) or alginic acid (molecular weight 500,000) having a number of introduced hydroxybutyl groups per monosaccharide unit of 1.9 in water at 4 ° C. Obtained.
  • the weight concentration of hydroxybutyl chitosan is 2.5 or 5.0% by weight
  • the weight concentration of hyaluronic acid is 0.25 or 0.5% by weight
  • the weight concentration of alginic acid is 0.25, 0.5%. 0.75, 1 or 2% by weight.
  • Table 1 shows the elastic moduli and ratios of the cell culture carrier samples prepared in Test Example 1 at 37 ° C and 4 ° C.
  • Example 2 Cell culture carrier containing cells> [Preparation of sample using PEG as water-soluble polymer] Hydroxybutyl chitosan with a hydroxybutyl group introduction number of 1.8 per monosaccharide unit (molecular weight 200,000) and a 4-branched multi-arm type polyethylene glycol active derivative with a thiol group introduced at the end (manufactured by NOF, molecular weight 20,000) was dissolved in phosphate buffer at 4 ° C. to prepare solution A. Furthermore, human fibroblasts were dispersed in the solution A.
  • the weight concentration of hydroxybutyl chitosan is 2.5% by weight
  • the weight concentration of the 4-branched multi-arm type polyethylene glycol active derivative is 0.75% by weight.
  • hydroxybutyl chitosan having a number of introduced hydroxybutyl groups per monosaccharide unit (molecular weight 200,000) and a 4-branched multi-arm type polyethylene glycol active derivative having a maleimide group introduced at the end (manufactured by NOF, molecular weight 2) was dissolved in phosphate buffer at 4 ° C. to prepare solution B.
  • the weight concentration of hydroxybutyl chitosan is 2.5% by weight
  • the weight concentration of the 4-branched multi-arm type polyethylene glycol active derivative is 0.75% by weight.
  • the weight concentration of hydroxybutyl chitosan is 2.5% by weight
  • the weight concentration of hyaluronic acid is 0, 0.125 or 0.25% by weight
  • the concentration of alginic acid is 0.25 or 0.5% by weight
  • cells The concentration is 5.0 ⁇ 10 7 cells / mL.
  • Table 2 shows the elastic modulus and ratio of each of the cell culture carrier samples prepared in Test Example 2 at 37 ° C and 4 ° C.
  • ⁇ Production Example 1 Preparation of gel / cell hybrid tissue> Hydroxybutyl chitosan (molecular weight: 800,000) having a number of introduced hydroxybutyl groups per monosaccharide unit and hyaluronic acid (molecular weight: 1,000,000) were dissolved in a phosphate buffer at 4 ° C. to obtain a solution. Human fibroblasts were dispersed in this solution to obtain a cell dispersion.
  • the weight concentration of hydroxybutyl chitosan is 2.5% by weight
  • the weight concentration of hyaluronic acid is 0.125% by weight
  • the cell concentration is 1.0 ⁇ 10 8 cells / mL.
  • the dispersion was formed into a circle on a polystyrene dish for cell culture having a diameter of 35 mm, and allowed to stand at 37 ° C. for 5 minutes to gel the dispersion.
  • a medium for cell culture at 37 ° C. (Dulbecco's modified Eagle medium (DMEM medium) containing 10% fetal bovine serum) was added, followed by culturing overnight at 37 ° C. to obtain a gel / cell hybrid tissue (FIG. 1). ).
  • ⁇ Production Example 2 Production of cell tissue substantially free of cell culture carrier> Hydroxybutyl chitosan (molecular weight: 800,000) having a number of introduced hydroxybutyl groups per monosaccharide unit and hyaluronic acid (molecular weight: 1,000,000) were dissolved in a phosphate buffer at 4 ° C. to obtain a solution. Human fibroblasts were dispersed in this solution to obtain a cell dispersion.
  • the weight concentration of hydroxybutyl chitosan is 2.5% by weight
  • the weight concentration of hyaluronic acid is 0.125% by weight
  • the cell concentration is 1.0 ⁇ 10 8 cells / mL.
  • the dispersion was formed into a circle on a polystyrene dish for cell culture having a diameter of 35 mm, and allowed to stand at 37 ° C. for 5 minutes to gel the dispersion.
  • a medium for cell culture at 37 ° C. (10% fetal bovine serum-containing Dulbecco's modified Eagle medium, 2 mL) was added, followed by overnight culture at 37 ° C. After culturing, the mixture was cooled at 4 ° C. for 10 minutes to make a cell culture carrier into a sol, and the medium containing the carrier was removed by suction. After addition of a fresh medium, the cells were further cultured overnight to obtain a cell tissue substantially free of a cell culture carrier (FIG. 2).
  • ⁇ Production Example 3 Preparation of gel / cell hybrid tissue using 3D printer> Hydroxybutyl chitosan (molecular weight: 800,000) having a number of introduced hydroxybutyl groups per monosaccharide unit and hyaluronic acid (molecular weight: 1,000,000) were dissolved in a phosphate buffer at 4 ° C. to obtain a solution. Human fibroblasts were dispersed in this solution to obtain a cell dispersion.
  • the weight concentration of hydroxybutyl chitosan is 2.5% by weight
  • the weight concentration of hyaluronic acid is 0.125% by weight
  • the cell concentration is 5.0 ⁇ 10 7 cells / mL.
  • the dispersion liquid cooled to 10 ° C.
  • the present invention can be used as a cell culture carrier capable of achieving both temperature responsiveness and mechanical properties and a medical material using the same.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Sustainable Development (AREA)
  • Immunology (AREA)
  • Clinical Laboratory Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Civil Engineering (AREA)
  • Composite Materials (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Cell Biology (AREA)
  • Molecular Biology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

ヒドロキシアルキルキトサンを含む細胞培養担体において、温度応答性を維持しつつ力学的特性を向上させることを目的とし、温度応答性ヒドロキシアルキルキトサンと、ポリエチレングリコール、その誘導体、ヒアルロン酸、アルギン酸およびそれらの塩から選択される水溶性高分子とを含む、温度応答性を有することを特徴とする細胞培養担体を提供するものである。

Description

細胞培養担体、細胞培養担体作製キット、およびそれらを用いたゲル/細胞ハイブリッド組織の製造方法
 本発明は、細胞培養担体に関するものであり、より詳細には所定の温度応答性高分子と水溶性高分子とを含む温度応答性細胞培養担体に関する。
 細胞培養担体は、所定の構造を有する細胞組織を培養するために用いられる。例えば、ポリ乳酸からなる多孔性の足場材料内で細胞を培養することにより、細胞が足場材料に接着し、足場材料と細胞からなる立体構造を有する細胞組織が得られる(例えば、非特許文献1)。
 しかし、こうした足場材料は、組織形成後に取り除くことが難しく、細胞の含有率が高い、あるいは細胞のみからなる細胞組織を得ることが困難であった。
 また、再生医療において、足場材料と細胞から成る組織を体内に移植する場合は、人工物である足場材料が残留すること、あるいは足場材料が消失するのに非常に長い期間を要することが課題となっていた。
 そこで、刺激応答性材料を足場材料として用い、組織形成後に何らかの刺激を加えることにより足場材料を除去することが試みられている。このような目的のための刺激応答性材料としては、温度に応答して状態が変化する温度応答性高分子が注目されている。例えば、ある温度以上でゲル(固体状)、以下でゾル(液体状)になる温度応答性高分子を足場材料として使用すると、細胞組織形成後に温度を低下させてゾル化させることで足場材料を除去することができる。
 このように注目される温度応答性高分子は、一般に水和状態にある高分子が、ある一定温度以上で脱水和して体積や形態、性質等が変化する下限臨界溶液温度(Lower Critical Solution Temperature; 以下、「LCST」と略す。)を示すものと、ある一定温度以上で水和して体積や形態、性質等が変化する上限臨界溶液温度(Upper Critical Solution Temperature; 以下「UCST」と略す。)を示すものが知られている。LCSTを示すものとして、例えば、N-イソプロピルアクリルアミド(NIPAM)のホモポリマーまたはコポリマーやポロキサマーが知られている。特に、ポリN-イソプロピルアクリルアミド(PNIPAM)系ゲルは、体温に近い32℃付近で膨潤、収縮の体積転移が起こることから、医療材料等として広く研究が行われている(例えば、特許文献1)。
 しかし、PNIPAMは、ゲル形成に非可逆的な化学架橋を必要とするため、組織形成後に除去することが困難である。また、ポロキサマーは毒性を示すのに加えて、ゲル化に高濃度を必要とすることや培地の添加で溶解する問題があり使用されていない。
 それに対して、ヒドロキシアルキルキトサンは25℃付近にLCSTを有し、ゾル-ゲル転移することから、組織形成後に除去が可能であり、更に低毒性でもあることから、細胞培養担体としての利用が期待されている(例えば、非特許文献2および特許文献2)。
特開2006-223106号公報 国際公開第2015/129881号
Nature Biotechnology, vol.12, 1994, p689 Biomaterials, vol.27, 2006, p406
 しかし、細胞の増殖には、細胞培養担体が一定以上の強度であることが必要である。従来のヒドロキシアルキルキトサンのゲルは力学的強度が弱いため、細胞培養担体として用いても細胞の増殖が起こらず、ゲル内での細胞組織形成が難しいのに加えて、形成した細胞組織の移植等の際のハンドリングも困難であった。例えば、再生医療用途で立体構造を有する細胞組織を製造する場合に、ヒドロキシブチルキトサンゲル中で細胞を培養すると、ゲルの立体構造を維持できないのに加えて、製造中の取り扱いが困難であった。また、三次元造形装置(3Dプリンタ)によりヒドロキシアルキルキトサンゲルを三次元に造形することも行われているが、極めて細い紐状の細胞含有ゲルを積層することで立体構造を構築するため、自重に耐えきれず、構造を維持することができなかった。
 本発明は、ヒドロキシアルキルキトサンを含む細胞培養担体において、温度応答性を維持しつつ力学的特性を向上させることを課題とする。
 すなわち、本発明は、温度応答性ヒドロキシアルキルキトサンと、ポリエチレングリコール、その誘導体、ヒアルロン酸、アルギン酸およびそれらの塩から選択される水溶性高分子とを含む、温度応答性を有することを特徴とする細胞培養担体を提供するものである。
 本発明により、ヒドロキシアルキルキトサン単体で構成したゲルの力学的強度を向上、改良させることができ、温度応答性と優れた力学的特性とを両立させた細胞培養担体を提供することができる。
ヒドロキシブチルキトサンとヒアルロン酸、ヒト繊維芽細胞からなるゲル/細胞ハイブリッド組織の上方からの写真。 ヒドロキシブチルキトサンを除去して得られた細胞組織切片の顕微鏡写真。 3Dプリンタに格子状にバイオプリンティングしたヒドロキシブチルキトサンとヒアルロン酸、ヒト繊維芽細胞からなるゲル/細胞ハイブリッド組織の顕微鏡写真。
<細胞培養担体>
 本発明は、温度応答性ヒドロキシアルキルキトサンと、ポリエチレングリコール、その誘導体、ヒアルロン酸、アルギン酸およびそれらの塩から選択される水溶性高分子とを含む、温度応答性を有することを特徴とする細胞培養担体に関する。
 また、本発明は、温度応答性ヒドロキシアルキルキトサンに、ポリエチレングリコール、その誘導体、ヒアルロン酸、アルギン酸およびそれらの塩から選択される水溶性高分子を含ましめることを特徴とする、ヒドロキシアルキルキトサン単体で構成した細胞培養担体(ゲル)の力学的強度を改良する方法を提供する。
 さらに、本発明は、ヒドロキシアルキルキトサン単体で構成した細胞培養担体(ゲル)の力学的強度に比べその強度が改良された温度応答性細胞培養担体を製造する方法であって、温度応答性ヒドロキシアルキルキトサンとともに、ポリエチレングリコール、その誘導体、ヒアルロン酸、アルギン酸およびそれらの塩から選択される水溶性高分子を含ましめることを特徴とする、上記製造方法を提供する。
 〔温度応答性ヒドロキシアルキルキトサン〕
 本発明の細胞培養担体は、ヒドロキシアルキルキトサン(ヒドロキシアルキル基導入キトサン)を含む。ヒドロキシアルキルキトサンとしては、ヒドロキシエチルキトサン、ヒドロキシプロピルキトサン、ヒドロキシイソプロピルキトサン、ヒドロキシブチルキトサン、ヒドロキシペンチルキトサン、好ましくはヒドロキシブチルキトサンが挙げられる。
 ヒドロキシアルキルキトサンは、例えば、キトサンのアミノ基および/または水酸基を、エチレンオキシド、プロピレンオキシド、ブチレンオキシド、プロピレンオキシドなどでヒドロキシアルキル化する方法などで製造することができる。また、キチンを出発物質とし、これをヒドロキシアルキル化した後、脱アセチル化してもよい。
 ヒドロキシアルキルキトサンは、下限臨界溶液温度(LCST)以下では流動性のある状態(液体またはゾル)、LCST以上では固体(ゲル)状態となる温度応答性ヒドロキシアルキルキトサンを用いる。温度応答性ヒドロキシアルキルキトサンのLCSTは、用途に応じて調整することができる。例えば、単糖あたりのヒドロキシアルキル基の導入数を下げるとLCSTを上昇させることができ、導入数を上げると低下させることができる。キトサン分子の単糖単位あたりのヒドロキシアルキル基の導入数は、1.0~3.0個が好ましく、1.5~2.5個がより好ましい。ヒドロキシアルキル基の導入部位は、キトサンのアミノ基でもヒドロキシル基でも良いが、単糖単位あたりに少なくとも1個はアミノ基に導入されていることが望ましい。
 また、ヒドロキシアルキルキトサンの脱アセチル化度は、特に制限されないが、LCST以下の温度で水溶性を維持するために、ピラノース環1モル当り好ましくは50~100モル%の範囲が好ましい。
 ヒドロキシアルキルキトサンの分子量は特に限定されないが、水溶性高分子との絡み合いによる相互貫入ネットワークを形成させる点では、数平均分子量が3,000以上であることが好ましく、10,000以上であることがより好ましく、100,000以上であることが更に好ましく、150,000以上であることがより更に好ましい。ヒドロキシアルキルキトサンの分子量の上限は、温度応答性が発現する限り特に限定されず、~1,000,000程度まで、好ましくは~900,000程度まで、より好ましくは~800,0000程度までのものを使用できる。
 なお、本明細書において、ヒドロキシアルキルキトサンの分子量は、還元末端をShales変法で定量し求めたものである。
 細胞培養担体中におけるヒドロキシアルキルキトサンの重量濃度は、温度応答前後の形状および/または性質等の変化がより顕著に発揮できる点で、50重量%以下であることが好ましく、30重量%以下であることがより好ましく、20重量%以下であることがさらに好ましく、10重量%以下であることがよりさらに好ましい。また、細胞培養担体が必要十分な力学的特性を保つ点で、0.10重量%以上が好ましく、0.50重量%以上がより好ましく、1.0重量%以上が更に好ましく、1.5重量%以上がより更に好ましい。
 〔水溶性高分子〕
 本発明の実施態様に係る細胞培養担体に用いる水溶性高分子としては、ポリエチレングリコール、その誘導体、ヒアルロン酸、アルギン酸およびこれらの塩から選択されるものが用いられる。
 ポリエチレングリコールおよびその誘導体としては、ポリエチレングリコール活性誘導体、好ましくはマルチアーム型ポリエチレングリコール活性誘導体、より好ましくは、2から8、さらにより好ましくは4から8分岐マルチアーム型ポリエチレングリコール活性誘導体が挙げられる。このようなマルチアーム型ポリエチレングリコール活性誘導体は、末端に相互に反応し得る官能基を有する2種類の活性誘導体を混合(反応)して得られるものが好ましい。相互に反応し得る2種類の官能基としては、アミノ基と活性エステルの組み合わせ、チオール基とマレイミド基の組み合わせが好ましい。活性エステルとしては、N-ヒドロキシコハク酸イミドとカルボン酸が縮合したものが好ましい。
 ヒアルロン酸の由来は特に限定されず、鶏冠、靱帯由来のもの、乳酸菌や連鎖球菌により生産されたものを使用することができる。
 アルギン酸の由来は特に限定されず、褐藻、紅藻由来のもの、細菌により生産されたものを使用することができる。
 本発明で用いる水溶性高分子の分子量は、水に溶解する限り特に限定されないが、ヒドロキシアルキルキトサンとの絡み合いによる相互貫入ネットワークを形成させる点では、数平均分子量が10,000~1,500,000、好ましくは15,000~1200,000程度のものを使用できる。具体的には、ポリエチレングリコールおよびその誘導体は、数平均分子量が10,000以上、好ましくは15,000以上程度のものを使用でき、アルギン酸、ヒアルロン酸については、数平均分子量が10,000以上、好ましくは100,000以上、より好ましく200,000以上、さらに好ましくは300,000以上、さらにより好ましくは400,000以上、1,500,000以下、好ましくは1,300,000以下程度のものを使用できる。なお、本明細書における水溶性高分子の分子量は、ゲル浸透クロマトグラフィー(GPC)を用いて求めた値である。
 細胞培養担体中における水溶性高分子の重量濃度は、温度応答の前後での形状および/または性質等の変化がより顕著に発揮できる点で、10重量%以下であることが好ましく、5.0重量%以下であることがより好ましく、3.0重量%以下であることが更に好ましい。また、細胞培養担体の力学的特性の向上効果を十分に得るためには、0.01重量%以上が好ましく、0.05重量%以上が好ましく、0.1重量%以上がより好ましい。
 細胞培養担体中におけるヒドロキシアルキルキトサンと水溶性高分子は、LCST以下での流動性を保つために、非架橋状態にあることが望ましい。LCST以下で流動性が保たれることによって、3Dプリンタによる組織製造時に分注チップからの吐出が容易になる。
 〔温度応答性〕
 本明細書において「温度応答性」とは、外部温度変化に応答し、その温度変化が起こる前とその温度変化が起こる後で液体状と固体状間の変化、すなわちゾル-ゲル転移を起こす性質を言う。
 細胞培養担体が温度応答性を有することにより、LCST未満として流動性を保ったゾル状態で細胞を分散させることができる。また、三次元細胞組織を形成させる培養中にはLCST以上として立体構造を保つことができる。さらに、三次元細胞組織形成後には再びLCST未満としてゾル状態にすることで、ヒドロキシアルキルキトサンを取り除くことができる。本発明における細胞培養担体は、取り扱いや細胞培養の点から、室温以下でゾル状態、細胞培養温度および体温でゲル状態であることが望ましく、好ましくは4℃~37℃にLCSTを有し、より好ましくは25℃~37℃にLCSTを有する。
 ここで、本明細書において、細胞培養担体が「温度応答性を有する」とは、4℃における貯蔵弾性率(G’(4℃))と37℃における貯蔵弾性率(G’(37℃))の比(G’(37℃)/G’(4℃))が、1.0を上回ることを意味するものとする。G’(37℃)/G’(4℃)は、1.5以上であることが好ましく、2.0以上であることがより好ましく、10以上であることがさらに好ましく、100以上であることが一層好ましい。
 4℃における貯蔵弾性率は、50Pa未満であることが好ましく、10Pa未満であることがより好ましい。50Pa未満、より好ましくは10Pa未満であることによって、細胞の懸濁や3Dプリンタによる吐出、細胞組織形成後の除去が容易になる。
 また、取り扱いのし易さや立体構造の維持等の効果を発揮する観点から、25~40℃における最大貯蔵弾性率が100Pa以上であることが好ましく、300Pa以上であることがより好ましく、1000Pa以上であることが更に好ましい。25~40℃における最大貯蔵弾性率の上限は特に限定されないが、一般に50000Pa以下となる。本発明でいう最大貯蔵弾性率とは、所定の温度範囲での貯蔵弾性率のうち、最大のものをいう。本発明における貯蔵弾性率(G’)は、パラレルプレートをプレート間隔0.5mmで取り付けた動的粘弾性測定装置に、測定するサンプル液を入れてから5分間静置後、ひずみ1%、周波数1Hz、昇温速度1.8℃/分で測定した値を用いる。なお、より具体的には、37℃における貯蔵弾性率が100Pa以上であることが好ましく、300Pa以上であることがより好ましく、1000Pa以上であることが更に好ましい。37℃における貯蔵弾性率の上限は特に限定されないが、一般に50000Pa以下となる。
 細胞培養担体中におけるヒドロキシアルキルキトサンと水溶性高分子の重量濃度比(ヒドロキシアルキルキトサン/水溶性高分子)は、1.0~100であることが好ましく、1.0~30がより好ましく、1.0~25が更に好ましい。当該重量比を100以下、より好ましくは30以下、更に好ましくは25以下とすることにより、ヒドロキシアルキルキトサンに対して水溶性高分子が適度に分散して、力学的特性を向上させることができる。重量比が0.5以下である場合、水溶性高分子の絡まりやヒドロキシアルキルキトサンの寄与の減少等によってヒドロキシアルキルキトサンと水溶性高分子と水からなる材料が温度応答性を示さない場合がある。
 特に、水溶性高分子がポリエチレングリコールである場合には、ヒドロキシアルキルキトサン/水溶性高分子が1.0以上3.5以下の場合、力学的特性の向上効果が特に顕著に発揮される。また、特に、水溶性高分子がヒアルロン酸である場合には、ヒドロキシアルキルキトサン/水溶性高分子が10以上20以下の場合、力学的特性の向上効果が特に顕著に発揮される。アルギン酸の場合、ヒドロキシアルキルキトサン/水溶性高分子が、5以上20以下の場合、力学的特性の向上効果が特に顕著に発揮される。
 ヒドロキシアルキルキトサンおよび水溶性高分子は、水性液剤に分散および/または溶解、好ましくは溶解していることが好ましい。水性液剤としては、例えば、水、水性緩衝液(リン酸緩衝液、トリス一塩酸緩衝液、酢酸緩衝液、クエン酸緩衝液など)、生理食塩水、糖水溶液(5重量%グルコース水溶液、ブドウ糖水溶液など)、細胞培養液(例えば、D-MEM培地、MEM培地、HamF12培地、HamF10培地)が挙げられる。水溶液中の緩衝剤、塩、糖、その他培養液に添加されている溶質の濃度は、ヒドロキシアルキルキトサンのヒドロゲルが形成される濃度であれば良い。
<細胞培養担体作製キット>
 本発明によれば、次のような細胞培養担体作製キットが提供される。すわなち、第1のポリエチレングリコール活性誘導体を含む水溶液Aと前記第1のポリエチレングリコール活性誘導体と反応し得る第2のポリエチレングリコール活性誘導体を含む水溶液Bとからなり、水溶液Aまたは水溶液Bの少なくとも一方はヒドロキシアルキルキトサンを含む。ポリエチレングリコール活性誘導体としては、上記したマルチアーム型ポリエチレングリコール活性誘導体が好ましく使用される。
 水溶液Aまたは水溶液Bの少なくとも一方に、細胞を分散させた後、両者を混合することで、第1および第2のポリエチレングリコール活性誘導体間に架橋結合が形成される。例えば、水溶液Aがアミノ基を有する活性誘導体を含む場合、活性エステルを有する活性誘導体を含む水溶液Bを用いることができる。また、例えば、水溶液Aがチオール基を有する活性誘導体を含む場合、マレイミド基を有する活性誘導体を含む水溶液Bを用いることができる。これらの例の場合、水溶液A中のポリエチレングリコール活性誘導体のモル濃度と水溶液B中のポリエチレングリコール活性誘導体のモル濃度との比率(水溶液A/水溶液B)は、より効率的に反応が進み、細胞培養担体の力学的特性向上効果を十分に得させるために、0.5~2.0が好ましく、0.9~1.1がより好ましい。水溶液AおよびBには、温度応答性を損なわない限り、細胞培養に適した緩衝剤、塩、糖などの添加剤を加えることができる。
<細胞組織の製造方法>
 LCST未満の温度でゾル状態または液体状態にある本発明の細胞培養担体に細胞を分散し、その細胞分散体を、その後LCST以上の温度に加温してゲル化させることで、ゲル/細胞ハイブリッド組織(以下、単に「ハイブリッド組織」ということがある)を製造することができる。
 ハイブリッド組織を作製する際には、まず、LCST未満の温度でゾル状態または液体状態にある本発明の細胞培養担体中に細胞を分散させる。以下、細胞を分散させたゾル状態または液体状態の細胞培養担体を、「液状細胞組成物」と呼ぶ。このときの細胞濃度は、1.0×10~ 1.0×10個/mlとすることが好ましく、3.0×10~ 1.0×10個/mlとすることがより好ましい。
 液状細胞組成物は、任意の形状をした細胞培養用基材を用い、任意の形状に加工することができる。例えば、平板上の細胞培養用基材上に液状細胞組成物を流延した後、LCST以上の温度に加温することで、液状細胞組成物をシート状にゲル化させることができる。また、立体的な鋳型となる細胞培養用基材に液状細胞組成物を流し込んだ後、LCST以上の温度に加温することで、液状細胞組成物を立体的にゲル化させることができる。
 細胞培養用の基材は、例えば、ポリスチレン、ポリプロピレン、ポリオレフィン、ポリエチレン、ポリ塩化ビニル、ポリ乳酸、ポリエステル、ポリビニルアルコール、セルロース、ポリアクリレート、ポリスルホン、ポリカーボネート、ポリウレタンおよびポリイミドなどの成形性に優れたプラスチック、あるいはガラス、金、白金、銅、チタン、タンタル、ジルコニア、シリカ、アルミナ、ハイドロキシアパタイト、リン酸カルシウムおよびリン酸マグネシウム等の無機物により形成されたものを用いることができる。
 液状細胞組成物を細胞培養用の基材の上に、ピペット、スポッターおよびアレイヤー等を使用してスポットすれば、ドット状のパターンを形成することができる。スタンプ法、ステンシル法およびスプレー法などを使用すると、さらに精密なパターンを形成することもできる。このようなパターンは、規則的なものであっても不規則なものであってもよい。
 形状を固定する際の温度は、細胞培養担体のLCST以上であれば特に限定されないが、細胞へ障害を与えないためには40℃以下が好ましく、更に好ましくは37℃以下である。ゲル化する、すなわち形状を固定するための加温時間は特に限定されないが、例えば、10秒から30分であることが好ましく、更に好ましくは30秒から5分である。
 ゲル化により形状を固定化した後、LCST以上の温度に保たれた培養液を添加し、LCST以上の細胞培養に適した温度で培養を行うことで、本発明の細胞培養担体と該細胞培養担体に保持された細胞組織とからなるハイブリッド組織が得られる。
<バイオインク>
 三次元造形装置(例えば、3Dプリンタやバイオプリンタ)を用いて、細胞培養担体を立体的に造形することも可能である。すなわち、下限臨界溶液温度未満の温度でゾル状態または液体状態にある本発明の細胞培養担体に細胞を分散させて得られた細胞分散体を、3Dプリンタを使用して、所定の立体構造を有する細胞培養担体に造形する工程を経て、ゲル/細胞ハイブリッド組織を製造できる。このような手法は、一般にバイオプリンティングと呼ばれている。バイオプリンティングにおいては、コンピュータープログラムに従い、任意の位置に正確に液状細胞組成物を配置できる。例えば、ディスペンサー型三次元造形装置を用いたバイオプリンティングでは、ゾル状態または液体状態にある本発明の細胞培養担体と細胞とを混合して液状細胞組成物(バイオインク)を調製し、貯蔵器に接続された分注チップ(例えば、注射器、キャピラリーチューブなど)を介して吐出する。そして、吐出されたバイオインクを瞬時にLCST以上の温度に加温することにより、細胞培養担体をゲル化さる。この操作をコンピュータープログラムに従って繰り返すことで、ハイブリッド組織を立体的に造形することができる。
 バイオプリンティングにおいては、繰り返しパターンでバイオインクを吐出することができる。繰り返しパターンは、例えば、円、正方形、長方形、三角形、多角形、および不規則な幾何学的形状を含む、任意の適切な幾何学的構造をとることができる。更に、繰り返しパターンは層状に積み重ねることができ、複数の層は隣接してプリントされ、ハイブリッド組織が形成される。
<細胞培養担体を実質的に含まない細胞組織>
 ハイブリッド組織が得られた後、さらにLCST未満に温度を下げ、細胞培養担体を再びゾル化させて除去することで、細胞培養担体を実質的に含まない細胞組織を得ることができる。ここで、細胞培養担体を実質的に含まない、とは、細胞培養担体が全く残存していないか、残存していたとしても細胞組織全体中の1重量%以下となっている状態を意味するものとする。細胞培養担体のゾル化のための温度は、LCST以下であれば特に限定されず、下限の温度は例えば4℃である。除去のための時間は特に限定されないが、30秒から10分とすることが好ましい。
 本発明の細胞培養担体は、神経、心臓、血管、軟骨、皮膚、角膜、腎臓、肝臓、毛髪、心筋、筋肉および腱などの組織再生または移植用組織形成に使用する足場成型体の一部または全部に使用することができる。また、本発明の細胞培養担体を用いて、培養し得る細胞の具体例としては、繊維芽細胞、血管内皮細胞、軟骨細胞、肝細胞、小腸上皮細胞、表皮角化細胞、骨芽細胞、骨髄間葉細胞等を例示でき、好ましいものとしては繊維芽細胞を例示できる。更に、造血幹細胞、神経幹細胞、間葉系幹細胞、中胚葉系幹細胞、ES細胞(胚性幹細胞)、多能性幹細胞、CD34陽性細胞、免疫系細胞、血球系細胞、神経細胞、膵β細胞、心筋細胞、軟骨細胞、筋芽細胞、羊膜細胞および臍帯血細胞などの生体由来の細胞、NIH3T3(エヌアイエイチスリーティースリー)細胞、3T3-L1(スリーティースリーエルワン)細胞、3T3-E1(スリーティースリーイーワン)細胞、Hela(ヒーラ)細胞、PC12(ピーシーツェルブ)細胞、P19(ピーナインティーン)細胞、CHO(チャイニーズハムスター卵母)細胞、COS(シーオーエス)細胞、HEK(エッチイーケー)細胞、Hep-G2(ヘップジーツー)細胞、CaCo2(カコツー)細胞、L929(エルナインツーナイン)細胞、C2C12(シーツーシーツェルブ)細胞、Daudi(ダウディ)細胞、Jurkat(ジャーカット)細胞、KG-1a(ケージーワンエー)細胞、CTLL-2(シーティーエルエルツー)細胞、NS-1(エヌエスワン)細胞、MOLT-4(エムオーエルティーフォー)細胞、HUT78(エッチユーティーセブンティエイト)細胞およびMT-4(エムティーフォー)細胞などの株化細胞、あるいは抗体産生細胞である各種ハイブリドーマ細胞株、およびこれら細胞を遺伝子工学的に改変した細胞などが挙げられるが、これらに限定されない。
 本発明の細胞培養担体は、再生医療用途の細胞組織を再生するために使用することができる。再生される対象としては、血管、心臓弁、心膜、骨、軟骨、神経、皮膚、粘膜、靭帯、腱、筋肉、気管、食道、腸、硬膜などの全ての臓器、組織が含まれる。医療成型体や医療材料として目的を達した後、温度変化によりヒドロキシアルキルキトサンを除去することも可能である。本発明の細胞培養担体と該細胞培養担体に保持された細胞組織とを含むゲル/細胞ハイブリッド組織は、例えば、再生医療用途で生体内にそのまま移植してもよい。このような技術を応用すれば、再生医療、組織工学、細胞培養、バイオセンサー、バイオチップおよびドラッグスクリーニングを用途とした医療、研究および分析分野のデバイス開発が可能となる。
 また、細胞として組織由来の細胞を使用することにより、例えば、筋芽細胞を使用すれば筋組織が、心筋細胞を使用すれば心筋が、また血管内皮細胞を使用すれば血管が細胞培養担体の形状に組織形成することができる。
 以下、具体的に実施例を用いて本発明を説明するが、本発明はそれらの実施例に限定的に解釈されるべきでなく、本発明の概念に接した当業者が想到し、実施可能であると観念するであろうあらゆる技術的思想、その具体的態様が本発明に含まれるものとして理解されるべきものである。
 実施例中の貯蔵弾性率は以下の方法で測定した。
 粘弾性測定はAnton Paar製レオメーター“Physica MCR302”(登録商標)を用いて行った。測定条件を以下に示す。
・プレート:パラレルプレート(φ25mm)
・プレート間隔:0.5mm
・ひずみ:1%
・周波数:1Hz
・温度変化範囲:4℃~40℃
・温度変化速度:1.8℃/分
<試験例1:細胞を含まない細胞培養用担体>
 [水溶性高分子としてPEGを用いたサンプルの調製]
 単糖単位あたりヒドロキシブチル基の導入数が2.1のヒドロキシブチルキトサン(分子量20万)および末端にアミノ基が導入された4分岐マルチアーム型ポリエチレングリコール活性誘導体(日油製、分子量2万)を4℃で水に溶解させて溶液Aを調製した。ここで、ヒドロキシブチルキトサンの重量濃度は2.5重量%、4分岐マルチアーム型ポリエチレングリコール活性誘導体の重量濃度は、0、0.75、1.0、1.5、2.0、2.5、5.0もしくは10重量%である。
 別途、単糖単位あたりヒドロキシブチル基の導入数が2.1のヒドロキシブチルキトサン(分子量20万)および末端にN-ヒドロキシスクシンイミド活性化エステルが導入された4分岐マルチアーム型ポリエチレングリコール活性誘導体(日油製、分子量2万)を4℃で水に溶解させて溶液Bを調製した。ここで、ヒドロキシブチルキトサンの重量濃度は2.5重量%、4分岐マルチアーム型ポリエチレングリコール活性誘導体の重量濃度は、0、0.75、1.0、1.5、2.0、2.5、5.0もしくは10重量%である。
 200μLの溶液Aと200μLの溶液Bを4℃で混合し、ヒドロキシブチルキトサン2.5重量%、4分岐マルチアーム型ポリエチレングリコール活性誘導体0.75、1.0、1.5、2.0、2.5、5.0もしくは10重量%の溶液を得た。一晩、37℃で静置することで、アミノ基と活性化エステルの反応を完了した。
 [水溶性高分子としてヒアルロン酸またはアルギン酸を用いた場合のサンプル調製]
 単糖単位あたりヒドロキシブチル基の導入数が1.9のヒドロキシブチルキトサン(分子量20万)と、ヒアルロン酸(分子量100万)またはアルギン酸(分子量50万)を4℃で水に溶解させて溶液を得た。ここで、ヒドロキシブチルキトサンの重量濃度は2.5または5.0重量%、ヒアルロン酸の重量濃度は、0.25または0.5重量%、アルギン酸の重量濃度は、0.25、0.5、0.75、1または2重量%である。
 試験例1で調製した各細胞培養用担体サンプルの37℃および4℃における弾性率およびその比を表1に示す。
Figure JPOXMLDOC01-appb-T000001
<試験例2:細胞を含む細胞培養用担体>
 [水溶性高分子としてPEGを用いたサンプルの調製]
 単糖単位あたりヒドロキシブチル基の導入数が1.8のヒドロキシブチルキトサン(分子量20万)および末端にチオール基が導入された4分岐マルチアーム型ポリエチレングリコール活性誘導体(日油製、分子量2万)を4℃でリン酸緩衝液に溶解させて溶液Aを調製した。更に、溶液Aには、ヒト繊維芽細胞を分散させた。ここで、ヒドロキシブチルキトサンの重量濃度は2.5重量%、4分岐マルチアーム型ポリエチレングリコール活性誘導体の重量濃度は、0.75重量%である。
 別途、単糖単位あたりヒドロキシブチル基の導入数が1.8のヒドロキシブチルキトサン(分子量20万)および末端にマレイミド基が導入された4分岐マルチアーム型ポリエチレングリコール活性誘導体(日油製、分子量2万)を4℃でリン酸緩衝液に溶解させて溶液Bを調製した。ここで、ヒドロキシブチルキトサンの重量濃度は2.5重量%、4分岐マルチアーム型ポリエチレングリコール活性誘導体の重量濃度は、0.75重量%である。
 200μLの溶液Aと200μLの溶液Bを4℃で混合し、ヒドロキシブチルキトサン2.5重量%、4分岐マルチアーム型ポリエチレングリコール活性誘導体(PEG)0、0.75重量%、細胞濃度5.0×10個/mLの細胞分散液を得た。一晩、37℃で培養液中で培養することで、チオール基とマレイミド基の反応を完了した。得られた組成物の弾性率を、4℃から40℃まで1.8℃/分で昇温しつつ測定した。表2に、4℃、37℃での貯蔵弾性率(G’)と、それらの比を示す。
 [水溶性高分子としてヒアルロン酸またはアルギン酸を用いた場合のサンプル調製]
 単糖単位あたりヒドロキシブチル基の導入数が1.8のヒドロキシブチルキトサン(分子量20万)およびヒアルロン酸(分子量100万)、アルギン酸(分子量50万)を4℃でリン酸緩衝液に溶解させて溶液を得た。この溶液にヒト繊維芽細胞を分散させ細胞分散液を得た。ここで、ヒドロキシブチルキトサンの重量濃度は2.5重量%、ヒアルロン酸の重量濃度は、0、0.125または0.25重量%、アルギン酸の濃度は0.25または0.5重量%、細胞濃度は5.0×10個/mLである。
 試験例2で調製した各細胞培養用担体サンプルの37℃および4℃における弾性率およびその比を表2に示す。
Figure JPOXMLDOC01-appb-T000002
<製造例1:ゲル/細胞ハイブリッド組織の作製>
 単糖単位あたりヒドロキシブチル基の導入数が1.8のヒドロキシブチルキトサン(分子量80万)およびヒアルロン酸(分子量100万)を4℃でリン酸緩衝液に溶解させて溶液を得た。この溶液にヒト繊維芽細胞を分散させ細胞分散液を得た。ここで、ヒドロキシブチルキトサンの重量濃度は2.5重量%、ヒアルロン酸の重量濃度は、0.125重量%、細胞濃度1.0×10個/mLである。分散液を直径35mmの細胞培養用ポリスチレンディッシュ上に円形に成形し、37℃で5分間静置することで分散液をゲル化させた。37℃の細胞培養用の培地(10%ウシ胎児血清含有ダルベッコ改変イーグル培地(DMEM培地))を添加した後、37℃で一晩培養することで、ゲル/細胞ハイブリッド組織を得た(図1)。
<製造例2:細胞培養担体を実質的に含まない細胞組織の作製>
 単糖単位あたりヒドロキシブチル基の導入数が1.8のヒドロキシブチルキトサン(分子量80万)およびヒアルロン酸(分子量100万)を4℃でリン酸緩衝液に溶解させて溶液を得た。この溶液にヒト繊維芽細胞を分散させ細胞分散液を得た。ここで、ヒドロキシブチルキトサンの重量濃度は2.5重量%、ヒアルロン酸の重量濃度は、0.125重量%、細胞濃度1.0×10個/mLである。分散液を直径35mmの細胞培養用ポリスチレンディッシュ上に円形に成形し、37℃で5分間静置することで分散液をゲル化させた。37℃の細胞培養用の培地(10%ウシ胎児血清含有ダルベッコ改変イーグル培地、2mL)を添加した後、37℃で一晩培養した。培養後、4℃で10分間冷却し、細胞培養担体をゾル化させ、担体を含んだ培地を吸引除去した。新鮮な培地を添加した後に更に一晩培養することで、細胞培養担体を実質的に含まない細胞組織を得た(図2)。
<製造例3:3Dプリンタを用いたゲル/細胞ハイブリッド組織の作製>
 単糖単位あたりヒドロキシブチル基の導入数が1.8のヒドロキシブチルキトサン(分子量80万)およびヒアルロン酸(分子量100万)を4℃でリン酸緩衝液に溶解させて溶液を得た。この溶液にヒト繊維芽細胞を分散させ細胞分散液を得た。ここで、ヒドロキシブチルキトサンの重量濃度は2.5重量%、ヒアルロン酸の重量濃度は0.125重量%、細胞濃度は5.0×10個/mLである。10℃に冷却した分散液を3Dプリンタ(武蔵エンジニアリング社製;SHOTMASTER200DS)で、37℃に保った直径35mmの細胞培養用ガラスボトムディッシュ上に格子状にプリントした。細胞培養用の培地(10%ウシ胎児血清含有ダルベッコ改変イーグル培地)を添加した後、37℃で一晩培養することで、ゲル/細胞ハイブリッド組織を得た(図3)。
 本発明は、温度応答性と力学的特性を両立することができる細胞培養担体およびそれを用いた医療材料として利用可能である。

Claims (10)

  1.  温度応答性ヒドロキシアルキルキトサンと、ポリエチレングリコール、その誘導体、ヒアルロン酸、アルギン酸およびそれらの塩から選択される水溶性高分子とを含む、温度応答性を有することを特徴とする細胞培養担体。
  2.  前記水溶性高分子の数平均分子量が20,000以上である、請求項1に記載の細胞培養担体。
  3.  前記水溶性高分子の含有量が0.01重量%以上10重量%以下である、請求項1または2に記載の細胞培養担体。
  4.  4℃~37℃に下限臨界溶液温度を有する、請求項1~3のいずれかに記載の細胞培養担体。
  5.  4℃における貯蔵弾性率G’が50(Pa)未満であり、25~40℃における最大貯蔵弾性率が100Pa以上である、請求項1~4のいずれかに記載の細胞培養担体。
  6.  前記ヒドロキシアルキルキトサンと前記水溶性高分子が非架橋状態にある、請求項1~5のいずれかに記載の細胞培養担体。
  7.  前記ポリエチレングリコールが、2種類のマルチアーム型ポリエチレングリコール活性誘導体を含む、請求項1~6の何れかに記載の細胞培養担体。
  8.  下記溶液Aおよび水溶液B、 
    水溶液A:第1のマルチアーム型ポリエチレングリコール活性誘導体を含む水溶液;
    水溶液B:前記第1のマルチアーム型ポリエチレングリコール活性誘導体と反応し得る第2のポリエチレングリコール活性誘導体を含む水溶液
    を含み、水溶液Aまたは水溶液Bの少なくとも一方はヒドロキシアルキルキトサンを含む、細胞培養担体作製キット。
  9.  下限臨界溶液温度未満の温度でゾル状態または液体状態にある請求項1~7のいずれかに記載の細胞培養担体に細胞を分散させる工程、および得られた細胞分散体を、下限臨界溶液温度以上の温度に加温してゲル化させる工程を含む、ゲル/細胞ハイブリッド組織の製造方法。
  10.  下限臨界溶液温度未満の温度でゾル状態または液体状態にある請求項1~7のいずれかに記載の細胞培養担体に細胞を分散させて得られた細胞分散体を、3Dプリンタを使用して、所定の立体構造を有する細胞培養担体に造形する工程を含む、ゲル/細胞ハイブリッド組織の製造方法。
PCT/JP2017/029608 2016-08-31 2017-08-18 細胞培養担体、細胞培養担体作製キット、およびそれらを用いたゲル/細胞ハイブリッド組織の製造方法 WO2018043153A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP17846161.2A EP3508564A4 (en) 2016-08-31 2017-08-18 CELL CULTURE MEDIUM, CELL CULTURE MEDIUM PREPARATION KIT, AND HYBRID GEL / CELL TISSUE PRODUCTION METHOD USING CELL CULTURE MEDIUM, AND CELL CULTURE MEDIUM PREPARATION KIT
JP2018537125A JPWO2018043153A1 (ja) 2016-08-31 2017-08-18 細胞培養担体、細胞培養担体作製キット、およびそれらを用いたゲル/細胞ハイブリッド組織の製造方法
US16/328,370 US20210284943A1 (en) 2016-08-31 2017-08-18 Cell culture support, cell culture support preparation kit, and method for producing gel/cell hybrid tissue using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016169600 2016-08-31
JP2016-169600 2016-08-31

Publications (1)

Publication Number Publication Date
WO2018043153A1 true WO2018043153A1 (ja) 2018-03-08

Family

ID=61301201

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/029608 WO2018043153A1 (ja) 2016-08-31 2017-08-18 細胞培養担体、細胞培養担体作製キット、およびそれらを用いたゲル/細胞ハイブリッド組織の製造方法

Country Status (4)

Country Link
US (1) US20210284943A1 (ja)
EP (1) EP3508564A4 (ja)
JP (1) JPWO2018043153A1 (ja)
WO (1) WO2018043153A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108653818A (zh) * 2018-05-24 2018-10-16 上海其胜生物制剂有限公司 一种可逆的胶原刺激填充剂及其制备方法
JP2020150846A (ja) * 2019-03-20 2020-09-24 国立大学法人 東京大学 ハイドロゲル組成物

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002291461A (ja) * 2001-03-29 2002-10-08 Shinichiro Nishimura 軟骨細胞培養方法および軟骨組織再生基材
WO2004003130A1 (ja) * 2002-06-28 2004-01-08 Chemical Biology Institute キトサンと酸性生体高分子とのハイブリッド繊維および動物細胞培養基材
WO2014133027A1 (ja) * 2013-02-26 2014-09-04 株式会社スリー・ディー・マトリックス ハイドロゲル
WO2015129881A1 (ja) * 2014-02-28 2015-09-03 国立大学法人大阪大学 細胞の立体構造体の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0329907D0 (en) * 2003-12-23 2004-01-28 Innomed Ltd Compositions
CN105919944B (zh) * 2016-05-03 2019-08-13 苏州科技学院 一种含凝胶内核的可降解聚合物微球及其制备方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002291461A (ja) * 2001-03-29 2002-10-08 Shinichiro Nishimura 軟骨細胞培養方法および軟骨組織再生基材
WO2004003130A1 (ja) * 2002-06-28 2004-01-08 Chemical Biology Institute キトサンと酸性生体高分子とのハイブリッド繊維および動物細胞培養基材
WO2014133027A1 (ja) * 2013-02-26 2014-09-04 株式会社スリー・ディー・マトリックス ハイドロゲル
WO2015129881A1 (ja) * 2014-02-28 2015-09-03 国立大学法人大阪大学 細胞の立体構造体の製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
See also references of EP3508564A4 *
WEI Y.N. ET AL.: "3-D culture of human umbilical vein endothelial cells with reversible thermosensitive hydroxybutyl chitosan hydrogel", J. MATER. SCI. MATER. MED ., vol. 24, no. 7, 2013, pages 1781 - 1787, XP055220613, DOI: 10.1007/s10856-013-4918-1 *
YOSHINORI KAKIZAWA ET AL.: "2U18: 3D tissue engineering using sol-gel transition of thermoresoponsive polymer", POLYMER PREPRINTS, JAPAN, vol. 65, no. 2, 24 August 2016 (2016-08-24), pages 1 - 2, XP009518282 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108653818A (zh) * 2018-05-24 2018-10-16 上海其胜生物制剂有限公司 一种可逆的胶原刺激填充剂及其制备方法
JP2020150846A (ja) * 2019-03-20 2020-09-24 国立大学法人 東京大学 ハイドロゲル組成物
JP7203313B2 (ja) 2019-03-20 2023-01-13 国立大学法人 東京大学 ハイドロゲル組成物

Also Published As

Publication number Publication date
EP3508564A4 (en) 2020-04-29
JPWO2018043153A1 (ja) 2019-06-24
US20210284943A1 (en) 2021-09-16
EP3508564A1 (en) 2019-07-10

Similar Documents

Publication Publication Date Title
Liu et al. Thermosensitive injectable in-situ forming carboxymethyl chitin hydrogel for three-dimensional cell culture
Distler et al. 3D printed oxidized alginate-gelatin bioink provides guidance for C2C12 muscle precursor cell orientation and differentiation via shear stress during bioprinting
JP7452519B2 (ja) 培地添加物及び培地組成物並びにそれらを用いた細胞又は組織の培養方法
US6897064B2 (en) Cell or tissue-culturing carrier, and culturing method
Wang et al. Fabrication of multiple-layered hydrogel scaffolds with elaborate structure and good mechanical properties via 3D printing and ionic reinforcement
KR101756935B1 (ko) 이중 가교를 갖는 하이드로젤 지지체, 그의 용도 및 이단계 가교를 사용하여 그를 제조하는 하는 방법
Mihaila et al. Fabrication of endothelial cell-laden carrageenan microfibers for microvascularized bone tissue engineering applications
US8883503B2 (en) Hydrogel scaffolds for tissue engineering
Tian et al. Preparation and characterization of galactosylated alginate–chitosan oligomer microcapsule for hepatocytes microencapsulation
ES2969778T3 (es) Sistema de cultivo celular tridimensional y método de cultivo celular con utilización del mismo
WO2018043153A1 (ja) 細胞培養担体、細胞培養担体作製キット、およびそれらを用いたゲル/細胞ハイブリッド組織の製造方法
Shotorbani et al. Cell sheet biofabrication by co-administration of mesenchymal stem cells secretome and vitamin C on thermoresponsive polymer
KR101877892B1 (ko) 이중가교를 갖는 3차원 세포배양 지지체 제조방법
EP4130235A1 (en) Supporting bath for three-dimensional (3d) tissue culture
Luna et al. Development of a novel cell encapsulation system based on natural origin polymers for tissue engineering applications
JP6519168B2 (ja) 三次元細胞集合体、並びにその製造方法及び形成用溶液
JP7416185B2 (ja) 立体的細胞構造体の製造方法
JP2015165783A (ja) 多能性幹細胞からなる細胞塊製造方法
JP7480476B2 (ja) 立体的細胞組織の培養方法及びキット
JPWO2004078961A1 (ja) 浮遊担体および浮遊・回収方法
JP2021132629A (ja) 細胞非接着性材料および細胞接着制御性材料
Ma et al. The three-dimensional culture of L929 and C2C12 cells based on SPI-SA interpenetrating network hydrogel scaffold with excellent mechanical properties
WO2022065328A1 (ja) 細胞集団の製造方法
Munguia-Lopez et al. Hydrogels as three-dimensional scaffold materials in tissue engineering and as organoid platforms
CN117659522A (zh) 一种多肽偶联海藻酸钠水凝胶及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17846161

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018537125

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017846161

Country of ref document: EP

Effective date: 20190401