WO2003094832A2 - HOCHAKTIVES β-NUKLEIERUNGSADDITIV FÜR POLYPROPYLEN - Google Patents

HOCHAKTIVES β-NUKLEIERUNGSADDITIV FÜR POLYPROPYLEN Download PDF

Info

Publication number
WO2003094832A2
WO2003094832A2 PCT/EP2003/004931 EP0304931W WO03094832A2 WO 2003094832 A2 WO2003094832 A2 WO 2003094832A2 EP 0304931 W EP0304931 W EP 0304931W WO 03094832 A2 WO03094832 A2 WO 03094832A2
Authority
WO
WIPO (PCT)
Prior art keywords
polypropylene
iron oxide
melt
crystalline
temperature
Prior art date
Application number
PCT/EP2003/004931
Other languages
English (en)
French (fr)
Other versions
WO2003094832A3 (de
Inventor
Detlef Busch
Petra HÄDE
Bertram Schmitz
Original Assignee
Treofan Germany Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Treofan Germany Gmbh & Co. Kg filed Critical Treofan Germany Gmbh & Co. Kg
Priority to EP03732345A priority Critical patent/EP1511797A2/de
Priority to AU2003240222A priority patent/AU2003240222A1/en
Priority to US10/511,913 priority patent/US6992128B2/en
Priority to JP2004502921A priority patent/JP4332110B2/ja
Publication of WO2003094832A2 publication Critical patent/WO2003094832A2/de
Publication of WO2003094832A3 publication Critical patent/WO2003094832A3/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • B29B7/90Fillers or reinforcements, e.g. fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/201Pre-melted polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2265Oxides; Hydroxides of metals of iron
    • C08K2003/2268Ferrous oxide (FeO)
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2265Oxides; Hydroxides of metals of iron
    • C08K2003/2272Ferric oxide (Fe2O3)
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2265Oxides; Hydroxides of metals of iron
    • C08K2003/2275Ferroso-ferric oxide (Fe3O4)
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Definitions

  • the invention relates to a method for increasing the proportion of the ⁇ -crystal modification in polypropylene.
  • the ⁇ , ⁇ , and ⁇ phases are known from polypropylene.
  • the ⁇ -crystalline PP When polypropylene melts cool down, the ⁇ -crystalline PP usually forms predominantly. A certain amount of ⁇ -crystalline phase can be generated by a certain temperature control when cooling a polypropylene melt. The proportion of ⁇ -crystalline PP produced in this way is less than 10%.
  • the hexagonal ⁇ -modification of the PP is distinguished from the monoclinic ⁇ -modification by better mechanical properties, in particular increased impact resistance and stress crack resistance.
  • the ⁇ -modification of polypropylene at 148-150 ° C has a significantly lower melting point compared to the ⁇ -modification with a melting point of 160 ° C.
  • ß-crystalline PP therefore has a favorable effect on certain usage properties of polypropylene in some applications.
  • some additives have been developed in the past which lead to even higher proportions of polypropylene in the ⁇ modification and are therefore generally referred to as ⁇ nucleators or ⁇ nucleating agents.
  • the ⁇ -quinacridone dye is described in German patent 1188278 as a ⁇ -nucleator with high activity.
  • the dye dihydroquinacridine is patented in German patent 344359 due to its ⁇ -nucleating effect.
  • the disadvantage of this nucleating agent is the intense red color and the lack of thermal stability, which often leads to decomposition of the nucleating agent and thus to a loss of its activity when compounding.
  • US Patent 3540979 the calcium salt of phthalic acid is considered to be thermally stable Nucleating agents described.
  • the disadvantage of this nucleating agent is the low activity.
  • the percentage of ß-crystalline PP thus obtained is at most 70% (K-0.5-0.7).
  • DE 3610644 describes a two-component nucleation system consisting of calcium carbonate and organic dicarboxylic acids. In practice, however, this nucleation system shows a fluctuating activity. Therefore, there is a lack of reproducibility.
  • the direct use of the calcium salts of the dicarboxylic acids described in DE 3610644 is described in patent DE 4420989.
  • EP-0557721 describes the ⁇ -nucleating effect of various dicarboxamides, in particular N, N-dicyclohexyl-2,6-naphthalene dicarboxamides. Disadvantages of this nucleator are the high cost of the starting material and complicated synthetic steps in the production.
  • the object of the present invention was to provide a process for producing ⁇ -crystalline polypropylene. This process is said to be able to reproducibly and reliably achieve high proportions of ⁇ . The process should be simple and efficient to carry out. Modification with a ß-nucleating agent must not impair the usual important properties of use of polypropylene.
  • This object is achieved by processes for producing a polypropylene mixture with an increased proportion of ⁇ -crystalline polypropylene, in which a polypropylene mixture of nanoscale iron oxide and polypropylene is melted at a temperature of at least 150 ° C. and then cooled in such a way that the cooled polypropylene melt has an increased proportion of ß-crystalline polypropylene.
  • the present invention is based on the discovery that nanoscale iron oxides cool down a PP melt containing these iron oxides to form a lead to a high proportion of ß-crystalline polypropylene.
  • the cooled melt with a high proportion of ß forms a transparent PP matrix, since the particle size of the nanoscale iron oxides is significantly smaller than the wavelength of visible light.
  • Nanoscale iron oxides generally have an average particle size of 1 to 50 nm.
  • iron (II) and iron (III) oxides are particularly suitable as ⁇ -nucleating iron oxides.
  • those iron oxides with a cubically densest spherical packing are particularly suitable, in which the O 2 " ions form a cubic lattice in which the Fe 3+ ions are randomly distributed over the octahedral and tetrahedral gaps (Fe 2 0 3 ) or in the case of mixed oxides (Fe 3 0 4 ) which occupy Fe 2+ the octahedral gaps and Fe 3+ the tetrahedral gaps
  • nanoscale magnetite and nanoscale maghemite have proven to be particularly effective ß-nucleating agents in polypropylene.
  • the iron oxide powders can be added by adding surface-active substances, e.g. can be hydrophobized with higher-quality carboxylic acids, silanes, amines or sulfonates.
  • surface-active substances e.g. can be hydrophobized with higher-quality carboxylic acids, silanes, amines or sulfonates.
  • Such methods are known per se in the prior art, for example in Macromol. Mater. Closely. 275, 8-17 (2000) and in GAK 5/1988 volume 41, page 211 ff or Macromol. Rapid Commun, 2001, 22, 176-180.
  • Particularly preferred coatings of the nanoscale iron oxides consist of long-chain fatty acids, such as oleic acid or stearic acid.
  • nanocrystalline iron oxides can be carried out using conventional methods known per se, such as, for example, the sol-gel process, flame pyrolysis, EDOC or precipitation reactions. According to these processes, nanoscale iron oxides with a particle size in the range from 1 to 50 nm, preferably 5 to 30nm, in particular 10 to 20nm can be produced. Precipitation from brines containing Fe 2+ and / or Fe 3+ ions by addition of alkali is particularly suitable (Nouveau Journal De Chimie, Vol. 7, N ° 5-1983, p. 325).
  • the nanocrystalline iron oxides can optionally be subjected to a hydrothermal after-treatment step in order to increase the crystallinity by keeping the freshly precipitated nanoscale iron oxides for a certain time at elevated pressure and elevated temperature.
  • nanoscale iron oxides described above are incorporated into the polypropylene matrix using customary methods.
  • mechanical premixes are produced from propylene granules and the nanoscale iron powder and then compounded in a twin-screw extruder.
  • Such methods for compounding nanoscale additives are, for example, in Macromol. Rapid Commun, 2001, 22, 176-180. These methods are also suitable for the production of compounds for the present invention.
  • the mixture of polypropylene and nanoscale iron oxide generally contains at least 85% by weight, preferably 90 to ⁇ 100% by weight, in particular 98 to ⁇ 100% by weight, of a polypropylene.
  • the propylene polymer contains at least 90% by weight, preferably 94 to 100% by weight, in particular 98 to 100% by weight, of propylene.
  • the corresponding comonomer content of at most 10% by weight or 0 to 6% by weight or 0 to 2% by weight, if present, generally consists of ethylene and / or butylene. The percentages by weight relate to the propylene polymer.
  • Suitable copolymers which contain ethylene and / or butylene as comonomer are statistical copolymers or block copolymers.
  • Isotactic propylene homopolymers having a melting point of 140 to 170 ° C., preferably 155 to 165 ° C., and a melt flow index (measurement DIN 53735 at 21.6 N load and 230 ° C.) of 1.0 to 50 g / 10 min are preferred , preferably from 1.5 to 20 g / 10 min.
  • the n-heptane-soluble fraction of the polymer is generally 1 to 10% by weight, preferably 2-5% by weight, based on the starting polymer.
  • the molecular weight distribution of the propylene polymer can vary.
  • the ratio of the weight average M w to the number average M n is generally from 1 to 15, preferably from 2 to 10, very particularly preferably from 2 to 6.
  • Such a narrow molecular weight distribution of the propylene homopolymer is achieved, for example, by its peroxidic degradation or by the preparation of the polypropylene using suitable metallocene catalysts.
  • the polypropylene used in the base layer is highly isotactic.
  • the chain isotaxy index of the n-heptane-insoluble portion of the polypropylene determined by means of 13 C-NMR spectroscopy, is at least 95%, preferably 96 to 99%.
  • a mixture of polypropylene and nanoscale iron oxide is first melted at suitable temperatures. This temperature is generally in the range of 150 to 165 ° C.
  • the melting is preferably carried out in a suitable extruder, for example in a twin-screw extruder, which at the same time ensures good mixing of the nanoscale iron oxide in the polypropylene.
  • the melted mixture is extruded and cooled at suitable temperatures.
  • the mixture is produced in other process variants or the compound as described above in a preceding step. These compounds are then used together with pure polypropylene in the process according to the invention.
  • the compounds can be melted in any extrusion tool or in a kneader and mixed with polypropylene. It is essential to the invention that after the extrusion the iron oxide-containing melt is cooled in such a way that the ⁇ -nucleating effect of the nanoscale iron oxides comes into play. For this purpose, it is preferred to cool the melt slowly at a temperature in a range from 60 to 130 ° C., preferably at 80 to 125 ° C. The closer this temperature is to the crystallization temperature of the ß-crystalline polypropylene (approx. 139 ° C), the more favorable the conditions for the formation of the ß-crystalline modification.
  • ⁇ -polypropylene can be generated by the selection of the temperature during cooling.
  • the dwell time of the cooling melt at the respective temperature has an influence on the ß fraction achieved.
  • the melt should be slowly cooled at higher temperatures (120-130 ° C), the necessary dwell time at the given temperature depending on the shape during extrusion.
  • ß-nucleating iron oxides have a positive effect in these cases, since the cooling rate can be increased, i.e. faster take-off speeds can be used.
  • DSC method DSC measurements (method described below) of isotactic polypropylene with 1% by weight of nanoscale iron oxide accounted for ß-crystalline polypropylene of 92%.
  • the method according to the invention can advantageously be used in the production of films, moldings, in particular tubes and hoses, fibers and other extrusions.
  • the increased ⁇ -content in polypropylene has a favorable effect in a wide variety of extrusion applications, for example because the extrusion temperatures can be reduced.
  • an increased proportion of ß-crystalline polypropylene is advantageous since this improves the properties of the polypropylene, e.g. one achieves a higher notched impact strength and stress crack resistance of the polypropylene.
  • the high proportion of ⁇ in polypropylene is used for the production of porous films by converting the ⁇ -modification into the alpha modification when stretching films or for producing rough surfaces of a stretched film.
  • nanoscale iron oxide and polypropylene are mixed and melted in an extruder at a temperature of at least 150 ° C.
  • the melt is extruded through a flat die and cooled and solidified into a pre-film in such a way that the desired proportion of ⁇ -crystalline polypropylene is formed in the pre-film.
  • a proportion of at least 40%, preferably 60 to 80%, of ⁇ -polypropylene (measured according to DSC) in the prefilm is generally sought, whereas smaller proportions of, for example, 10 to 40% are sufficient to produce surface roughness could be.
  • the pre-film is then heated in a manner known per se and stretched in the longitudinal direction, preferably at a temperature less than 140 ° C., preferably 90 to 125 ° C. and with a stretch factor of 3: 1 to 5: 1.
  • the longitudinally stretched film is heated again and stretched in the transverse direction, preferably at a temperature greater than 140 ° C. from 145 to 160 ° C. and with a Stretch ratio from 3: 1 to 6: 1.
  • the selected temperature during stretching converts the ß-crystalline polypropylene of the pre-film into the alpha modification of the polypropylene and, depending on the process conditions, creates a continuous porous network structure in the film or at least a surface roughness due to crater-like depressions that arise during the conversion processes.
  • Two methods can be used to determine the ⁇ -crystalline content in polypropylene which can be achieved by means of the method according to the invention.
  • the ß component can be determined by means of DSC and on the other hand by means of wide-angle X-ray scattering.
  • Heating rate from 20 ° C / min to 220 ° C and melted (1st heating).
  • Heating is determined from the ratio of the enthalpies of fusion of the ß-crystalline phase (H ß ) to the sum of the enthalpies of fusion of ß- and ⁇ -crystalline phases (H ß + H ⁇ ) the degree of crystallinity K ß , D sc.
  • Kß, X- ay [kßi] / [k ß1 ] / [k ß ⁇ + (k ⁇ ⁇ + k ⁇ 2 + k chair3)]
  • K ß , ⁇ - Ra y is the ß component, ß ⁇ the height of the peak of the ß phase and k administrat ⁇ , k ⁇ , k ⁇ the height of the three peaks of the ⁇ phase.
  • X-ray wide-angle scattering always has a higher ⁇ component than found using the DSC method.
  • a nanocrystalline iron oxide (Fe304) was compounded into an isotactic polypropylene in a ZSK 30 twin-screw extruder at a temperature of 200 ° C.
  • the polypropylene was an isotactic homopolymer with a melting point of 162 ° C and an MFI of ... (Exxon Escorene PP 4352 F1).
  • the nanocrystalline iron oxide had an average particle size of 13 nm. It was magnetite, which had a characteristic black color. An amount of 3% by weight of the iron oxide was incorporated into the polypropylene.
  • Example 2 A nanocomposite was produced as described in Example 1. In contrast to Example 1, the nanoscale iron oxide was surface-modified before compounding with stearic acid and the concentration of magnetite was reduced from 3 to 1% by weight.
  • a nanocomposite was produced as described in Example 2.
  • the nanoscale iron oxide was subjected to a hydrothermal after-treatment before the surface modification with stearic acid and the concentration was increased from 1 to 2% by weight.
  • the respective ⁇ -proportion of the nanocomposites according to Examples 1 to 3 was determined as described using DSC from the 2nd heating curve.

Abstract

Die Erfindung betrifft ein Verfahren zur Erhöhung des Anteils der ß-Kristallmodifikation in Polypropylen durch Einkompoundieren nanokristalliner Substanzen. Mit diesem Verfahren wird ein ß-Anteil von 50-100 % erzielt. Die Kompounds zeichnen sich durch verbesserte mechanische Eigenschaften. Die Nanokristallinen Pulver können sowohl direkt einkompoundiert, als auch zur besseren Dispergierung in der PP-Matrix mit oberflächenaktiven Substanzen kompatibilisiert werden.

Description

Hochaktives ß-Nukleierunqsadditiv für Polypropylen
Die Erfindung betrifft ein Verfahren zur Erhöhung des Anteils der ß- Kristallmodifikation in Polypropylen.
Von Polypropylen sind neben der amorphen Phase drei verschiedene kristalline, die α-, ß-, und γ-Phasen bekannt. Beim Abkühlen von Polypropylenschmelzen bildet sich üblicherweise überwiegend das α-kristalline PP. Durch eine bestimmte Temperaturführung beim Abkühlen einer Polypropylenschmelze kann ein erhöhter Anteil an ß-kristalliner Phase, erzeugt werden. Der auf diese Weise erzeugte Anteil an ß-kristallinenem PP beträgt weniger als 10 %. Die hexagonale ß-Modifikation des PP's zeichnet sich gegenüber der monoklinen α-Modifikation durch bessere mechanische Eigenschaften, insbesondere erhöhter Schlagzähigkeit und Spannugsriß-beständigkeit aus. Daneben weist die ß-Modifikation des Polypropylens mit 148-150°C einen deutlich niedrigeren Schmelzpunkt gegenüber der α-Modifikation mit einem Schmelzpunkt von 160°C auf. Ein erhöhter Anteil an ß- kristallinem PP wirkt sich daher in einigen Anwendungen günstig auf bestimmte Gebrauchseigenschaften des Polypropylens aus. Aus diesem Grund wurden in der Vergangenheit einige Additive entwickelt, die zu noch höheren Anteilen an Polypropylen in der ß-Modifikation führen und daher im allgemeinen als ß- Nukleatoren oder ß-Nukleierungsmittel bezeichnet werden.
Als ß-Nukleator mit hoher Aktivität ist der Farbstoff γ-Quinacridone in dem Deutschen Patent 1188278 beschrieben. Der Farbstoff Dihydroquinacridine ist auf Grund seiner ß-nukleierenden Wirkung im Deutschen Patent 344359 patentiert. Der Nachteil dieses Nukleierungsmittel ist jedoch die intensive Rotfärbung und die mangelnde thermische Stabilität, die oftmals beim Kompoundieren zur Zersetzung des Nukleierungsmittels und damit zum Verlust seiner Aktivität führt. Im US-Patent 3540979 ist das Calciurηsalz der Phtalsäure als thermisch stabiles Nukleierungsmittel beschrieben. Der Nachteil dieses Nukleierungsmittel ist die geringe Aktivität. Der damit erzielte Anteil an ß-kristallinen PP beträgt höchsten 70% (K-0,5-0,7).
Ein zweikomponenten Nukleierungssystem aus Calciumcarbonat und organischen Dicarbonsäuren beschreibt DE 3610644. Dieses Nukleierungssystem zeigt in der Praxis jedoch eine schwankende Aktivität. Daher mangelt es an Reproduzierbarkeit. Den direkten Einsatz der Calciumsalze der in DE 3610644 beschriebenen Dicarbonsäuren ist im Patent DE 4420989 beschrieben. Die ß-nukleierende Wirkung verschiedener Dicarboxamide insbesondere N,N-Dicyclohexyl-2,6- Naphtalen dicarboxamide beschreibt EP-0557721. Nachteil dieses Nukleators sind, die hohen Eduktkosten, sowie komplizierte Syntheseschritte bei der Herstellung.
Die Aufgabe der vorliegenden Erfindung bestand darin, ein Verfahren zur Erzeugung von ß-kristallinem Polypropylen zur Verfügung zu stellen. Mittels dieses Verfahrens sollen hohe ß-Anteile reproduzierbar und zuverlässig erreicht werden können. Das Verfahren soll einfach und effizient durchführbar sein. Die Modifizierung mit einem ß-Nukleierungsmittel darf die üblichen wichtigen Gebrauchseigenschaften des Polypropylens nicht beeinträchtigen.
Diese Aufgabe wird gelöst durch Verfahren zur Herstellung einer Polypropylenmischung mit erhöhtem Anteil an ß-kristallinen Polypropylen, bei welchem man eine Polypropylenmischung aus nanoskaligem Eisenoxid und Polypropylen bei einer Temperatur von mindestens 150°C aufschmilzt und anschließend derart abkühlt, daß die abgekühlte Polypropylenschmelze einen erhöhten Anteil von ß-kristallinem Polypropylen aufweist.
Die vorliegende Erfindung beruht auf der Entdeckung, das nanoskalige Eisenoxide beim Abkühlen einer PP-Schmelze, die diese Eisenoxide enthält, zur Bildung eines hohen Anteils von ß-kristallinem Polypropylen führen. Die abgekühlte Schmelze mit einem hohen ß-Anteil bildet eine transparente PP-Matrix, da die Partikelgröße der nanoskaligen Eisenoxide deutlich kleiner als die Wellenlänge des sichtbaren Lichtes ist. Nanoskalige Eisenoxide haben im allgemeinen eine mittlere Teilchengröße von 1 bis 50nm.
Es wurde gefunden, daß als ß-nukleierende Eisenoxide Eisen (II) und Eisen (III) Oxide, sowie gemischte Eisen (II) und (III) Oxide besonders geeignet sind, beispielsweise Fe203 oder Fe30 . Hierunter sind diejenigen Eisenoxide mit einer kubisch dichtesten Kugelpackung besonders geeignet, bei welchen die O2" - Ionen ein kubisches Gitter bilden in dem die Fe3+-lonen willkürlich auf die oktaedrischen und teraedrischen Lücken verteilt sind (Fe203) oder im Falle von Mischoxiden (Fe304) die Fe2+ die oktaedrischen Lücken und Fe3+ die tetraedrischen Lücken besetzen. Insbesondere haben sich nanoskaliger Magnetit und nanoskaliger Maghemit als besonders wirksame ß-Nukleierungsmittel in Polypropylen erwiesen.
Zur besseren Dispergierbarkeit der nanoskaligen Eisenoxide in der PP-Matrix können die Eisenoxid-Pulver durch den Zusatz oberflächenaktiver Substanzen, wie z.B. mit höherwertigen Carbonsäuren, Silanen, Aminen oder Sulfonaten hydrophobisiert werden. Derartige Verfahren sind an sich im Stand der Technik bekannt, beispielsweise in Macromol. Mater. Eng. 275, 8-17 (2000) sowie in GAK 5/1988 Jahrgang 41 , Seite 211 ff oder Macromol. Rapid Commun, 2001 , 22, 176- 180 beschrieben. Besonders bevorzugte Beschichtungen der nanoskaligen Eisenoxide bestehen aus langkettigen Fettsäuren, wie Ölsäure oder Stearinsäure.
Die Synthese der nanokristallinen Eisenoxide kann über an sich bekannte herkömmliche Verfahren wie z.B., Sol-Gel-Prozess, Flammpyrolyse, EDOC oder Fällungsreaktionen erfolgen. Nach diesen Verfahren können nanoskalige Eisenoxide mit einer Partikelgröße im Bereich von 1 bis 50 nm, vorzugsweise 5 bis 30nm, insbesondere 10 bis 20nm hergestellt werden. Besonders geeignet ist die Fällung aus Fe2+und/oder Fe3+-ionenhaltigen Solen durch Laugenzugabe (Nouveau Journal De Chimie, Vol. 7, N° 5-1983, p. 325). Die nanokristallinen Eisenoxide können gegebenenfalls einem hydrothermalen Nachbehandlungsschritt zur Erhöhung der Kristallinität unterzogen werden, indem die frisch gefällten nanoskaligen Eisenoxide für eine gewisse Zeit bei erhöhtem Druck und erhöhter Temperatur gehalten werden.
Die vorstehend beschriebenen nanoskaligen Eisenoxide werden mit üblichen Verfahren in die Polypropylenmatrix eingearbeitet. Hierzu werden beispielsweise mechanische Vormischungen aus Propylengranulat und dem nanoskaligen Eisenpulver hergestellt und anschließend in einem Zweischneckenextruder compoundiert. Zur Vermeidung von Agglomeration der nanoskaligen Teilchen ist es vorteilhaft eine der vorstehend beschriebenen Beschichtungen zur Hydrophobisierung der Eisenoxide vor dem eincompoundieren aufzubringen. Derartige Verfahren zum compoundieren von nanoskaligen Zusatzstoffen sind beispielsweise in Macromol. Rapid Commun, 2001, 22, 176-180 beschrieben. Diese Verfahren sind auch zur Herstellung von Compounds für die vorliegende Erfindung geeignet.
Die Mischung aus Polypropylen und nanoskaligem Eisenoxid enthält im allgemeinen mindestens 85 Gew.-%, vorzugsweise 90 bis <100 Gew.-%, insbesondere 98 bis <100 Gew.-%, eines Polypropylens. Im allgemeinen enthält das Propylenpolymer mindestens 90 Gew.-%, vorzugsweise 94 bis 100 Gew.-%, insbesondere 98 bis 100 Gew.-%, Propylen. Der entsprechende Comonomergehalt von höchstens 10 Gew.-% bzw. 0 bis 6 Gew.-% bzw. 0 bis 2 Gew.-% besteht, wenn vorhanden, im allgemeinen aus Ethylen und/oder Butylen. Die Angaben in Gew.-% beziehen sich jeweils auf das Propylenpolymere. Geeignete Mischpolymerisate, welche Ethylen und/oder Butylen als Comonomer enthalten sind statistische Mischpolymerisate oder Blockcopolymere. Bevorzugt sind isotaktische Propylenhomopolymere mit einem Schmelzpunkt von 140 bis 170°C, vorzugsweise von 155 bis 165°C, und einen Schmelzflußindex (Messung DIN 53735 bei 21,6 N Belastung und 230°C) von 1,0 bis 50 g/10 min, vorzugsweise von 1,5 bis 20 g/10 min. Der n-heptanlösliche Anteil des Polymeren beträgt im allgemeinen 1 bis 10 Gew.-%, vorzugsweise 2-5 Gew.-% bezogen auf das Ausgangspolymere. Die Molekulargewichtsverteilung des Propylenpolymeren kann variieren.
Das Verhältnis des Gewichtsmittels Mw zum Zahlenmittel Mn liegt im allgemeinen zwischen 1 und 15, vorzugsweise bei 2 bis 10, ganz besonders bevorzugt bei 2 bis 6. Eine derartig enge Molekulargewichtsverteilung des Propylenhomopolymeren erreicht man beispielsweise durch dessen peroxidischen Abbau oder durch Herstellung des Polypropylens mittels geeigneter Metallocenkatalysatoren.
In einer weiteren Ausführungsform der Erfindung ist das eingesetzte Polypropylen der Basisschicht hochisotaktisch. Für derartige hochisotaktische Polypropylene beträgt der mittels 13C-NMR-Spektroskopie bestimmte Kettenisotaxie-Index des n-heptanunlösli- chen Anteils des Polypropylens mindestens 95 %, vorzugsweise 96 bis 99 %.
Nach dem erfindungsgemäßen Verfahren zur Herstellung von Polypropylen mit einem erhöhten Anteil an ß-kristallinem Polypropylen wird zunächst eine Mischung aus Polypropylen und nanoskaligem Eisenoxid bei geeigneten Temperaturen aufgeschmolzen. Diese Temperatur liegt im allgemeinen in einem Bereich von 150 bis 165°C. Das Aufschmelzen erfolgt vorzugsweise in einem geeigneten Extruder, beispielsweise in einem Zweischneckenextruder, welcher gleichzeitig eine gute Mischung des nanoskaligen Eisenoxids im Polypropylen gewährleistet. Die aufgeschmolzene Mischung wird extrudiert und bei geeigneten Temperaturen abgekühlt. In anderen Verfahrensvarianten erfolgt die Herstellung der Mischung bzw. des Compounds wie vorstehend beschrieben in einem vorgelagerten Arbeitsschritt. Diese Compounds werden anschließend in dem erfindungsgemäßen Verfahren zusammen mit reinem Polypropylen eingesetzt. Die Compounds können in einem beliebigen Extrusionswerkzeug oder in einem Kneter aufgeschmolzen und mit Polypropylen gemischt werden. Es ist erfindungswesentlich, daß nach der Extrusion die Abkühlung der eisenoxidhaltigen Schmelze derart erfolgt, daß die ß- nukleierende Wirkung der nanoskaligen Eisenoxide zum Tragen kommt. Hierfür ist es bevorzugt die Schmelze langsam bei einer Temperatur in einem Bereich von 60 bis 130 °C, vorzugsweise bei 80 bis 125°C abzukühlen. Je näher diese Temperatur in der Nähe der Kristallisationstemperatur des ß-kristallinen Polypropylens (ca. 139°C) liegt, umso günstiger sind die Bedingungen für die Ausbildung der ß- kristallinen Modifikation. Auf diese Wiese kann über die Auswahl der Temperatur beim Abkühlen ein mehr oder weniger hoher Anteil an ß-Polypropylen erzeugt werden. Zusätzlich hat die Verweildauer der abkühlenden Schmelze bei der jeweiligen Temperatur einen Einfluß auf den erzielten ß-Anteil. Zur Erzielung eines größtmöglichen ß-Anteils sollte die Schmelze langsam bei höheren Temperaturen (120-130°C) abgekühlt werden, wobei die notwendige Verweildauer bei der gegebenen Temperatur im Einzelfall von der Formgebung bei der Extrusion abhängt.
Je nach Anwendungsfall können auch niedrigere ß-Anteile im Polypropylen ausreichend sein. Die ß-nukleierenden Eisenoxide wirken sich in diesen Fällen positiv aus, da die Abkühlrate erhöht werden kann, d.h. schneller Abzugsgechwindigkeiten eingesetzt werden können.
Mittels des erfindungsgemäßen Verfahrens ist es möglich bei entsprechenden Abkühlbedingungen einen Gehalt an ß-PP von >90% (DSC-Methode) zu erzielen. Beispielsweise wurden über DSC Messungen (Methode nachstehend beschrieben) an isotaktischem Polypropylen mit 1 Gew.-% nanoskaligem Eisenoxid ein Anteil von ß-kristallinem Polypropylen von 92 % bestimmt.
Das erfindungsgemäße Verfahren kann vorteilhaft bei der Herstellung von Folien, Formkörpern, insbesondere Rohren und Schläuchen, Fasern und anderen Extrusionen angewendet werden. Der erhöhte ß-Anteil im Polypropylen wirkt sich bei den verschiedensten Extrusionsanwendungen günstig aus, beispielsweise da die Extrusionstemperaturen reduziert werden können. Für einige Anwendungen ist ein erhöhter Anteil an ß-kristallinem Polypropylen vorteilhaft, da hierdurch Gebrauchseigenschaften des Polypropylens verbessert werden, z.B. erreicht man eine höhere Kerbschlagzähigkeit und Spannungsrißbeständigkeit des Polypropylens. In einer weiteren Anwendung nutzt man den hohen ß-Anteil im Polypropylen zur Herstellung von porösen Folien durch Umwandlung der ß- Modifikation in die alpha-Modifikation bei der Verstreckung von Folien oder zur Erzeugung von rauhen Oberflächen einer verstreckten Folie aus.
Bei einem derartigen Verfahren zur Herstellung einer Folie wird nanoskaliges Eisenoxid und Polypropylen gemischt und in einem Extruder bei einer Temperatur von mindestens 150°C aufgeschmolzen. Die Schmelze wird durch eine Flachdüse extrudiert und derart zu einer Vorfolie abkühlt und verfestigt, daß in der Vorfolie der gewünschte Anteil an ß-kristallinem Polypropylen entsteht. Für die Herstellung einer mikroporösen Folien wird im allgemeinen ein Anteil von mindestens 40%, vorzugsweise 60 bis 80%, an ß-Polypropylen (gemessen nach DSC) in der Vorfolie angestrebt, wohingegen zur Erzeugung von Oberflächenrauhigkeiten geringere Anteile von beispielsweise 10 bis 40% ausreichend sein können. Anschließend wird die Vorfolie in an sich bekannter Weise erwärmt und in Längsrichtung verstreckt, vorzugsweise bei einer Temperatur weniger als 140°C, vorzugsweise 90 bis 125°C und mit einem Streckfaktor von 3:1 bis 5:1. Nach der Längsstreckung wird die längsgestreckte Folie erneut erwärmt und in Querrichtung verstreckt, vorzugsweise bei einer Temperatur größer 140°C von 145 bis 160°C und mit einem Streckverhältnis von 3:1 bis 6:1. Durch die gewählten Temperatur bei der Verstreckung wandelt sich das ß-kristalline Polypropylen der Vorfolie in die alpha Modifikation des Polypropylens um und erzeugt je nach Verfahrensbedingungen eine durchgehende poröse Netzstruktur in der Folie oder zumindest eine Oberflächenrauhigkeit durch kraterartige Vertiefungen, die bei den Umwandlungsprozeßen entstehen.
Zur Bestimmung des ß-kristallinen Anteils in Polypropylen der mittels des erfindungsgemäßen Verfahrens erzielt werden kann, können zwei Methoden eingesetzt. Zum einen kann der ß-Anteil mittels DSC bestimmt werden und zum anderen über Röntgenweitwinkelstreuung.
Die Charakterisierung mittels DSC wird in J. o. Appl. Polymer Science, Vol. 74, p.:
2357-2368, 1999 von Varga beschrieben und folgendermaßen durchgeführt: Die mit dem ß-Nukleator additivierte Probe wird in der DSC zunächst mit einer
Aufheizrate von 20°C/min auf 220°C erhitzt und aufgeschmolzen (1. Aufheizen).
Danach wird sie mit einer Kühlrate von 10°C/min auf 100°C abgekühlt, bevor sie mit einer Heizrate von 10°C/min (2. Aufheizen) wieder aufgeschmolzen wird. Beim 2.
Aufheizen wird aus dem Verhältnis der Schmelzenthalpien der ß-kristallinen Phase (Hß) zu der Summe der Schmelzenthalpien von ß- und α-kristalliner Phase (Hß + Hα) der Kristallinitätsgrad Kß,Dsc bestimmt.
Figure imgf000009_0001
Bei der zweiten Methode wird der Kristallinitätsgrad aus dem Röntgenweitwinkeldiagramm durch die Turner-Jones-Gleichung (Makromolekulare Chem. 75 (1964) 134) beschrieben:
Kß,X- ay = [kßi]/ [kß1]/ [kßι + (kαι+ kα2+k„3)] Dabei ist Kß,χ-Ray der ß-Anteil, ßι die Höhe des Peaks der ß-Phase und k„ι, k^, k^ die Höhe der drei Peaks der α-Phase.
Da ß-Kristallines PP thermodynamisch metastabil ist und sich bei höheren
Temperaturen in die thermodynamisch stabile α-Phase umwandelt wird über die
Röntgenweitwinkelstreuung immer ein höherer ß-Anteil als mittels der DSC-Methode gefunden.
Beispiel 1:
Ein nanokristallines Eisenoxid (Fe304) wurde in einem Zweischneckenextruder ZSK 30 bei einer Temperatur von 200°C in ein isotaktisches Polypropylen eincompoundiert. Das Polypropylen war ein isotaktisches Homopolymer mit einem Schmelzpunkt von 162°C und einem MFI von.... (Exxon Escorene PP 4352 F1 ). Das nanokristalline Eisenoxid hatte eine mittlere Teilchengröße von 13 nm. Es handelte sich dabei um Magnetit, der eine charakteristische schwarze Farbe aufwies. Es wurde eine Menge von 3 Gew.-% des Eisenoxids in das Polypropylen eingearbeitet.
Beispiel 2 Es wurde ein Nanokomposite wie in Beispiel 1 beschrieben hergestellt. Im Unterschied zu Beispiel 1 wurde das nanoskalige Eisenoxid vor der Compoundierung mit Stearinsäure oberflächenmodifiziert und die Konzentration an Magnetit wurde von 3 auf 1Gew.-% erniedrigt.
Beispiel 3
Es wurde ein Nanokomposite wie in Beispiel 2 beschrieben hergestellt. Im Unterschied zu Beispiel 2 wurde das nanoskalige Eisenoxid vor der Oberflächenmodifizierung mit Stearinsäure einer hydrothermalen Nachbehandlung unterworfen und die Konzentration wurde von 1 auf 2 Gew.-% erhöht. Der jeweilige ß-Anteil der Nanokomposite nach den Beispielen 1 bis 3 wurde wie beschrieben über DSC aus der 2. Aufheizkurve bestimmt.
Figure imgf000011_0001

Claims

Patentansprüche
1. Verfahren zur Herstellung von Polypropylen mit einem erhöhten Anteil an ß- kristallinen Polypropylen, dadurch gekennzeichnet, daß man nanoskaliges Eisenoxid und Polypropylen mischt und bei einer Temperatur von mindestens 150°C aufschmilzt und anschließend derart abkühlt, daß die abgekühlte Polypropylenschmelze einen erhöhten Anteil von ß-kristallinem Polypropylen aufweist.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet daß beim Abkühlen der Polypropylenschmelze ein Anteil von ß-kristallinem Polypropylen von mehr als 50 %, vorzugsweise 70 bis < 100 % erzeugt wird.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Abkühlung der Polypropylenschmelze in einem Temperaturbereich von 100 - 140°C erfolgt.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß man die Mischung aus Polypropylen und Eisenoxid in einem Extruder, vorzugsweise in einem Zweischneckenextruder bei einer Temperatur von 150 bis 170°C aufschmilzt.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß das Polypropylen der Mischung ein isotaktisches Polypropylen mit einem
Schmelzpunkt im Bereich von 140 bis 170°C ist.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß das Polypropylen ein Mischpolymerisat ist mit einem Comonomeranteil an Ethylen und/oder Butylen von bis zu 10 Gew.-%.
7. Verfahren nach einem der Ansprüche 1 bis 6 dadurch gekennzeichnet, daß das Polypropylen eine Mischung aus Propylenhomopolymer und Propylencopolymer ist.
8. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß das nanoskalige Eisenoxid eine mittlere Teilchengröße von weniger als 50 nm, vorzugsweise 1 bis 30 nm aufweist.
9. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß das Eisenoxid Fe(ll)- oder Fe(lll)-Oxid umfaßt.
10. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß das Eisenoxid eine kubisch dichteste Kugelpackung der 02—lonen aufweist.
11. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß das Eisenoxid Fe30 oder Fe203 ist.
12. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß das Eisenoxid Magnetit oder Maghemit ist.
13. Verfahren nach einem der Ansprüche 1 bis 11 , dadurch gekennzeichnet, daß das Eisenoxid mit einer Oberflächenbeschichtung versehen ist.
14. Verfahren nach Anspruch 12, dadurch gekennzeichnet, daß die Oberflächenbeschichtung aus langkettigen Fettsäuren, vorzugsweise Ölsäure oder Stearinsäure, Silaner, Aminen oder Sulfonaten besteht.
15. Verfahren nach Anspruch 13, dadurch gekennzeichnet, daß man eine Mischung aus Polypropylen und nanoskaligen Eisenoxid herstellt und diese Mischung aufschmilzt und abkühlt.
16. Verfahren nach Anspruch 14, dadurch gekennzeichnet, daß man ein Compound aus Polypropylen und nanoskaligem Eisenoxid herstellt und dieses Compound mit Polypropylen mischt, aufschmilzt und abkühlt.
17. Verfahren zur Herstellung einer biaxial verstreckten Flachfolie, dadurch gekennzeichnet, daß man nanoskaliges Eisenoxid und Polypropylen mischt und in einem Extruder bei einer Temperatur von mindestens 150°C aufschmilzt und die Schmelze durch eine Flachdüse extrudiert und die Schmelze derart zu einer Vorfolie abkühlt, daß ein Anteil von mindestens 50% (gemessen nach DSC) ß- kristallines Polypropylen entsteht, und danach die Vorfolie erwärmt und in Längsrichtung verstreckt und abkühlt, anschließend erneut erwärmt und in Querrichtung verstreckt, und wobei die Temperatur bei der Längsstreckung so gewählt wird, daß sich das ß-kristalline Polypropylen der Vorfolie in die alpha Modifikation des Polypropylens umwandelt.
18. Verfahren nach Anspruch 17, dadurch gekennzeichnet, daß die biaxial orientierte Folie opak und porös ist.
PCT/EP2003/004931 2002-05-14 2003-05-12 HOCHAKTIVES β-NUKLEIERUNGSADDITIV FÜR POLYPROPYLEN WO2003094832A2 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP03732345A EP1511797A2 (de) 2002-05-14 2003-05-12 Hochaktives beta-nukleierungsadditiv fur polypropylen
AU2003240222A AU2003240222A1 (en) 2002-05-14 2003-05-12 Highly active beta-nucleating additive for polypropylene
US10/511,913 US6992128B2 (en) 2002-05-14 2003-05-12 Highly active β-nucleating additive for polypropylene
JP2004502921A JP4332110B2 (ja) 2002-05-14 2003-05-12 ポリプロピレンのための高度に活性なβ−核形成添加剤

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10221310.0 2002-05-14
DE10221310A DE10221310A1 (de) 2002-05-14 2002-05-14 Hochaktives beta-Nukleierungsadditiv für Polypropylen

Publications (2)

Publication Number Publication Date
WO2003094832A2 true WO2003094832A2 (de) 2003-11-20
WO2003094832A3 WO2003094832A3 (de) 2004-07-22

Family

ID=29413782

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2003/004931 WO2003094832A2 (de) 2002-05-14 2003-05-12 HOCHAKTIVES β-NUKLEIERUNGSADDITIV FÜR POLYPROPYLEN

Country Status (7)

Country Link
US (1) US6992128B2 (de)
EP (1) EP1511797A2 (de)
JP (1) JP4332110B2 (de)
CN (1) CN1274745C (de)
AU (1) AU2003240222A1 (de)
DE (1) DE10221310A1 (de)
WO (1) WO2003094832A2 (de)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1598179A1 (de) * 2004-05-18 2005-11-23 Bänninger Kunststoff-Produkte GmbH Formstück aus Kunststoff zum Herstellen von Rohrleitungen
WO2008014893A1 (en) * 2006-08-01 2008-02-07 Borealis Technology Oy Process for the production of impact resistant pipe
WO2011134626A1 (de) * 2010-04-26 2011-11-03 Treofan Germany Gmbh & Co. Kg Hochporöse separator-folie
CN101714312B (zh) * 2004-10-07 2012-10-10 特里奥凡德国有限公司及两合公司 用于深拉法的标签膜
EP2657285A1 (de) * 2012-04-25 2013-10-30 Borealis AG Polypropylen mit hohem Betaform-Gehalt
EP2657286A1 (de) * 2012-04-25 2013-10-30 Borealis AG Verfahren zur Herstellung von Polypropylen mit hohem Betamodifikations-Gehalt
WO2014113854A1 (en) * 2013-01-23 2014-07-31 Vale S.A. Composite material comprising uhmwpe and iron ore tailing and use of iron ore tailing in preparation of composite material
WO2016003647A1 (en) * 2014-06-19 2016-01-07 Corning Optical Communications LLC Loose-tube fiber optic cables having buffer tubes with beta phase crystallization

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4102894B2 (ja) * 2001-02-21 2008-06-18 新日本理化株式会社 多孔性ポリプロピレン逐次二軸延伸フィルムの製造方法
US7700707B2 (en) 2002-10-15 2010-04-20 Exxonmobil Chemical Patents Inc. Polyolefin adhesive compositions and articles made therefrom
US7294681B2 (en) 2002-10-15 2007-11-13 Exxonmobil Chemical Patents Inc. Mutliple catalyst system for olefin polymerization and polymers produced therefrom
DE602007003584D1 (de) * 2007-07-12 2010-01-14 Borealis Tech Oy ß-nukleierte Polypropylen-Zusammensetzung
DE102007050047A1 (de) * 2007-10-17 2009-04-23 Helsa-Automotive Gmbh & Co. Kg Polypropylen-Fasermaterial mit poröser Faseroberfläche zur Herstellung von Filtern sowie ein Verfahren zur Herstellung des Polypropylen-Fasermaterials
FR2954595B1 (fr) 2009-12-21 2012-03-30 Bollore Film de separateur, son procede de fabrication, supercondensateur, batterie et condensateur munis du fim
CN101900472A (zh) * 2010-08-18 2010-12-01 洛阳市河之阳高分子材料有限公司 一种冰箱顶盖用材料
US8101680B1 (en) * 2010-10-12 2012-01-24 Sabic Innovative Plastics Ip B.V. Methods of preparing polymer nanocomposites
DE102011120474A1 (de) * 2011-12-08 2013-06-13 Treofan Germany Gmbh & Co. Kg Hochporöse Separator- Folie mit Beschichtung
WO2019117055A1 (ja) * 2017-12-15 2019-06-20 住友電気工業株式会社 絶縁材用樹脂組成物、絶縁材、絶縁電線及びケーブル
CN112768235B (zh) * 2020-12-23 2022-05-17 天津大学 一种电容器用聚丙烯薄膜结晶形貌优化方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE344359C (de) 1900-01-01
US3540979A (en) * 1966-07-11 1970-11-17 Phillips Petroleum Co Laminates of similarly constituted films of different crystal structure
BE755966A (fr) * 1969-09-11 1971-03-10 Montedison Spa Procede de preparation de fibres polyolefiniques pigmentees
US3997494A (en) * 1972-07-19 1976-12-14 General Electric Company Compounded thermoplastic polymeric materials and fillers
CN1004076B (zh) * 1985-04-01 1989-05-03 中国科学院上海有机化学研究所 β-晶型聚丙烯生产方法
JPS62283822A (ja) * 1986-05-31 1987-12-09 Toda Kogyo Corp β−含水酸化第二鉄微粒子粉末の製造法
US6235823B1 (en) 1992-01-24 2001-05-22 New Japan Chemical Co., Ltd. Crystalline polypropylene resin composition and amide compounds
DE4420989B4 (de) 1994-06-16 2005-04-14 Borealis Polymere Holding Ag Verfahren zur Erhöhung des Anteils der ß-Modifikation in Polypropylen
JP3231332B2 (ja) * 1995-08-31 2001-11-19 チッソ株式会社 プロピレン−エチレン共重合体組成物及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1598179A1 (de) * 2004-05-18 2005-11-23 Bänninger Kunststoff-Produkte GmbH Formstück aus Kunststoff zum Herstellen von Rohrleitungen
CN101714312B (zh) * 2004-10-07 2012-10-10 特里奥凡德国有限公司及两合公司 用于深拉法的标签膜
EA013612B1 (ru) * 2006-08-01 2010-06-30 Бореалис Текнолоджи Ой Способ производства ударопрочной трубы
EP1887034A1 (de) * 2006-08-01 2008-02-13 Borealis Technology Oy Verfahren zur Herstellung schlagfester Rohre
KR101142395B1 (ko) * 2006-08-01 2012-05-07 보레알리스 테크놀로지 오와이. 내충격 파이프 제조방법
WO2008014893A1 (en) * 2006-08-01 2008-02-07 Borealis Technology Oy Process for the production of impact resistant pipe
WO2011134626A1 (de) * 2010-04-26 2011-11-03 Treofan Germany Gmbh & Co. Kg Hochporöse separator-folie
US8889284B2 (en) 2010-04-26 2014-11-18 Treofan Germany Gmbh & Co. Kg Highly porous separator foil
US9552932B2 (en) 2010-04-26 2017-01-24 Treofan Germany Gmbh & Co. Kg Highly porous separator foil
EP2657285A1 (de) * 2012-04-25 2013-10-30 Borealis AG Polypropylen mit hohem Betaform-Gehalt
EP2657286A1 (de) * 2012-04-25 2013-10-30 Borealis AG Verfahren zur Herstellung von Polypropylen mit hohem Betamodifikations-Gehalt
WO2014113854A1 (en) * 2013-01-23 2014-07-31 Vale S.A. Composite material comprising uhmwpe and iron ore tailing and use of iron ore tailing in preparation of composite material
WO2016003647A1 (en) * 2014-06-19 2016-01-07 Corning Optical Communications LLC Loose-tube fiber optic cables having buffer tubes with beta phase crystallization
US9625666B2 (en) 2014-06-19 2017-04-18 Corning Optical Communication Llc Loose-tube fiber optic cables having buffer tubes with beta phase crystallization

Also Published As

Publication number Publication date
CN1274745C (zh) 2006-09-13
US6992128B2 (en) 2006-01-31
JP2005525444A (ja) 2005-08-25
AU2003240222A1 (en) 2003-11-11
US20050182175A1 (en) 2005-08-18
WO2003094832A3 (de) 2004-07-22
EP1511797A2 (de) 2005-03-09
JP4332110B2 (ja) 2009-09-16
AU2003240222A8 (en) 2003-11-11
DE10221310A1 (de) 2003-12-11
CN1653122A (zh) 2005-08-10

Similar Documents

Publication Publication Date Title
WO2003094832A2 (de) HOCHAKTIVES β-NUKLEIERUNGSADDITIV FÜR POLYPROPYLEN
EP3272794B1 (de) Nanoskaliges ss-nukleierungsmittel für polypropylen
DE3211393C2 (de)
EP1581588B1 (de) Zusammensetzung auf der basis präexfolierter nanoclays und ihre verwendung
DE69231999T3 (de) Verfahren zur Granulierung von Additiven für organische Polymere
EP1776418B1 (de) Polymerblend aus nicht verträglichen polymeren
DE60212064T2 (de) Polyolefinmischung mit verbesserten Eigenschaften
DE3610644A1 (de) Ss-kristallines isotaktisches polypropylen, verfahren zu seiner herstellung und daraus hergestellte koerper
WO2010092013A1 (de) Polymerzusammensetzungen enthaltend nanopartikuläre ir-absorber
DE2646965A1 (de) Anorganischer fuellstoff und damit gefuellte kunstharzmasse
DE19882437B4 (de) Verfahren zur Herstellung eines ein Polymer umfassenden Verbundmaterials
DE102007032820A1 (de) Nadelförmiges Böhmit und Verfahren zu dessen Herstellung
DE2810190A1 (de) Geformte, mit calciumcarbonat gefuellte propylenharzverbundstoffe
DE69727377T2 (de) Expandierte polyolefinpartikel und verfahren zu ihrer herstellung
DE60311500T2 (de) Polyolefinharzzusammensetzung
EP2441793B1 (de) Hochaktives beta-nukleierungsadditiv für polypropylen
EP1129130A1 (de) Polymerer, teilkristalliner thermoplastischer werkstoff mit nanoskaligem nukleierungsmittel und daraus hergestellte hochtransparente formteile
EP2441792B1 (de) Hochaktives beta-Nukleierungsadditiv für Polypropylen
DE69811214T2 (de) Uniaxial verstreckte polypropylenfolie
DE112006003561T5 (de) Organisch modifiziertes Schichtsilikat, Verfahren zu dessen Erzeugung und Harzzusammensetzung
DE102008063531B4 (de) Zusammensetzung zur Stabilisierung halogenhaltiger Polymere, Verfahren zu ihrer Herstellung und Verwendung
DE60103666T2 (de) Verwendung einer nano-füllstoff enthaltenden polyolefinzusammensetzung für die herstellung von verbesserten gegenständen
US7211331B2 (en) Preparation of nano-sized organic-inorganic composite material
EP3381978A1 (de) Verträglichkeitsvermittler zur verträglichmachung von polyolefin-gemischen, verfahren zu dessen herstellung, sowie verfahren zur herstellung von formteilen aus polyolefin-gemischen
DE19935324A1 (de) Tansparente Polyamidfolie mit hoher Festigkeit

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003732345

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10511913

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2538/CHENP/2004

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 20038107732

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2004502921

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 2003732345

Country of ref document: EP