WO2003103806A1 - 排ガスの浄化方法 - Google Patents

排ガスの浄化方法 Download PDF

Info

Publication number
WO2003103806A1
WO2003103806A1 PCT/JP2003/006127 JP0306127W WO03103806A1 WO 2003103806 A1 WO2003103806 A1 WO 2003103806A1 JP 0306127 W JP0306127 W JP 0306127W WO 03103806 A1 WO03103806 A1 WO 03103806A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
purifying
metal oxide
purifying agent
reducing
Prior art date
Application number
PCT/JP2003/006127
Other languages
English (en)
French (fr)
Inventor
大塚 健二
荒川 秩
越智 幸史
Original Assignee
日本パイオニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本パイオニクス株式会社 filed Critical 日本パイオニクス株式会社
Priority to US10/516,826 priority Critical patent/US7300640B2/en
Priority to KR1020047019865A priority patent/KR100987568B1/ko
Priority to EP03757190A priority patent/EP1518598A4/en
Publication of WO2003103806A1 publication Critical patent/WO2003103806A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/54Nitrogen compounds
    • B01D53/56Nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8643Removing mixtures of carbon monoxide or hydrocarbons and nitrogen oxides
    • B01D53/8646Simultaneous elimination of the components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • B01D53/8628Processes characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8668Removing organic compounds not provided for in B01D53/8603 - B01D53/8665
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0216Other waste gases from CVD treatment or semi-conductor manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/26Chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper

Definitions

  • the present invention relates to a method for purifying exhaust gas containing nitrogen oxides and / or an organic solvent. More specifically, the present invention relates to a method for purifying an exhaust gas containing a nitrogen oxide and / or an organic solvent having a high concentration and a large fluctuation in concentration discharged from a semiconductor manufacturing process.
  • oxide-based dielectric films for semiconductor memories lead zirconate titanate (PZT) films with high dielectric constant and high step coverage, strontium barium titanate (BST) ) Film, bismuth strontium tantalate (SBT) film, lead lanthanum zirconate titanate (PLZT) film, etc. are used.
  • PZT lead zirconate titanate
  • BST strontium barium titanate
  • SBT bismuth strontium tantalate
  • PZT lead lanthanum zirconate titanate
  • a Pb source such as Pb (DPM) 2
  • a Zr source such as Zr (DPM) 4
  • a Ti source Ti (OiPr) 2 ( (DPM) 2 or the like as an organic metal raw material, each of which is dissolved in an organic solvent and used as a gas with a vaporizer, and oxygen, nitrogen dioxide and the like are used as oxidizing gases.
  • nitrogen oxides and organic solvents are discharged together with trace amounts of organometallic compounds as exhaust gas.
  • organometallic compounds are trace amounts and can be easily removed by dry purification at room temperature or by means such as a cold trap.
  • nitrogen oxides and organic solvents in exhaust gas have high concentrations, usually in the range of thousands to tens of thousands of ppm, which greatly exceed environmental standards and have a serious adverse effect on the human body and the environment. It is necessary to purify exhaust gas containing these.
  • methods for purifying exhaust gas containing nitrogen oxides include a wet method, an adsorption method, a non-catalytic reduction method, and a catalytic reduction method.
  • the wet method uses nitric acid This is a method of purifying waste gas containing exhaust gas directly or by converting nitrogen oxides in the exhaust gas to nitrogen dioxide with a catalyst so that it can be easily absorbed by the alkaline absorption solution, and then absorbed by the alkaline absorption solution.
  • the adsorption method is a method in which nitrogen oxides in exhaust gas are physically or chemically adsorbed on an adsorbent such as activated carbon or zeolite to purify the substance.
  • the non-catalytic reduction method is a method in which a reducing gas such as ammonia is added to an exhaust gas containing nitrogen oxides, and the nitrogen oxides are purified by reducing and decomposing them into nitrogen and water under heating.
  • a reducing gas such as ammonia or hydrocarbon is added to a nitrogen oxide-containing exhaust gas, and the mixture is brought into contact with a catalyst made of a metal or a metal compound under heating to produce a nitrogen oxide.
  • This is a purification method by reducing and decomposing water into nitrogen and water, and is a purification method that is widely used at present.
  • a method for purifying exhaust gas containing an organic solvent a method for introducing an organic solvent-containing exhaust gas into a flame of a combustible gas such as propane and oxygen or air and burning the same is used.
  • a purification method in which oxygen or air is added to a catalyst, and a noble metal or metal oxide is brought into contact with a catalyst supported on an inorganic carrier under heating to oxidatively decompose the catalyst.
  • the purification method by the wet method is practically NO because NO 2 is absorbed by the alkaline absorption liquid but NO is not easily absorbed. Has to be converted into N 2 with a catalyst, which has disadvantages in that the apparatus becomes large and it takes time to perform post-treatment of the used absorbent.
  • the purification method using the adsorption method has a problem that the purification capacity (the amount of nitrogen oxides treated per unit amount of adsorbent) is small, and depending on the treatment conditions, nitrogen oxides that have been adsorbed during use may be desorbed. There was a problem that there is. '
  • the purification method using the non-catalytic reduction method requires that the treatment temperature of the exhaust gas be as high as 100 ° C, and that the decomposition rate of reducing and decomposing nitrogen oxides into nitrogen and water be 50 to 6 At about 0%, it was not suitable for purifying exhaust gas containing high-concentration nitrogen oxides discharged from semiconductor manufacturing equipment as described above.
  • the purification method by the catalytic reduction method is an excellent purification method that can reductively decompose nitrogen oxides at a relatively low temperature and can obtain a decomposition rate of 90% or more.
  • the purification method by the catalytic reduction method is an excellent purification method that can reductively decompose nitrogen oxides at a relatively low temperature and can obtain a decomposition rate of 90% or more.
  • the amount of reducing gas added is small, the decomposition of nitrogen oxides becomes insufficient and the nitrogen oxides exceed the allowable concentration.
  • the amount of reducing gas is large and harmful gas such as carbon monoxide and hydrocarbon gas is emitted, the type of nitrogen oxide, such as exhaust gas discharged from semiconductor manufacturing equipment, It was difficult to control exhaust gases whose conditions such as concentration fluctuated greatly so as not to emit harmful gases.
  • an organic solvent was contained in the exhaust gas together with such nitrogen oxides, it was more difficult to control the emission of harmful gases. Disclosure of the invention
  • the problem to be solved by the present invention is to provide a large-scale purification device or a complicated structure for exhaust gas containing nitrogen oxides and / or organic solvents having a high concentration and a large fluctuation in concentration, which is discharged from a semiconductor manufacturing apparatus.
  • An object of the present invention is to provide a purification method capable of easily purifying at a relatively low temperature and a high decomposition rate without using a purification device having the same.
  • exhaust gas containing nitrogen oxides and / or organic solvents can be used as a purifying agent containing metals and metal oxides as active ingredients, or as a low-order (low-valent) ) And a purifying agent containing a high-order (high-valent) metal oxide as an active ingredient under heating to reduce nitrogen oxides and oxidatively decompose the organic solvent to purify.
  • the present invention relates to a method for reducing an oxide of nitrogen and a metal oxide by contacting an exhaust gas containing nitrogen oxide and Z or an organic solvent with a purifying agent containing metal and metal oxide as an active ingredient under heating.
  • the organic solvent is oxidatively decomposed by the substance, and a change in the composition ratio of the metal and the metal oxide due to the oxidation-reduction reaction is detected.
  • a correction gas is supplied when the control value deviates from a set control range, and the exhaust gas is purified while the composition ratio is restored to the control range.
  • the present invention provides an exhaust gas containing nitrogen oxides and Z or an organic solvent, which is contacted with a purifying agent containing a low-order metal oxide and a high-order metal oxide as an active ingredient under heating, to thereby form a low-order metal oxide.
  • a purifying agent containing a low-order metal oxide and a high-order metal oxide as an active ingredient under heating, to thereby form a low-order metal oxide.
  • the composition ratio of lower-order metal oxides and higher-order metal oxides by the oxidation-reduction reaction is reduced. Detecting a change, supplying a correction gas when the composition ratio deviates from a preset management range, and purifying the exhaust gas while restoring the composition ratio to a management range. Is the way.
  • the present invention provides a method for producing two or more kinds of exhaust gases selected from an exhaust gas containing nitrogen oxides and an organic solvent, an exhaust gas containing nitrogen oxides, and an exhaust gas containing an organic solvent, alternately or randomly, with a metal and a metal oxide.
  • a correction gas is supplied when the composition ratio deviates from a preset management range, and the exhaust gas is purified while restoring the composition ratio to the management range. It is also a purification method.
  • the present invention provides a method for producing two or more kinds of exhaust gas selected from an exhaust gas containing nitrogen oxides and an organic solvent, an exhaust gas containing nitrogen oxides, and an exhaust gas containing an organic solvent, by alternately or randomly, Oxide and higher order metal oxides as active ingredients are brought into contact with a purifying agent under heating to reduce nitrogen oxides by lower order metal oxides and oxidative decomposition of organic solvents by higher order metal oxides.
  • a change in the composition ratio of the lower-order metal oxide and the higher-order metal oxide due to the redox reaction is detected, and when the composition ratio deviates from a preset control range, a correction gas is supplied.
  • the present invention also provides a method for purifying exhaust gas, which comprises purifying the exhaust gas while restoring the composition ratio within a control range.
  • FIGS. 1A to 1D are cross-sectional views showing examples of a purification column used in the exhaust gas purification method of the present invention.
  • FIGS. 1A to 1D show the passage of time when reducing exhaust gas is introduced. This shows a state in which the purifying agent component changes to.
  • FIGS. 2A to 2D are cross-sectional views showing examples of a purification column used in the exhaust gas purification method of the present invention.
  • the purification from FIG. 2A to FIG. This shows a state in which the agent component changes.
  • FIG. 3 is a configuration diagram showing an example of a purification system for performing the exhaust gas purification method of the present invention.
  • the method for purifying exhaust gas of the present invention is applied to purification of a gas containing nitrogen oxide, an organic solvent, or a nitrogen oxide and an organic solvent in a gas such as nitrogen, helium, or argon.
  • the method for purifying exhaust gas according to the present invention is a method for purifying an exhaust gas containing a nitrogen oxide and a NO or an organic solvent, comprising a metal as a reducing purifying component and a metal oxide as an oxidizing purifying component, or a reducing purifying agent.
  • the reducing and / or oxidizing nitrogen oxides by the reductive purifying agent component are brought into contact with a purifying agent containing a lower-order metal oxide as a component and a higher-order metal oxide as an oxidizing purifying agent component under heating.
  • Oxidative decomposition of the organic solvent by the oxidative purifying agent component and also detects a change in the composition ratio of the reducing oxidizing agent component and the oxidizing purifying agent component due to the oxidation-reduction reaction, and the composition ratio deviates from a preset control range.
  • the correction gas is supplied to the exhaust gas, and the exhaust gas is purified while the composition ratio is restored to a control range.
  • the method for purifying exhaust gas of the present invention is characterized in that two or more types of exhaust gas selected from an exhaust gas containing nitrogen oxide and an organic solvent, an exhaust gas containing nitrogen oxide, and an exhaust gas containing an organic solvent are alternately or randomly reduced.
  • a purifying agent containing metal as a reducing agent component and a metal oxide as an oxidizing agent component, or a low-order metal oxide as a reducing agent component and a higher-order metal oxide as an oxidizing agent component Contact with a purifying agent under heating to reduce nitrogen oxides with a reducing purifying agent component and oxidatively decompose an organic solvent with an oxidizing purifying agent component, and to purify the oxidizing agent with a reducing purifying agent component through a redox reaction.
  • a change in the composition ratio of the agent component is detected, and when the composition ratio deviates from a preset control range, a correction gas is supplied. It is also a method of purification.
  • Nitrogen oxides are the object gas according to the present invention, N 2 0, NO, N 2 0 3, N 0 2, N 2 0 5, or N0 3.
  • the organic solvent which is a gas to be purified in the present invention, is an organic solvent for dissolving a solid organometallic raw material used as a raw material for a semiconductor film, and is usually at 40 ° C. at normal pressure (about 1 atm). It has a boiling point of 140 ° C.
  • organic solvent examples include ethers such as propyl ether, methyl butyl ether, ethyl propyl ether, ethyl butynole ether, trimethylene oxide, tetrahydrofuran, and tetrahydropyran; methyl alcohol, ethyl alcohol, propyl alcohol, and butyl alcohol. Aceton, ethyl methyl ketone, isopropyl methyl ketone, isobutyl methyl ketone, etc .; esters such as ethyl acetate, propyl acetate, butyl acetate; hydrocarbons such as hexane, heptane, octane, etc. can do.
  • ethers such as propyl ether, methyl butyl ether, ethyl propyl ether, ethyl butynole ether, trimethylene oxide, tetrahydrofuran, and tetrahydro
  • the purifying agent used in the exhaust gas purifying method of the present invention includes a purifying agent containing metal as a reducing purifying agent component and a metal oxide as an oxidizing purifying agent component, or a low-order metal as a reducing purifying agent component. It is a purifying agent containing higher-order metal oxides as oxide and oxidizing purifying agent components.
  • the lower-order metal oxide is a metal oxide capable of reducing nitrogen oxides under the temperature and pressure conditions at the time of purifying the gas to be purified
  • the higher-order metal oxide is a purifier. It is a metal oxide that can oxidize and decompose organic solvents under temperature and pressure conditions when purifying the target gas.
  • cleaning ingredients for example, metal and metal oxides, Ji 11 and Rei_110, 1 ⁇ 1 and 1 ⁇ 10, Ru and Ru_ ⁇ 2, or eight 8 and eight ⁇ 2 0, low for the following metal oxides and higher metal oxides, MnO and Mn 2 0 3, F e O and F e 2 0 3, C o O and C o 2 0 3, C r O and C r 2 O a, MoO 2 and MO0 3, or can include C e 2 ⁇ 3 and C e O 2.
  • metal and metal oxides Ji 11 and Rei_110, 1 ⁇ 1 and 1 ⁇ 10, Ru and Ru_ ⁇ 2, or eight 8 and eight ⁇ 2 0, low for the following metal oxides and higher metal oxides, MnO and Mn 2 0 3, F e O and F e 2 0 3, C o O and C o 2 0 3, C r O and C r 2 O a, MoO 2 and MO0 3, or can include C e 2 ⁇ 3 and C e O 2.
  • the purifying agent component may be in the form of metal, metal oxide, low-order metal oxide, or high-order metal oxide when purifying the gas to be purified.
  • Compounds such as oxides, carbonates and sulfates can also be used.
  • These metals and metal oxides, lower-order metal oxides, and higher-order metal oxides can maintain the purification ability for a long time, and are made of inorganic materials such as alumina, silica, zirconia, titania, silica alumina, and diatomaceous earth. It is preferable to use it supported on a carrier.
  • the specific surface area of the purifying agent is usually 10 to 400 m 2 / g.
  • Correction gas for converting the metal used in the exhaust gas purification method of the present invention to a metal oxide is not particularly limited as long as it is an oxidizing gas that can oxidize a metal or a lower-order metal oxide.
  • oxygen and air are usually used.
  • the reducing gas is not particularly limited as long as it is a reducing gas capable of reducing higher-order metal oxides, but is usually hydrogen; propyl ether, methyl butyl ether, ethyl propyl ether, ethyl butyl ether, trimethylene oxide, tetrahydrofuran.
  • ethers such as tetrahydropyran
  • alcohols such as methyl alcohol, ethyl alcohol, propyl alcohol, and butyl alcohol
  • ketones such as acetone, ethyl methyl ketone, isopropyl propyl methyl ketone, and isobutyl methyl ketone
  • Esters such as ethyl, ethyl acetate, pill, and butyl acetate
  • Hydrocarbons such as xane, heptane and octane are used. However, these must be gaseous at the temperature and pressure conditions during the purification treatment.
  • the exhaust gas to be purified in the present invention is generally a reducing exhaust gas containing nitrogen oxides and an organic solvent, an oxidizing exhaust gas containing nitrogen oxides and an organic solvent, a reducing exhaust gas containing an organic solvent, and a nitrogen oxide. Any exhaust gas of oxidizing exhaust gas containing substances.
  • the purification method of the present invention is particularly effective in purifying exhaust gas containing nitrogen oxides of 100 to 500 ppm and / or organic solvents of 100 to 500 ppm.
  • the term “reducing exhaust gas” refers to an exhaust gas in which the reducing gas is contained in a greater chemical equivalent than the oxidizing gas
  • oxidizing exhaust gas means that the oxidizing gas is in a chemical equivalent to the reducing gas. Indicates a large amount of exhaust gas.
  • FIGS. 1 and 2 are cross-sectional views showing examples of a purification column used in the exhaust gas purification method of the present invention.
  • FIGS. 1 and 2 show an example of a purification column of a type that detects a change in the composition ratio of a purification agent component by gas analysis.
  • FIG. 3 is a configuration diagram showing an example of an exhaust gas purification system using the purification column shown in FIG. 1 or FIG.
  • the metal oxide (or higher-order metal oxide) is filled so as to be larger than the metal (or lower-order metal oxide) 2.
  • the purifying agent is heated by the heater 4 and the temperature sensor 5 confirms that the predetermined temperature has been reached, the reducing exhaust gas containing the nitrogen oxides and the organic solvent is introduced into the purifying column.
  • the organic solvent is reduced by the lower metal oxide (2), and the organic solvent is oxidized and decomposed by the metal oxide (or higher metal oxide) 1, and the metal oxide (or higher metal oxide) 1 is converted.
  • metal oxide (or lower metal oxide) 2 Decrease and increase metal (or lower metal oxide) 2.
  • the purifying agent is heated to a predetermined temperature and then the reducing exhaust gas containing the organic solvent is introduced into the purifying column, the organic solvent is oxidized and decomposed by the metal oxide (or higher-order metal oxide) 1.
  • metal oxide (or higher metal oxide) 1 decreases and metal (or lower metal oxide) 2 increases.
  • a reducing exhaust gas containing nitrogen dioxide and cyclohexane is brought into contact with a purifying agent composed of Cu and CuO under heating, it is presumed that the reactions of Equations 1 to 3 occur, and the exhaust gas is purified.
  • CO 2 , H 20 , and N 2 are emitted from the outlet of the clarification column.
  • CuO decreases and Cu increases.
  • a reducing exhaust gas containing nitrogen dioxide and methanol are brought into contact under heating with cleaning agent consisting of C r O and C r 2 0 3, is presumed that the reaction of Equation 4 to Equation 6 occurs.
  • the metal (or lower-order metal oxide) 2 is oxidized by supplying it to the structure shown in Fig. 1A.
  • the purifying agent used in the present invention a material in which copper and copper oxide are supported on an inorganic carrier is used in that the deterioration or the deterioration of the purifying ability is extremely small even after repeated oxidation and reduction. preferable.
  • a detecting agent that changes color by a reducing gas may be used in a downstream layer of the purifying agent, downstream of the purifying agent. It can be detected by filling the side pipe or the bypass pipe provided in the downstream layer of the purifying agent. It can also be detected by measuring the change in the electrical resistance of the purifying agent. Furthermore, it can also be detected by calculation from the amount of exhaust gas processed.
  • the control range of the composition ratio of metal (or lower-order metal oxide) and metal oxide (or higher-order metal oxide) in any of the purifying methods using any of the purifying agents are set in the range of 5Z95 to 95Z5.
  • FIG. 1 when purifying the oxidizing exhaust gas, that is, when purifying the oxidizing exhaust gas containing nitrogen oxides and the organic solvent, or the oxidizing exhaust gas containing nitrogen oxides, FIG. It is preferable that the metal (or low-order metal oxide) 2 is filled so as to be larger than the metal oxide (or high-order metal oxide) 1 as shown in FIG. After the purifying agent is heated by the heater 4 and the temperature sensor 5 confirms that the temperature has reached a predetermined temperature, the oxidizing exhaust gas containing the nitrogen oxides and the organic solvent is introduced into the purifying column.
  • the organic solvent is reduced by the lower metal oxide (2), and the organic solvent is oxidized and decomposed by the metal oxide (or higher metal oxide) 1, and the metal oxide (or higher metal oxide) 1 is converted. Increases and decreases metal (or lower metal oxide) 2.
  • the oxidizing exhaust gas containing nitrogen oxides is introduced into the purification column after heating the purifying agent to a predetermined temperature, the nitrogen oxides are reduced by the metal (or low-order metal oxide) 2 and Metal oxide (or higher metal oxide) 1 increases and metal (or lower metal oxide) 2 decreases.
  • the composition of the purifying agent goes through the configuration shown in Fig. 2B and Fig. 2C, becomes the configuration shown in Fig. 2D, and harmful from the discharge port. Nitrogen oxides are discharged. Therefore, when purifying oxidizing exhaust gas, for example, as shown in Fig. 2, a pipe 3 for gas sampling is provided and gas is sampled and analyzed, and when nitrogen oxides are detected, that is, the composition of the purifying agent is changed.
  • Figure 2 When the configuration shown in c is reached, the introduction of exhaust gas is stopped and only the reducing corrective gas is supplied to the purification column, or the reducing corrective gas is supplied to the purification column together with the exhaust gas.
  • the metal oxide (higher-order metal oxide) 1 is reduced and restored to the configuration shown in Figure 2A. In the present invention, by repeating such a purification cycle, it is possible to continuously perform the purification treatment for a long time.
  • the control range of the composition ratio of the metal (or lower-order metal oxide) and the metal oxide (or higher-order metal oxide) is determined by the molar ratio of these It is preferable to set within the range of 5/95 to 955.
  • the introduction rate of the exhaust gas is usually 10 to 100,000 ml / in, preferably 1 0 to 1; for both the reducing exhaust gas and the oxidizing exhaust gas. 000 Om 1 Zmin (25 ° C, 1 atm).
  • the contact temperature between the purifying agent and the exhaust gas is usually from 100 to 800 ° C, preferably from 200 to 700 ° C.
  • the supply rate of the correction gas is usually 10 to 500 ml / min, preferably 50 to 2000 ml / min (25 ° C., 1 atmosphere).
  • the pressure at the time of purification is not particularly limited and is usually performed at normal pressure, but it is also possible to operate under reduced pressure such as 1 KPa or under pressure such as 200 KPa. .
  • the decomposition rate of nitrogen oxides and organic solvents in the purification method of the present invention is 99.9% or more.
  • two or more types of exhaust gas selected from the exhaust gas containing the nitrogen oxide and the organic solvent, the exhaust gas containing the nitrogen oxide, and the exhaust gas containing the organic solvent as described above are alternately or randomly.
  • a purifying agent containing a metal and a metal oxide as an active ingredient, or a purifying cylinder filled with a purifying agent containing a low-order metal oxide and a higher-order metal oxide as an active ingredient It is possible to detect the change in the composition ratio of the purifying agent component and supply the correction gas to purify the gas while restoring the composition ratio of the purifying agent component to the control range.
  • FIG. 3 shows an example of a purification system for implementing the exhaust gas purification method of the present invention. Exhaust gas from semiconductor manufacturing equipment and the like is introduced from an exhaust gas introduction line 6 through a heat exchanger 8 to a purification column 9 filled with a purification agent.
  • the purification temperature is maintained in an appropriate range by the temperature controller 10.
  • the gas is sampled by the gas sampling pipe 3 and analyzed to detect a change in the composition ratio of the purifying agent component. If the composition ratio deviates from the control range, a correction gas is supplied from the correction gas introduction line 7. The composition ratio should be within the management range.
  • the purified gas is led to the outside of the purification system via the exhaust line 11, the cooler 12 and the blower 13.
  • a metal and a metal oxide, or a lower-order metal oxide and a higher-order metal oxide are used as the purifying agent component, and their constituent ratios are set in advance. Since it is kept within the control range, even if the concentration of nitrogen oxides and organic solvents in the exhaust gas fluctuates greatly, for example, the composition ratio of the purifying agent will be out of the control range, and harmful substances such as nitrogen oxides and reducing gas There is ample time before the gases can be discharged, and controls can be easily performed to prevent harmful gas emissions.
  • a solution obtained by dissolving 500 g of commercially available copper (II) formate in 400 ml of a commercially available ammonia aqueous solution having a concentration of 28 wt% was used.
  • the resulting spherical alumina is again impregnated with a solution of copper (II) formate dissolved in an aqueous ammonia solution, and then dried and calcined to obtain a purifying agent in which 20 wt% CuO is carried on the spherical alumina.
  • a solution of copper (II) formate dissolved in an aqueous ammonia solution, and then dried and calcined to obtain a purifying agent in which 20 wt% CuO is carried on the spherical alumina.
  • the above-mentioned purifying agent was placed in a purifying cylinder made of SUS316L having an inner diameter of 16.4 mm and having a gas sampling tube. (Filling length: 200 mm, control of Cu and CuO of the purifying agent Range: ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ Next, the temperature of the purifying agent in the cleaning column is heated to 500 ° C.
  • Table 1 shows the results obtained by repeating the above purification test three more times.
  • a part of the gas discharged from the outlet of the purification column was sampled, and a harmful gas (nitrogen oxide or reducing gas) was detected using a gas detector tube. No gas was detected.
  • the purifying agent prepared in the same manner as in Example 1 was used for an inner diameter of 16.
  • Table 1 shows the results obtained by repeating the above purification test three more times. During the purification test, a part of the gas discharged from the outlet of the purification column was sampled, and harmful gas (reducing gas) was detected using a gas detector tube, but no harmful gas was detected. Was not done.
  • Example 1 A purification test was performed in the same manner as in Example 1 except that the oxidizing gas containing NO 2 in the purification test of Example 1 was changed to an oxidizing gas containing NO. The results are shown in Table 1.
  • the purification ability value (LZL agent) of the purification agent can be obtained with high reproducibility even when the purification cycle is repeated. Therefore, it is also possible to carry out the purification process only by calculating from the exhaust gas throughput without conducting analysis of the gas discharged from the outlet of the purification column.
  • Example 1 Gas 1st 2nd 3rd 4th 5th 5th Example 1 N0 2 20 (time: 139 minutes) 19 20 20 20 20
  • Example 2 2.0 (time: 23 minutes) 2. 1 2. 0 2. 0 2. 1
  • Example 3 NO 20 (Time: 282 minutes) 20 19 20 20
  • Example 4
  • a solution prepared by dissolving 500 g of commercially available chromium (VI) oxide in 500 ml of water was impregnated with 800 g of commercially available spherical alumina having a diameter of 2 to 3 mm and a specific surface area of 200 m 2 g.
  • spherical alumina having a diameter of 2 to 3 mm and a specific surface area of 200 m 2 g.
  • it was calcined at a temperature of 500 ° C. for 2 hours, and further subjected to a reduction treatment to prepare a purifying agent having 20 w,% ⁇ CrO supported on the spherical alumina.
  • the above purifying agent was added to a 16.4 mm id S with a 4.0 mm id bypass tube.
  • a purifying cylinder made of US 3 16 L was filled so that the inlet of the bypass pipe was set at the position 110 from the bottom of the purifying agent layer (filling length: 200 mm, purifying agent CrO and Cr)
  • the gas introduced into the bypass pipe was set so as to merge with the gas discharged from the purification column at the subsequent stage of the purification column.
  • the bypass pipe has a transparent portion made of ceramic. Then, filled with a detection agent that changes color by nitrogen oxides in transparency of the bypass pipe, after heating the temperature of the cleaning agent of the cleaning column to 50 0 ° C, 1 in dry nitrogen 0000 p pm of N0 2
  • the oxidizing gas containing was flowed at a flow rate of 1000 ml / min (25 ° C., normal pressure).
  • a purifying agent prepared in the same manner as in Example 1 was placed in a purifying cylinder made of SUS316L having an inner diameter of 16.4 mm and having a gas sampling tube, and a gas sampling tube was set at a position 110 from the bottom of the purifying agent layer. (Filling length: 20 Omm, purifying agent Cu and CuO control range: 10/90 to 9010). Then, after heating the temperature of the cleaning agent of the cleaning column to 500 ° C, a reducing gas containing CeH] 2 of 10000 ppm of N0 2 and 2 000 p pm in dry nitrogen, 1000 m l / min ( (25 ° C, normal pressure).
  • a purifying agent prepared in the same manner as in Example 1 was placed in a purifying cylinder made of SUS316L having an inner diameter of 16.4 mm and having a gas sampling tube, and a gas sampling tube was placed at a position 1Z10 from below the purifying agent layer. Filling was performed as set (filling length: 200 mm, control range of Cu and Cu ⁇ of the purifying agent: 109 to 90). Next, after the temperature of the purifying agent in the purifying column was heated to 500 ° C., an oxidizing gas containing 100 ppm of NO 2 in dry nitrogen and 200 ° C. in dry nitrogen were used.
  • the purifying agent prepared in the same manner as in Example 4 was placed in a purifying cylinder made of SUS316L having an inner diameter of 16.4 mm and having a gas sampling tube at a position 1/10 from the bottom of the purifying agent layer. sampling tube is filled as set (charging length: 2 0 Omm, C r O and C r 2 0 3 in the management range of the cleaning agent: 1 0Z90 ⁇ 9 0Z l O).
  • the purifier After heating the temperature of the purifying agent to 500 ° C, oxidizing gas containing 10000 p111 of ⁇ [0 2 and 500 ppm of CeHi 2 in dry nitrogen at 1000 ml min (25 ° C, normal pressure ). During this time, a part of the gas was sampled from the gas sampling tube of the purification column, and the time until nitrogen oxides were detected was measured using a gas detector tube (Gastec, detection limit: 0.1 ppm). The result was 52 minutes.
  • the purifying agent prepared in the same manner as in Example 4 was placed in a purifying cylinder made of SUS316L having an inner diameter of 16.4 mm and having a gas sampling tube. There was packed as set (filled length: 200mm, C r O and C r 2 0 3 in the management range of the cleaning agent: 1 0 / 90 ⁇ 9 ⁇ ⁇ ) . Then, after heating the temperature of the cleaning agent of the cleaning column to 500 ° C, an oxidizing gas containing N0 2 of 10000 p pm in dry nitrogen, and C 6 H 12 of 500 p pm in dry nitrogen The reducing gas contained was alternately flowed at a flow rate of lOOOmlZmin (25 ° C, normal pressure) at intervals of 10 minutes.
  • a large-sized purification device or a complicated configuration can be used to convert exhaust gas containing nitrogen oxides and / or organic solvents having a high concentration and large concentration fluctuations discharged from a semiconductor manufacturing apparatus. It was possible to easily purify at a relatively low temperature and a high decomposition rate without using a purification device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Treating Waste Gases (AREA)
  • Catalysts (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

本発明の排ガス浄化方法においては、窒素酸化物及び/または有機溶媒を含む排ガスを、還元性浄化剤成分として金属及び酸化性浄化剤成分として金属酸化物を含む浄化剤、または、還元性浄化剤成分として低次の金属酸化物及び酸化性浄化剤成分として高次の金属酸化物を含む浄化剤と加熱下で接触させる。還元性浄化剤成分による窒素酸化物の還元及び/または酸化性浄化剤成分による有機溶媒の酸化分解の進行に伴う還元性浄化剤成分と酸化性浄化剤成分の構成比の変化を検知し、前記構成比が予め設定した管理範囲を逸脱した際に補正ガスを供給し、前記構成比を管理範囲に修復しながら排ガスを浄化する。本発明の排ガス浄化方法により、半導体製造装置から排出されるような高濃度でかつ濃度変動が大きい窒素酸化物及び/または有機溶媒を含む排ガスを、大型の浄化装置あるいは複雑な構成を有する浄化装置を使用することなく、比較的に低い温度及び高い分解率で、容易に浄化できる。

Description

明 細 書 排ガスの浄化方法 技術分野
本発明は、 窒素酸化物及び 又は有機溶媒を含有する排ガスの浄化方法に関す る。 さらに詳細には、 半導体製造工程から排出される高濃度でかつ濃度変動が大 きい窒素酸化物及び 又は有機溶媒を含有する排ガスの浄化方法に関する。 背景技術
近年、 半導体分野においては、 半導体メモリー用の酸化物系誘電体膜として、 高誘電率を有しステップカバレッジ性が高いチタン酸ジルコン酸鉛(P ZT)膜、 チタン酸ス トロンチウムバリウム (B ST) 膜、 タンタル酸ビスマスス トロンチ ゥム (SBT) 膜、 チタン酸ジルコン酸ランタン鉛 (PLZT) 膜等が用いられ ている。 これらの誘電体膜の製造方法としては、 基板が設置された半導体製造装 置に、 有機金属原料ガス及び酸化性ガスを供給し気相成長を行なうことにより製 造する方法が知られている。 例えば P ZT膜を製造する際には、 Pb源として P b (D PM) 2等、 Z r源として Z r (D PM) 4等、 T i源として T i (O i P r) 2 (DPM) 2等を有機金属原料として用い、 各々有機溶媒に溶解して気化器 によりガス状にして使用するとともに、 酸素、 二酸化窒素等を酸化性ガスとして 使用する。
前記のような半導体製造において、 酸化性ガスとして二酸化窒素を用いる場合 は、 排ガスとして微量の有機金属化合物とともに、 窒素酸化物及び有機溶媒が排 出される。 これらの排ガス成分のうち有機金属化合物は微量であり、 常温の乾式 浄化あるいはコールドトラップ等の手段により容易に除去することが可能である。 一方、 排ガス中の窒素酸化物及び有機溶媒は、 通常は数千〜数万 p pmの高濃度 であり、 環境基準を大幅に越え人体や環境に極めて悪影響を与えるため、 大気に 放出するに先立ってこれらを含む排ガスを浄化する必要がある。
従来より、 窒素酸化物を含む排ガスの浄化方法としては、 湿式法、 吸着法、 無 触媒還元法、 接触還元法等がある。 これらの浄化方法のうち、 湿式法は、 窒素酸 化物含有排ガスを直接、 あるいは排ガス中の窒素酸化物を触媒で二酸化窒素に変 換しアル力リ吸収液に吸収しやすく した後、 アル力リ吸収液に吸収させて浄化す る方法である。 吸着法は、 活性炭、 ゼォライ ト等の吸着剤に排ガス中の窒素酸化 物を物理的または化学的に吸着させて浄化する方法である。 また、 無触媒還元法 は、 一般的に、 窒素酸化物含有排ガスにアンモニア等の還元性ガスを添加し、 加 熱下で窒素酸化物を窒素及び水に還元分解することにより浄化する方法である。 また、 接触還元法は、 一般的に、 窒素酸化物含有排ガスに、 アンモニア、 炭化水 素等の還元性ガスを添加し、 加熱下で金属または金属化合物からなる触媒と接触 させて、窒素酸化物を窒素及び水に還元分解することにより浄化する方法であり、 現在多く利用されている浄化方法である。
尚、 有機溶媒を含む排ガスの浄化方法としては、 プロパン等の可燃性ガスと、 酸素または空気の火炎中に、 有機溶媒含有排ガスを導入し、 燃焼させることによ る浄化方法、 有機溶媒含有排ガスに酸素または空気を添加した後、 貴金属または 金属酸化物を無機担体に担持した触媒と加熱下で接触させて酸化分解する浄化方 法等がある。
しかしながら、 前述の窒素酸化物を含む排ガスの浄化方法のうち、 湿式法によ る浄化方法は、 N 0 2はアル力リ吸収液に吸収されるが N Oは吸収されにくいた め、 実用上 N Oを触媒で N 0 2に変換する必要があり、 装置が大型になるととも に、 使用した吸収液の後処理等に手間がかかるという欠点があつた。
また、 吸着法による浄化方法は、 浄化能力 (吸着剤単位量当りの窒素酸化物処 理量) が小さいという問題点、 処理条件によっては使用中にいったん吸着してい た窒素酸化物が脱着する虞があるという問題点があった。 '
また、 無触媒還元法による浄化方法は、 排ガスの処理温度を 1 0 0 o °cに近い 高温にする必要があるとともに、 窒素酸化物を窒素及び水に還元分解する分解率 が 5 0〜6 0 %程度で、 前述のような半導体製造装置から排出される高濃度の窒 素酸化物を含む排ガスの浄化には適さなかった。
接触還元法による浄化方法は、 比較的に低い温度で窒素酸化物を還元分解する ことが可能で、 しかも 9 0 %以上の分解率が得られる優れた浄化方法である。 し かし、 高濃度の窒素酸化物を含む排ガスを浄化する際、 添加される還元性ガスの 量が少ない場合は、 窒素酸化物の分解が不充分となり許容濃度を超える窒素酸化 物が排出され、 還元性ガスの量が多い場合は、 一酸化炭素、 炭化水素ガス等の有 害ガスが排出されるので、 半導体製造装置から排出される排ガスのように窒素酸 化物の種類、 濃度等の条件が大きく変動する排ガスに対しては、 有害ガスを排出 しないようにコント口一ルすることが難しかった。 さらに、 このような窒素酸化 物とともに有機溶媒が排ガスに含まれる場合は、 有害ガスの排出を防止するため のコントロールがより困難であった。 発明の開示
従って、 本発明が解決しょうとする課題は、 半導体製造装置から排出されるよ うな高濃度でかつ濃度変動が大きい窒素酸化物及び 又は有機溶媒を含む排ガス を、 大型の浄化装置あるいは複雑な構成を有する浄化装置を使用することなく、 比較的に低い温度及び高い分解率で、 容易に浄化できる浄化方法を提供すること である。
本発明者らは、 これらの課題を解決すべく鋭意検討した結果、 窒素酸化物及び 又は有機溶媒を含む排ガスを、 金属及び金属酸化物を有効成分として含む浄化 剤、 あるいは低次 (低原子価) の金属酸化物及び高次 (高原子価) の金属酸化物 を有効成分として含む浄化剤と加熱下で接触させて、 窒素酸化物を還元し有機溶 媒を酸化分解して浄化するとともに、 これらの酸化還元反応により増減して偏つ た浄化剤の構成成分の構成比を検知し、 前記構成比が予め設定した管理範囲を逸 脱した際に補正ガスを供給して、 前記浄化剤の構成成分の構成比を管理範囲に修 復しながら浄化することにより、 排ガスが高濃度の窒素酸化物、 有機溶媒を含む 場合であ ても、 時間の経過とともに窒素酸化物、 有機溶媒の濃度が大きく変動 する場合であっても、 大型の浄化装置あるいは複雑な構成を有する浄化装置を使 用することなく、 比較的に低い温度及び高い分解率で、 容易にこれらの窒素酸化 物、 有機溶媒を含む排ガスを浄化できることを見い出し本発明の排ガスの浄化方 法に到達した。
すなわち本発明は、 窒素酸化物及び Z又は有機溶媒を含む排ガスを、 金属及び 金属酸化物を有効成分として含む浄化剤と加熱下で接触させて、 金属による窒素 酸化物の還元及びノ又は金属酸化物による有機溶媒の酸化分解を行なうとともに、 該酸化還元反応による金属と金属酸化物の構成比の変化を検知し前記構成比が予 め設定した管理範囲を逸脱した際に補正ガスを供給し、 前記構成比を管理範囲に 修復しながら該排ガスを浄化することを特徴とする排ガスの浄化方法である。 また、 本発明は、 窒素酸化物及び Z又は有機溶媒を含む排ガスを、 低次の金属 酸化物及び高次の金属酸化物を有効成分として含む浄化剤と加熱下で接触させて、 低次の金属酸化物による窒素酸化物の還元及び 又は高次の金属酸化物による有 機溶媒の酸化分解を行なうとともに、 該酸化還元反応による低次の金属酸化物と 高次の金属酸化物の構成比の変化を検知し、 前記構成比が予め設定した管理範囲 を逸脱した際に補正ガスを供給し、 前記構成比を管理範囲に修復しながら該排ガ スを浄化することを特徴とする排ガスの浄化方法である。
また、 本発明は、 窒素酸化物及び有機溶媒を含む排ガス、 窒素酸化物を含む排 ガス、 及び有機溶媒を含む排ガスから選ばれる 2種類以上の排ガスを、 交互また はランダムに、 金属及び金属酸化物を有効成分として含む浄化剤と加熱下で接触 させて、 金属による窒素酸化物の還元及び金属酸化物による有機溶媒の酸化分解 を行なうとともに、 該酸化還元反応による金属と金属酸化物の構成比の変化を検 知し、 前記構成比が予め設定した管理範囲を逸脱した際に補正ガスを供給し、 前 記構成比を管理範囲に修復しながら該排ガスを浄化することを特徴とする排ガス の浄化方法でもある。
さらに、 本発明は、 窒素酸化物及び有機溶媒を含む排ガス、 窒素酸化物を含む 排ガス、 及び有機溶媒を含む排ガスから選ばれる 2種類以上の排ガスを、 交互ま たはランダムに、 低次の金属酸化物及び高次の金属酸化物を有効成分として含む 浄化剤と加熱下で接触させて、 低次の金属酸化物による窒素酸化物の還元及び高 次の金属酸化物による有機溶媒の酸化分解を行なうとともに、 該酸化還元反応に よる低次の金属酸化物と高次の金属酸化物の構成比の変化を検知し、 前記構成比 が予め設定した管理範囲を逸脱した際に補正ガスを供給し、 前記構成比を管理範 囲に修復しながら該排ガスを浄化することを特徴とする排ガスの浄化方法でもあ る。 図面の簡単な説明
図 1 A〜l Dは、 本発明の排ガス浄化方法に用いられる浄化筒の例を示す断面 図であり、 還元性排ガスを導入した場合に時間の経過とともに図 1 Aから図 1 D へと浄化剤成分が変化する状態を示す。
図 2 A〜 2 Dは、 本発明の排ガス浄化方法に用いられる浄化筒の例を示す断面 図であり、 酸化性排ガスを導入した場合に時間の経過とともに図 2 Aから図 2 D へと浄化剤成分が変化する状態を示す。
図 3は、 本発明の排ガス浄化方法を実施するための浄化システムの例を示す構 成図である。 発明を実施するための最良の形態
本発明の排ガスの浄化方法は、 窒素、 ヘリウム、 アルゴン等のガス中に、 窒素 酸化物、 有機溶媒、 または窒素酸化物及び有機溶媒を含有するガスの浄化に適用 される。
本発明の排ガスの浄化方法は、窒素酸化物及びノ又は有機溶媒を含む排ガスを、 還元性浄化剤成分として金属及び酸化性浄化剤成分として金属酸化物を含む浄化 剤、 または、 還元性浄化剤成分として低次の金属酸化物及び酸化性浄化剤成分と して高次の金属酸化物を含む浄化剤と加熱下で接触させて、 還元性浄化剤成分に よる窒素酸化物の還元及び 又は酸化性浄化剤成分による有機溶媒の酸化分解を 行なうとともに、 酸化還元反応による還元性浄化剤成分と酸化性浄化剤成分の構 成比の変化を検知し、 前記構成比が予め設定した管理範囲を逸脱した際に補正ガ スを供給し、前記構成比を管理範囲に修復しながら排ガスを浄化する方法である。 また、 本発明の排ガスの浄化方法は、 窒素酸化物及び有機溶媒を含む排ガス、 窒素酸化物を含む排ガス、 及び有機溶媒を含む排ガスから選ばれる 2種類以上の 排ガスを、 交互またはランダムに、 還元性浄化剤成分として金属及び酸化性浄化 剤成分として金属酸化物を含む浄化剤、 または、 還元性浄化剤成分として低次の 金属酸化物及び酸化性浄化剤成分として高次の金属酸化物を含む浄化剤と加熱下 で接触させて、 還元性浄化剤成分による窒素酸化物の還元及び酸化性浄化剤成分 による有機溶媒の酸化分解を行なうとともに、 酸化還元反応による還元性浄化剤 成分と酸化性浄化剤成分の構成比の変化を検知し、 前記構成比が予め設定した管 理範囲を逸脱した際に補正ガスを供給し、 前記構成比を管理範囲に修復しながら 排ガスを浄化する方法でもある。
本発明における浄化対象ガスである窒素酸化物は、 N 2 0、 N O、 N 2 0 3、 N 02、 N205、 または N03である。 また、 本発明における浄化対象ガスである有 機溶媒は、 半導体膜の原料として用いられる固体有機金属原料を溶解するための 有機溶媒であり、 通常は常圧 (約 1気圧) で 40°C〜 140°Cの沸点温度を有す るものである。 このような有機溶媒としては、 プロピルエーテル、 メチルブチル エーテル、 ェチルプロピルェ一テル、 ェチルブチノレエーテル、 酸化トリメチレン、 テトラヒ ドロフラン、 テトラヒ ドロピラン等のエーテル; メチルアルコール、 ェ チルアルコール、 プロピルアルコール、 ブチルァノレコール等のアルコーノレ; ァセ トン、 ェチルメチルケトン、 イソプロピルメチルケトン、 イソブチルメチルケト ン等のケトン;酢酸ェチル、 酢酸プロピル、 酢酸ブチル等のエステル;へキサン、 ヘプタン、 オクタン等の炭化水素等を例示することができる。
本発明の排ガスの浄化方法に使用される浄化剤は、 還元性浄化剤成分として金 属及び酸化性浄化剤成分として金属酸化物を含む浄化剤、 または還元性浄化剤成 分として低次の金属酸化物及び酸化性浄化剤成分として高次の金属酸化物を含む 浄化剤である。 本発明において、 低次の金属酸化物は、 浄化対象ガスを浄化処理 する際の温度圧力条件で、窒素酸化物を還元することができる金属酸化物であり、 高次の金属酸化物は、 浄化対象ガスを浄化処理する際の温度圧力条件で、 有機溶 媒を酸化分解できる金属酸化物である。 これらの浄化剤成分の組合せとしては、 例えば金属及び金属酸化物の場合、 じ11及び〇110、 1^ 1及び1^ 10、 Ru及び Ru〇2、 または、 八8及び八§ 20、 低次の金属酸化物及び高次の金属酸化物の 場合、 MnO及び Mn 203、 F e O及び F e 203、 C o O及び C o 203、 C r O及び C r 2Oa、 MoO2及び Mo03、 または、 C e 23及び C e O 2を挙げる ことができる。
尚、 浄化剤成分は、 浄化対象ガスを浄化処理する際に、 金属、 金属酸化物、 低 次の金属酸化物、 または高次の金属酸化物の状態であればよく、 原材料としては 金属の水酸化物、 炭酸塩、 硫酸塩等の化合物を用いることもできる。 これらの金 属及び金属酸化物、 低次の金属酸化物及び高次の金属酸化物は、 浄化能力を長時 間保持できる点で、 アルミナ、 シリカ、 ジルコニァ、 チタニア、 シリカアルミナ、 珪藻土等の無機質担体に担持して使用することが好ましい。 また、 浄化剤の比表 面積は、 通常は 10〜400m2/gである。
本発明の排ガスの浄化方法に使用される金属を金属酸化物に変換する補正ガス、 または低次の金属酸化物を高次の金属酸化物に変換する補正ガスとしては、金属、 低次の金属酸化物を酸化することができる酸化性ガスであれば特に制限されるこ とはないが、 通常は酸素、 空気が使用される。 また、 本発明の排ガスの浄化方法 に使用される金属酸化物を金属に変換する補正ガス、 または高次の金属酸化物を 低次の金属酸化物に変換する補正ガスとしては、 金属酸化物、 高次の金属酸化物 を還元することができる還元性ガスであれば特に制限されることはないが、 通常 は水素;プロピルエーテル、 メチルブチルエーテル、 ェチルプロピルェ一テノレ、 ェチルブチルエーテル、 酸化トリメチレン、 テトラヒ ドロフラン、 テトラヒ ドロ ピラン等のエーテル; メチルァノレコール、 エチルアルコール、 プロピルアルコ一 ノレ、 ブチルアルコール等のアルコール; アセトン、 ェチルメチルケトン、 イソプ 口ピルメチルケトン、 ィソブチルメチルケトン等のケトン;酢酸ェチル、 酢酸プ 口ピル、 酢酸ブチル等のエステル;へキサン、 ヘプタン、 オクタン等の炭化水素 等が使用される。 但し、 これらは浄化処理する際の温度圧力条件で気体であるこ とが必要である。
本発明において浄化対象となる排ガスは、 通常は窒素酸化物及び有機溶媒を含 有する還元性排ガス、 窒素酸化物及び有機溶媒を含有する酸化性排ガス、 有機溶 媒を含有する還元性排ガス、 窒素酸化物を含有する酸化性排ガスのいずれかの排 ガスである。 本発明の浄化方法は、 窒素酸化物を 1 0 0〜 5 0 0 0 0 p p m及び /又は有機溶媒を 1 0 0〜 5 0 0 0 p p m含有する排ガスの浄化に特に有効であ る。 尚、 本発明において、 還元性排ガスとは、 化学当量的に還元性ガスが酸化性 ガスよりも多く含まれる排ガスを示し、 酸化性排ガスとは、 化学当量的に酸化性 ガスが還元性ガスよりも多く含まれる排ガスを示すものである。
次に、 本発明の排ガスの浄化方法を、 図 1乃至図 3に基づいて詳細に説明する 力 本発明がこれらにより限定されるものではない。
図 1及び図 2は、 本発明の排ガスの浄化方法に用いられる浄化筒の例を示す断 面図であり、 各々還元性排ガス、 酸化性排ガスを導入した場合に時間の経過とと もに (A) から (D ) へ浄化剤成分が変化する状態を示すものである。 また、 図 1及び図 2は、 浄化剤成分の構成比の変化をガス分析により検知する方式の浄化 筒の例を示すものである。 図 3は、 図 1または図 2に示す浄化筒を用いた排ガス 浄化システムの例を示す構成図である。 以下、 本発明の排ガスの浄化方法について、 有効成分として金属及び金属酸化 物を含む浄化剤を用いた場合を主として説明するが、 有効成分として低次の金属 酸化物及び高次の金属酸化物を含む浄化剤を用いた場合も同様である。
本発明において、 還元性排ガスを浄化する場合、 すなわち窒素酸化物及び有機 溶媒を含む還元性排ガス、あるいは有機溶媒を含む還元性排ガスを浄化する場合、 浄化処理を行なう前に、 図 1 Aに示すように金属酸化物 (または高次の金属酸化 物) 1力 金属 (または低次の金属酸化物) 2よりも多くなるように充填するこ とが好ましい。 浄化剤をヒーター 4により加熱し、 温度センサー 5により所定の 温度に達したことを確認した後、 窒素酸化物及び有機溶媒を含む還元性排ガスを 浄化筒に導入すると、 窒素酸化物が金属 (または低次の金属酸化物) 2により還 元され、 有機溶媒が金属酸化物 (または高次の金属酸化物) 1により酸化分解さ れるとともに、 金属酸化物 (または高次の金属酸化物) 1が減少し金属 (または 低次の金属酸化物) 2が増加する。 また、 浄化剤を所定の温度に加熱した後、 有 機溶媒を含む還元性排ガスを浄化筒に導入すると、 有機溶媒が金属酸化物 (また は高次の金属酸化物) 1により酸化分解されるとともに、 金属酸化物 (または高 次の金属酸化物) 1が減少し金属 (または低次の金属酸化物) 2が増加する。 例えば、 二酸化窒素及びシクロへキサンを含む還元性排ガスを、 C u及び C u Oからなる浄化剤と加熱下で接触させると、 式 1〜式 3の反応が起こると推測さ れ、 排ガスが浄化処理されて浄化筒の排出口からは C O 2、 H 2 0、 N 2が排出さ れるが、 排ガスには化学当量的に還元性ガスが酸化性ガスよりも多く含まれるの で、 時間の経過とともに C u Oが減少し C uが増加する。
また、 例えば、 二酸化窒素及びメタノールを含む還元性排ガスを、 C r O及び C r 2 0 3からなる浄化剤と加熱下で接触させると、 式 4〜式 6の反応が起こると 推測される。
その他の金属及び金属酸化物を有効成分として含む浄化剤、 または、 低次の金 属酸化物及び高次の金属酸化物を有効成分として含む浄化剤を用いた場合の酸化 還元反応は、 これらに準じた反応であると推測される。 C6H12 + 18CuO + 18Cu + 6C02 + 6H20 (1)
2N02 + 4Cu N2 + 4CuO (2)
18N02 + 2C6H12 9N2 + 12C02 + 12H20 (3)
(Cu or CuO)
CH3OH + 3Cr203 6CrO + 2H20 + C02 (4) 2N02 + 8CrO 4Cr203 + N *2, (5)
6N02 + 4CH3OH 3N2 + 4C02 + 8H20 (6)
(CrO or Cr203) 従って、 還元性排ガスをそのまま継続して浄化すると、 浄化剤の構成は図 1 B 及び図 1 Cに示すような構成を経て、 図 1 Dに示すような構成になり、 排出口か らは C O等の有害な還元性ガスが排出されるようになる。 そのため、 還元性排ガ スを浄化する場合は、 例えば図 1に示すようにガスサンプリングのための配管 3 を設けてガスを採取、 分析し、 還元性ガスが検出された際、 すなわち浄化剤の構 成が図 1 Cに示すような構成となった際に、 排ガスの導入を中止して酸化性の補 正ガスのみを浄化筒に供給するか、 あるいは排ガスとともに酸化性の補正ガスを 浄化筒に供給することにより金属 (または低次の金属酸化物) 2を酸化して、 図 1 Aに示すような構成に修復される。 本発明においては、 このような浄化サイク ルを繰返すことにより、長時間にわたり連続して浄化処理することが可能である。 尚、 本発明に使用される浄化剤としては、 酸化及び還元を繰返しても劣化あるい は浄化能力の低下が極めて少ない点で銅及び酸化銅を無機質担体に担持させたも のを用いることが好ましい。
また、 本発明においては、 浄化剤成分の構成比の変化を、 前記のようなガスサ ンプリングにより検知する以外に、 例えば還元性ガスにより変色する検知剤を、 浄化剤の下流層、 浄化剤の下流側配管、 または浄化剤の下流層に設けたバイパス 管に充填することにより検知することができる。 また、 浄化剤の電気抵抗の変化 を測定することにより検知することもできる。 さらに、 排ガスの処理量からの計 算により検知することもできる。
有機溶媒を含む還元性排ガス、 または窒素酸化物及び有機溶媒を含む還元性排 ガスを浄化する場合、 いずれの浄化剤を用いた浄化方法においても、 金属 (また は低次の金属酸化物) 及び金属酸化物 (または高次の金属酸化物) の構成比の管 理範囲が、 これらのモル比で 5 Z 9 5〜9 5 Z 5の範囲内に設定されることが好 ましい。
本発明において、 酸化性排ガスを浄化する場合、 すなわち窒素酸化物及び有機 溶媒を含む酸化性排ガス、 あるいは窒素酸化物を含む酸化性排ガスを浄化する場 合、 浄化処理を行なう前に、 図 2 Aに示すように金属 (または低次の金属酸化物) 2が金属酸化物 (または高次の金属酸化物) 1よりも多くなるように充填するこ とが好ましい。 浄化剤をヒーター 4により加熱し、 温度センサー 5により所定の 温度に達したことを確認した後、 窒素酸化物及び有機溶媒を含む酸化性排ガスを 浄化筒に導入すると、 窒素酸化物が金属 (または低次の金属酸化物) 2により還 元され、 有機溶媒が金属酸化物 (または高次の金属酸化物) 1により酸化分解さ れるとともに、 金属酸化物 (または高次の金属酸化物) 1が増加し金属 (または 低次の金属酸化物) 2が減少する。 また、 浄化剤を所定の温度に加熱した後、 窒 素酸化物を含む酸化性排ガスを浄化筒に導入すると、 窒素酸化物が金属 (または 低次の金属酸化物) 2により還元されるとともに、 金属酸化物 (または高次の金 属酸化物) 1が増加し金属 (または低次の金属酸化物) 2が減少する。
例えば、 二酸化窒素及びシクロへキサンを含む酸化性排ガスを、 酸化銅及び金 属銅からなる浄化剤と加熱下で接触させると、 前述の式 1〜式 3の反応が起こる と推測され、 排ガスが浄化処理されて浄化筒の排出口からは C O 2、 H 2 0、 N 2 が排出されるが、 排ガスには化学当量的に酸化性ガスが還元性ガスよりも多く含 まれるので、 時間の経過とともに酸化銅が増加し金属銅が減少する。 また、 二酸 化窒素を含む酸化性排ガスを、 酸化銅及び金属銅からなる浄化剤と加熱下で接触 させると、 前述の式 2の反応が起こると推測され、 時間の経過とともに酸化銅が 増加し金属銅が減少する。
従って、 酸化性排ガスをそのまま継続して浄化すると、 浄化剤の構成は図 2 B 及び図 2 Cに示すような構成を経て、 図 2 Dに示すような構成になり、 排出口か らは有害な窒素酸化物が排出されるようになる。 そのため、 酸化性排ガスを浄化 する場合も、 例えば図 2に示すようにガスサンプリングのための配管 3を設けて ガスを採取、 分析し、 窒素酸化物が検出された際、 すなわち浄化剤の構成が図 2 cに示すような構成となった際に、 排ガスの導入を中止して還元性の補正ガスの みを浄化筒に供給するか、 あるいは排ガスとともに還元性の補正ガスを浄化筒に 供給することにより金属酸化物 (高次の金属酸化物) 1を還元して、 図 2 Aに示 すような構成に修復される。 本発明においては、 このような浄化サイクルを繰返 すことにより、 長時間にわたり連続して浄化処理することが可能である。
また、 酸化性排ガスの浄化処理においても、 浄化剤成分の構成比の変化を、 前 記のようなガスサンプリングにより検知する以外に、 検知剤による検知、 浄化剤 の電気抵抗の変化を測定することによる検知、 排ガスの処理量からの計算による 検知等が可能である。 また、 いずれの浄化剤を用いた浄化方法においても、 金属 (または低次の金属酸化物) 及び金属酸化物 (または高次の金属酸化物) の構成 比の管理範囲が、 これらのモル比で 5/ 9 5〜9 5 5の範囲内に設定されるこ とが好ましい。
. 尚、 本発明の浄化方法においては、 還元性排ガス及び酸化性排ガスのいずれに ついても、 排ガスの導入速度は、 通常 1 0〜 1 00000m l / i n、 好まし くは 1 ◦ 0〜; 1 000 Om 1 Zm i n (2 5°C、 1気圧) である。 浄化剤と排ガ スとの接触温度は、 通常は 1 0 0〜8 00°C、 好ましくは 2 0 0〜 7 0 0 °Cであ る。 補正ガスの供給速度は通常 1 0〜 50 00m l /m i n、 好ましくは 5 0〜 20 0 0m l /m i n (2 5°C、 1気圧) である。 また、 浄化の際の圧力につい ては特に制限はなく、 通常は常圧で行なわれるが、 1 KP aのような減圧下乃至 20 0 KP aのような加圧下で操作することも可能である。 また、 本発明の浄化 方法における窒素酸化物、 有機溶媒の分解率は 9 9. 9%以上である。
本発明の浄化方法においては、 前述のような窒素酸化物及び有機溶媒を含む排 ガス、 窒素酸化物を含む排ガス、 及び有機溶媒を含む排ガスから選ばれる 2種類 以上の排ガスを、 交互またはランダムに、 金属及び金属酸化物を有効成分として 含む浄化剤、 または低次の金属酸化物及び高次の金属酸化物を有効成分として含 む浄化剤が充填された浄化筒に導入し、 前述と同様にして浄化剤成分の構成比の 変化を検知し、 補正ガスを供給して浄化剤成分の構成比を管理範囲に修復しなが ら浄化することが可能である。 このような浄化方法においても、 浄化剤成分の構 成比の変化を、 ガスサンプリング、 検知剤、 浄化剤の電気抵抗の測定、 排ガスの 処理量からの計算等により検知することができる。 但し、 排ガスの種類が頻繁に 替つたり、 窒素酸化物、 有機溶媒の濃度が短時間で大きく変動する排ガスについ ては、排ガスの処理量からの計算による検知以外の方法で行なうことが好ましい。 本発明の排ガス浄化方法を実施するための浄化システムの一例を図 3に示す。 半導体製造装置などからの排ガスは、 排ガス導入ライン 6から熱交換機 8を経て 浄化剤が充填された浄化筒 9へ導入される。 浄化温度は、 温度制御器 1 0により 適正範囲に維持される。 ガスサンプリング管 3によりガスを採取し、 分析するこ とにより浄化剤成分の構成比の変化を検知し、 構成比が管理範囲を逸脱した場合 には補正ガスを補正ガス導入ライン 7から供給して、 構成比が管理範囲内になる ようにする。 浄化されたガスは、 排出ライン 1 1、 冷却器 1 2及びブロワ一 1 3 を経て浄化システム外へ導かれる。
本発明の浄化方法は、 以上のように浄化剤成分として、 金属及び金属酸化物、 または、 低次の金属酸化物及び高次の金属酸化物が用いられ、 これらの構成比が 予め設定された管理範囲内に保持されているので、例えば排ガス中の窒素酸化物、 有機溶媒の濃度が大きく変動しても、 浄化剤の構成比が管理範囲を外れて窒素酸 化物あるいは還元性ガス等の有害ガスが排出されるようになるまでには時間に余 裕があり、 有害ガスの排出を防止するためのコントロールを容易に行なうことが できる。
次に、 本発明を実施例により具体的に説明するが、 本発明がこれらにより限定 されるものではない。
実施例 1
(浄化剤の調製)
濃度 2 8 w t %の市販のアンモニア水溶液 4 0 0 m 1に、 市販の蟻酸銅 (II) 5 0 0 gを溶解させた溶液を、 市販の粒径 2〜3 mm、 比表面積2 0 0 111 2 § の球状アルミナ 9 0 0 gに含浸させた後、 この球状アルミナを乾燥し、 5 0 0 °C の温度で 2時間焼成した。 得られた球状アルミナに、 再度アンモニア水溶液に蟻 酸銅 (II) を溶解させた溶液を含浸させた後、 乾燥、 焼成して 2 0 w t %の C u Oが球状アルミナに担持された浄化剤を調製した。
(浄化試験)
前記の浄化剤を、 ガスサンプリング管を有する内径 1 6 . 4 mmの S U S 3 1 6 L製の浄化筒に、 浄化剤層の下から l Z l 0の位置にガスサンプリング管が設 定されるように充填した (充填長: 200mm、 浄化剤の C u及び C u Oの管理 範囲: Ι θΖθ Ο θ θΖΐ Ο α 次に、 浄化筒の浄化剤の温度を 500°Cに加熱 し水素を流通させて、 C u Oの還元処理を行った後、 乾燥窒素中に Ι Ο Ο Ο ρ ρ mの N02を含有する酸化性ガス、及び乾燥窒素中に 10000 p pmの N02を 含有する酸化性ガスを、 l O O Om l Zm i n (25°C、 常圧) の流量で、 交互 に 5分間隔で流通させた。 この間、 浄化筒のガスサンプリング管からガスの一部 をサンプリングし、 ガス検知管 (ガステック社製、 検知下限 0. l p pm) を用 いて、 窒素酸化物が検出されるまでの時間 (有効処理時間) を測定し、 浄化剤 1 L (リットル) 当たりに対する N02の除去量 (L) (浄化能力) を求めた。 その 結果を表 1に示す。
(浄化剤の構成比の修復、 及び 2回目以降の浄化試験)
浄化筒のガスサンプリング管から窒素酸化物が検知された直後、 N〇2と共に 過剰の C2H5OHを補正ガスとして浄化筒に供給し、浄化筒のガスサンプリング 管から還元性ガスが検出されるまで C2H5OHの供給を継続した。 その後、 補正 ガスの供給を中止して、 再度前記と同様の浄化試験を行なった。 その結果を表 1 に示す。
以上のような浄化試験をさらに 3回繰返して行なった結果を表 1に示す。 尚、 浄化試験中、 浄化筒の排出口から排出されるガスについても一部をサンプ リングし、 ガス検知管を用いて有害ガス (窒素酸化物または還元性ガス) の検知 を行なったが、 有害ガスは検出されなかった。
実施例 2
(浄化試験)
実施例 1と同様にして調製した浄化剤を、 内径 1 6.
Figure imgf000014_0001
製の浄化筒に充填し、 浄化剤層の下から 1 5の位置の浄化剤中に 2個の電極端 子を設定した (充填長: 200mm、 浄化剤の C u及び C u Oの管理範囲: 20 /δ Ο δ θΖΖ Ο^ 次に、 浄化筒の浄化剤の温度を 500°Cに加熱した後、 乾 燥窒素中に 3000 p pmの CeHi 2を含有する還元性ガスを、 1 000m 1 m i n (25°C、 常圧) の流量で流通させた。 この間、 前記 2個の電極端子に電 圧をかけて浄化剤の電気抵抗を測定し、 これが急激に小さくなるまでの時間 (有 効処理時間) を測定して、 浄化剤 1 L (リ ッ トル) 当たりに対する C6H12の除 去量 (L ) (浄化能力) を求めた。 その結果を表 1に示す。
(浄化剤の構成比の修復、 及び 2回目以降の浄化試験)
浄化剤の抵抗が急激に小さくなった直後、 C 6 H 1 2と共に過剰の酸素を補正ガ スとして浄化筒に供給し、 浄化剤の抵抗が急激に大きくなるまで酸素の供給を継 続した。 その後、 補正ガスの供給を中止して、 再度前記と同様の浄化試験を行な つた。 その結果を表 1に示す。
以上のような浄化試験をさらに 3回繰返して行なった結果を表 1に示す。 尚、 浄化試験中、 浄化筒の排出口から排出されるガスについても一部をサンプ リングし、 ガス検知管を用いて有害ガス (還元性ガス) の検知を行なったが、 有 害ガスは検出されなかった。
実施例 3
実施例 1の浄化試験における N O 2を含有する酸化性ガスを、 N Oを含有する 酸化性ガスに替えたほかは実施例 1と同様に浄化試験を行なった。 その結果を表 1に示す。
尚、 浄化試験中、 浄化筒の排出口から排出されるガスについても一部をサンプ リングし、 ガス検知管を用いて有害ガス (窒素酸化物または還元性ガス) の検知 を行なったが、 有害ガスは検出されなかった。
尚、 表 1に示すように、 本発明の浄化方法においては、 浄化サイクルを繰返し 行なっても再現性よく浄化剤の浄化能力値 (L Z L剤) が得られる。 従って、 浄 化筒の排出口から排出されるガスの分析等を実施せずに、 排ガスの処理量からの 計算のみにより浄化処理をすることもできる。
処理対象 浄' ί匕能力 ( L Z L剤)
ガス 1回目 2回目 3回目 4回目 5回目 実施例 1 N02 20 (時間: 139分) 19 20 20 20 実施例 2 2. 0 (時間: 23分) 2. 1 2. 0 2. 0 2. 1 実施例 3 NO 20 (時間: 282分) 20 19 20 20 実施例 4
(浄化剤の調製)
水 500m lに、 市販の酸化クロム (VI) 500 gを溶解させた溶液を、 市販 の径 2〜3mm、 比表面積 200 m 2 gの球状アルミナ 800 gに含浸させた。 次にこの球状アルミナを乾燥した後、 500°Cの温度で 2時間焼成し、 さらに還 元処理して 20 w、%< C r Oが球状アルミナに担持された浄化剤を調製した。
(浄化試験)
前記の浄化剤を、 内径 4. 0 mmのバイパス管を有する内径 1 6. 4mmの S
US 3 1 6 L製の浄化筒に、 浄化剤層の下から 1 10の位置にバイパス管の入 口が設定されるように充填した (充填長: 200mm、 浄化剤の C r O及び C r
203の管理範囲: 10ノ90〜90 10)。 尚、 バイパス管に導入されたガス は、浄化筒の後段で浄化筒から排出されるガスと合流するように設定した。また、 バイパス管はセラミック製の透明部を有するものである。 次に、 バイパス管の透 明部に窒素酸化物により変色する検知剤を充填し、 浄化筒の浄化剤の温度を 50 0°Cに加熱した後、 乾燥窒素中に 1 0000 p pmの N02を含有する酸化性ガ スを、 1000m l /m i n (25°C、 常圧) の流量で流通させた。 この間、 ノ ィパス管の検知剤を観察し、 検知剤が変色することにより窒素酸化物が検出され るまでの時間 (有効処理時間) を測定し、 浄化剤 1 L (リットル) 当たりに対す る N02の除去量 (L) (浄化能力) を求めた。 その結果、 8. 2 LZL剤であつ た。
実施例 5
実施例 1と同様にして調製した浄化剤を、 ガスサンプリング管を有する内径 1 6. 4mmの SUS 31 6 L製の浄化筒に、 浄化剤層の下から 1 10の位置に ガスサンプリング管が設定されるように充填した (充填長: 20 Omm、 浄化剤 の C u及び C u Oの管理範囲: 1 0/90〜 90 10)。 次に、 浄化筒の浄化剤 の温度を 500°Cに加熱した後、 乾燥窒素中に 10000 p p mの N02及び 2 000 p pmの CeH] 2を含有する還元性ガスを、 1000m l /m i n (25°C、 常圧) の流量で流通させた。 この間、 浄化筒のガスサンプリング管からガスの一 部をサンプリングし、 ガス検知管 (ガステック社製、 検知下限 1. O p pm) を 用いて、 還元性ガスが検出されるまでの時間を測定した結果、 91分であった。 浄化筒のガスサンプリング管から還元性ガスが検知された直後、 NO 2及び C 6 1·^ 2と共に過剰の酸素を補正ガスとして浄化筒に供給し、浄化筒のガスサンプリ ング管から窒素酸化物が検出されるまで酸素の供給を継続した。
その後、 補正ガスの供給を中止して、 再度前記と同様の浄化試験を行なった。 以上のような浄化試験をさらに 3回繰返して行なったが、 浄化筒の排出口から排 出されるガスからは有害ガス (窒素酸化物または還元性ガス) が検出されなかつ た。
実施例 6
実施例 1と同様にして調製した浄化剤を、 ガスサンプリング管を有する内径 1 6. 4 mmの S U S 3 1 6 L製の浄化筒に、 浄化剤層の下から 1Z10の位置に ガスサンプリング管が設定されるように充填した (充填長: 2 0 0mm、 浄化剤 の C u及び C u〇の管理範囲: 1 0 9 0〜9 0 1 0)。 次に、 浄化筒の浄化剤 の温度を 5 0 0°Cに加熱した後、 乾燥窒素中に 1 0 0 0 0 p p mの NO 2を含有 する酸化性ガス、 及び乾燥窒素中に 2 0 0 0 p p mの CfiH12を含有する還元性 ガスを、 1 0 0 0 m l /m i n (2 5°C、 常圧) の流量で、 交互に 1 0分間隔で 流通させた。 この間、 浄化筒のガスサンプリング管からガスの一部をサンプリン グし、 ガス検知管 (ガステック社製、 検知下限 1. O p p m) を用いて、 還元性 ガスが検出されるまでの時間を測定した結果、 1 7 8分であった。
浄化筒のガスサンプリング管から還元性ガスが検知された直後、 N02及び C6 Hi 2と共に過剰の酸素を補正ガスとして浄化筒に供給し、 浄化筒のガスサンプリ ング管から窒素酸化物が検出されるまで酸素の供給を継続した。
その後、 補正ガスの供給を中止して、 再度前記と同様の浄化試験を行なった。 以上のような浄化試験をさらに 3回繰返して行なったが、 浄化筒の排出口から排 出されるガスからは有害ガス (窒素酸化物または還元性ガス) が検出されなかつ た。
実施例 7
実施例 4と同様にして調製した浄化剤を、 ガスサンプリング管を有する内径 1 6. 4 mmの S U S 3 1 6 L製の浄化筒に、 浄化剤層の下から 1 / 1 0の位置に ガスサンプリング管が設定されるように充填した (充填長: 2 0 Omm, 浄化剤 の C r O及び C r 203の管理範囲: 1 0Z90〜9 0Z l O)。 次に、 浄化筒の 浄化剤の温度を 500°Cに加熱した後、 乾燥窒素中に 1 0000 p 111の^[02 及び 500 p p mの CeHi 2を含有する酸化性ガスを、 1000m l m i n (2 5°C、 常圧) の流量で流通させた。 この間、 浄化筒のガスサンプリング管からガ スの一部をサンプリングし、 ガス検知管 (ガステック社製、 検知下限 0. l p p m) を用いて、 窒素酸化物が検出されるまでの時間を測定した結果、 52分であ つた。
浄化筒のガスサンプリング管から窒素酸化物が検知された直後、 N02及び C6 H 12と共に過剰の C 2 H 5〇 Hを補正ガスとして浄化筒に供給し、浄化筒のガスサ ンプリング管から還元性ガスが検出されるまで C 2 H 5 O Hの供給を継続した。 その後、 補正ガスの供給を中止して、 再度前記と同様の浄化試験を行なった。 以上のような浄化試験をさらに 3回繰返して行なったが、 浄化筒の排出口から排 出されるガスからは有害ガス (窒素酸化物または還元性ガス) が検出されなかつ た。
実施例 8
実施例 4と同様にして調製した浄化剤を、 ガスサンプリング管を有する内径 1 6. 4mmの SUS 3 1 6 L製の浄化筒に、 浄化剤層の下から 1 / 10の位置に ガスサンプリング管が設定されるように充填した (充填長: 200mm、 浄化剤 の C r O及び C r 203の管理範囲 : 1 0/ 90〜9 θΖΐ Ο)。 次に、 浄化筒の 浄化剤の温度を 500°Cに加熱した後、 乾燥窒素中に 10000 p pmの N02 を含有する酸化性ガス、 及び乾燥窒素中に 500 p pmの C6H12を含有する還 元性ガスを、 l O O Om lZm i n (25°C、 常圧) の流量で、 交互に 1 0分間 隔で流通させた。 この間、 浄化筒のガスサンプリング管からガスの一部をサンプ リングし、 ガス検知管 (ガステック社製、 検知下限 0. l p pm) を用いて、 窒 素酸化物が検出されるまでの時間を測定した結果、 100分であった。
浄化筒のガスサンプリング管から窒素酸化物が検知された直後、 N02及び C6 2と共に過剰の C 2 H5 OHを補正ガスとして浄化筒に供給し、浄化筒のガスサ ンプリング管から還元性ガスが検出されるまで C2H5OHの供給を継続した。 その後、 補正ガスの供給を中止して、 再度前記と同様の浄化試験を行なった。 以上のような浄化試験をさらに 3回繰返して行なったが、 浄化筒の排出口から排 出されるガスからは有害ガス (窒素酸化物または還元性ガス) が検出されなかつ た。 産業上の利用の可能性
本発明の排ガスの浄化方法により、 半導体製造装置から排出されるような高濃 度でかつ濃度変動が大きい窒素酸化物及びノまたは有機溶媒を含む排ガスを、 大 型の浄化装置あるいは複雑な構成を有する浄化装置を使用することなく、 比較的 に低い温度及び高い分解率で、 容易に浄化することが可能となった。

Claims

請 求 の 範 囲
1 窒素酸化物及び または有機溶媒を含む排ガスを、 還元性浄化剤成分として 金属及び酸化性浄化剤成分として金属酸化物を含む浄化剤、 または、 還元性浄化 剤成分として低次の金属酸化物及び酸化性浄化剤成分として高次の金属酸化物を 含む浄化剤と加熱下で接触させて、 還元性浄化剤成分による窒素酸化物の還元及 びノ又は酸化性浄化剤成分による有機溶媒の酸化分解を行なうとともに、 該酸化 還元反応による還元性浄化剤成分と酸化性浄化剤成分の構成比の変化を検知し、 前記構成比が予め設定した管理範囲を逸脱した際に補正ガスを供給し、 前記構成 比を管理範囲に修復しながら該排ガスを浄化することを特徴とする排ガスの浄化 方法。
2 窒素酸化物及び有機溶媒を含む排ガス、 窒素酸化物を含む排ガス、 及び有機 溶媒を含む排ガスから選ばれる 2種類以上の排ガスを、 交互またはランダムに、 還元性浄化剤成分として金属及び酸化性浄化剤成分として金属酸化物を含む浄化 剤、 または、 還元性浄化剤成分として低次の金属酸化物及び酸化性浄化剤成分と して高次の金属酸化物を含む浄化剤と加熱下で接触させて、 還元性浄化剤成分に よる窒素酸化物の還元及び酸化性浄化剤成分による有機溶媒の酸化分解を行なう とともに、 該酸化還元反応による還元性浄化剤成分と酸化性浄化剤成分の構成比 の変化を検知し、 前記構成比が予め設定した管理範囲を逸脱した際に補正ガスを 供給し、 前記構成比を管理範囲に修復しながら該排ガスを浄化することを特徴と する排ガスの浄化方法。
3 還元性浄化剤成分と酸化性浄化剤成分の構成比の変化を、 該浄化剤を通過し たガスまたは該浄化剤の下流層からサンプリングしたガスを分析し、 窒素酸化物 または還元性ガスを検出することにより検知する請求項 1または 2に記載の排ガ スの浄化方法。
4 還元性浄化剤成分と酸化性浄化剤成分の構成比の変化を、 該浄化剤の下流層 に充填した検知剤、 該浄化剤の下流側配管に充填した検知剤、 または該浄化剤の 下流層に設けたバイパス管に充填した検知剤の変色により検知する請求項 1また は 2に記載の排ガスの浄化方法。
5 還元性浄化剤成分と酸化性浄化剤成分の構成比の変化を、 該浄化剤の電気抵 抗の変化により検知する請求項 1または 2に記載の排ガスの浄化方法。
6 還元性浄化剤成分と酸化性浄化剤成分の構成比の変化を、 排ガスの処理量か らの計算により検知する請求項 1または 2に記載の排ガスの浄化方法。
7 有機溶媒が、 常圧で 40°C〜140°Cの沸点温度を有するエーテル類、 アル コール類、 ケトン類、 エステル類、 及び炭化水素類から選ばれる一種以上である 請求項 1または 2に記載の排ガスの浄化方法。
8 金属を金属酸化物に変換する補正ガスが、 酸素または空気である請求項 1ま たは 2に記載の排ガスの浄化方法。
9 低次の金属酸化物を高次の金属酸化物に変換する補正ガスが、 酸素または空 気である請求項 1または 2に記載の排ガスの浄化方法。
1 0 金属酸化物を金属に変換する補正ガスが、 水素、 エーテル類、 アルコール 類、 ケトン類、 エステル類、 または炭化水素類である請求項 1または 2に記載の 排ガスの浄化方法。
1 1 高次の金属酸化物を低次の金属酸化物に変換する補正ガスが、 水素、 ェ一 テル類、 アルコール類、 ケトン類、 エステル類、 または炭化水素類である請求項 1または 2に記載の排ガスの浄化方法。
1 2 金属及び金属酸化物の構成比の管理範囲が、 これらのモル比で 5 95〜 95/5の範囲内に設定される請求項 1または 2に記載の排ガスの浄化方法。 1 3 低次の金属酸化物及び高次の金属酸化物の構成比の管理範囲が、 これらの モル比で 5ノ 95〜95 5の範囲内に設定される請求項 1または 2に記載の排 ガスの浄化方法。
14 金属及び金属酸化物が無機質担体に担持された請求項 1または 2に記載の 排ガスの浄化方法。
1 5 低次の金属酸化物及ぴ高次の金属酸化物が無機質担体に担持された請求項 1または 2に記載の排ガスの浄化方法。
1 6 金属及び金属酸化物の組合せが、 じ 11及び011〇、 N i及ぴN i O、 Ru 及び Ru02、 または、 A g及び A g 20である請求項 1または 2に記載の排ガス の浄化方法。
1 7 低次の金属酸化物及び高次の金属酸化物の組合せが、 MnO及び Mn 203、 F e O及び F e 23、 C o O及び C o 203、 C r O及び C r 203, Mo 02及び Mo 03、 または、 C e 203及び C e 02である請求項 1または 2に記載の排ガス の浄化方法。
1 8 浄化処理温度が 100〜800。Cである請求項 1または 2に記載の排ガス の浄化方法。
PCT/JP2003/006127 2002-06-07 2003-05-16 排ガスの浄化方法 WO2003103806A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/516,826 US7300640B2 (en) 2002-06-07 2003-05-16 Method for clarifying exhaust gas
KR1020047019865A KR100987568B1 (ko) 2002-06-07 2003-05-16 배기가스의 정화 방법
EP03757190A EP1518598A4 (en) 2002-06-07 2003-05-16 PROCESS FOR EXHAUST GAS PURIFICATION

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002166672A JP4226275B2 (ja) 2002-06-07 2002-06-07 排ガスの浄化方法
JP2002-166672 2002-06-07

Publications (1)

Publication Number Publication Date
WO2003103806A1 true WO2003103806A1 (ja) 2003-12-18

Family

ID=29727636

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/006127 WO2003103806A1 (ja) 2002-06-07 2003-05-16 排ガスの浄化方法

Country Status (7)

Country Link
US (1) US7300640B2 (ja)
EP (1) EP1518598A4 (ja)
JP (1) JP4226275B2 (ja)
KR (1) KR100987568B1 (ja)
CN (1) CN100339151C (ja)
TW (1) TWI290482B (ja)
WO (1) WO2003103806A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007032638A1 (en) * 2005-09-15 2007-03-22 Epiplus Co., Ltd Arrangement of electrodes for light emitting device
JP4789242B2 (ja) * 2005-12-09 2011-10-12 Udトラックス株式会社 排気浄化装置
US8646311B1 (en) 2007-11-09 2014-02-11 Atmospheric Sensors Ltd. Sensors for hydrogen, ammonia
EA022727B1 (ru) * 2010-05-19 2016-02-29 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Способ удаления гемиоксида азота из газового потока
JP5642459B2 (ja) * 2010-09-01 2014-12-17 学校法人東京理科大学 光触媒電極および水素生成装置、並びに水素生成方法
CN102407113A (zh) * 2011-12-30 2012-04-11 湘潭大学 一种微波催化剂及其应用方法
CN102407114A (zh) * 2011-12-30 2012-04-11 湘潭大学 一种铜分子筛微波催化剂及其微波催化脱硝方法
CN107433129B (zh) * 2017-09-08 2020-04-28 西安建筑科技大学 一种烧结烟气脱硝方法
CN108479294B (zh) * 2018-04-04 2019-07-05 黄俊龙 一种废气净化方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5210663A (en) * 1975-07-15 1977-01-27 Matsushita Electric Ind Co Ltd Single ended push pull amplifying circuit
JPS61274748A (ja) * 1985-05-29 1986-12-04 Tech Res Assoc Conduct Inorg Compo 劣化検知機能付燃焼触媒体
JPH04285563A (ja) * 1991-03-15 1992-10-09 Toto Ltd 脱臭装置
JPH07185344A (ja) * 1993-12-28 1995-07-25 Nissan Motor Co Ltd 内燃機関の排気浄化装置
JPH08257351A (ja) * 1995-03-27 1996-10-08 Hitachi Ltd 低濃度NOx含有ガスの処理システム及びその処理方法
JPH09213596A (ja) * 1996-01-31 1997-08-15 Hitachi Ltd 半導体製造方法ならびにこれに用いる排ガス処理方法および装置
JP2001104751A (ja) * 1999-10-04 2001-04-17 Mitsubishi Electric Corp 排ガス除害装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3867508A (en) * 1971-10-29 1975-02-18 Union Oil Co Exhaust gas conversion process and apparatus
US3907714A (en) * 1973-11-16 1975-09-23 Int Harvester Co Catalyst for reducing nitrogen oxides
US3916805A (en) * 1973-12-28 1975-11-04 Exxon Research Engineering Co Incineration of nitrogenous materials
JPS52106363A (en) 1976-03-04 1977-09-06 Toyo Kogyo Co Method of preventing deterioration of catalyst for engine exhaust gases
DE3529060A1 (de) * 1985-08-13 1987-02-26 Sued Chemie Ag Katalysator zur verringerung des stickoxidgehalts von verbrennungsgasen
DE3714262A1 (de) * 1987-04-29 1988-11-10 Huels Chemische Werke Ag Plattenfoermiger katalysator zur entfernung von stickstoffoxiden aus abgasen
DE69403592T2 (de) * 1993-09-16 1998-02-05 Rohm & Haas Verfahren zur Zersetzung von Stickstoffoxiden
JP2001355485A (ja) * 2000-06-16 2001-12-26 Isuzu Motors Ltd 窒素酸化物吸蔵還元型触媒を備えた排気ガス浄化装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5210663A (en) * 1975-07-15 1977-01-27 Matsushita Electric Ind Co Ltd Single ended push pull amplifying circuit
JPS61274748A (ja) * 1985-05-29 1986-12-04 Tech Res Assoc Conduct Inorg Compo 劣化検知機能付燃焼触媒体
JPH04285563A (ja) * 1991-03-15 1992-10-09 Toto Ltd 脱臭装置
JPH07185344A (ja) * 1993-12-28 1995-07-25 Nissan Motor Co Ltd 内燃機関の排気浄化装置
JPH08257351A (ja) * 1995-03-27 1996-10-08 Hitachi Ltd 低濃度NOx含有ガスの処理システム及びその処理方法
JPH09213596A (ja) * 1996-01-31 1997-08-15 Hitachi Ltd 半導体製造方法ならびにこれに用いる排ガス処理方法および装置
JP2001104751A (ja) * 1999-10-04 2001-04-17 Mitsubishi Electric Corp 排ガス除害装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1518598A4 *

Also Published As

Publication number Publication date
JP4226275B2 (ja) 2009-02-18
JP2004008943A (ja) 2004-01-15
CN1658950A (zh) 2005-08-24
EP1518598A1 (en) 2005-03-30
EP1518598A4 (en) 2006-10-04
TWI290482B (en) 2007-12-01
CN100339151C (zh) 2007-09-26
KR20050016522A (ko) 2005-02-21
US20050201915A1 (en) 2005-09-15
KR100987568B1 (ko) 2010-10-12
US7300640B2 (en) 2007-11-27
TW200400081A (en) 2004-01-01

Similar Documents

Publication Publication Date Title
US20050265912A1 (en) Method for purifying carbon dioxide
WO2003103806A1 (ja) 排ガスの浄化方法
KR101522277B1 (ko) 반도체 배기가스 내 아산화질소의 촉매 제거 방법
Nguyen et al. Practical-scale honeycomb catalytic reactor coupled with non-thermal plasma for high-throughput removal of isopropanol
JP2006326375A (ja) 排ガス浄化用触媒、排ガス浄化装置及び排ガス浄化方法
WO2004089515A1 (en) Method and apparatus for treating exhaust gas
WO2011093305A1 (ja) 放射性気体廃棄物の処理方法、処理設備、及び不純物除去材
KR100808618B1 (ko) 플루오르-함유 화합물 및 co를 함유하는 가스의처리방법 및 처리장치
WO1998046334A1 (fr) Procede servant a supprimer des oxydes d&#39;azote dans des gaz d&#39;echappement
WO2002068117A1 (en) Decomposition catalyst for nitrous oxide, process for producing the same and process for decomposing nitrous oxide
Nguyen et al. Critical role of reactive species in the degradation of VOC in a plasma honeycomb catalyst reactor
JP2005313161A (ja) 脱硝触媒の製造方法
JP2001219033A (ja) 有害ガスの浄化方法及び浄化装置
JP5119804B2 (ja) Pfcおよびcoを含有する化合物ガスの処理装置および処理方法
EP2399662A1 (en) Pyrolysis methods, catalysts, and apparatuses for treating and/or detecting contaminated gases
KR102392961B1 (ko) 배기가스 처리 장치 및 배기가스 처리 방법
KR102382524B1 (ko) 배기가스 처리 장치 및 배기가스 처리 방법
KR102487302B1 (ko) 오존 활성화를 이용한 유해물 제거장치, 그 제조 방법, 및 이를 포함하는 유해물 제거 시스템
US20230271173A1 (en) Catalyst module for removing harmful gas and manufacturing method therefor, catalyst system comprising same for removing harmful gas, harmful substance removing apparatus comprising catalyst module for removing residual ozone and manufacturing method therefor, and harmful substance removing system comprising same
KR102382523B1 (ko) 배기가스 처리 장치 및 배기가스 처리 방법
KR100811011B1 (ko) 소결로 폐가스 중의 일산화탄소 처리장치
KR101407115B1 (ko) 반도체 제조공정의 유해가스 처리 방법
JP2004236744A (ja) 余剰麻酔ガスの処理方法
JP6658770B2 (ja) 水銀酸化触媒及び水銀酸化反応装置、並びに排ガス処理システム
Veerapandian et al. Cycled Storage-Discharge Plasma Catalytic Degradation of Toluene Using Metal Oxide Loaded MS-13X and Glass Beads Packed Bed Dielectric Barrier Discharge Reactor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003757190

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020047019865

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10516826

Country of ref document: US

Ref document number: 20038131617

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020047019865

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003757190

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2003757190

Country of ref document: EP