WO2003107659A1 - ノイズ低減装置、ノイズ低減方法 - Google Patents

ノイズ低減装置、ノイズ低減方法 Download PDF

Info

Publication number
WO2003107659A1
WO2003107659A1 PCT/JP2003/007387 JP0307387W WO03107659A1 WO 2003107659 A1 WO2003107659 A1 WO 2003107659A1 JP 0307387 W JP0307387 W JP 0307387W WO 03107659 A1 WO03107659 A1 WO 03107659A1
Authority
WO
WIPO (PCT)
Prior art keywords
video signal
level
output
signal
noise reduction
Prior art date
Application number
PCT/JP2003/007387
Other languages
English (en)
French (fr)
Inventor
矢野 修志
浜崎 岳史
Original Assignee
松下電器産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 松下電器産業株式会社 filed Critical 松下電器産業株式会社
Priority to US10/493,870 priority Critical patent/US7499087B2/en
Priority to GB0406399A priority patent/GB2397963B/en
Priority to DE10392150T priority patent/DE10392150T5/de
Publication of WO2003107659A1 publication Critical patent/WO2003107659A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/14Picture signal circuitry for video frequency region
    • H04N5/21Circuitry for suppressing or minimising disturbance, e.g. moiré or halo
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/80Camera processing pipelines; Components thereof
    • H04N23/84Camera processing pipelines; Components thereof for processing colour signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/76Circuitry for compensating brightness variation in the scene by influencing the image signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/44Receiver circuitry for the reception of television signals according to analogue transmission standards
    • H04N5/52Automatic gain control

Definitions

  • the present invention relates to a noise reduction device, a noise reduction method, and the like used for video equipment such as a television and a video.
  • Background art
  • the noise reduction device for high image quality in video equipment is explained.
  • the noise reduction device includes a two-dimensional noise reduction device that reduces noise based on the signal in the same field or frame, and a signal There is a three-dimensional noise reduction device that obtains a field or frame difference and reduces noise based on the difference (see, for example, Japanese Patent Application Laid-Open No. H03-719168).
  • FIG. 9 shows an example of the configuration of an imaging device provided with a conventional three-dimensional noise reduction device.
  • 101 is a solid-state imaging device (hereinafter referred to as CCD) that converts incident light into an electric video signal
  • 102 is a device that keeps the output signal level constant even if the output signal from the CCD 101 changes.
  • An automatic gain control amplification circuit that performs amplification to maintain the signal (hereinafter referred to as AGC circuit).
  • AGC circuit is an analog / digital converter (hereinafter referred to as AZD conversion) that converts the analog video signal from the AGC circuit 102 into a digital video signal. Vessel).
  • 104 is a subtractor that subtracts the other input signal from one input signal to two input signals, and 105 is the output of the subtractor 104 Two
  • 106 is a non-linear processing circuit that performs non-linear processing.
  • 106 is a subtractor that subtracts the output of the non-linear processing circuit 105 from the output signal of the 0 converter 103 and outputs a video signal SO.
  • the AGC circuit When an electric signal from the CCD 101 is input to the AGC circuit 102, the AGC circuit does not perform amplification if the input signal is at a certain level or more, and outputs with an amplification amount of 1 time. If the input signal is below a certain level, the signal is amplified by increasing the amount of amplification so that it is at that certain level.
  • the output signal of the AGC circuit 102 is converted into a digital video signal by the AZD converter 103.
  • the video signal converted into a digital signal by the AZD converter 103 is input to a subtractor 104, subtracted from the output signal of the field memory 107, and output as a difference signal.
  • the output signal of the field memory 107 is a signal obtained by delaying the noise-reduced output video signal SO by one field, so that if the video signal indicates a stationary imaging target, the video of each field Since the signals are substantially the same, the difference signal hardly contains a video signal, and only a noise component is extracted.
  • subtracting the output signal of the subtractor 104 from the output signal of the A / D converter 103 in the subtractor 106 produces a new output video signal SO with reduced noise. Is done. Note that this new output video signal SO is input to the field memory 107 as a reference signal, and is used for noise reduction of the video signal of the next field.
  • the video signals in each field are different from each other, so that the difference signals include many video signals. Therefore, if the difference signal is subtracted as it is, the output video signal S
  • FIG. 10 is a diagram illustrating an example of the characteristics of the nonlinear processing circuit 105.
  • the horizontal axis represents the input of the nonlinear processing circuit 105, and the vertical axis represents the output.
  • a and K are characteristic parameters that characterize this characteristic.
  • the output of the subtractor 104 contains both noise and the video signal.
  • K is a proportional constant as the absolute value of the input signal level approaches 2a from a, and a signal with an absolute value near 0 is output as a difference signal.
  • the SZN ratio deteriorates because the noise level is constant regardless of the output signal level. If the level further decreases and falls below a certain level, the AGC circuit 102 amplifies the input signal so as to maintain the level, but the signal and noise are the same when the S / N ratio is poor. Since the signal is amplified by the amount of amplification, the noise level increases.
  • the nonlinear processing control circuit 108 changes the characteristics of the nonlinear processing circuit in accordance with the amount of amplification of the AGC circuit 102. Specifically, the level of the signal regarded as noise is increased by increasing the value of the characteristic parameter a. Thus, even if the noise included in the video signal becomes large due to the amplification of the AGC circuit 102, it can be reduced.
  • the subtractor 105 it is impossible to distinguish between a video signal which originally has a predetermined amplitude and noise which has been amplified and the level of which is increased by the magnitude of the amplitude. Therefore, if the value of the characteristic parameter a is increased according to the increased noise level, the nonlinear processing circuit 105 becomes In addition, the originally required video signal is reduced together with the noise, and the output of the non-linear processing circuit 105 contains many video signals in the field memory 107. The afterimage degradation in the signal SO increases.
  • the non-linear processing circuit 105 that distinguishes between noise and video signals based on the statistical reason that amplitude changes over time is smaller than that of video signals makes it difficult to remove noise in consideration of afterimage degradation. Had become. Disclosure of the invention
  • the present invention solves the above-mentioned conventional problems. Even when the SZN ratio of a video signal is poor and it is necessary to amplify the image signal, the noise is effectively reduced, and a noise reduction device with less afterimage degradation is provided.
  • the purpose is to provide a reduction method.
  • a first aspect of the present invention provides an amplifying means for amplifying a video signal
  • Difference signal extracting means for extracting a difference signal between the output of the video signal reducing means and a predetermined reference signal
  • Difference signal level reducing means for reducing the level of the difference signal based on a comparison between the level of the difference signal and a predetermined second characteristic parameter
  • Subtraction means for subtracting the output of the difference signal level reduction means from the video signal
  • a noise reduction device that outputs the output of the subtraction means as the video signal with reduced noise and uses the output as a new reference signal.
  • a second invention provides an amplifying means for amplifying a video signal
  • a difference signal extracting means for extracting a difference signal between the output of the amplifying means and a predetermined reference signal
  • a differential signal level reducing unit that reduces a level of the differential signal; and a subtracting unit that subtracts an output of the differential signal level reducing unit from the video signal.
  • a noise reduction device that outputs the output of the combining unit as the video signal with reduced noise, and uses the output as a new reference signal.
  • the difference signal is divided into a plurality of bands in accordance with the spatial frequency, and for each band, the level of the difference signal is compared with a predetermined third characteristic parameter defined for each band.
  • a noise reduction device that obtains the output by reducing the level of a signal in a higher frequency band among the plurality of differential signals based on the difference signal.
  • a third aspect of the present invention is the noise reduction device according to the first aspect, wherein the first characteristic parameter of the video signal level reducing unit is varied according to an amplification amount of the amplifying unit.
  • the second or third characteristic parameter of the differential signal level reducing means is variable according to an amplification amount of the amplifying means.
  • the noise reduction device according to any one of the first to third aspects of the present invention.
  • the second characteristic parameter of the difference signal level reducing means is kept constant and the video signal level reducing means is kept constant. Increase the first characteristic parameter
  • a fourth characteristic parameter for keeping the first characteristic parameter of the video signal level reduction means constant and increasing the second characteristic parameter of the differential signal level reduction means is a noise reduction device according to the invention.
  • the first characteristic parameter of the video signal level reducing means is kept constant and the difference signal level reducing means of the differential signal level reducing means is kept constant.
  • the fourth characteristic value for keeping the second characteristic parameter of the differential signal level reducing means constant and increasing the first characteristic parameter of the video signal level reducing means is used.
  • 5 is a noise reduction device of the invention.
  • the video signal level reducing means includes:
  • a plurality of filters including a low-pass filter and a high-pass filter for frequency-dividing the video signal
  • a core that receives an output from the high-pass filter, cuts the output when the level of the output is equal to or less than the first characteristic parameter, and reduces the output when the level is larger than the first parameter;
  • a ring circuit
  • a noise reducing device comprising a combining unit that combines an output of the low-pass filter and an output of the coring circuit.
  • the eighth invention is characterized in that the video signal level decreasing means includes:
  • the magnitude of the output level is the first characteristic.
  • a noise reducing apparatus comprising: a synthesizing unit that synthesizes an output of one of the plurality of band-pass filters whose low band is a pass band and an output of the coring circuit.
  • the differential signal level reducing means includes:
  • a plurality of filters for frequency-dividing the video signal A plurality of filters for frequency-dividing the video signal
  • a plurality of level reducing means for reducing a level of each output of the plurality of filters based on a comparison with each of the third characteristic parameters; and a combining means for combining outputs of the plurality of level reducing means.
  • the value of the third characteristic parameter of each of the plurality of level reduction means is, for a plurality of filters to which the corresponding plurality of level reduction means are connected, a value of a second one having a higher pass band in a higher band. 4 is a noise reduction device according to the present invention.
  • a tenth aspect of the present invention is the noise reduction apparatus according to the ninth aspect of the present invention, wherein the plurality of filters are band-pass filters having different pass bands.
  • the eleventh invention is the noise reduction device according to the ninth invention, wherein the plurality of filters include a low-pass filter and a high-pass filter.
  • the video signal is input every n fields or n horizontal periods (n is a natural number), and the difference signal corresponding to the m-th input video signal is at least m ⁇ Based on the first input video signal PC Ranko 87
  • a noise reduction device obtained by using the obtained signal as the predetermined reference signal.
  • a thirteenth aspect of the present invention provides the noise reduction device according to any one of the first to twelfth aspects
  • An imaging apparatus comprising: imaging means for imaging an object to obtain the video signal.
  • a fifteenth aspect of the present invention provides an amplifying step of amplifying a video signal
  • a noise reduction method that outputs the output of the subtraction step as the noise-reduced video signal and uses it as a new reference signal.
  • a fifteenth aspect of the present invention provides an amplifying step of amplifying a video signal, a differential signal extracting step of extracting a differential signal between an output of the amplifying step and a predetermined reference signal,
  • the differential signal is divided into a plurality of bands according to the spatial frequency, and for each band, the level of the differential signal and a predetermined signal level determined for each band
  • a noise reduction method for reducing the level of a signal in a higher frequency band among a plurality of difference signals based on a comparison of the three characteristic parameters, and combining the divided bands to obtain the output.
  • a sixteenth aspect of the present invention provides the noise reduction device according to the first aspect of the invention, further comprising: a width means for amplifying a video signal; and a plurality of the video signals amplified by the width means, in accordance with the spatial frequency.
  • Video signal level reducing means for synthesizing the reduced high frequency component and other band components; difference signal extracting means for extracting a difference signal between the output of the video signal reducing means and a predetermined reference signal; Difference signal level reduction means for reducing the level of the difference signal based on a comparison between the level of the difference signal and a predetermined second characteristic parameter; and subtracting the output of the difference signal reduction means from the video signal.
  • subtraction means Is a program for the functioning of the computer.
  • a seventeenth aspect of the present invention is the noise reduction device according to the first aspect of the present invention, wherein the amplifying means amplifies the video signal, and a differential signal for extracting a differential signal between the output of the amplifying means and a predetermined reference signal.
  • an eighteenth aspect of the present invention is a recording medium carrying the program of the sixteenth or seventeenth aspect of the present invention, which is a recording medium that can be processed by a computer.
  • FIG. 1 is a block diagram showing a configuration of the noise reduction device according to the first embodiment of the present invention.
  • FIG. 2 is a block diagram showing a configuration example of the high-frequency coring circuit 14 used in the first and second embodiments of the present invention.
  • (a) is a frequency characteristic diagram showing a frequency characteristic of LPF 22 used in the first and second embodiments of the present invention.
  • (b) is a frequency characteristic diagram showing a frequency characteristic of HP F21 used in the first and second embodiments of the present invention.
  • FIG. 4 is an input / output characteristic diagram showing an example of input / output characteristics of the coring circuit 14 used in the first and second embodiments of the present invention.
  • FIG. 2A is a diagram illustrating a relationship between a CCD output signal level and an incident light amount according to the first embodiment of the present invention.
  • FIG. 4B is a relationship diagram illustrating an example of a relationship between a value of a characteristic parameter of the coring circuit 23 and an amplification amount of the AGC circuit 12 according to the first embodiment of the present invention.
  • FIG. 3D is a relationship diagram illustrating an example of a relationship between a value of a characteristic parameter of the nonlinear processing circuit 16 and an amplification amount of the AGC circuit 12 according to the first embodiment of the present invention.
  • FIG. 6 is a block diagram showing a configuration of a noise reduction device according to the second embodiment of the present invention.
  • (a) is a relationship diagram showing another example of the relationship between the value of the characteristic parameter m and the width of the AGC circuit 12 in the first and second embodiments of the present invention.
  • FIG. 8 is an input / output characteristic diagram showing another example of the input / output characteristics of the coring circuit 23 used in the first and second embodiments of the present invention.
  • FIG. 9 is a block diagram showing a configuration of a conventional noise reduction device.
  • FIG. 10 is an input / output characteristic diagram showing the input / output characteristics of the nonlinear processing circuit in the conventional noise reduction device.
  • FIG. 3A is a diagram illustrating a relationship between a CCD output signal level and an incident light amount according to the first embodiment of the present invention.
  • FIG. 4B is a relationship diagram illustrating another example of the relationship between the value of the characteristic parameter of the nonlinear processing circuit 16 and the amount of amplification of the AGC circuit 12 according to the first embodiment of the present invention.
  • (c) is a relation diagram showing another example of the relation between the value of the characteristic parameter of the coring circuit 23 and the amount of amplification of the AGC circuit 12 in the first embodiment of the present invention.
  • FIG. 3 is a frequency characteristic diagram showing a frequency characteristic of FIG.
  • FIG. 1 is a block diagram illustrating a basic configuration of a main part of an imaging device including a noise reduction device according to a first embodiment of the present invention.
  • reference numeral 11 denotes a CCD which converts incident light into an electric image signal.
  • the CCD corresponds to an image pickup means of the present invention.
  • AGC circuit for amplification 13 is an A / D converter that converts the analog video signal output from the AGC circuit 12 to a digital video signal, and 14 is a high-frequency signal for the output of the A / D converter.
  • a high-frequency coring circuit that performs nonlinear processing only 18 is a field memory that delays the output video signal SO of this device by one field as a reference signal of the present invention and outputs it, and 15 is a high-frequency coring circuit 1
  • a subtractor 16 calculates and outputs a difference between the output signal of the output signal 4 and the output signal of the field memory 18, and a subtractor 16 calculates a difference between the output of the subtractor 15 and a characteristic parameter a corresponding to the second characteristic parameter of the present invention.
  • a processing circuit 17 subtracts the output of the nonlinear processing circuit 16 from the output signal of the high frequency coring circuit 14 and outputs a video signal SO.
  • the AGC circuit 12 corresponds to the width means of the present invention
  • the high-frequency coring circuit 14 corresponds to the video signal level reducing means of the present invention
  • the subtractor 15 corresponds to the present invention.
  • the nonlinear processing circuit 16 corresponds to the differential signal extracting means
  • the subtractor 17 corresponds to the level reducing means, and corresponds to the subtracting means of the present invention.
  • the operations from the CCD 11 to the AZD converter 13 are the same as those from the CCD 101 to the A / D converter 103 of the conventional noise reduction device shown in FIG.
  • FIG. 2 is a block diagram illustrating an example of the high-frequency coring circuit 14.
  • an HPF High Pass Filter: High Pass Filter
  • an LPF Low Pass Finoleta: Low Pass Filter
  • the band is divided into a high band and a low band by 22.
  • These filters have frequency characteristics as shown in Fig. 3, for example. 3 (a) shows the frequency characteristics of the LPF, and FIG. 3 (b) shows the frequency characteristics of the HPF.
  • the high-frequency component signal that has passed through the HPF 21 is input to a coring circuit 23 that performs nonlinear processing.
  • FIG. 4 shows an example of the input / output characteristics of the coring circuit 23, where m is a characteristic parameter that characterizes this characteristic and corresponds to the first characteristic parameter of the present invention. Due to this input / output characteristic, the level of the amplitude of the signal input to the coring circuit 23 is compared with this characteristic parameter. As a result, only the signal having a larger amplitude than a certain amplitude is reduced according to the value of the characteristic parameter. Is output. That is, if the input signal level of the coring circuit 23 is X, a signal satisfying IXI ⁇ m is not output, and a signal satisfying IXI> m is not output. For the signal, the absolute value of the signal level is reduced to a value reduced by m and output.
  • the adder 24 By adding the high-frequency signal component passed through the coring circuit 23 and the low-frequency signal component output from the LPF 22 by the adder 24, the entire band of the video signal is restored, and the high-frequency coring The output of the circuit 14 is output to the subsequent subtractors 15 and 17.
  • Noise is characterized not only by the fact that the time variation of the amplitude is generally smaller than the time variation of the video signal as described above, but also by the fact that the spatial frequency is more distributed in the high frequency than in the low frequency. is there.
  • This high-frequency coring circuit 14 causes a certain amount of noise in the video signal, specifically, when the output signal of the AZD converter 13 has noise with a level of Sn in absolute value, S n ⁇ If m, the noise level will be reduced to 0, and if S n> m, it will be reduced to S n— m. Moreover, afterimages do not occur in principle in the noise reduction by the high-frequency coring circuit 14.
  • the operation of the high-frequency coring circuit 14 and thereafter, the operation of the subtractor 15, the subtractor 17, the nonlinear processing circuit 16, and the operation of the field memory 18 are the same as those of the conventional noise reduction device. It operates in the same way as the subtractor 106, the nonlinear processing circuit 105, and the field memory 107. Therefore, the non-linear processing circuit 16 processes the output of the subtractor 104 in accordance with the characteristics shown in FIG. 10, and further reduces the noise of the output of the high-frequency coring circuit 14 so that the output video signal SO On the other hand, this output video signal SO is stored in the field memory 18 to be output to the subtracter 15 in the noise reduction processing of the video signal of the next field as a reference signal of the present invention. .
  • the noise whose absolute value level has been reduced to Sn 1 m by the high-frequency coring circuit 14 is further determined according to the characteristics shown in FIG. 10.
  • the nonlinear processing control circuit 19 determines the characteristic parameter m of the coring circuit 23 in the high-frequency coring circuit 14 and the characteristic parameter a of the nonlinear processing circuit 16 according to the amplification amount of the AGC circuit 12.
  • control as shown in Fig. 5 is performed. That is, as shown in FIG. 5 (a), when the amount of light incident on the CCD 11 decreases and the output video signal level from the CCD 11 decreases, the AGC circuit 12 maintains a constant level as in the conventional case. Force to increase the amount of amplification so as to maintain If the amount of amplification is equal to or less than a fixed value G1 as shown in Fig. 5 (b), the characteristic parameter m of the coring circuit 23 is first increased.
  • the characteristic parameter a of the nonlinear processing circuit 16 is kept constant.
  • a 0 is kept as an example, so that substantially no signal passes through the nonlinear processing circuit 16 at all.
  • the characteristic parameter a may be kept constant at an arbitrary value.
  • the high-frequency coring circuit 14 also reduces high-frequency video signals such as power details that reduce noise distributed in the high frequency range of the signal. Become. Therefore, when the amount of amplification of the AGC circuit 12 reaches G1, the characteristic parameter m is fixed at a value at which the detail deterioration can be tolerated even if the amount of variation further increases, as shown in Fig. 5 (c). Instead, the characteristic parameter a of the nonlinear processing circuit 16 is increased.
  • the amplification amount of the AGC circuit 12 increases, and even if the noise level Sn of the output signal of the A / D converter 13 increases, if the amplification amount is equal to or less than the high-frequency core, Noise reduction is performed by the ring circuit 14, and noise reduction is not performed by subsequent operations. Therefore, in such a case, the video signal may have various motion components, for example, motion of the subject itself, motion components of low spatial frequency such as motion of the entire screen due to panning of the imaging device itself, and motion blur. High spatial frequency motion components Even if it has such a phenomenon, afterimage deterioration does not occur.
  • the value of the characteristic parameter a can be suppressed to a value smaller than the conventional value since the high-frequency coring circuit 14 reduces the noise to a certain extent. Can also reduce afterimage degradation.
  • the nonlinear processing control circuit 19 may control the characteristic parameter m and the characteristic parameter a as follows. That is, as shown in Fig. 11 (a), when the amount of light incident on the CCD 11 decreases and the level of the output video signal from the CCD 11 decreases, the AGC circuit 12 maintains a constant level as in the past. While gradually raising the amount of amplification so as to maintain, so as to ⁇ characteristic parameters a first nonlinear processing circuit 1 6 if a constant value G 2 or less is the amplification amount as shown in FIG. 1 1 (b) .
  • the characteristic parameter m of the coring circuit 23 is kept constant. In FIG. 11 (c), since m20 is maintained as an example, the signal substantially passes through the coring circuit 14. Note that the characteristic parameter m may be kept constant at an arbitrary value.
  • the nonlinear processing circuit 16 reduces noise distributed in the high frequency range in the spatial frequency of the signal.
  • the amount of amplification of the AGC circuit 1 2 reaches the G 2, after the characteristic parameter a be increased amplification amount more fixed at a value a 4 an acceptable residual image deterioration, in FIG. 1 1 (c)
  • the characteristic parameter m of the coring circuit 23 is increased instead.
  • the value of the characteristic parameter a of the non-linear processing circuit 1 6 smaller than the conventional record must be a 4 or more Therefore, afterimage degradation can be reduced more than before.
  • FIG. 6 is a block diagram illustrating a basic configuration of a main part of an imaging apparatus including a noise reduction device according to Embodiment 2 of the present invention.
  • the same reference numerals are given to the function blocks that are the same as or correspond to those in FIG. 1 of the first embodiment, and the description of the blocks is omitted.
  • 6 1—1 to 6 1—n are used to divide the output of the subtracter 15 into a plurality of bands by using a BPF (Pandpass filter: BandPasss)
  • F i 1 ter), 62-1 to 62-n are multiple nonlinear processing circuits that respectively perform nonlinear processing on the output of the BPF 61-1 to 61-n, and 63 is a nonlinear processing circuit 62 — 1 to 6 2 — An adder that adds all the outputs from n and outputs the result to the subtractor 17.
  • non-linear processing circuits 62-1 to 62-n Different characteristic parameters are assigned to the non-linear processing circuits 62-1 to 62-n, respectively.
  • the values of these parameters are the same as those of the conventional example and the first embodiment. It is assumed that the nonlinear processing control circuit 108 increases in accordance with the amplification amount of the signal.
  • the BPFs 6 1-1 to 6 1 -n, the nonlinear processing circuits 6 2-1 to 6 2-11 and the adder 63 constitute the differential signal level reducing means of the present invention.
  • 6 1— :! 6 to 1 n correspond to the plurality of filters of the present invention
  • the nonlinear processing circuits 6 2 1 to 6 2 n correspond to the level reducing means of the present invention
  • the adder 63 corresponds to the synthesizing means of the present invention. Is equivalent to
  • the noise reduction device of the present embodiment is different from the noise reduction device of the first embodiment is that the BPF 61-1 to 61-n and the nonlinear processing circuit 62-1 to 62-n And the adder 63, this operation will be mainly described below.
  • the output signal of the subtracter 15 is divided into a plurality of bands in the spatial frequency by the BPF 61-1 to 61-n, and each is independently performed by the nonlinear processing circuit 621-1 to 62- ⁇ . Non-linear processing similar to that of the embodiment is performed. Then, the outputs of the nonlinear processing circuits are combined into one by the adder 63.
  • the operation of the nonlinear processing circuit 62-1 to 62- ⁇ will be described in detail.
  • Figure 12 (a) shows the frequency characteristics of the BPF 61-1
  • Figure 12 (b) shows the input / output characteristics of the nonlinear processing circuit 62-1.
  • Fig. 12 (c) shows the frequency characteristics of the BPF 61 -2
  • Fig. 12 (d) shows the input / output characteristics of the nonlinear processing circuit 62-12
  • Fig. 12 (e) shows the characteristics.
  • Figure 12 (f) shows the input / output characteristics of the nonlinear processing circuit 62_3, respectively.
  • a relationship of aa 2 ⁇ a 3 is provided between the magnitudes of the characteristic parameters a to a 3 .
  • the values of the characteristic parameters assigned to the plurality of nonlinear processing circuits are different from each other according to the level of the spatial frequency band of the signal processed by the corresponding non-linear processing circuit, and are set so as to be higher in the higher frequency range.
  • characteristic parameters a ⁇ a 3 corresponds to the third characteristic parameter of the present invention.
  • the noise included in the video signal is lower in spatial frequency than in low frequency.
  • the characteristic parameter a1 is set to be small, so that the motion portion can be reduced more than noise reduction. So that it is not reduced.
  • the nonlinear processing circuit 6 2 Takagi Ingredient contains many noise components from the motion component is input - in 3, by a large value a 3 characteristic parameters, to some extent that the amplitude is reduced as large noise Priority.
  • the value of the characteristic parameter a 2 is controlled to be a value between ai and a 2.
  • the first implementation even if the amplification amount of the AGC circuit 12 becomes a predetermined amount, for example, Gl, G2 or more, and the afterimage degradation occurs in the output video signal SO, the first implementation The noise reduction can be performed while further improving the afterimage degradation than in the embodiment.
  • a predetermined amount for example, Gl, G2 or more
  • the configuration of the first embodiment has a configuration in which a BPF 61 1 1 to 61 1-n, a nonlinear processing circuit 62 1 to 62-n, and an adder 63 are added.
  • the high-frequency coring circuit 14 may be omitted. That is, according to the present invention, the conventional nonlinear circuit 105 shown in FIG. 9 is replaced with BPF 61-1 to 61-n, nonlinear processing circuit 62- :! 6 6 2 — n and the adder 63 may be used instead.
  • the characteristic parameter a when the amplification amount increases more, the characteristic parameter a is gradually increased in accordance with the amplification amount.
  • the characteristic parameter a may be set to a constant value regardless of the amplification amount. This value is set so that when the amount of amplification by the AGC circuit 12 is small, afterimages are generated, but this does not lead to a decrease in image quality and is at a level that does not cause a problem. Furthermore, even if the amplification amount is larger, the characteristic parameters are constant, so that the afterimage does not increase and the image quality does not decrease.
  • the characteristic parameter m also gradually increases in accordance with the amplification amount of the AGC circuit 12, it is not necessary to limit to this, and the predetermined value is considered in consideration of the amplification amount of the AGC circuit 12. It may be set to a certain value so as to obtain the effect of (1).
  • the control of the characteristic parameters a and m is performed stepwise as shown in FIG. 5 and FIG. 11, but the present invention is not limited to this.
  • the slope of the straight line shown in FIG. 7 may be increased simultaneously.
  • the slope of the straight line shown in FIG. 7 may be increased simultaneously.
  • the characteristics of the nonlinear processing circuits 16 and 62-1-1 to 62- ⁇ are the same as those of the conventional noise reduction device as shown in FIG. It is not necessary to limit the characteristic.
  • the characteristic is such that only a small amplitude portion of the output signal of the subtracter 15 can be extracted based on a comparison between the level of the output signal of the subtractor 15 and the value of the characteristic parameter a.
  • a coring circuit 23 having the characteristics shown in FIG. 4 was used as the nonlinear processing circuit in the high-frequency coring circuit 14, but the present invention is not limited to this.
  • the characteristics shown in FIG. Good According to such characteristics, the high-frequency signal having a level less than the absolute value m does not completely disappear, so that a small amount of noise component remains, but a detail signal having a small amplitude can also be left.
  • the high-frequency coring circuit 14 has the configuration shown in FIG. 2, the configuration is not limited to this, and it is sufficient that the configuration is such that nonlinear processing can be performed on the high frequency of the video signal.
  • the high-frequency coring circuit 14 of the first embodiment has an HPF 2 0307387
  • HP F and LPF may each be two or more.
  • the present invention may be realized by a plurality of BPFs having different passbands.
  • the second embodiment has a configuration including a plurality of BPFs 61-1-1, 61-2 to 61-n, it may be realized as a combination of a plurality of HPFs and LPFs. Good.
  • the video signal noise reduction means and the differential signal noise reduction means of the present invention are characterized in that the high frequency coring circuit 14 and the non-linear processing circuit 16, 6 2 1:!
  • the present invention is not limited to the non-linear processing of ⁇ 62-n, and may be realized as a configuration in which the level of an input signal is reduced by arbitrary processing.
  • the field memory is used as the means for storing the output video signal S ⁇ as the reference signal of the present invention, it is not limited to this, and it goes without saying that a frame memory may be used.
  • the field memory 18 inputs the output video signal SO one field before to the subtractor 15, but the reference signal of the present invention is An output video signal SO of an earlier field may be used.
  • the present invention may be realized as an imaging device equipped with the above-described noise reduction device of the present invention and another imaging means such as a CCD or a CMOS capable of acquiring a video signal.
  • another imaging means such as a CCD or a CMOS capable of acquiring a video signal.
  • CCD Compact Disc
  • CMOS complementary metal-oxide-semiconductor
  • a program according to the present invention is a program for causing a computer to execute the functions of all or a part of the above-described noise reduction device of the present invention, and is a program that operates in cooperation with the computer. You may.
  • the present invention is a recording medium carrying a program for causing a computer to execute all or a part of the functions of all or part of the above-described noise reduction device of the present invention.
  • the read program may be a recording medium that executes the above function in cooperation with the computer.
  • the “partial means” means some of the plurality of means, or the operation of some functions of one of the means. Things.
  • a computer-readable recording medium that records the program of the present invention is also included in the present invention.
  • One use form of the program of the present invention may be a form in which the program is recorded on a computer-readable recording medium and operates in cooperation with the computer.
  • One use form of the program of the present invention may be a form in which the program is transmitted through a transmission medium, read by a computer, and operates in cooperation with the computer.
  • the recording medium includes ROM and the like
  • the transmission medium includes a transmission mechanism such as the Internet, light waves, and sound waves.
  • the computer of the present invention described above is not limited to pure hardware such as CPU, but may include firmware, OS, and peripheral devices.
  • the configuration of the present invention may be realized by software or hardware.
  • the noise reduction device and the noise reduction device that effectively reduce noise and reduce afterimage degradation are provided.
  • a method or the like can be provided.

Abstract

従来の3次元ノイズ低減装置においては、信号増幅によりノイズレベルが大きくなった信号に対し効果的なノイズ低減を行うと、残像劣化が大きくなってしまうという問題があった。映像信号を増幅するAGC回路12と、AGC回路12により増幅された映像信号を、その空間周波数に応じて複数の帯域に分割し、前記増幅手段の増幅量に基づく第1の特性パラメータと、前記映像信号の、より高域成分のレベルとの比較に基づき、前記高域成分のレベルを低減し、前記低減された高域成分と他の帯域成分とを合成する高域コアリング回路14と、高域コアリング回路14の出力と所定の参照用信号との差分信号を取り出す減算器15と、前記差分信号のレベルと所定の第2の特性パラメータとの比較に基づき前記差分信号のレベルを低減する非線形処理回路16と、映像信号から非線形処理回路16の出力を減算する減算器17とを備えた。

Description

明 細 書 ノイズ低減装置、 ノイズ低減方法 技術分野
本発明は、 テレビやビデォなどの映像機器に用いられるノイズ低減装 置、 ノイズ低減方法等に関する。 背景技術
ビデオ機器における高画質のためのノイズ低減装置について説明する ノイズ低減装置には、 同一フィールドまたはフレーム内の信号を元にノ ィズ低減を図る 2次元ノイズ低減装置と、 メモリなどを用いて信号のフ ィールドまたはフレーム差分を求め、 それを元にノイズ低減を図る 3次 元ノイズ低減装置がある (例えば特開平 0 3— 7 9 1 6 8号公報を参照
) o
まず従来の 3次元ノィズ低減装置の動作を簡単に説明する。
図 9は従来の 3次元ノィズ低減装置を備えた撮像装置の構成例を示す ものである。
図 9において、 1 0 1は入射する光を電気映像信号に変換する固体撮 像素子 (以下 C C D ) 、 1 0 2は C C D 1 0 1からの出力信号が変化し ても出力信号レベルを一定に保つように増幅を行う自動利得制御増幅回 路.(以下 A G C回路) 、 1 0 3は A G C回路 1 0 2からのアナログ映像 信号をデジタル映像信号に変換するアナログ ·デジタル変換器 (以下 A ZD変換器) である。 1 0 4は 2つの入力信号に対し、 一方の入力信号 から他方の入力信号を減算する減算器、 1 0 5は減算器 1 0 4の出力に 2
対し、 非線形の処理を行う非線形処理回路、 1 0 6は 0変換器1 0 3の出力信号から、 非線形処理回路 1 0 5の出力を減算し、 映像信号 S Oを出力する減算器、 1 0 7は出力映像信号 S Oを 1フィールド遅延さ せた参照用信号として減算器 1 0 4へ出力するフィールドメモリ、 1 0 8は A G C回路 1 0 2の増幅量に応じて非線形処理回路 1 0 5の特性を 変更する非線形処理制御回路である。
以下、 以上のような構成を有する従来の 3次元ノイズ低減装置の動作 について説明する。
C C D 1 0 1からの電気信号が A G C回路 1 0 2に入力されると、 A G C回路は入力信号がある一定レベル以上であれば増幅を行わず増幅量 1倍で出力する。 もしも入力信号がある一定レベル以下であれば、 その 一定レベルになるように増幅量を上げて信号の増幅を行う。
そして、 A G C回路 1 0 2の出力信号は AZ D変換器 1 0 3によって デジタル映像信号に変換される。
さらに AZ D変換器 1 0 3でデジタル信号に変換された映像信号は減 算器 1 0 4に入力され、 フィールドメモリ 1 0 7の出力信号との減算が 行われ、 差分信号として出力される。 フィールドメモリ 1 0 7の出力信 号は、 既にノイズ低減された出力映像信号 S Oが 1フィールド遅延した 信号であるため、 映像信号が静止状態の撮像対象を表示するものであれ ば、 各フィールドの映像信号は実質上同一であるため、 上記差分信号中 には映像信号はほとんど含まれず、 ノイズ成分だけが抽出される。
従,つて、 減算器 1 0 6において A/ D変換器 1 0 3の出力信号から減 算器 1 0 4の出力信号を差し引けば、 ノイズが低減された、 新たな出力 映像信号 S Oが出力される。 なお、 この新たな出力映像信号 S Oは参照 用信号としてフィールドメモリ 1 0 7へ入力し、 次のフィールドの映像 信号のノイズ低減に用いられることになる。 3
一方、 撮像対象が動く動画においては、 各フィールドの映像信号は互 いに異なるため、 差分信号中に映像信号が多く含まれるようになってく る。 したがって、 上記差分信号をそのまま差し引くと、 出力映像信号 S
Oにおいてはノイズは低減されるが 1フィールド前の画像信号も同時に 加算され、 画面に残像劣化を引き起こすことになる。
このような不具合に対しては、 以下のように対処していた。 すなわち 、 一般的にノイズは映像信号に比べて振幅の時間変化量が小さい、 とい う統計的理由に基づき、 上記差分信号のうち、 振幅の大きい部分を映像 信号、 振幅の小さい部分をノイズとみなして、 この振幅の小さい部分だ けを非線形処理回路 1 0 5において抜き出す。 この振幅の小さい部分が 抜き出された信号を差分信号として、 減算器 1 0 6において AZD変換 された映像信号から差し引くことにより、 ほとんど残像なくノイズが低 減された映像信号 S Oを出力することができる。
図 1 0は非線形処理回路 1 0 5の特性の一例を表す図であり、 横軸が 非線形処理回路 1 0 5の入力、 縦軸が出力を表す。 a及び Kはこの特性 を特徴付ける特性パラメータである。
減算器 1 0 4の出力のレベルである非線形処理回路入力レベルの絶対 値が a以下であれば、 減算器 1 0 4の出力をほぼ全てノイズ信号とみな し、 特性パラメータ Kを乗じてレベルを低減した K · X (K < 1、 Xは 非線形処理回路入力で I X I ≤ a ) の大きさの信号を差分信号として出 力する。
また、 非線形処理回路入力信号レベルの絶対値が a以上 2 a未満であ れば、 減算器 1 0 4の出力にはノイズと映像信号の両方が含まれており 、 レベルが大きくなるほど映像信号の比率が大きくなるとみなし、 入力 信号レベルの絶对値が aから 2 aに近づくほど、 Kを比例定数として出 力を低減して、 0に近いレベルの絶対値の信号を差分信号として出力す JP03/07387
4
る特性となっている。 なお、 非線形処理回路入力レベルの絶対値が 2 a 以上であれば、 演算器 1 04の出力は全て映像信号と見なし、 減算器 1 06への出力を行わない。
このような非線形処理特性によれば、 非線形処理回路入力、 すなわち 減算器 1 04の出力の信号レベルの絶対値が 2 a以下の信号にはノイズ が含まれているとみなされ、 この信号レベルに応じて非線形処理にて低 減された信号が差分信号として減算器 1 06へ出力されるので、 残像劣 化を押さえながらノイズを低減することができる。 なお、 上述した特開 平 03— 7 9 1 6 8号公報の文献の全ての開示は、 そつく りそのまま引 用する (参照する) ことにより、 ここに一体化する。
ところで、 C CD 1 0 1に入射する光量が減り、 CCD 1 0 1からの 出力映像信号レベルが減少した場合、 ノイズレベルは出力信号レベルに よらず一定であるため、 SZN比は悪くなる。 そして、 さらにレベルが 減少してある一定レベルより下がった場合、 AGC回路 1 0 2は一定レ ベルを保つように入力信号の増幅を行うが、 S/N比が悪い状態で信号 もノイズも同じ増幅量で増幅するため、 ノイズレベルが大きくなる。 これに対し、 非線形処理制御回路 1 08は AG C回路 1 0 2の増幅量 に応じて、 非線形処理回路の特性を変更する。 具体的には特性パラメ一 タ aの値を大きく させることにより、 ノイズと見なす信号のレベルを大 きくとるようにする。 これにより、 映像信号に含まれているノイズが、 AGC回路 1 0 2の増幅により大きくなった場合でも、 これを低減でき るようにする。
しかしながら、 減算器 1 05の出力において、 本来所定の振幅を有す る映像信号と、 増幅されてレベルが大きくなつたノイズとを、 振幅の大 小で区別することはできない。 したがって、 增幅されたノイズレベルに 応じて特性パラメータ aの値を大きく とると、 非線形処理回路 1 0 5に おいて、 ノイズと共に本来必要な映像信号も低減されてしまい、 非線形 処理回路 1 0 5の出力には、 フィールドメモリ 1 0 7内の映像信号が映 像信号が多く含まれるようになり、 出力映像信号 S Oにおける残像劣化 が大きくなってしまう。
すなわち、 C C D 1 0 1からの出力映像信号のレベルの減少により A G C増幅回路 1 0 2によって映像信号を増幅する必要がある場合は、 映 像信号に対してノイズが大きく増幅されてしまうため、 ノイズは映像信 号に比べて振幅の時間変化量が小さい、 という統計的理由に基づきノィ ズと映像信号との区別を行う非線形処理回路 1 0 5では、 残像劣化を考 慮したノイズの除去が困難になっていた。 発明の開示
本発明は上記従来の課題を解決するものであり、 映像信号の S ZN比 が悪く、 増幅する必要がある場合でも、 効果的にノイズを低減し、 かつ 、 残像劣化の少ないノイズ低減装置、 ノイズ低減方法等を提供すること を目的とする。
上記の目的を達成するために、 第 1の本発明は、 映像信号を増幅する 増幅手段と、
前記増幅手段により増幅された前記映像信号を、 その空間周波数に応 じて複数の帯域に分割し、 前記増幅手段の増幅量に基づく第 1の特性パ ラメータと、 前記映像信号の、 より高域成分のレベルとの比較に基づき 、 前記高域成分のレベルを低減し、 前記低減された高域成分と他の帯域 成分とを合成する映像信号レベル低減手段と、
前記映像信号低減手段の出力と所定の参照用信号との差分信号を取り 出す差分信号抽出手段と、 PC蘭細 87
6
前記差分信号のレベルと所定の第 2の特性パラメータとの比較に基づ き前記差分信号のレベルを低減する差分信号レベル低減手段と、
前記映像信号から前記差分信号レベル低減手段の出力を減算する減算 手段とを備え、
前記減算手段の出力を、 ノイズが低減された前記映像信号として出力 するとともに、 新たな参照用信号として用いるノイズ低減装置である。
また、 第 2の本発明は、 映像信号を増幅する増幅手段と、
前記増幅手段の出力と所定の参照用信号との差分信号を取り出す差分 信号抽出手段と、
前記差分信号のレベルを低減する差分信号レベル低減手段と、 前記映像信号から前記差分信号レベル低減手段の出力を減算する減算 手段とを備え、
前記合成手段の出力を、 ノイズが低減された前記映像信号として出力 するとともに、 新たな参照用信号として用いるノイズ低減装置であって 前記差分信号レベル低減手段は、
前記差分信号を、 その空間周波数に応じて複数の帯域に分割し、 各帯 域毎に、 前記差分信号のレベルと、 前記各帯域毎に定められた所定の第 3の特性パラメータとの比較に基づき、 複数の前記差分信号のうち、 よ り高域の信号のレベルを低減し、 前記分割された帯域を合成して前記出 力を得るノィズ低減装置である。
また、 第 3の本発明は、 前記映像信号レベル低減手段の前記第 1の特 性パラメータは、 前記増幅手段の増幅量に応じて可変する第 1の本発明 のノイズ低減装置である。
また、 第 4の本発明は、 前記差分信号レベル低減手段の前記第 2また は第 3の特性パラメータは、 前記増幅手段の増幅量に応じて可変する第 1力 ら第 3のいずれかの本発明のノィズ低減装置である。
また、 第 5の本発明は、 前記增幅手段の増幅量が所定値以下である場 合は、 前記差分信号レベル低減手段の前記第 2の特性パラメータを一定 に保つとともに前記映像信号レベル低減手段の第 1の特性パラメータを 増加させ、
前記増幅量が前記所定値より大きい場合は前記映像信号レベル低減手 段の第 1の特性パラメータを一定に保つとともに前記差分信号レベル低 減手段の前記第 2の特性パラメータを増加させる第 4の本発明のノィズ 低減装置である。 '
また、 第 6の本発明は、 前記増幅手段の増幅量が所定値以下である場 合は前記映像信号レベル低減手段の前記第 1の特性パラメータを一定に 保つとともに前記差分信号レベル低減手段の前記第 2の特性パラメータ を増加させ、
前記増幅量が前記所定値より大きい場合は、 前記差分信号レベル低減 手段の前記第 2の特性パラメータを一定に保つとともに前記映像信号レ ベル低減手段の第 1の特性パラメータを増加させる第 4の本発明のノィ ズ低減装置である。
また、 第 7の本発明は、 前記映像信号レベル低減手段は、
前記映像信号を周波数分割する、 ローパスフィルタおよびハイパスフ ィルタを含む複数のフィルタと、
前記ハイパスフィルタからの出力をうけ、 この出力のレベルの大きさ が前記第 1の特性パラメータ以下である場合はその出力をカツトし、 前 記第 1のパラメータより大きい場合はそのレベルを低減するコアリング 回路と、
前記ローパスフィルタの出力と前記コアリング回路との出力を合成す る合成手段とを備えた第 1の本発明のノイズ低減装置である。 また、 第 8の本発明は、 前記映像信号レベル低滅手段は、
前記映像信号を周波数分割する、 複数のバンドパスフィルタと、 前記複数のパンドパスフィルタのうち、 高域を通過域とするものの出 力をうけ、 この出力のレベルの大きさが前記第 1の特性パラメータ以下 である場合はその出力をカツトし、 前記第 1のパラメータより大きい場 合はそのレベルを低減するコアリング回路と、
前記複数のバンドパスフィルタのうち、 低域を通過域とするものの出 力と前記コアリング回路との出力を合成する合成手段とを備えた第 1の 本発明のノイズ低減装置である。
また、 第 9の本発明は、 前記差分信号レベル低減手段は、
前記映像信号を周波数分割する複数のフィルタと、
前記複数のフィルタのそれぞれの出力を、 それぞれの前記第 3の特性 パラメータとの比較に基づきレベルを低減する複数のレベル低減手段と 前記複数のレベル低減手段の出力を合成する合成手段とを備え、 前記複数のレベル低減手段のそれぞれの前記第 3の特性パラメータの 値は、 対応する前記複数のレベル低減手段が接続された複数のフィルタ のうち、 通過帯域が高域にあるものほど大きい第 2の本発明のノイズ低 減装置である。
また、 第 1 0の本発明は、 前記複数のフィルタは互いに通過帯域が異 なるバンドパスフィルタである第 9の本発明のノイズ低減装置である。 また、 第 1 1の本発明は、 前記複数のフィルタはローパスフィルタお ょぴハイパスフィルタを含む第 9の本発明のノィズ低減装置である。 また、 第 1 2の本発明は、 前記映像信号は nフィールドまたは n水平 期間毎に入力し (nは自然数) 、 m番目に入力した映像信号に対応す る前記差分信号は、 少なく とも m— 1番目に入力した映像信号に基づき PC蘭應 87
9 得られた信号が前記所定の参照用信号として用いられることにより得ら れる第 1または第 2の本発明のノィズ低減装置である。
また、 第 1 3の本発明は、 第 1から第 1 2のいずれかの本発明のノィ ズ低減装置と、
対象を撮像して前記映像信号を得る撮像手段とを備えた撮像装置であ る。
また、 第 1 4の本発明は、 映像信号を増幅する増幅工程と、
前記増幅工程により増幅された前記映像信号を、 その空間周波数に応 じて複数の帯域に分割し、 前記增幅工程の増幅量に基づく第 1の特性パ ラメータと、 前記映像信号の、 より高域成分のレベルとの比較に基づき 、 前記高域成分のレベルを低減し、 前記低減された高域成分と他の帯域 成分とを合成する映像信号レベル低減工程と、
前記映像信号低減工程の出力と所定の参照用信号との差分信号を取り 出す差分信号抽出工程と、
前記差分信号のレベルと所定の第 2の特性パラメータとの比較に基づ き前記差分信号のレベルを低減する差分信号レベル低減工程と、
前記映像信号から前記差分信号低減工程の出力とを減算する減算工程 とを備え、
前記減算工程の出力を、 ノイズが低減された前記映像信号として出力 するとともに、 新たな参照用信号として用いるノイズ低減方法である。
また、 第 1 5の本発明は、 映像信号を増幅する増幅工程と、 前記増幅工程の出力と所定の参照用信号との差分信号を取り出す差分 信号抽出工程と、
前記差分信号のレベルを低減する差分信号レベル低減工程と、 前記映像信号から前記差分信号低減工程の出力を減算する減算工程と を備え、 03 07387
10
前記減算工程の出力を、 ノイズが低減された前記映像信号として出力 するとともに、 新たな参照用信号として用いるノイズ低減方法であって 前記差分信号レベル低減工程は、
前記差分信号を、 その空間周波数に応じて複数の帯域に分割し、 各帯 域毎に、 前記差分信号のレベルと、 前記各帯域毎に定められた所定の第
3の特性パラメータどの比較に基づき、 複数の前記差分信号のうち、 よ り高域の信号のレベルを低減し、 前記分割された帯域を合成して前記出 力を得るノィズ低減方法である。
また、 第 1 6の本発明は、 第 1の本発明のノイズ低減装置の、 映像信 号を増幅する增幅手段と、 前記增幅手段により増幅された前記映像信号 を、 その空間周波数に応じて複数の带域に分割し、 前記増幅手段の増幅 量に基づく第 1の特性パラメータと、 前記映像信号の、 より高域成分の レベルとの比較に基づき、 前記髙域成分のレベルを低減し、 前記低減さ れた高域成分と他の帯域成分とを合成する映像信号レベル低減手段と、 前記映像信号低減手段の出力と所定の参照用信号との差分信号を取り出 す差分信号抽出手段と、 前記差分信号のレベルと所定の第 2の特性パラ メータとの比較に基づき前記差分信号のレベルを低減する差分信号レべ ル低減手段と、 前記映像信号から前記差分信号低減手段の出力を減算す る減算手段としてコンピュータを機能させるためのプログラムである。 また、 第 1 7の本発明は、 第 1の本発明のノイズ低減装置の、 映像信 号を増幅する増幅手段と、 前記増幅手段の出力と所定の参照用信号との 差分信号を取り出す差分信号抽出手段と、 前記差分信号のレベルを低減 する差分信号レベル低減手段と、 前記映像信号から前己差分信号低減手 段の出力を減算する減算手段としてコンピュータを機能させるためのプ 口グラムである。 7
11
また、 第 1 8の本発明は、 第 1 6または第 1 7の本発明のプログラム を担持した記録媒体であって、 コンピュータにより処理可能な記録媒体 である。 図面の簡単な説明
図 1は、 本発明の第 1の実施の形態によるノイズ低減装置の構成を示 すプロック図である。
図 2は、 本発明の第 1及び第 2の実施の形態に用いられる高域コアリ ング回路 1 4の構成例を示すプロック図である。
図 3は、
(a) 本発明の第 1及ぴ第 2の実施の形態に用いられる L P F 2 2の 周波数特性を示す周波数特性図である。
(b) 本発明の第 1及び第 2の実施の形態に用いられる HP F 2 1の 周波数特性を示す周波数特性図である。
図 4は、 本発明の第 1及ぴ第 2の実施の形態に用いられるコアリング 回路 1 4の入出力特性例を示す入出力特性図である。
図 5は、
(a) "本発明の第 1の実施の形態における CCD出力信号レベルと入 射光量との関係を示す図である。
(b) 本発明の第 1の実施の形態におけるコアリング回路 2 3の特性 パラメータの値と AG C回路 1 2の増幅量との関係の一例を示す関係図 である。
( c) 本発明の第 1の実施の形態における非線形処理回路 1 6の特性 パラメータの値と AGC回路 1 2の増幅量との関係の一例を示す関係図 である。 ' (d) 本発明の第 1の実施の形態における非線形処理回路 1 6の特性 パラメータの値と AG C回路 1 2の増幅量との関係の一例を示す関係図 である。
図 6は、 本発明の第 2の実施の形態によるノィズ低減装置の構成を示 すプロック図である。
図 7は、
(a) 本発明の第 1及び第 2の実施の形態における特性パラメータ m の値と AG C回路 1 2の增幅量との関係の他の一例を示す関係図である。
(b) 本発明の第 1及び第 2の実施の形態における特性パラメータ a の値と AG C回路 1 2の増幅量との関係の他の一例を示す関係図である。 図 8は、 本発明の第 1及び第 2の実施の形態に用いられるコアリング 回路 2 3の入出力特性の他の例を示す入出力特性図である。
図 9は、 従来のノイズ低減装置の構成を示すプロック図である。
図 1 0は、 従来のノイズ低減装置における非線形処理回路の入出力特 性を示す入出力特性図である。
図 1 1は、
(a) 本発明の第 1の実施の形態における C CD出力信号レベルと入 射光量との関係を示す図である。
(b) 本発明の第 1の実施の形態における非線形処理回路 1 6の特性 パラメータの値と AG C回路 1 2の増幅量との関係の他の一例を示す関 係図である。
(c) 本発明の第 1の実施の形態におけるコアリング回路 2 3の特性 パラメータの値と AG C回路 1 2の増幅量との関係の他の一例を示す関 係図である。
図 1 2は、
( a ) 本発明の第 2の実施の形態のノィズ低減装置における B P F 6 1の周波数特性を示す周波数特性図である。
(b) 本発明の第 2の実施の形態のノィズ低減装置における非線形処 理回路 6 2の入出力特性を示す入出力特性図である。
(c) 本発明の第 2の実施の形態のノイズ低減装置における B P F 6 1の周波数特性を示す周波数特性図である。
(d) 本発明の第 2の実施の形態のノィズ低減装置における非線形処 理回路 6 2の入出力特性を示す入出力特性図である。
( e ) 本発明の第 2の実施の形態のノィズ低減装置における B P F 6 1の周波数特性を示す周波数特性図である。
( f ) 本発明の第 2の実施の形態のノィズ低減装置における非線形処 理回路 6 2の入出力特性を示す入出力特性図である。
(符号の説明)
1 1 CCD
1 2 AGC回路
1 3 AZD変換器
1 4 高域コアリング回路
1 5
1 6 非線形処理回路
1 7
1 8 フィ一ノレドメモリ
1 9 非線形処理制御回路
2 1 HP F
2 2 L P F
23 コアリング回路
24 加算器 6 1 B P F
6 2 非線形処理回路
6 3 加算器 発明を実施するための最良の形態
以下、 本発明にかかる実施の形態を図面に基づいて説明する。
(実施の形態 1 )
図 1は本発明の第 1の実施の形態にかかるノイズ低減装置を備えた撮 像装置の基本的な要部構成を例示するプロック図である。 図 1において 1 1は入射する光を電気映像信号に変換する、 本発明の撮像手段に相当 する C C D、 1 2は C C D 1 1からの出力信号が変化しても出力信号レ ベルを一定に保つように増幅を行う A G C回路、 1 3は A G C回路 1 2 からの出力アナログ映像信号をデジタル映像信号に変換する A/ D変換 器、 1 4は A/ D変換器の出力に対し高域信号にのみ非線形処理を行う 高域コアリング回路、 1 8は本装置の出力映像信号 S Oを、 本発明の参 照用信号として 1フィールド遅延させて出力するフィールドメモリ、 1 5は高域コアリング回路 1 4の出力信号とフィールドメモリ 1 8の出力 信号との差分を求めて出力する減算器、 1 6は減算器 1 5の出力に対し 、 本発明の第 2の特性パラメータに相当する特性パラメータ aと、 特性 パラメータ Kとを用いて非線形の処理を行う非線形処理回路、 1 7は高 域コアリング回路 1 4の出力信号から、 非線形処理回路 1 6の出力を減 算して映像信号 S Oを出力する減算器である。 なお、 上記の構成におい て、 A G C回路 1 2は本発明の增幅手段に相当し、 高域コアリング回路 1 4は本発明の映像信号レベル低減手段に相当し、 減算器 1 5は本発明 の差分信号抽出手段に相当し、 非線形処理回路 1 6は本発明の差分信号 レベル低減手段に相当し、 減算器 1 7は本発明の減算手段に相当する。 以上のような構成を有する本発明の第 1の実施の形態のノイズ低減装 置の動作について説明するとともに、 これにより、 本発明のノイズ低減 方法の一実施の形態について説明を行う。
CCD 1 1から AZD変換器 1 3までの動作は、 図 9に示した従来の ノイズ低減装置の CCD 101から A/D変換器 1 03までと同一であ るので説明を省略する。
次に、 A/D変換器 1 3でデジタル信号に変換された映像信号は次に 高域コアリング回路 14に入力される。 ·
図 2は高域コアリング回路 14の一例を示すプロック図である。 AZ D変換器 13の出力映像信号が高域コアリング回路 14に入力されると 、 まず H P F (ハイパスフィルタ : H i g h P a s s F i l t e r ) 21と L P F (ローパスフィノレタ : L ow P a s s F i l t e r ) 22によって高域と低域に帯域分割される。 これらのフィルタは例え ば図 3のような周波数特性を持つ。 ただし図 3 (a) は LPFの、 図 3 (b) は HP Fの周波数特性図をそれぞれ表す。
これらのフィルタによって高域成分と低域成分に分けられた映像信号 のうち、 HP F 21を通過した高域成分の信号が非線形処理を行うコア リング回路 23に入力される。
図 4はコアリング回路 23の入出力特性の一例を表すものであり、 m はこの特性を特徴付ける、 本発明の第 1の特性パラメータに相当する特 性パラメータである。 この入出力特性によりコアリング回路 23に入力 される信号は、 その振幅のレベルがこの特性パラメータと比較され、 そ の結果、 一定振幅より大きいものだけが、 特性パラメータの値に応じて 低減して出力される。 すなわちコアリング回路 23の入力信号レベルを Xとすると、 I X I≤mとなる信号は出力されず、 I X I >mとなる信 号についても信号レベルの絶対値は mだけ小さくなった値に低減されて 出力されることになる。
コアリング回路 2 3を通った高域信号成分と L P F 2 2の出力である 低域信号成分が加算器 2 4で加算されることで、 映像信号は全帯域が復 元され、 高域コアリング回路 1 4の出力として後段の減算器 1 5および 1 7へ出力される。
ノイズには、 前述のような一般的に映像信号の時間変化量に比べて振 幅の時間変化量が小さいという特徴だけでなく、 空間周波数において低 域よりも高域により多く分布するという特徴がある。 この高域コアリン グ回路 1 4により映像信号のノイズがある程度、 具体的には AZ D変換 器 1 3の出力信号に絶対値で S nというレベルのノイズがのっている場 合、 S n≤mであればノイズレべノレは 0に、 S n > mであれば S n— m に低減されることになる。 しかも、 この高域コアリング回路 1 4による ノイズ低減では原理的に残像が発生しない。
そして高域コアリング回路 1 4以降、 減算器 1 5, 減算器 1 7、 非線 形処理回路 1 6、 そしてフィールドメモリ 1 8の動作は従来のノイズ低 減装置における、 減算器 1 0 4, 減算器 1 0 6、 非線形処理回路 1 0 5 、 フィールドメモリ 1 0 7と同様に動作する。 従って、 非線形処理回路 1 6は図 1 0に示す特性に従って減算器 1 0 4の出力に処理を行い、 高 域コアリング回路 1 4の出力に対してさらにノイズ低減が行われ、 出力 映像信号 S Oとして出力される一方、 この出力映像信号 S Oが、 本発明 の参照用信号として次のフィールドの映像信号のノイズ低減処理におい て減算器 1 5へ出力されるためにフィールドメモリ 1 8に蓄積される。 具体的には高域コアリング回路 1 4によってその絶対値レベルが S n 一 mまで低減されたノイズのうち、 絶対値レベルが 2 a以下のものは、 図 1 0に示す特性に応じてさらに最大 K · aまで低減されることになる c 0307387
17
ここで、 非線形処理制御回路 1 9は AG C回路 1 2の増幅量に応じて 、 高域コアリング回路 1 4中のコアリング回路 23の特性パラメータ m と非線形処理回路 1 6の特性パラメータ aに対して図 5に示すような制 御を行う。 すなわち、 図 5 (a) に示すように CCD 1 1に入射する光 量が減り、 C CD 1 1からの出力映像信号レベルが減少した場合、 AG C回路 1 2は従来と同様に一定レベルを保つように増幅量を上げていく 力 図 5 (b) に示すようにその増幅量が一定値 G 1以下であればまず コアリング回路 2 3の特性パラメータ mを増加させるようにする。 一方 、 非線形処理回路 1 6の特性パラメータ aは一定に保つ。 図 5 (c ) に は一例として a = 0を保つようにしたので、 実質上信号は非線形処理回 路 1 6を全く通過しないことになる。 なお、 特性パラメータ aは任意の 値で一定に保ってもよい。
高域コアリング回路 1 4では信号の高域に分布するノイズを低減する 力 ディテールのような高域の映像信号も同様に低減してしまうため、 mを增加させ過ぎるとディテール劣化が目立つことになる。 そこで、 A GC回路 1 2の増幅量が G 1に達すると、 以降は增幅量がさらに増加し ても特性パラメータ mはディテール劣化が許容できる値 で固定し、 図 5 (c) に示すように、 代わりに非線形処理回路 1 6の特性パラメータ aを增加させる。
このような動作により、 AGC回路 1 2の増幅量が増加し、 A/D変 換器 1 3の出力信号のノイズレベル S nが大きくなつた場合でも、 増幅 量が 以下であれば高域コアリング回路 1 4によってノイズ低減が行わ れ、 それ以降の動作によるノイズ低減は行われない。 そのため、 その場 合は映像信号がさまざまな動き成分、 例えば被写体自体の動きや、 撮像 装置自体をパン-ングさせたことによる画面全体の動きといった低い空 間周波数の動き成分、 そして手ぶれのような高い空間周波数の動き成分 などを持っていたとしても、 残像劣化は発生しない。
また増幅量が 以上となった場合でも、 高域コアリング回路 1 4であ る程度ノイズが低減されている分、 特性パラメータ aの値は従来よりも 小さい値に抑えることができるので、 従来よりも残像劣化を低減できる。
また、 非線形処理制御回路 1 9は、 特性パラメータ mと特性パラメ一 タ aの制御を以下のように行ってもよい。 すなわち、 図 1 1 (a) に示 すように CCD 1 1に入射する光量が減り、 C CD 1 1からの出力映像 信号レベルが減少した場合、 AGC回路 1 2は従来と同様に一定レベル を保つように増幅量を上げていくが、 図 1 1 (b) に示すようにその増 幅量が一定値 G2以下であればまず非線形処理回路 1 6の特性パラメータ aを增加させるようにする。 一方、 コアリング回路 2 3の特性パラメ一 タ mは一定に保つ。 図 1 1 (c ) には一例として m二 0を保つようにし たので、 実質上信号はコアリング回路 1 4をスルーすることになる。 な お、 特性パラメータ mは任意の値で一定に保ってもよい。
非線形処理回路 1 6は信号の空間周波数において高域に分布するノィ ズを低減するが、 従来例で説明したように aを増加させ過ぎると画像に 残像劣化を引き起こすこととなる。 そこで、 AGC回路 1 2の増幅量が G2に達すると、 以降は増幅量がさらに増加しても特性パラメータ aは残 像劣化が許容できる値 a 4で固定し、 図 1 1 (c) に示すように、 代わり にコアリング回路 2 3の特性パラメータ mを増加させる。
この動作の場合は、 AGC回路 1 2の増幅量が増加し、 AZD変換器 1 3の出力信号のノイズレベル S nが大きくなった場合でも、 増幅量が G 2以下であれば非線形処理回路 1 6によってノイズ低減が行われ、 それ 以外のノイズ低減は行われない。 そのため、 その場合は許容範囲の残像 劣化のみでノイズを低減できる。
さらに増幅量が G2以上となった場合は、 高域コアリング回路 1 4を併 0307387
19
せて用いることで程度ノイズを低減した後に、 三次元ノイズリダクショ ンを行うことになるので、 非線形処理回路 1 6の特性パラメータ aの値 は従来よりも小さレ、 a 4以上にする必要が無く,、 従来よりも残像劣化を低 減できる。
(実施の形態 2) ' 図 6は本発明の第 2の実施の形態にかかるノィズ低減装置を備えた撮 像装置の基本的な要部構成を例示するプロック図である。 図 6において 第 1の実施の形態の図 1と同じまたは相当する機能プロックについては 同じ符号を記載しているので、 そのプロックに対する説明は省略する。 また、 図 6において 6 1— 1〜6 1— nは減算器 1 5の出力に対して複 数の帯域に分割する B P F (パンドパスフィルタ : B a n d P a s s
F i 1 t e r ) 、 6 2— 1〜 6 2— nは B P F 6 1— 1〜6 1— nの 出力に対し、 それぞれ非線形処理を行う複数の非線形処理回路、 6 3は 非線形処理回路 6 2— 1〜6 2— nからの出力をすベて加算して減算器 1 7へ出力する加算器である。
非線形処理回路 6 2— 1〜6 2— nにはそれぞれ異なる特性パラメ一 タが割り当てられており、 これらパラメータの値は、 従来例や第 1の実 施の形態と同様、 AGC回路 1 0 2の増幅量に応じて非線形処理制御回 路 1 08が増加させるものとする。
なお、 上記の構成において、 B P F 6 1— l〜 6 1—n、 非線形処理 回路 6 2— 1〜 6 2— 11および加算器 6 3は本発明の差分信号レベル低 減手段を構成し、 B P F 6 1— :!〜 6 1— nは本発明の複数のフィルタ に相当し、 非線形処理回路 6 2— 1〜6 2— nは本発明のレベル低減手 段に相当し、 加算器 6 3は本発明の合成手段に相当する。
以上のような構成を有する本発明の第 2の実施の形態のノィズ低減装 置の動作について説明するとともに、 これにより、 本発明のノイズ低減 7387
.20
方法の一実施の形態について説明を行う。 ただし、 本実施の形態のノィ ズ低減装置が第 1の実施の形態のノイズ低減装置と異なる点は、 B P F 6 1— 1〜6 1— n、 非線形処理回路 6 2— 1〜6 2— nと加算器 6 3 であるので、 この動作を中心に以下に説明する。
減算器 1 5の出力信号は B P F 6 1— 1〜6 1— nによって空間周波 数において複数の帯域に分割され、 それぞれ独立に非線形処理回路 6 2 一 1〜6 2— ηによって第 1の実施の形態と同様の非線形処理を施され る。 そして、 各非線形処理回路の出力を加算器 6 3で 1つに合成する。 非線形処理回路 6 2— 1〜6 2— ηの動作を詳細に説明する。 図 1 2 は η = 3とした場合の B P F 6 1—:!〜 6 1— 3の周波数特性と、 その 出力に対する非線形処理回路 6 2—:!〜 6 2— 3の入出力特性を表した ものであり、 図 1 2 (a ) は B P F 6 1— 1の周波数特性、 図, 1 2 (b ) は非線形処理回路 6 2— 1の入出力特性をそれぞれ表し、 図 1 2 ( c ) は B P F 6 1— 2の周波数特性、 図 1 2 (d) は非線形処理回路 6 2 一 2の入出力特性をそれぞれ表し、 図 1 2 (e ) は B P F 6 1— 3の周 波数特性、 図 1 2 ( f ) は非線形処理回路 6 2 _ 3の入出力特性をそれ ぞれ表している。 図 1 2に示すように、 特性パラメータ a 〜 a 3の大き さの間には、 a a 2< a 3の関係を持たせている。 すなわち、 複数の非 線形処理回路に割り当てられた特性パラメータの値は、 対応する非線形 処理回路が処理する信号の空間周波数帯域の高低に応じて互いに異なり 、 高域のものほどより大きくなるように設定されている。 一例としては 、 第 1の実施の形態 1における特性パラメータ aと比較すると、 a i< a 、 a 2 = a , a 3>.aとなるようにする。 なおここで特性パラメータ a丄〜 a 3は本発明の第 3の特性パラメータに相当する。
これは以下の理由による。 すなわち、 第 1の実施の形態にて説明した ように、 映像信号に含まれるノイズは空間周波数において低域よりも髙 域に多く分布するため、 ノイズより動き成分がより多く含まれる低城成 分が入力される非線形処理回路 6 2- 1においては、 特性パラメータ a 1を小さく とることで、 ノイズ低減よりも動き部分が低減されるのを抑 えるようにする。 次に、 動き成分よりノイズ成分が多く含まれる高城成 分が入力される非線形処理回路 6 2 - 3においては、 特性パラメータの 値 a 3を大きく とることで、 ある程度振幅が大きなノイズも低減すること を優先する。 そして動き成分もノイズ成分も同程度含まれる中域成分が 入力される非線形処理回路 6 2 - 2においては、 特性パラメータ a 2の値 は a iと a 2の間の値となるように制御する。
以上のような構成とすることにより、 AGC回路 1 2の増幅量が所定 量、 例えば G l, G 2以上となって、 出力映像信号 S Oに残像劣化が発 生したとしても、 第 1の実施の形態よりもさらに残像劣化を改善しつつ ノイズ低減を行うことができる。
なお、 上記の説明においては、 第 1の実施の形態の構成に B P F 6 1 一 1〜6 1— n、 非線形処理回路 6 2 1〜6 2— nと加算器 6 3を力 P えた構成として説明を行ったが、 高域コアリング回路 1 4は省いてもよ い。 すなわち、 本発明は、 図 9に示す従来例の非線形回路 1 0 5を B P F 6 1— 1〜6 1— n、 非線形処理回路 6 2—:!〜 6 2— nと加算器 6 3に置き換えて実施してもよい。
また、 第 1及び第 2の実施の形態において、 例えば図 5 ( c) に示す ように、 増幅量が 以上に増加する場合は増幅量に応じて特性パラメ一 タ aを徐々に増加させるように制御するものとして説明を行ったが、 こ れに限る必要はなく、 例えば図 5 (d) のように増幅量に関わらず特性 パラメータ aは予め一定の値にしてもよい。 この値は、 AGC回路 1 2 による増幅量が小さい時に、 残像が若千発生するものの、 それは画質低 下につながるようなものではなく、 問題がないレベルとなるようにする。 さらに、 増幅量が よりも大きくなつても、 特性パラメータが一定のた め、 残像が大きくなることはなく画質は低下しない。
また、 特性パラメータ mも、 A G C回路 1 2の増幅量に応じて徐々に 増加するものとして説明を行ったが、 これに限る必要はなく、 A G C回 路 1 2の増幅量を考慮して、 所定の効果が得られるような一定の値に定 めておいてもよい。
さらに、 第 1の実施の形態において、 特性パラメータ aと mの制御を 図 5や図 1 1のように段階的に行う としたがこれに限る必要はなく、 例 えば図 7のように特性パラメータ mと aを同時に増加させるようにして もよい。 図 7に示す直線の傾きを図 5または図 1 1に示すものより小さ な適当な値にすることで、 残像劣化は従来例と前記第 1の実施の形態と の間のレベルに保ちつつ、 ディテールの劣化を抑えることが出来る。 また、 第 1及び第 2の実施の形態において、 非線形処理回路 1 6, 6 2— 1〜6 2— ηの特性を図 1 0のような従来のノイズ低減装置と同じ 特性としたがこれに限る必要はなく、 要は、 減算器 1 5の出力信号のレ ベルと特性パラメータ aの値との比較に基づき減算器 1 5の出力信号の うち、 振幅の小さい部分だけを抜き出せるような特性にすればよい。 また、 高域コアリング回路 1 4中の非線形処理回路として図 4のよう な特性をもつコアリング回路 2 3を用いたがこれに限る必要はなく、 例 えば図 8のような特性にしてもよい。 このような特性によれば絶対値 m 以下のレベルの高域信号は完全になくならないため、 ノイズ成分が若干 残留するが、 その分だけ小振幅のディテール信号も残すことができる。
また、 高域コアリング回路 1 4を図 2に示す構成としたが、 これに限 る必要はなく、 要は映像信号の高域に非線形処理が施せるような構成で あればよい。
また、 上記第 1の実施の形態の高域コアリング回路 1 4は、 H P F 2 0307387
23
1および L P F 22の 2つのフィルタを備えた構成としたが、 HP F、 L P Fはそれぞれ 2つ以上であってもよい。 また、 互いに通過帯域の異 なる複数の B P Fにて実現してもよい。
また、 上記第 2の実施の形態は、 複数の B P F 6 1— 1, 6 1— 2〜 6 1— nを備えた構成としたが、 複数の HP Fおよび L P Fの組み合わ せとして実現してもよい。
さらに、 本発明の映像信号ノイズ低減手段および差分信号ノイズ低減 手段は、 上述した高域コアリング回路 1 4や非線形処理回路 1 6, 6 2 一 :!〜 6 2— nの非線形処理に限定されず、 入力した信号のレベルを任 意の処理によって低減する構成として実現してもよい。
また、 出力映像信号 S〇を本発明の参照用信号として蓄積する手段と してフィールドメモリを用いたが、 これに限る必要はなく、 例えばフレ ームメモリを用いてもよいことはいうまでもない。
また、 上記の第 1及び第 2の実施の形態において、 フィールドメモリ 1 8は一つフィールド前の出力映像信号 S Oを減算器 1 5へ入力させる ものとしたが、 本発明の参照用信号は、 これより以前のフィールドの出 力映像信号 S Oを用いるものであってもよい。
また、 本発明は、 上述した本発明のノイズ低減装置と、 CCDや CM O Sなど映像信号を取得可能な他の撮像手段を搭載した撮像装置として 実現してもよく、 そのような撮像装置としては、 家庭用、 業務用ビデオ カメラ、 動画撮影機能を有するデジタルカメラ、 携帯電話、 携帯情報端 末、 パーソナルコンピュータ等が挙げられる。
また、 本発明にかかるプログラムは、 上述した本発明のノイズ低減装 置の全部または一部の手段の機能をコンピュータにより実行させるため のプログラムであって、 コンピュータと協働して動作するプログラムで あってもよい。 また、 本発明は、 上述した本発明のノイズ低減装置の全部または一部 の手段の全部または一部の機能をコンピュータにより実行させるための プログラムを担持した記録媒体であり、 .コンピュータにより読み取り可 能且つ、 読み取られた前記プログラムが前記コンピュータと協動して前 記機能を実行する記録媒体であってもよい。
なお、 本発明の上記 「一部の手段」 とは、 それらの複数の手段の内の 、 幾つかの手段を意味し、 あるいは、 一つの手段の内の、 一部の機能の 動作を意味するものである。
また、 本発明のプログラムを記録した、 コンピュータに読みとり可能 な記録媒体も本発明に含まれる。
また、 本発明のプログラムの一利用形態は、 コンピュータにより読み 取り可能な記録媒体に記録され、 コンピュータと協働して動作する態様 であっても良い。
また、 本発明のプログラムの一利用形態は、 伝送媒体中を伝送し、 コ ンピュータにより読みとられ、 コンピュータと協働して動作する態様で あっても良い。
また、 記録媒体としては、 R O M等が含まれ、 伝送媒体としては、 ィ ンターネット等の伝送機構、 光 '電波 '音波等が含まれる。
また、 上述した本発明のコンピュータは、 C P U等の純然たるハード ウェアに限らず、 ファームウェアや、 O S、 更に周辺機器を含むもので あっても良い。
なお、 以上説明した様に、 本発明の構成は、 ソフトウェア的に実現し ても良いし、 ハードウェア的に実現しても良い。
産業上の利用可能性 以上述べたように、 本発明によれば、 映像信号の S ZN比が悪く、 增 幅する必要がある場合でも、 効果的にノイズを低減し、 かつ、 残像劣化 の少ないノィズ低減装置、 ノィズ低減方法等を提供することができる。

Claims

請 求 の 範 囲
1 . 映像信号を増幅する増幅手段と、
前記増幅手段により増幅された前記映像信号を、 その空間周波数に応 じて複数の帯域に分割し、 前記増幅手段の増幅量に基づく第 1の特性パ ラメータと、 前記映像信号の、 より高域成分のレベルとの比較に基づき 、 前記高域成分のレベルを低減し、 前記低減された高域成分と他の帯域 成分とを合成する映像信号レベル低減手段と、
前記映像信号低減手段の出力と所定の参照用信号との差分信号を取り 出す差分信号抽出手段と、
前記差分信号のレベルと所定の第 2の特性パラメータとの比較に基づ き前記差分信号のレベルを低減する差分信号レベル低減手段と、
前記映像信号から前記差分信号レベル低減手段の出力を減算する減算 手段とを備え、
前記減算手段の出力を、 ノイズが低減された前記映像信号として出力 するとともに、 新たな参照用信号として用いるノイズ低減装置。
2 . 前記映像信号レベル低減手段の前記第 1の特性パラメータは、 前記増幅手段の増幅量に応じて可変する請求項 1に記載のノィズ低減装 置。
3 . 前記差分信号レベル低減手段の前記第 2の特性パラメータは、 前記増幅手段の増幅量に応じて可変する請求項 1または 2に記載のノィ ズ低減装置。
4 . 前記増幅手段の増幅量が所定値以下である場合は、 前記差分信 号レベル低減手段の前記第 2の特性パラメ一タを一定に保つとともに前 記映像信号レベル低減手段の第 1の特性パラメータを増加させ、 前記増幅量が前記所定値より大きい場合は前記映像信号レベル低減手 段の第 1の特性パラメータを一定に保つとともに前記差分信号レベル低 減手段の前記第 2の特性パラメ一タを增加させる請求項 3に記載のノィ ズ低減装置。
5 . 前記増幅手段の増幅量が所定値以下である場合は前記映像信号 レベル低減手段の前記第 1の特性パラメータを一定に保つとともに前記 差分信号レベル低減手段の前記第 2の特性パラメータを増加させ、 前記増幅量が前記所定値より大きい場合は、 前記差分信号レベル低減 手段の前記第 2の特性パラメータを一定に保つとともに前記映像信号レ ベル低減手段の第 1の特性パラメータを増加させる請求項 3に記載のノ ィズ低減装置。 ·
6 . 前記映像信号レベル低減手段は、
前記映像信号を周波数分割する、 ローパスフィルタおよびハイパスフ ィルタを含む複数のフィルタと、
前記ハイパスフィルタからの出力をうけ、 この出力のレベルの大きさ が前記第 1の特性パラメータ以下である場合はその出力を力ッ トし、 前 記第 1のパラメータより大きい場合はそのレベルを低減するコアリング 回路と、
前記ローパスフィルタの出力と前記コアリング回路との出力を合成す る合成手段とを備えた請求項 1に記載のノイズ低減装置。
7 . 前記映像信号レベル低減手段は、
前記映像信号を周波数分割する、 複数のバンドバスフィルタと、 前記複数のパンドパスフィルタのうち、 高域を通過域とするものの出 力をうけ、 この出力のレベルの大きさが前記第 1の特性パラメータ以下 である場合はその出力をカツ トし、 前記第 1のパラメータより大きい場 合はそのレベルを低減するコアリング回路と、 前記複数のバンドパスフィルタのうち、 低域を通過域とするものの出 力と前記コアリング回路との出力を合成する合成手段とを備えた請求項 1に記載のノィズ低減装置。
8 . 前記映像信号は nフィールドまたは n水平期間毎に入力し (n は自然数) 、 m番目に入力した映像信号に対応する前記差分信号は、 少なくとも m— 1番目に入力した映像信号に基づき得られた信号が前記 所定の参照用信号として用いられることにより得られる請求項 1に記載 のノィズ低減装置。
9 . 請求項 1から 8のいずれかに記載のノィズ低減装置と、 対象を撮像して前記映像信号を得る撮像手段とを備えた撮像装置。
1 0 . 映像信号を増幅する増幅工程と、
前記増幅工程により増幅された前記映像信号を、 その空間周波数に応 じて複数の帯域に分割し、 前記増幅工程の増幅量に基づく第 1の特性パ ラメータと、 前記映像信号の、 より高域成分のレベルとの比較に基づき 、 前記高域成分のレベルを低減し、 前記低減された高域成分と他の帯域 成分とを合成する映像信号レベル低減工程と、
前記映像信号低減工程の出力と所定の参照用信号との差分信号を取り 出す差分信号抽出工程と、
前記差分信号のレベルと所定の第 2の特性パラメータとの比較に基づ き前記差分信号のレベルを低減する差分信号レベル低減工程と、
前記映像信号から前記差分信号低減工程の出力とを減算する減算工程 とを備え、
前記減算工程の出力を、 ノイズが低減された前記映像信号として出力 するとともに、 新たな参照用信号として用いるノイズ低減方法。
1 1 . 請求項 1に記載のノイズ低減装置の、 映像信号を増幅する増幅 手段と、 前記増幅手段により増幅された前記映像信号を、 その空間周波 数に応じて複数の帯域に分割し、 前記増幅手段の増幅量に基づく第 1の 特性パラメータと、 前記映像信号の、 より高域成分のレベルとの比較に 基づき、 前記高域成分のレベルを低減し、 前記低減された高域成分と他 の帯域成分とを合成する映像信号レベル低減手段と、 前記映像信号低減 手段の出力と所定の参照用信号との差分信号を取り出す差分信号抽出手 段と、 前記差分信号のレベルと所定の第 2の特性パラメータとの比較に 基づき前記差分信号のレベルを低減する差分信号レベル低減手段と、 前 記映像信号から前記差分信号低減手段の出力を減算する減算手段として コンピュータを機能させるためのプログラム。
1 2 . 請求項 1 1に記載のプログラムを担持した記録媒体であって、 コンピュータにより処理可能な記録媒体。
PCT/JP2003/007387 2002-06-13 2003-06-11 ノイズ低減装置、ノイズ低減方法 WO2003107659A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/493,870 US7499087B2 (en) 2002-06-13 2003-06-11 Noise reducing device and noise reducing method
GB0406399A GB2397963B (en) 2002-06-13 2003-06-11 Noise reducing device and noise reducing method
DE10392150T DE10392150T5 (de) 2002-06-13 2003-06-11 Vorrichtung und Verfahren zum Reduzieren von Rauschen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-172308 2002-06-13
JP2002172308A JP3838163B2 (ja) 2002-06-13 2002-06-13 ノイズ低減装置

Publications (1)

Publication Number Publication Date
WO2003107659A1 true WO2003107659A1 (ja) 2003-12-24

Family

ID=29727857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/007387 WO2003107659A1 (ja) 2002-06-13 2003-06-11 ノイズ低減装置、ノイズ低減方法

Country Status (5)

Country Link
US (1) US7499087B2 (ja)
JP (1) JP3838163B2 (ja)
DE (1) DE10392150T5 (ja)
GB (1) GB2397963B (ja)
WO (1) WO2003107659A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8358866B2 (en) 2006-01-31 2013-01-22 Canadian Space Agency Method and system for increasing signal-to-noise ratio
US20150373277A1 (en) * 2014-06-20 2015-12-24 Analog Devices, Inc. Adaptive gain adjustment in an imaging system

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7324789B2 (en) * 2005-01-20 2008-01-29 Broadcom Corporation PLL frequency synthesizer architecture for low phase noise and reference spurs
KR100810240B1 (ko) * 2006-08-02 2008-03-06 삼성전자주식회사 영상 노이즈를 제거하는 카메라 장치 및 그 방법
JP2008072448A (ja) * 2006-09-14 2008-03-27 Matsushita Electric Ind Co Ltd 撮像装置、撮像方法およびプログラム
JP4941219B2 (ja) * 2007-10-09 2012-05-30 ソニー株式会社 ノイズ抑圧装置、ノイズ抑圧方法、ノイズ抑圧プログラムおよび撮像装置
JP4524711B2 (ja) * 2008-08-04 2010-08-18 ソニー株式会社 ビデオ信号処理装置、ビデオ信号処理方法、プログラム
JP2013214272A (ja) * 2012-03-08 2013-10-17 Sony Corp 画像処理装置、および画像処理方法、並びにプログラム
CN106961565A (zh) * 2017-03-17 2017-07-18 安徽波维电子科技有限公司 一种基于dsp单片机的智能信息提示的高频头

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63176073A (ja) * 1987-01-17 1988-07-20 Victor Co Of Japan Ltd テレビジヨン受像機
JPH0292268U (ja) * 1988-12-31 1990-07-23
JPH0379168A (ja) * 1989-08-22 1991-04-04 Matsushita Electric Ind Co Ltd ノイズ低減装置
JPH06178163A (ja) * 1992-12-04 1994-06-24 Casio Comput Co Ltd ノイズリダクション回路
JP2000196916A (ja) * 1998-12-28 2000-07-14 Toshiba Corp ノイズ低減装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS628532A (ja) 1985-07-05 1987-01-16 Hitachi Ltd 金メツキされた電子部品パツケ−ジ
JPH0292268A (ja) 1988-09-30 1990-04-03 Norin Suisanshiyou Sanshi Konchiyuu Nogyo Gijutsu Kenkyusho 生体細胞組織への微量注射装置
DE69530887T2 (de) * 1994-03-31 2004-03-11 Fuji Photo Film Co., Ltd., Minami-Ashigara Verfahren zur Bearbeitung von Überlagerungsbildern
US6611287B1 (en) * 1997-11-28 2003-08-26 Sony Corporation Camera signal processing apparatus and camera signal processing method
US6975354B2 (en) * 2000-06-29 2005-12-13 Texas Instruments Incorporated Digital still camera color filter array interpolation system and method
JP4033638B2 (ja) * 2001-03-30 2008-01-16 パイオニア株式会社 光記録媒体の回転制御装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63176073A (ja) * 1987-01-17 1988-07-20 Victor Co Of Japan Ltd テレビジヨン受像機
JPH0292268U (ja) * 1988-12-31 1990-07-23
JPH0379168A (ja) * 1989-08-22 1991-04-04 Matsushita Electric Ind Co Ltd ノイズ低減装置
JPH06178163A (ja) * 1992-12-04 1994-06-24 Casio Comput Co Ltd ノイズリダクション回路
JP2000196916A (ja) * 1998-12-28 2000-07-14 Toshiba Corp ノイズ低減装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8358866B2 (en) 2006-01-31 2013-01-22 Canadian Space Agency Method and system for increasing signal-to-noise ratio
US20150373277A1 (en) * 2014-06-20 2015-12-24 Analog Devices, Inc. Adaptive gain adjustment in an imaging system
US9716841B2 (en) * 2014-06-20 2017-07-25 Analog Devices, Inc. Adaptive gain adjustment in an imaging system

Also Published As

Publication number Publication date
US20050068430A1 (en) 2005-03-31
GB2397963A (en) 2004-08-04
DE10392150T5 (de) 2004-09-23
GB0406399D0 (en) 2004-04-21
JP2004023217A (ja) 2004-01-22
GB2397963B (en) 2006-09-06
JP3838163B2 (ja) 2006-10-25
US7499087B2 (en) 2009-03-03

Similar Documents

Publication Publication Date Title
JP4640508B2 (ja) 画像処理装置、画像処理方法、プログラム、及び撮像装置
CN101197941B (zh) 图像处理方法与装置
JP4983415B2 (ja) 画像信号処理装置、画像信号処理方法及びプログラム
JP4827675B2 (ja) 低周波帯域音声復元装置、音声信号処理装置および録音機器
WO2005125216A1 (ja) 画像圧縮処理装置、画像圧縮処理方法および画像圧縮処理プログラム
US20120308156A1 (en) Image processing apparatus, image processing method, and program
WO2003107659A1 (ja) ノイズ低減装置、ノイズ低減方法
JP4858706B2 (ja) 画像処理装置及びカメラ
JP2004363853A (ja) 画像信号のノイズ低減方法及びノイズ低減装置
JP2009005133A (ja) 風雑音低減装置、及び、この風雑音低減装置を備えた電子機器
JP5092536B2 (ja) 画像処理装置及びそのプログラム
JP2003299181A (ja) オーディオ信号処理装置及びオーディオ信号処理方法
JP5291788B2 (ja) 撮像装置
WO2004012444A1 (ja) 撮像装置
JP4946417B2 (ja) 撮像装置、画像処理装置、画像処理方法、画像処理方法のプログラム及び画像処理方法のプログラムを記録した記録媒体
JP2001352594A (ja) 風音低減方法及び装置
JP6742864B2 (ja) 音声信号処理装置、音声信号処理方法及びプログラム
JP2010199994A (ja) 画像処理装置
JP2006311501A (ja) 画像信号のノイズ低減方法、ノイズ低減装置及び撮像装置
JP2006014164A (ja) 画像撮像装置およびノイズ除去方法
JP4363125B2 (ja) 画像信号処理装置、ビューファインダ、表示装置、画像信号処理方法、記録媒体及びプログラム
JP6604728B2 (ja) 音声処理装置及び音声処理方法
GB2416639A (en) Reducing noise in an amplified video signal by splitting the signal into frequency bands
JP2005065196A (ja) フィルタ、信号処理装置、信号処理方法、記録媒体及びプログラム
JPH0339433B2 (ja)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): DE GB SG US

ENP Entry into the national phase

Ref document number: 0406399

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20030611

WWE Wipo information: entry into national phase

Ref document number: 10493870

Country of ref document: US