WO2019117055A1 - 絶縁材用樹脂組成物、絶縁材、絶縁電線及びケーブル - Google Patents

絶縁材用樹脂組成物、絶縁材、絶縁電線及びケーブル Download PDF

Info

Publication number
WO2019117055A1
WO2019117055A1 PCT/JP2018/045216 JP2018045216W WO2019117055A1 WO 2019117055 A1 WO2019117055 A1 WO 2019117055A1 JP 2018045216 W JP2018045216 W JP 2018045216W WO 2019117055 A1 WO2019117055 A1 WO 2019117055A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
insulating material
inorganic filler
polypropylene
resin composition
Prior art date
Application number
PCT/JP2018/045216
Other languages
English (en)
French (fr)
Inventor
智 山崎
康平 細水
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to JP2019559613A priority Critical patent/JP7272276B2/ja
Publication of WO2019117055A1 publication Critical patent/WO2019117055A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation

Definitions

  • the present disclosure relates to a resin composition for insulating material, an insulating material, an insulated wire, and a cable.
  • Patent Document 1 discloses a crosslinked polyethylene composition to which an inorganic filler is added and which is used for an insulating layer of a direct current power cable. According to Patent Document 1, it is disclosed that the addition of the inorganic filler suppresses the accumulation of space charge when a high DC voltage is applied to the insulating coating formed of the crosslinked polyethylene composition. .
  • Patent Document 2 discloses a master batch obtained by mixing a base resin containing a polyethylene resin and an inorganic filler, and an insulating material produced using the master batch.
  • Patent Document 3 discloses an insulating composition containing a basic resin (base resin) containing low density polyethylene, and nano inorganic particles, and a DC power cable formed from the insulating composition.
  • the resin composition for insulating materials of the present disclosure comprises at least one inorganic filler selected from the group consisting of a resin component containing a polypropylene-based resin having a melting point of 130 ° C. or higher, and metal oxides, hydroxides and carbonates. And.
  • the content of the inorganic filler is 0.2 parts by mass or more and 4 parts by mass or less with respect to 100 parts by mass of the resin component.
  • the average particle size of the inorganic filler is 10 nm or more and 1000 nm or less.
  • polyethylene resin compositions are widely used as resin compositions for insulating materials containing a resin and an inorganic filler dispersed in the resin. ing. Among them, those containing crosslinked polyethylene obtained by crosslinking polyethylene are often used.
  • the polyethylene-based resin composition is suitable as a material for forming an insulating material which is excellent in the insulating property and in which the charge is not easily accumulated therein.
  • the disadvantage of polyethylene resin compositions is that they have low heat resistance. Although the heat resistance is improved by crosslinking, it is not sufficient yet, and a resin composition for an insulating material having higher heat resistance is required.
  • the resin composition for insulating materials of the present disclosure comprises at least one inorganic filler selected from the group consisting of a resin component containing a polypropylene-based resin having a melting point of 130 ° C. or higher, and metal oxides, hydroxides and carbonates. And.
  • the content of the inorganic filler is 0.2 parts by mass or more and 4 parts by mass or less with respect to 100 parts by mass of the resin component.
  • the average particle size of the inorganic filler is 10 nm or more and 1000 nm or less.
  • Polypropylene has higher heat resistance than polyethylene and is one of the resins assumed as a substitute material for polyethylene.
  • polyethylene-based insulating materials are the mainstream as insulating materials.
  • polypropylene may be easier to crystallize than polyethylene.
  • charges tend to be accumulated inside the insulating material.
  • polarization may locally occur in a charge storage region (for example, a crystal interface) in the insulating material, which may lead to the occurrence of defects or dielectric breakdown. Space charge accumulated inside the insulating material is also considered as a cause of dielectric breakdown.
  • the present inventors have found that controlling the amount of inorganic filler added and the average particle size reduces the amount of accumulated charge. This is considered to be a result of the synergistic action of the first charge storage amount reducing effect originally possessed by the inorganic filler and the second charge storage amount reducing effect due to the relaxation of the crystallinity of the polypropylene resin.
  • the inorganic filler whose content and average particle diameter are controlled is likely to be suitably dispersed inside the polypropylene resin, and is considered to appropriately disturb the crystallinity of polypropylene and to lower the crystallinity of the resin component.
  • the first charge accumulation reducing effect of the inorganic filler is exhibited evenly over the entire insulating material.
  • a resin composition capable of forming an insulating material that has both heat resistance and difficulty in charge accumulation is provided.
  • the polypropylene resin is preferably not crosslinked.
  • crosslinking problems of complication of the process due to crosslinking and deterioration of insulation due to crosslinking residue may occur.
  • Crosslinked resins are also difficult to recycle.
  • a polypropylene-based resin has a tertiary carbon having a methyl group, and when it is crosslinked, decomposition of the tertiary carbon also occurs simultaneously. Therefore, polypropylene resins are resins that are difficult to crosslink.
  • polypropylene resins have sufficiently high heat resistance without crosslinking. For these reasons, it is preferable that the polypropylene resin is not crosslinked.
  • the inorganic filler may be spherical magnesium oxide or zinc oxide.
  • the resin composition for insulating materials containing these inorganic fillers is suitable for forming the insulating material which makes heat resistance and the difficulty of accumulation of electric charge compatible.
  • the inorganic filler may further have a coating layer on the surface thereof.
  • the aggregation of the inorganic filler can be more effectively suppressed, and the dispersibility of the inorganic filler in the resin component can be further enhanced. it can.
  • the polypropylene resin may be at least one selected from the group consisting of homopolypropylene, a polypropylene random copolymer, a polypropylene block copolymer, and an olefin elastomer. These polypropylene resins are suitable for forming an insulating material having the above-mentioned desired physical properties.
  • the insulating material of the present disclosure is formed of the above-described resin composition for an insulating material, and includes a resin layer portion containing a polypropylene-based resin, and a particle portion of an inorganic filler dispersed in the resin layer portion.
  • Such an insulating material is a suitable insulating material which has both heat resistance and difficulty in charge accumulation.
  • the insulating material may be an insulation coating of an insulated wire or cable, or an insulation tube.
  • the insulating material of the present disclosure can be suitably used for these applications.
  • the insulating material of the present disclosure is an insulating material formed from a resin composition for insulating material, and the resin composition for insulating material is a resin component containing a polypropylene resin having a melting point of 130 ° C. or more, and a metal or silicon
  • the inorganic filler contains at least one inorganic filler selected from the group consisting of oxides, hydroxides and carbonates, and the content of the inorganic filler is 0.2 parts by mass or more with respect to 100 parts by mass of the resin component.
  • the insulating material includes a resin layer containing the polypropylene-based resin and particles of the inorganic filler dispersed in the resin layer.
  • the insulating material is an insulating coating of an insulated wire or cable, or an insulating tube. Such an insulating material is a suitable insulating material which has both heat resistance and difficulty in charge accumulation.
  • the insulated wire or cable of the present disclosure includes a linear conductor portion and an insulating coating, which is the above-described insulating material, disposed so as to cover the outer peripheral side of the conductor.
  • an insulated wire or cable can be suitably used as an insulated wire or cable excellent in durability, provided with a suitable insulating coating that achieves both heat resistance and difficulty in charge accumulation.
  • the insulating resin composition contains a polypropylene resin and an inorganic filler.
  • the resin composition for insulating materials which concerns on this Embodiment contains the polypropylene resin of 130 degreeC or more of melting
  • a polypropylene resin having a melting point of 130 ° C. or more is a polymer containing a unit derived from propylene (for example, 10 mol% or more, preferably 20 mol% or more, 30 mol% or more or 40 mol% or more) in the molecule, It means that the melting point is 130 ° C. or more. Even in the non-crosslinked state, the polypropylene resin has high heat resistance as compared with the crosslinked polyethylene resin. When the resin component contains such a polypropylene-based resin, it becomes possible to provide an insulating material having sufficient heat resistance.
  • polypropylene homopolymer polypropylene homopolymer (polypropylene homopolymer) (h-pp), propylene random copolymer (propylene random copolymer) (r-pp), block polypropylene (b-pp, homopolypropylene)
  • h-pp polypropylene homopolymer
  • r-pp propylene random copolymer
  • b-pp block polypropylene
  • b-pp homopolypropylene
  • TPO olefin-based elastomer
  • TPO propylene-based resin finely dispersed in ethylene-propylene rubber in a matrix consisting of homopolypropylene
  • r-pp contains ethylene or butene-1, hexene-1, octene-1, etc. as comonomers.
  • the content of the comonomer in r-pp is, for example, 1% by mass or more and 40% by mass or less.
  • b-pp includes substances containing components derived from ethylene such as ethylene or ethylene-propylene rubber (EPR), in addition to units derived from propylene (content of EPR component is about 20% by mass or less) .
  • EPR ethylene-propylene rubber
  • the olefin-based elastomer is an ethylene or ethylene-propylene rubber (EPR) component (or butene-1, hexene-1, octene-1) in an amount larger than b-pp (for example, more than 20% by mass and 70% by mass or less) And the like) may be included other than units derived from propylene.
  • EPR ethylene or ethylene-propylene rubber
  • the polypropylene-based resin used in the present disclosure is a resin having a melting point of 130 ° C. or more.
  • the insulating material formed from the resin composition for insulating material has high heat resistance that can withstand high temperatures sufficient for use.
  • the heat resistance is sufficiently high as compared with the cross-linked polyethylene insulating material.
  • the melting point is determined by measuring the temperature at which a solid sample (polypropylene resin) melts in differential scanning calorimetry (DSC).
  • the melting point is preferably 140 ° C. or higher.
  • the upper limit of the melting point is not particularly limited, it is preferable that the melting point be, for example, 200 ° C. or less, because it is difficult to process when the melting point is too high.
  • the polypropylene-based resin is preferably not crosslinked.
  • problems such as complication of the process by crosslinking, reduction of processability by crosslinking, reduction of productivity by the crosslinking process involving labor and time, and adverse effect on insulation properties by crosslinking byproducts may occur.
  • Crosslinked resins are also difficult to recycle.
  • the polypropylene resin since the polypropylene resin has sufficient heat resistance as an insulating material even if it is uncrosslinked, there is no need to carry out crosslinking intentionally. By using a non-crosslinked polypropylene-based resin, it is possible to avoid the occurrence of the above problems associated with the cross-linking.
  • polypropylene has tertiary carbon substituted with a methyl group, and when performing a crosslinking reaction, decomposition reaction at tertiary carbon also proceeds, so it is also a resin that is difficult to crosslink as compared to polyethylene. Therefore, the crosslinking of the polypropylene resin may not be performed.
  • the resin composition for insulating materials may also contain other resin components other than polypropylene resin as a resin component.
  • the other resin component include homopolymers or mutual copolymers of olefin monomers such as ethylene, butene-1, hexene-1 and octene-1, and the above-mentioned olefin monomers and other monomers
  • a copolymer with a vinyl monomer such as a vinyl monomer containing vinyl acetate
  • a rubber having one or more units derived from an olefin monomer such as ethylene, butene-1, hexene-1 or octene-1 in a molecule
  • An elastomer etc. are mentioned.
  • resin components other than the above-mentioned polypropylene resin examples include polyethylene (high density polyethylene, medium density polyethylene, low density polyethylene, ultra low density polyethylene, etc.), ethylene-propylene rubber and the like.
  • a resin component containing a (poly) propylene component in part and having a melting point of less than 130 ° C. is used in combination with a polypropylene resin having a melting point of 130 ° C. or more, as long as the high heat resistance of the resin composition for insulating material is not impaired. You may
  • the resin composition for insulating materials may contain the above-mentioned other resin components other than the polypropylene resin, it is preferable that the compounding ratio is such that the high heat resistance of the polypropylene resin is maintained even in that case. .
  • the content of the entire resin component is 100% by mass
  • the content of the polypropylene resin is preferably 30% by mass or more, preferably 40% by mass or more, and 60% by mass or more Is more preferable, 80% by mass or more is further preferable, and 90% by mass or more is particularly preferable.
  • the resin composition for insulating materials according to the present embodiment contains at least one inorganic filler selected from the group consisting of metal or oxide, hydroxide and carbonate of silicon. These are non-conductive substances.
  • the inorganic filler By including the inorganic filler, the amount of charge accumulation inside the insulating material is reduced. Further, as described later, when the inorganic filler is contained in a state in which the content and the average particle diameter are controlled, the crystallinity of the polypropylene resin is appropriately disturbed and the crystallinity is lowered. As the crystallinity decreases, the charge accumulation inside the insulating material also tends to decrease.
  • the first charge storage amount reducing effect originally possessed by the inorganic filler and the second charge storage amount reducing effect due to the relaxation of the crystallinity of the polypropylene resin The synergistic effect with the above further reduces the amount of charge accumulated inside the insulating material more sufficiently.
  • the inorganic filler is at least one selected from the group consisting of metal or oxide, hydroxide and carbonate of silicon.
  • at least one selected from the group consisting of oxides, hydroxides and carbonates of silicon as a typical metal element which is a metal element contained in Groups 1, 2 and 12 to 16 of the periodic table preferable.
  • the metal may be an oxide, hydroxide and carbonate of a transition metal such as titanium oxide.
  • at least one selected from the group consisting of oxides, hydroxides and carbonates of metal elements or silicons contained in Groups 2, 12, and 13 of the periodic table is particularly preferable.
  • Examples of the above-mentioned typical metal elements include, for example, Group 2 elements such as magnesium and calcium, Group 12 elements such as zinc, and Group 13 elements such as aluminum.
  • oxides such as magnesium oxide, calcium oxide, zinc oxide, aluminum oxide (alumina), silicon oxide (silica), titanium oxide, magnesium hydroxide, calcium hydroxide, hydroxide
  • oxides such as magnesium oxide, calcium oxide, zinc oxide, aluminum oxide (alumina), silicon oxide (silica), titanium oxide, magnesium hydroxide, calcium hydroxide, hydroxide
  • examples thereof include zinc, hydroxides such as aluminum hydroxide, and carbonates such as magnesium carbonate, calcium carbonate and silicon carbonate.
  • these may be contained singly in the resin composition or the insulating material formed from the resin composition, or two or more kinds may be contained. Further, in the resin composition and the insulating material, a part of the oxide, hydroxide or carbonate may be contained as a reaction product thereof.
  • spherical magnesium oxide or zinc oxide is particularly preferable as the inorganic filler in terms of effects and ease of handling.
  • Spherical does not mean strictly spherical, but is intended to represent the whole of a solid body that is entirely rounded.
  • the "spherical” shape includes various shapes that can be regarded as substantially spherical.
  • polyhedrons such as rectangular parallelepipeds and cubes, cylinders, columns, needles and the like are not included in the above-mentioned "spherical”.
  • the surface has a shape close to a curved sphere, a spheroid shape, a deformed sphere (including a shape in which a part of the spherical shape is recessed or chipped), and the like.
  • a spheroid shape As such a shape, the surface has a shape close to a curved sphere, a spheroid shape, a deformed sphere (including a shape in which a part of the spherical shape is recessed or chipped), and the like.
  • spherical ones are preferable in that they do not have corner portions where electric field is easy to concentrate.
  • the inorganic filler may further have a coating layer on the surface for the purpose of improving the dispersibility and preventing aggregation.
  • a coated layer is formed by coating the surface of the inorganic filler particles with a surface treatment agent.
  • the surface treatment agent may, for example, be a coupling agent, a silicon compound, a fatty acid, a fatty acid soap, a phosphoric acid ester or an organic polymer.
  • Examples of the above-mentioned coupling agent include silane coupling agents (for example, vinylsilane, alkoxysilane or derivatives thereof), titanate coupling agents, aluminum coupling agents, zirconate coupling agents or mixtures thereof.
  • Examples of the silicon-based compound include polysiloxanes such as aminopolysiloxane and hydrogen dimethicone (methylhydrogenpolysiloxane), alkylsilanes, aminosilanes, methacrylsilanes, silane compounds such as vinylsilanes and acrylsilanes, and silicone oils.
  • Examples of the above fatty acids include stearic acid and oleic acid.
  • organic polymer examples include 1-heptene, 1-octene, 1-nonene, 1-decene and other ⁇ -olefin homopolymers or mutual copolymers, polyethylene, polypropylene, ethylene-ethyl acrylate copolymer, ethylene-acetic acid
  • a surface treating agent such as a vinyl copolymer and derivatives thereof, may be mentioned.
  • the content of the inorganic filler is 0.2 parts by mass or more and 4 parts by mass or less with respect to 100 parts by mass of the resin component containing a polypropylene resin.
  • the content of the inorganic filler is preferably 1 part by mass or more. Moreover, Preferably it is 3 mass parts or less, More preferably, it is 2.5 mass parts or less.
  • the average particle diameter of the inorganic filler is 10 nm or more and 1000 nm or less. If the average particle size is less than 10 nm, the average particle size is too fine to handle. In addition, since the inorganic filler is easily aggregated, the charge is more easily accumulated. Conversely, when the average particle size of the inorganic filler exceeds 1000 nm, the fracture resistance of the insulating material is reduced.
  • the average particle size of the inorganic filler is preferably 30 nm or more. Also, it is preferably 800 nm or less, more preferably 700 nm or less.
  • the average particle diameter is an average value of volume sphere equivalent diameters corresponding to the diameter of a sphere assuming the same volume of sphere as the volume of a sample to be actually measured.
  • the particle diameter of each particle for determining the average particle diameter is the diameter of the particles measured without distinction between the primary particles and the secondary particles (particles in an aggregated state).
  • the particle size value obtained as the particle size of each particle takes into consideration the influence of particle aggregation, and in the state where unaggregated primary particles are dispersed independently, the value of the primary particle diameter is Means the value of the particle size of the aggregate.
  • An average value of the particle diameter (volume sphere equivalent diameter) of the particles obtained from the value of the primary particle diameter obtained in this manner and the particle diameter of the aggregate is taken as the above average particle diameter.
  • the above-mentioned average particle diameter disperses particles of an inorganic filler in a solvent, for example in a particle diameter measuring device, irradiates a dispersed particle with a laser beam, detects the scattered light scattered, and is based on the intensity of the scattered light It is possible to measure based on the dynamic light scattering method which calculates the average particle diameter.
  • the average particle size can be determined from the particle size determined by the dynamic light scattering method.
  • the insulating resin composition may contain other components in addition to the above components.
  • an additive which the resin composition for insulating materials may contain, an antioxidant, a lubricant, a crystallization nucleating agent etc. are mentioned.
  • the resin composition for an insulating material according to the present embodiment can be suitably applied as a material of an insulating material such as an insulating coating of an insulating wire or cable, an insulating tube covering a contact of a wire, a conductor or the like.
  • an insulating material such as an insulating coating of an insulating wire or cable, an insulating tube covering a contact of a wire, a conductor or the like.
  • FIG. 1 is a schematic cross-sectional view showing an example of the insulating material.
  • FIG. 2 is a schematic sectional drawing which shows an example of the insulation tube which is an example of an insulating material.
  • insulating material 10 is formed of the above-described resin composition for insulating material.
  • the insulating material 10 includes a resin layer portion 20 containing a polypropylene-based resin, and a particle portion 30 of an inorganic filler dispersed in the resin layer.
  • the content and the average particle size of the inorganic filler in the insulating resin composition are controlled. Therefore, the inorganic filler is widely dispersed in a state of little aggregation in the insulating resin composition.
  • the particle portion 30 made of an inorganic filler is uniformly dispersed in the resin layer portion 20.
  • the aggregation of the particle portion 30 is less likely to cause a local decrease in destruction resistance and an increase in charge storage amount.
  • such an insulating material 10 has a reduced amount of charge storage as a whole.
  • the insulating material 10 can be manufactured by heating the resin composition for an insulating material to a melting temperature, forming it into a desired shape, and then heat pressing it as necessary and cooling it. In the cooling step, it is preferable to rapidly cool by increasing the cooling rate from the viewpoint that crystallization is less likely to progress as compared to slow cooling.
  • the resin composition for an insulating material of the present disclosure since the progress of crystallization is controlled by the particle portion 30 made of an inorganic filler, the difference in charge accumulation amount between rapid cooling and slow cooling is small. Therefore, there is an advantage that the degree of freedom of design of the manufacturing process is high in that the restriction of the cooling process is small and the equipment for quenching is not essential.
  • the insulating tube 80 for covering the contact of a wiring, a conductor, etc. as shown in FIG. 2 is mentioned.
  • Other examples include insulation coating of insulated wires and cables. Among them, examples of insulated wires and cables are shown below.
  • FIG. 3 is a schematic cross-sectional view showing an example of the insulated wire.
  • the insulated wire 40 includes a linear conductor portion 110 and an insulation coating 120 disposed so as to cover the outer peripheral side of the conductor portion 110.
  • the insulating coating 120 is an example of the insulating material 10. That is, the insulating coating 120 is formed of the above-described resin composition for insulating material.
  • the conductor constituting the conductor portion 110 may be a single wire formed into a desired shape by drawing a single wire or the like, or may be formed of a plurality of linear bodies such as a stranded wire. Good.
  • the insulating coating 120 can be formed by extruding the resin composition for an insulating material.
  • it can be formed by extruding the resin composition for an insulating material onto the surface of the conductor while conveying the conductor constituting the conductor portion 110.
  • the insulated wire 40 having such an insulation coating 120 can be suitably used as a wire with a small amount of charge accumulation in the insulation coating 120.
  • the insulated wire includes a linear conductor portion 110 such as copper and aluminum, and an insulating coating 120 made of an insulating material and covering the outer surface of the conductor portion. Refers to the wires that it contains.
  • FIG. 4 is a schematic cross-sectional view showing an example of a cable.
  • the cable 50 includes a conductor portion 210 which is linear and has a circular shape in a cross section perpendicular to the longitudinal direction.
  • the cable 50 is a single core cable having a single conductor portion 210.
  • the inner semiconductive layer 220, the insulating layer 230, the outer semiconductive layer 240, the shielding portion 250, the pressing tape 260, and the sheath 270 are arranged concentrically in the radially outward direction centering on the circular conductor portion 210. Be placed.
  • the conductor constituting the conductor portion 210 may be a single wire formed into a desired shape by drawing a single wire or the like, or may be formed of a plurality of linear bodies such as a stranded wire. Good.
  • the inner semiconductive layer 220 and the outer semiconductive layer 240 are each made of a semiconductive material such as a semiconductive tape or a semiconductive resin compounded with conductive carbon black.
  • the inner semiconductive layer 220 and the outer semiconductive layer 240 can be formed by winding a semiconductive tape at a predetermined position, or extruding a semiconductive resin.
  • the insulating layer 230 is an example of the insulating material 10. That is, the insulating coating 120 is formed of the above-described resin composition for insulating material. It can form by extrusion-molding the said resin composition for insulating materials. For example, it can be formed by extruding the resin composition for an insulating material onto the surface of the inner semiconductive layer 220 while conveying the conductor coated with the inner semiconductive layer 220.
  • the shielding unit 250 is made of, for example, a copper tape or a wire shield.
  • the shielding portion 250 can be formed by winding them around the surface of the outer semiconductive layer 240.
  • the pressing tape 260 is provided to fix each member, and is made of an insulating material such as an insulating resin.
  • the pressing tape 260 is disposed by being wound around the surface of the shielding portion 250.
  • the sheath 270 is a covering material made of an insulating material such as polyvinyl chloride or polyethylene.
  • the sheath 270 can be formed by extruding an insulating material such as polyvinyl chloride so as to cover the surface of the holding tape 260.
  • the cable 50 having such an insulating layer 230 can be suitably used as a cable with a small amount of charge accumulation in the insulating layer 230.
  • a cable means a linear body in which the outermost surface of one or a plurality of convergent bodies of the above-mentioned insulated wire is covered with an insulating covering layer (sheath) as shown in FIG.
  • the conductor portion 210 shows a single core cable, but as the cable, a plurality of single core cables are put together as an aggregate, and the outer periphery of the aggregate is It may be a multicore cable in which a sheath is formed to cover it.
  • resin composition for insulating material Preparation of resin composition for insulating material
  • a resin constituting the resin component, an inorganic filler, and, if necessary, an additive such as carbon black were prepared.
  • a resin composition for an insulating material was prepared by thoroughly mixing predetermined amounts of these components using a twin-screw mixer at a temperature setting of 150 ° C. to 200 ° C., and obtained as pellets.
  • Condition 1 quenching
  • the sample was preheated for 3 minutes and pressurized for 2 minutes with a thermal press heated to 190 ° C., and while being pressurized, only the sample was transferred to a press at room temperature to continue cooling.
  • the time to complete cooling was about 2 minutes (about 80 ° C./min cooling rate).
  • the thickness of the sample sheet was measured with a micrometer in advance.
  • the sample sheet was held on an electrode of 73 mm ⁇ made of high-pressure side brass, 65 mm ⁇ lower part, 2 mm guard electrode width. In this state, the sample and all the electrodes were immersed in silicone oil and heated at 80 ° C. for 20 minutes. After confirming that the temperature was stabilized, a voltage equivalent to 100 kV / mm was applied to the sample based on the measured thickness of the sample sheet. The value of volume resistance was calculated based on the current value measured after applying a voltage for 10 minutes.
  • the thickness of the sample sheet was measured with a micrometer in advance.
  • the sample sheet was held with an electrode of 73 mm in high-pressure side brass, 65 mm in lower part, 2 mm in guard electrode width, and fixed so that the contact state of the sheet and the electrode was maintained. Based on the measured thickness of the sample sheet, a voltage equivalent to 100 kV / mm was applied to the sample. When the voltage was raised by instantaneous boosting, charge was accumulated instantaneously. And the charge Q 0 immediately after start of the application of the voltage (within about 20 seconds), measured under the conditions of 80 ° C. The charge to Q 1 Upon expiration of the voltage applied to 300 seconds continuously, and recorded. The charge ratio (Q 1 / Q 0 ) was calculated from the obtained charge and used as an index of the accumulated charge amount.
  • the melting point was measured by a differential scanning calorimeter (DSC). The temperature was raised from an initial temperature of 0 ° C. to 300 ° C. at a temperature rising rate of 10 ° C./min, and the temperature at which the largest endothermic peak was observed was taken as the melting point.
  • DSC differential scanning calorimeter
  • Storage elastic modulus The storage elastic modulus was measured in a dynamic viscoelasticity measuring apparatus (Dynamic Mechanical Spectroscopy, DMS). The temperature was raised from an initial temperature of 0 ° C. to 300 ° C. at a temperature rising rate of 10 ° C./min, and storage elastic modulus E ′ was measured in a tensile mode with an expansion and contraction of 0.08%.
  • Tables 1 to 7 The composition of each sample and the evaluation results of the physical properties measured as described above are shown in Tables 1 to 7 below.
  • the components used in Tables 1 to 7 are as follows.
  • VLDPE Very low density polyethylene
  • MFR 0.5
  • density 0.87
  • HDPE high density polyethylene
  • MFR 0.8
  • density 0.95
  • LDPE low density polyethylene
  • MFR 1.4
  • density 0.92
  • EPR ethylene-propylene rubber (Mooney viscosity at 125 ° C .: 61 (Moony unit))
  • the unit of the numerical value in an evaluation item is as follows.
  • Tensile strength 25 ° C, using autograph): MPa
  • Heat resistance is a problem in sheets using polyethylene resins.
  • the melting point is 125 ° C, and at 130 ° C, it melts and the storage elastic modulus can not be measured.
  • the storage elastic modulus at 130 ° C. is extremely low at 0.5 MPa, and it can be seen that the sheet is softened. Thus, it was demonstrated that the heat resistance of the sheet using the polyethylene resin is not sufficient.
  • the experiment No. in Table 1 No. 106 is experiment No. This corresponds to the example of 109 carbon black not blended.
  • the experiment No. in Table 1 106 and the experiment No. in Table 2 As can be seen by comparing 109, the amount of charge stored in the sheet hardly changes depending on the presence or absence of carbon black. Rather, it can be seen that the inclusion of carbon black reduces the value of the DC breakdown field of the sheet, and the breakdown resistance is reduced. Thus, it is understood that carbon black is not suitable as a filler to be blended in a polyethylene resin.
  • the resin component contained in the resin composition for insulating material is a blend of a polypropylene resin and a polyethylene resin, sufficient charge storage amount reduction effect and sufficient heat resistance are exhibited. Ru.
  • the content of the inorganic filler is 0.2 parts by mass or more with respect to 100 parts by mass of the resin component. It is understood that it is necessary to control the composition to be in the range of 4 parts by mass or less.
  • the inorganic filler as long as it is at least one selected from the group consisting of oxides of metal or silicon, hydroxide and carbonate, the influence of the difference in the type of inorganic filler is I understand that there are few.
  • a resin composition capable of forming an insulating material that achieves both heat resistance and difficulty in charge accumulation.
  • the insulating material which consists of said resin composition for insulating materials has sufficient heat resistance as an insulating material, it is possible to use uncrosslinked without bridge
  • Such a resin composition for insulating material and the insulating material can be suitably used as an insulating coating of an insulated wire or cable, or an insulating tube.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Organic Insulating Materials (AREA)
  • Insulated Conductors (AREA)

Abstract

融点130℃以上のポリプロピレン系樹脂を含む樹脂成分と、金属の酸化物、水酸化物および炭酸塩からなる群から選択される少なくとも1種の無機充填材と、を含む。 樹脂成分100質量部に対し、無機充填材の含有量が0.2質量部以上4質量部以下である。また無機充填材の平均粒径は10nm以上1000nm以下である。

Description

絶縁材用樹脂組成物、絶縁材、絶縁電線及びケーブル
 本開示は、絶縁材用樹脂組成物、絶縁材、絶縁電線及びケーブルに関するものである。本出願は、2017年12月15日出願の日本出願第2017-240792号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。
 ポリエチレンを主成分とするベース樹脂に無機充填材が分散されたポリエチレン樹脂組成物が知られている。このようなポリエチレン樹脂組成物は、例えば電力ケーブルの絶縁層を構成する絶縁性の材料として使用されている。特許文献1には、無機充填材が添加され、直流電力ケーブルの絶縁層に用いられる架橋ポリエチレン組成物が開示されている。特許文献1によれば、無機充填材を添加することで、上記架橋ポリエチレン組成物から形成された絶縁被覆に直流高電圧を印加した際の空間電荷の蓄積が抑制される旨が開示されている。
 特許文献2には、ポリエチレン樹脂を含むベース樹脂と、無機充填材とを混合して得られるマスタバッチ、およびそのマスタバッチを用いて製造される絶縁材料が開示されている。
 特許文献3には、低密度ポリエチレンを含有する基本樹脂(ベース樹脂)と、ナノ無機粒子とを含む絶縁組成物、およびその絶縁組成物から形成された直流用電力ケーブルとが開示されている。
特開2010-121056号公報 特開2015-183039号公報 特開2012-23007号公報
 本開示の絶縁材用樹脂組成物は、融点130℃以上のポリプロピレン系樹脂を含む樹脂成分と、金属の酸化物、水酸化物および炭酸塩からなる群から選択される少なくとも1種の無機充填材と、を含む。樹脂成分100質量部に対し、無機充填材の含有量が0.2質量部以上4質量部以下である。また無機充填材の平均粒径は10nm以上1000nm以下である。
絶縁材の一例を示す概略断面図である。 絶縁チューブの一例を示す概略斜視図である。 絶縁電線の一例を示す概略断面図である。 ケーブルの一例を示す概略断面図である。
[本開示が解決しようとする課題]
 上述の特許文献1~3に記載されているように、樹脂と、樹脂中に分散された無機充填材とを含む絶縁材用の樹脂組成物としては、ポリエチレン系の樹脂組成物が広く使用されている。中でもポリエチレンを架橋した架橋ポリエチレンを含むものが多く使用されている。ポリエチレン系の樹脂組成物は、絶縁性に優れ、内部に電荷が蓄積しにくい絶縁材を形成する材料として好適である。一方、ポリエチレン系の樹脂組成物の短所は耐熱性が低いことである。架橋により耐熱性は向上するものの未だ充分ではなく、より耐熱性の高い絶縁材用の樹脂組成物が求められている。
 そこで、耐熱性と電荷の蓄積しにくさとを両立する絶縁材を形成可能な樹脂組成物を提供することを目的の1つとする。
[本開示の効果]
 上記絶縁材用樹脂組成物によれば、耐熱性と電荷の蓄積しにくさとを両立する絶縁材を形成可能な樹脂組成物を提供することが可能となる。
 [本開示の実施形態の説明]
 最初に本開示の実施形態を列記して説明する。本開示の絶縁材用樹脂組成物は、融点130℃以上のポリプロピレン系樹脂を含む樹脂成分と、金属の酸化物、水酸化物および炭酸塩からなる群から選択される少なくとも1種の無機充填材と、を含む。樹脂成分100質量部に対し、無機充填材の含有量が0.2質量部以上4質量部以下である。また無機充填材の平均粒径は10nm以上1000nm以下である。
 ポリプロピレンはポリエチレンよりも耐熱性が高く、ポリエチレンの代替材料として想定される樹脂の一つである。しかしながら、絶縁材としてはポリエチレン系の絶縁材が主流である。その理由の一つとして、ポリプロピレンはポリエチレンに比べて結晶化しやすいことがある。結晶性が高い樹脂からなる絶縁層では、電荷が絶縁材内部に蓄積しやすい傾向がある。絶縁材内部の電荷の蓄積量が増大すると、絶縁材内部の電荷蓄積領域(例えば結晶界面)において局所的に分極が生じ、欠陥や絶縁破壊の発生に繋がるおそれがある。絶縁材内部に蓄積される空間電荷は絶縁破壊の一因とも考えられている。そのため耐熱性が高いにも関わらず、ポリプロピレン系の絶縁材の使用例は限定されている。耐熱性の高いポリプロピレン系樹脂を絶縁材として使用するためには、絶縁材内部における電荷の蓄積の問題を解消する必要がある。
 本発明者らは、検討の結果、添加される無機充填材の量および平均粒径を制御することで、電荷の蓄積量が低減されることを見出した。これは、無機充填材が本来有する第1の電荷蓄積量低減効果と、ポリプロピレン系樹脂の結晶性の緩和による第2の電荷蓄積量低減効果とが相乗的に作用した結果であると考えられる。含有量と平均粒径が制御された無機充填材はポリプロピレン系樹脂内部で適度に分散されやすく、ポリプロピレンの結晶性を適度に乱し、樹脂成分の結晶性を低下させるものと考えられる。また無機充填材がポリプロピレン系樹脂内で適度に分散されることにより、無機充填材の第1の電荷蓄積量低減効果が絶縁材全体にわたって満遍なく発揮される。このようにして、耐熱性と電荷の蓄積しにくさとを両立する絶縁材を形成可能な樹脂組成物が提供される。
 上記絶縁材用樹脂組成物において、ポリプロピレン系樹脂は架橋されていないのが好ましい。架橋を行う場合、架橋による工程の複雑化や、架橋残渣による絶縁性の低下の問題が生じ得る。また架橋された樹脂はリサイクルが難しい。さらにポリプロピレン系樹脂はポリエチレン系樹脂と異なり、メチル基を有する三級炭素が存在し、架橋を行った場合、同時に三級炭素における分解も生じる。そのため、ポリプロピレン系樹脂は架橋が難しい樹脂である。一方、ポリプロピレン系樹脂は架橋を行わなくても十分に高い耐熱性を有する。これらの理由により、ポリプロピレン系樹脂は架橋されていないものであるのが好ましい。
 上記絶縁材用樹脂組成物において、上記無機充填材が球状酸化マグネシウム又は酸化亜鉛であってもよい。これらの無機充填材を含有する絶縁材用樹脂組成物は、耐熱性と電荷の蓄積しにくさとを両立する絶縁材を形成するのに好適である。
 上記絶縁材用樹脂組成物において、無機充填材が、その表面にさらにコート層を有していてもよい。その表面にコート層を有する無機充填材を上記無機充填材として採用することにより、無機充填材の凝集をより効果的に抑制し、樹脂成分中での無機充填材の分散性をより高めることができる。
 上記絶縁材用樹脂組成物において、ポリプロピレン系樹脂は、ホモポリプロピレン、ポリプロピレンランダムコポリマー、ポリプロピレンブロックコポリマー、およびオレフィン系エラストマーからなる群から選択される少なくとも1種であってもよい。これらのポリプロピレン系樹脂は、上記所望の物性を有する絶縁材を形成するために好適である。
 本開示の絶縁材は、上記絶縁材用樹脂組成物から形成され、ポリプロピレン系樹脂を含む樹脂層部と、樹脂層部に分散された無機充填材の粒子部と、を備える。このような絶縁材は、耐熱性と電荷の蓄積しにくさとを両立する好適な絶縁材である。
 絶縁材は、絶縁電線若しくはケーブルの絶縁被覆、又は絶縁チューブであってもよい。本開示の絶縁材は、これらの用途に好適に使用することができる。
 本開示の絶縁材は、絶縁材用樹脂組成物から形成された絶縁材であって、前記絶縁材用樹脂組成物は、融点130℃以上のポリプロピレン系樹脂を含む樹脂成分と、金属又はケイ素の酸化物、水酸化物および炭酸塩からなる群から選択される少なくとも1種の無機充填材とを含み、前記樹脂成分100質量部に対し、前記無機充填材の含有量が0.2質量部以上4質量部以下であり、前記無機充填材の平均粒径が10nm以上1000nm以下であり、前記ポリプロピレン系樹脂が、ホモポリプロピレン、ポリプロピレンランダムコポリマー、ポリプロピレンブロックコポリマー、およびオレフィン系エラストマーからなる群から選択される少なくとも1種であり、
 前記絶縁材は、前記ポリプロピレン系樹脂を含む樹脂層と前記樹脂層に分散された前記無機充填材の粒子部とを備え、
 前記絶縁材は、絶縁電線若しくはケーブルの絶縁被覆、又は絶縁チューブである。
 このような絶縁材は、耐熱性と電荷の蓄積しにくさとを両立する好適な絶縁材である。
 本開示の絶縁電線又はケーブルは、線状の導体部と、導部体の外周側を覆うように配置される、上記絶縁材である絶縁被覆と、を備える。このような絶縁電線又はケーブルは、耐熱性と電荷の蓄積しにくさとを両立する好適な絶縁被覆を備え、耐久性に優れた絶縁電線又はケーブルとして好適に使用することができる。
 [本開示の実施形態の詳細]
 次に、本開示の絶縁材用樹脂組成物、絶縁材、絶縁電線及びケーブルのそれぞれの一実施の形態を、必要に応じて図面を参照しつつ説明する。以下の図面において同一または相当する部分には同一の参照番号を付しその説明は繰り返さない。
 [絶縁材用樹脂組成物]
 まず本実施の形態に係る絶縁材用樹脂組成物について説明する。上記絶縁材用樹脂組成物は、ポリプロピレン系樹脂と、無機充填材とを含む。
 [樹脂成分]
 本実施の形態に係る絶縁材用樹脂組成物は、樹脂成分として融点130℃以上のポリプロピレン系樹脂を含む。融点130℃以上のポリプロピレン系樹脂とは、プロピレン由来の単位を分子内に(例えば10モル%以上、好ましくは20モル%以上、30モル%以上または40モル%以上)含む重合体であって、融点が130℃以上のものを意味する。ポリプロピレン系樹脂は、未架橋の状態でも架橋ポリエチレン系樹脂と比較して耐熱性が高い。樹脂成分がこのようなポリプロピレン系樹脂を含むことにより、充分な耐熱性を有する絶縁材を提供することが可能となる。
 上記ポリプロピレン系樹脂としては、ポリプロピレン単独重合体(ポリプロピレンホモポリマー)(h-pp)、プロピレンランダム共重合体(プロピレンランダムコポリマー)(r-pp)、ブロックポリプロピレン(b-pp、ホモポリプロピレンの中にエチレン由来の成分を含む物質が分散したもの)、オレフィン系エラストマー(TPO、ホモポリプロピレンからなる母材にエチレン‐プロピレンゴム微分散させたプロピレン系樹脂)などであって、130℃以上の融点を有するものが挙げられる。r-ppはコモノマーとしてエチレン又はブテン-1、ヘキセン-1、オクテン-1などを含む。r-ppにおけるコモノマーの含有量は例えば1質量%以上40質量%以下である。b-ppはプロピレン由来の単位以外にエチレン又はエチレン-プロピレンゴム(Ethylene Propylene Rubber,EPR)成分などのエチレン由来の成分を含む物質を含む(EPR成分の含有量は概ね20質量%以下である)。オレフィン系エラストマー(TPO)は、b-ppよりも多い量(例えば20質量%超70質量%以下)のエチレン又はエチレン-プロピレンゴム(EPR)成分(またはブテン-1、ヘキセン-1、オクテン-1などを含んでもよい)をプロピレン由来の単位以外に含む。
 本開示において使用されるポリプロピレン系樹脂は、130℃以上の融点を有する樹脂である。融点が130℃以上のポリプロピレン系樹脂を含有することにより、絶縁材用樹脂組成物から形成される絶縁材は、使用上充分な高温に耐えうる高い耐熱性を有する。その耐熱性は架橋ポリエチレン系の絶縁材と比較しても充分に高い。上記融点は、示差走査熱量測定(Differential scanning calorimetry、DSC)において、固体の試料(ポリプロピレン系樹脂)が融解する温度を測定することにより求められる。融点は、好ましくは140℃以上である。融点の上限は特に限定はないが、融点があまり高すぎると加工しにくいことから、融点は例えば200℃以下であるのが好ましい。
 ポリプロピレン系樹脂は、架橋されていないものであるのが好ましい。架橋を行う場合、架橋による工程の複雑化、架橋による加工性の低減、手間と時間を伴う架橋工程による生産性の低減、架橋副産物による絶縁特性への悪影響などの問題が起こりうる。また架橋された樹脂はリサイクルが難しい。これに対し、ポリプロピレン系樹脂は未架橋のままでも絶縁材として充分な耐熱性を有することから、敢えて架橋を行う必要性がない。架橋されていないポリプロピレン系樹脂を用いることで、架橋に伴う上記問題の発生を避けることができる。またポリプロピレンはメチル基により置換された三級炭素を有し、架橋反応を行おうとすると、三級炭素での分解反応も進行することから、ポリエチレンと比較して架橋が難しい樹脂でもある。そのためポリプロピレン系樹脂の架橋は行わなくてもよい。
 絶縁材用樹脂組成物は、樹脂成分として、ポリプロピレン系樹脂以外の他の樹脂成分を含んでもよい。上記他の樹脂成分としては、エチレン、ブテン-1、ヘキセン-1、オクテン-1などのオレフィン系単量体の単独重合体若しくは相互共重合体、上記オレフィン系単量体と他の単量体(酢酸ビニルを含むビニル系単量体など)との共重合体、エチレン、ブテン-1、ヘキセン-1、オクテン-1などのオレフィン系単量体由来の単位を1以上分子内に有するゴム又はエラストマーなどが挙げられる。
 上記ポリプロピレン系樹脂以外の他の樹脂成分の例としては、ポリエチレン(高密度ポリエチレン、中密度ポリエチレン、低密度ポリエチレン、超低密度ポリエチレンなど)、およびエチレン-プロピレンゴムなどが挙げられる。また(ポリ)プロピレン成分を一部に含む、融点が130℃未満の樹脂成分を、上記絶縁材用樹脂組成物の高い耐熱性を損なわない範囲において、上記融点130℃以上のポリプロピレン系樹脂と併用してもよい。
 絶縁材用樹脂組成物はポリプロピレン系樹脂以外の上記他の樹脂成分を含んでもよいが、その場合であっても、ポリプロピレン系樹脂の高い耐熱性が維持されるような配合比であるのが望ましい。具体的には、樹脂成分全体の含有量を100質量%として、ポリプロピレン系樹脂の含有量が30質量%以上であるのが好ましく、40質量%以上であるのが好ましく、60質量%以上であるのがより好ましく、80質量%以上であるのがさらに好ましく、90質量%以上であるのが特に好ましい。
 [無機充填材]
 本実施の形態に係る絶縁材用樹脂組成物は金属又はケイ素の酸化物、水酸化物および炭酸塩からなる群から選択される少なくとも1種の無機充填材を含む。これらは非導電性の物質である。上記無機充填材を含むことにより絶縁材内部における電荷の蓄積量が低減される。また後述するように、含有量および平均粒径が制御された状態で無機充填材を含有する場合、ポリプロピレン系樹脂の結晶性が適度に乱され結晶性が低下する。結晶性が低下すると、絶縁材内部における電荷の蓄積も低減する傾向がある。そのため、無機充填材の量および平均粒径を制御することにより、無機充填材が本来有する第1の電荷蓄積量低減効果と、ポリプロピレン系樹脂の結晶性の緩和による第2の電荷蓄積量低減効果との相乗的効果によって絶縁材内部における電荷の蓄積量がより充分に低減される。
 上記無機充填材は、金属又はケイ素の酸化物、水酸化物および炭酸塩からなる群から選択される少なくとも1種である。なかでも周期表の1族、2族と12族から16族に含まれる金属元素である典型金属元素、およびケイ素の酸化物、水酸化物および炭酸塩からなる群から選択される少なくとも1種が好ましい。また上記金属は酸化チタンなどの遷移金属の酸化物、水酸化物および炭酸塩であってもよい。なかでも周期表の2族、12族、13族に含まれる金属元素又はケイ素の酸化物、水酸化物および炭酸塩からなる群から選択される少なくとも1種が特に好ましい。上記典型金属元素の例としては、例えばマグネシウム、カルシウムなどの第2族元素、亜鉛などの第12族元素、アルミニウムなどの第13族元素などが挙げられる。
 また上記無機充填材としては、具体的には酸化マグネシウム、酸化カルシウム、酸化亜鉛、酸化アルミニウム(アルミナ)、酸化ケイ素(シリカ)、酸化チタンなどの酸化物、水酸化マグネシウム、水酸化カルシウム、水酸化亜鉛、水酸化アルミニウムなどの水酸化物、炭酸マグネシウム、炭酸カルシウム、炭酸ケイ素などの炭酸塩などが挙げられる。これらは上記樹脂組成物または樹脂組成物から形成される絶縁材内に単独で含まれていてもよく、2種以上含まれていてもよい。また樹脂組成物や絶縁材内において、酸化物、水酸化物又は炭酸塩の一部が反応したこれらの反応物として含まれていてもよい。
 また効果や取り扱いやすさの点から、無機充填材としては球状酸化マグネシウム又は酸化亜鉛が特に好ましい。なお「球状」とは厳密な真球を意味するのではなく、全体が丸みを帯びた立体全体を表すことを意図している。この「球状」の形状には実質的に球体とみなすことができる種々の形状が含まれる。一方、直方体状や立方体状などの多面体状のもの、筒状や柱状、針状のものなどについては上記「球状」には含まれない。そのような形状としては、表面が曲面状の球体に近い形状、回転楕円体状、球が変形したもの(球状の形状の一部が凹んだり欠けたりしたものを含む)などが含まれる。酸化マグネシウムのうち球状のものは電界が集中しやすい角部を有していない点で好ましい。
 上記無機充填材は、分散性の向上や凝集防止の目的でその表面にさらにコート層を有していてもよい。このようなコート層は、表面処理剤を用いて無機充填材の粒子の表面をコーティングすることにより形成される。表面処理剤としてはカップリング剤、ケイ素系化合物、脂肪酸、脂肪酸石けん、リン酸エステル、有機高分子などが挙げられる。
 上記カップリング剤としては、シラン系カップリング剤(例えばビニルシラン、アルコキシシランまたはその誘導体など)、チタネート系カップリング剤、アルミニウム系カップリング剤、ジルコネート系カップリング剤もしくはこれらの混合物が挙げられる。上記ケイ素系化合物としては、アミノポリシロキサン、ハイドロゲンジメチコン(メチルハイドロジェンポリシロキサン)などのポリシロキサン、アルキルシラン、アミノシラン、メタクリルシラン、ビニルシラン若しくはアクリルシランなどのシラン化合物、およびシリコーンオイルなどが挙げられる。上記脂肪酸としては、ステアリン酸、オレイン酸などが挙げられる。上記有機高分子としては、1-ヘプテン、1-オクテン、1-ノネン、1-デセン等のα-オレフィンの単独もしくは相互共重合体、ポリエチレン、ポリプロピレン、エチレン-エチルアクリレート共重合体、エチレン-酢酸ビニル共重合体、及びそれらの誘導体等の、表面処理剤として使用可能な有機高分子が挙げられる。
 無機充填材の含有量は、ポリプロピレン系樹脂を含む樹脂成分100質量部に対し0.2質量部以上4質量部以下である。無機充填材の量が多すぎると無機充填材が凝集しやすく、絶縁材の破壊耐性(特に直流破壊耐性)が低下する。無機充填材の量が少なすぎると、ポリプロピレン系樹脂の結晶性が高いまま維持され、電荷蓄積量低減効果が充分に発揮されなくなる。無機充填材の含有量を、ポリプロピレン系樹脂100質量部に対し、0.2質量部以上4質量部以下に制御することにより、充分な電荷蓄積量低減効果が発揮される。無機充填材の含有量は、好ましくは1質量部以上である。また好ましくは3質量部以下、より好ましくは2.5質量部以下である。
 本実施の形態において、無機充填材の平均粒径は10nm以上1000nm以下である。平均粒径が10nm未満であると、平均粒径が細かすぎて取扱いが難しい。また無機充填材が凝集しやすくなるので、かえって電荷が蓄積しやすくなる。逆に無機充填材の平均粒径が1000nmを超える場合、絶縁材の破壊耐性が低下する。無機充填材の平均粒径は30nm以上であるのが好ましい。また800nm以下であるのが好ましく、700nm以下であるのがより好ましい。
 本開示において、上記平均粒径は、実際に測定される試料の体積と同一体積の球を想定した場合の球の直径に相当する体積球相当径の平均値である。平均粒径を求めるための各粒子の粒径は一次粒子と二次粒子(凝集した状態の粒子)を区別せずに測定される粒子の径である。各粒子の粒径として求められるこの粒径の値は粒子の凝集の影響を考慮しており、未凝集の一次粒子が独立して分散された状態においては一次粒子径の値を、凝集した粒子については凝集体の粒径の値を意味する。このようにして求められる一次粒子径の値および凝集体の粒径から求められる粒子の粒径(体積球相当径)の平均値を上記平均粒径とする。
 上記平均粒径は、例えば粒子径測定装置において、無機充填材の粒子を溶媒中に分散させ、分散粒子にレーザ光を照射して散乱される散乱光を検出し、その散乱光の強度に基づいて平均粒径を算出する動的光散乱法に基づいて測定することが可能である。動的光散乱法により求められる粒子径から、平均粒径を求めることができる。
 絶縁材用樹脂組成物は、上記成分以外の他の成分を含んでもよい。絶縁材用樹脂組成物が含んでもよい添加剤としては、酸化防止剤、滑剤、結晶化核剤などが挙げられる。
 [用途]
 本実施の形態に係る絶縁材用樹脂組成物は、絶縁電線やケーブルの絶縁被覆、配線の接点や導体などを被覆する絶縁チューブなどの絶縁材の材料として好適に適用できる。なかでも、直流高電圧が印加された際の空間電荷の蓄積量を低減できることから、直流高電圧用ケーブルの絶縁材を形成するための材料として特に好適である。
 [絶縁材の構成]
 次に図1および図2を参照して、本実施の形態にかかる絶縁材の構成を説明する。図1は絶縁材の一例を示す概略断面図である。図2は、絶縁材の一例である絶縁チューブの一例を示す概略断面図である。
 図1を参照して、絶縁材10は、上述の絶縁材用樹脂組成物から形成される。絶縁材10は、ポリプロピレン系樹脂を含む樹脂層部20と、樹脂層に分散された無機充填材の粒子部30と、を備える。
 上述したとおり、絶縁材用樹脂組成物における無機充填材の含有量および平均粒径は制御されている。そのため、絶縁材用樹脂組成物内において凝集が少ない状態で無機充填材が広く分散される。そのような絶縁材用樹脂組成物から形成される絶縁材10においては無機充填材からなる粒子部30は樹脂層部20内に満遍なく分散されている。このような絶縁材10においては、粒子部30の凝集によって局所的な破壊耐性の低下や電荷蓄積量の増大が起こりにくい。また、このような絶縁材10は全体として電荷の蓄積量が低減される。これは無機充填材が本来有する第1の電荷蓄積量低減効果と、ポリプロピレン系樹脂の結晶性の緩和による第2の電荷蓄積量低減効果との相乗的効果によるものである。これは粒子部30が樹脂層部20内に満遍なく分散されていることにより、ポリプロピレン系樹脂の結晶性が低下するものと考えられる。
 絶縁材10は、上記絶縁材用樹脂組成物を溶融温度に加熱し、所望の形状に成形した後、必要に応じて熱プレスし、冷却することによって製造することができる。冷却工程においては、冷却速度を高くして急冷する方が、徐冷に比べて結晶化が進行しにくい点で好ましい。ただし、本開示の絶縁材用樹脂組成物は、無機充填材からなる粒子部30により結晶化の進行が制御されるため、急冷と徐冷による電荷蓄積量の差は小さい。そのため、冷却工程の制限が少なく、急冷のための設備が必須でない点で製造プロセスの設計の自由度が高いという利点がある。
 このようにして形成される絶縁材10の応用例としては、図2に示すような配線の接点や導体などを被覆するための絶縁チューブ80が挙げられる。またその他の例として、絶縁電線やケーブルの絶縁被覆なども挙げられる。そのうち、絶縁電線およびケーブルの例を下記に示す。
 [絶縁電線の構成]
 図3を参照して、本実施の形態に係る絶縁電線の構成を説明する。図3は絶縁電線の一例を示す概略断面図である。図3を参照して、絶縁電線40は、線状の導体部110と、導体部110の外周側を覆うように配置される絶縁被覆120とを備える。絶縁被覆120は、上記絶縁材10の一例である。すなわち、絶縁被覆120は上記絶縁材用樹脂組成物から形成される。
 図3において、導体部110を構成する導体は、単一の線を引き抜き加工などにより所望の形状になるよう成形した単線であってもよく、撚り線などの複数の線状体からなってもよい。
 絶縁被覆120は、上記絶縁材用樹脂組成物を押出成形することにより形成することができる。例えば導体部110を構成する導体を搬送しながら上記絶縁材用樹脂組成物を導体の表面に押し出しながら成形することにより形成することができる。
 このような絶縁被覆120を有する絶縁電線40は、絶縁被覆120内の電荷の蓄積量が少ない電線として好適に使用することができる。
 なお本願明細書において、絶縁電線とは、図3に示すように、銅、アルミなどの線状の導体部110と、絶縁材料からなり、上記導体部の外側表面を被覆する絶縁被覆120とを含む電線をいう。
 [ケーブルの構成]
 図4を参照して、本実施の形態に係るケーブルの構成を説明する。図4はケーブルの一例を示す概略断面図である。図4を参照して、ケーブル50は、線状で、長手方向に垂直な断面において円形の形状を有する導体部210を備える。ケーブル50は単一の導体部210を有する単芯ケーブルである。その円形の導体部210を中心に、半径方向外側に向かって同心円状に、内部半導電層220、絶縁層230、外部半導電層240、遮蔽部250、押えテープ260、及びシース270がこの順に配置される。
 図4において、導体部210を構成する導体は、単一の線を引き抜き加工などにより所望の形状になるよう成形した単線であってもよく、撚り線などの複数の線状体からなってもよい。
 内部半導電層220及び外部半導電層240は、それぞれ、半導電性テープや、導電性のカーボンブラックが配合された半導電性樹脂などの半導電性物質から構成される。内部半導電層220及び外部半導電層240は、半導電性テープを所定の位置に巻きつける、あるいは半導電性樹脂を押出成形する、などの方法により形成することができる。
 絶縁層230は、上記絶縁材10の一例である。すなわち、絶縁被覆120は上記絶縁材用樹脂組成物から形成される。上記絶縁材用樹脂組成物を押出成形することにより形成することができる。例えば内部半導電層220で被覆された導体を搬送しながら、上記絶縁材用樹脂組成物を内部半導電層220の表面に押し出しながら成形することにより形成することができる。
 遮蔽部250は、例えば銅製のテープやワイヤシールドなどからなる。これらを外部半導電層240の表面に巻きつけることにより遮蔽部250を形成することができる。
 押えテープ260は、各部材を固定するために設けられるものであって、絶縁性樹脂などの絶縁性材料からなる。押えテープ260は、遮蔽部250の表面に巻きつけることにより配置される。
 シース270はポリ塩化ビニルやポリエチレンなどの絶縁性物質からなる被覆材である。シース270は、押えテープ260の表面を被覆するようにポリ塩化ビニルなどの絶縁性物質を押出成形することにより形成することができる。
 このような絶縁層230を有するケーブル50は、絶縁層230内の電荷の蓄積量が少ないケーブルとして好適に使用することができる。
 なお本願明細書においてケーブルとは、図4に示すように、上記絶縁電線の1本、又は複数本の収束体の最も外側の面が絶縁性の被覆層(シース)で覆われた線状体をいう。また上記実施の形態および図4においては導体部210が単一の単芯ケーブルを示しているが、ケーブルとしては、複数の単芯ケーブルを集合体としてまとめた上で、その集合体の外周を覆うようにシースを形成した多芯ケーブルであってもよい。
 次に実施例として、本開示の発明の効果を確認するために以下の検証を行い、特性を評価した。
[絶縁材用樹脂組成物の調製]
 下記表1~表7に示す配合に従って、樹脂成分を構成する樹脂と、無機充填材と、必要に応じてカーボンブラックなどの添加剤とを準備した。所定の量のこれらの成分を、二軸混合機を用いて150℃~200℃の温度設定で充分に混合を行うことにより絶縁材用樹脂組成物を調製し、ペレットとして得た。
 [評価用シートの作製]
 上記のようにして得られたペレットを用い、オープンロール機で縦約200mmx横約200mm×厚み約0.2mmのシート状に加工した。得られたシート状の樹脂組成物成形体を熱プレスすることにより、縦180mm×横180mm×厚み0.2mmのシートを成形した。
 熱プレス工程およびその後の冷却工程については、下記に示す条件1(急冷)と条件2(徐冷)のいずれかの条件で行った。
 条件1(急冷)
 190℃に加熱した熱プレス機で予熱3分、加圧2分行い、加圧したまま常温のプレス機にサンプルのみ移して冷却を継続した。冷却完了までの時間を約2分とした(約80℃/分の冷却速度)。
 条件2(徐冷)
 190℃に加熱した熱プレス機で予熱3分、加圧2分行い、加圧したまま水冷で常温まで冷却した。冷却完了までの時間を約30分とした(約5.3℃/分の冷却速度)。
 [0.2mm厚の試料用シートを用いた評価]
 上記のようにして作製した0.2mm厚の各試料用シートについて、以下の物性に関し評価を行った。評価手順を下記に示す。
 [直流破壊電界]
 10mmφの真鍮製電極で試料用シートの上下方向の端部を保持し、シートと電極の接触状態が維持されるように固定した。この状態で試料と電極すべてをシリコーン油に浸漬し80℃で20分加熱し、温度が安定したことを確認したのち、直流電圧を印加した。自動昇圧で昇圧(3kV/1s)し、破壊した電圧を記録した。破壊部の厚みをマイクロメーターで測定し、電圧/厚みより電界(kV/mm)を算出し、求められた値を直流破壊電界の値(kV/mm)とした。
 [体積抵抗]
 事前に試料用シートの厚みをマイクロメーターで測定した。高圧側真鍮製73mmφ、下部65mmφ、ガード電極幅2mmの電極にその試料用シートをはさんで保持した。この状態で試料と電極すべてをシリコーン油に浸漬し、80℃で20分加熱した。温度が安定したことを確認したのち、測定した試料用シートの厚みに基づいて、100kV/mm相当の電圧を試料に印加した。10分間電圧を印加した後に測定される電流値に基づいて体積抵抗の値を算出した。
 [蓄積電荷量]
 事前に試料用シートの厚みをマイクロメーターで測定した。高圧側真鍮製73mmφ、下部65mmφ、ガード電極幅2mmの電極にその試料用シートをはさんで保持し、シートと電極の接触状態が維持されるように固定した。測定した試料用シートの厚みに基づいて、100kV/mm相当の電圧を試料に印加した。瞬時昇圧で電圧を上昇させると、瞬時に電荷が蓄積した。電圧の印加開始直後(約20秒以内)の電荷Qと、電圧を連続して印加し300秒経過した時点での電荷Qを80℃の条件下で測定し、記録した。得られた電荷から電荷比(Q/Q)を算出し、蓄積電荷量の指標とした。
 [融点]
 融点は示差走査熱量計(DSC)にて測定した。初期温度0℃から300℃まで10℃/minの昇温速度で昇温し、最も大きな吸熱ピークが観測された温度を融点とした。
 [貯蔵弾性率]
 動的粘弾性測定装置(Dynamic Mechanical Spectroscopy、DMS)において貯蔵弾性率を測定した。初期温度0℃から300℃まで10℃/minの昇温速度で昇温し、0.08%の伸縮で引張モードで貯蔵弾性率E’を測定した。
 [引張強さ]
 試料用シートからJIS3号のダンベル形状にシートを打ち抜き、引張試験用試料を作製した。各試料用シートについて3点(n=3)測定した。各引張試験用試料において記録された最大応力を各試料用シートの厚み(マイクロメーターで測定)に基づいて応力に換算した。得られた値の平均値をその試料の引張強さとして記録した。
 各試料の組成、および上記のようにして測定された物性の評価結果を下記表1~表7に示す。表1~表7において、使用した成分は次の通りである。
 [樹脂成分]
(ポリプロピレン系樹脂)
 h-PP:ポリプロピレンホモポリマー、MFR=0.5,密度=0.9、融点160℃
 r-PP:プロピレンランダムコポリマー(コモノマーとしてエチレンを1質量%以上7質量%含む)、MFR=1.3,密度=0.9、融点145℃
 TPO:オレフィン系熱可塑性エラストマー、MFA=1,密度0.88、融点160℃
 (その他の樹脂(ポリエチレン系樹脂等))
 VLDPE:超低密度ポリエチレン、MFR=0.5,密度=0.87
 HDPE:高密度ポリエチレン、MFR=0.8,密度=0.95
 LDPE:低密度ポリエチレン、MFR=1.4,密度=0.92
 EPR:エチレン-プロピレンゴム(125℃でのムーニー粘度:61(ムーニー単位))
 (架橋剤)
 DCP:ジクミルパーオキサイド
 (無機充填材)
 ZnO(1):酸化亜鉛、平均粒径35nm、ハイドロゲンジメチコン表面処理
 ZnO(2):酸化亜鉛、平均粒径100nm、ハイドロゲンジメチコン表面処理、六角板状
 ZnO(3):酸化亜鉛、平均粒径290nm、未処理
 ZnO(4):酸化亜鉛、平均粒径1000nm、ハイドロゲンジメチコン表面処理
 ZnO(5):酸化亜鉛、平均粒径2000nm、ハイドロゲンジメチコン表面処理
 TiO:酸化チタン、平均粒径80nm、アクリルシラン表面処理
 MgO(1):酸化マグネシウム、平均粒径250nm、ビニルシラン表面処理
 MgO(2):酸化マグネシウム、平均粒径650nm、未処理
 SiO:二酸化ケイ素(シリカ)、平均粒径200nm、アルキルシラン表面処理
 Al:酸化アルミニウム(アルミナ)、平均粒径600nm、未処理
 CaCO:炭酸カルシウム、平均粒径150nm、脂肪酸表面処理
 Mg(OH):水酸化マグネシウム、平均粒径540nm、未処理
 CB:カーボンブラック(ケッチェンブラック)
 また、評価項目における数値の単位は次の通りである。
 直流破壊電界(80℃):kV/mm
 体積抵抗(80℃、100kV/mm):1014Ω・cm
 蓄積電荷量(Q/Q)(80℃、100kV/mm):無次元
 融点(DSC法):℃
 貯蔵弾性率(130℃、DMS法):MPa
 引張強さ(25℃、オートグラフ使用):MPa
 また表1~表7において、実験No.1~No.20は実施例を示す。また実験No.101~No.112は比較例を示す。
 [結果]
 (1)結晶性と蓄積電荷量の関係
 結晶性の樹脂は時間をかけて冷却するほど結晶化が進行する。そのため、シート成形時において、熱プレス後、急冷条件(条件1)と徐冷条件(条件2)でシートを冷却し、シートの結晶化度を変更して結晶性と蓄積電荷量の関係を調べた。ポリプロピレン系樹脂としてはプロピレンホモポリマー(h-pp)、プロピレンランダムコポリマー(r-pp)、オレフィン系熱可塑性エラストマー(TPO)の三種類を用いた。結果を表1の実験No.101~106として示す。なお、条件が複雑になるのを防止するために、この段階では無機充填材は未添加であり、表1の結果は全て本開示の比較例の結果である。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、プロピレンホモポリマー(h-pp)、プロピレンランダムコポリマー(r-pp)、オレフィン系熱可塑性エラストマーのいずれの樹脂を用いた場合においても、急冷したシートよりも徐冷したシートの方が蓄積電荷量が大きくなる。このことから、ポリプロピレン系樹脂製のシートにおいては、徐冷され、結晶化度が高くなると内部に電荷が蓄積しやすくなることが分かる。また無機充填材を含有しないシートの成形においては急冷が必須であり、冷却条件が制限されることから、製造工程上の自由度が制限される。ただし、急冷しても実験No.101およびNo.103の蓄積電荷量は許容レベルである1.5を超えており、未だ充分でないことが分かる。
 (2)従来例の検証
 (2-1)ポリエチレン系樹脂を用いた検証
 参照として、ポリエチレン系樹脂を用いたシートを作成し、物性を評価した。結果を表2に示す。実験No.107は未架橋のポリエチレン系樹脂(HDPE)を使用した例である。また実験No.108は架橋ポリエチレン系樹脂(LDPEに架橋剤であるDCPを配合したもの)を使用した例である。また無機充填材としてMgO(1)を配合した。
 ポリエチレン系樹脂を用いたシートにおいては耐熱性が問題となる。実験No.107のシートにおいては融点が125℃であり、130℃では溶融し貯蔵弾性率を測定することができない。実験No.108に示すように、ポリエチレン系樹脂を架橋することにより耐熱性は向上するものの、130℃での貯蔵弾性率は0.5MPaと極めて低く、シートが軟化していることが分かる。このように、ポリエチレン系樹脂を用いたシートにおいては耐熱性が充分ではないことが実証された。
 (2-2)カーボンブラックの添加による効果の検証
 ポリエチレン系樹脂に、充填材としてカーボンブラックを配合し、効果を検証した。結果を表2の実験No.109として示す。
Figure JPOXMLDOC01-appb-T000002
 表1の実験No.106は、実験No.109のカーボンブラック未配合の例に対応する。表1の実験No.106と表2の実験No.109を比較すると分かるように、カーボンブラックの有無によってシート内部の蓄積電荷量にはほとんど変化がない。むしろカーボンブラックを含有することによってシートの直流破壊電界の値が減少しており、破壊耐性が低下していることが分かる。このように、カーボンブラックはポリエチレン系樹脂に配合される充填材としては不適であることが分かる。
 (本開示の絶縁材用樹脂組成物の効果の実証例(1):樹脂成分と物性との関係の検証)
 次に本開示の絶縁材用樹脂組成物から作製されたシートについて、物性を評価した。まず、樹脂成分の種類を変更した例について、物性との関係を確認した。表3に、ポリプロピレン系樹脂の種類を変更し、物性を比較した結果を示す。また表4においては、ポリプロピレン系樹脂とポリエチレン系樹脂とのブレンド物を含む樹脂組成物から作製したシートの評価結果を示す。なお、ポリプロピレン系樹脂は架橋されていない。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表3に示すように、本開示の絶縁材用樹脂組成物から作製されたシートはいずれも蓄積電荷量が1.1以下と小さいことが実証された。また130℃においても充分に高い貯蔵弾性率を有しており、耐熱性の面でも問題がない。なお実験No.3で用いたr-PPはポリプロピレン単位の他にポリエチレン系単位を含むことから、実験No.1~No.4のなかでは耐熱性は低い。それでも130℃において40MPaと充分な貯蔵弾性率を有しており、ポリエチレン系樹脂を用いた表2の実験No.107および実験No.108とは対照的である。
 表3の実験No.1と実験No.2のシートの違いは、シート成形時の冷却条件のみである。表1に示した通り、ポリプロピレン系樹脂単独では徐冷すると結晶化がより進行し、蓄積電荷量が増加する。これに対し、本開示の絶縁材用樹脂組成物から作製されたシートは、急冷した場合と徐冷した場合とで蓄積電荷量の値が同じである。加えて蓄積電荷量の以外の他の物性においても急冷した場合と徐冷した場合とで実質的に差がない。このように、本開示の絶縁材用樹脂組成物は、シート成形時の冷却条件に制限が少ないのが特徴である。そのため、急冷するための設備が必須ではなく、製造プロセスの設計の自由度が高いという利点がある。
 また表4に示すように、絶縁材用樹脂組成物に含まれる樹脂成分がポリプロピレン系樹脂とポリエチレン系樹脂とのブレンド物であっても充分な電荷蓄積量低減効果と充分な耐熱性が発揮される。
 (本開示の絶縁材用樹脂組成物の効果の実証例(2):無機充填材の含有量と物性との関係の検証)
 無機充填材である酸化亜鉛の含有量を変更することにより、無機充填材の含有量と物性との関係を調べた(実験No.110、No.9~10、No.111)。結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 表5の実験No.9、No.10およびNo.111に示すように、樹脂成分100質量部に対し、無機充填材の含有量が0.2質量部以上であれば蓄積電荷量は1.5以下となる。実験No.110のように、樹脂成分100質量部に対し、無機充填材の含有量が0.1質量部の場合には、無機充填材による電荷蓄積量低減効果が不充分であり、蓄積電荷量が2.1と高くなる。一方、実験No.111に示すように、樹脂成分100質量部に対し、無機充填材の含有量が4質量部を超えると直流破壊電界が大きく低下し、破壊耐性が低下する。そのため、蓄積電荷量が1.5以下という条件を満たし、かつ充分に高い直流破壊電界を維持するためには、樹脂成分100質量部に対し、無機充填材の含有量が0.2質量部以上4質量部以下の範囲になるよう配合を制御する必要があることが分かる。
 (本開示の絶縁材用樹脂組成物の効果の実証例(3):無機充填材の平均粒径と物性との関係の検証)
 無機充填材として平均粒径の異なる酸化亜鉛を用いて物性への影響を調べた(実験No.4、No.11~13、No.112)。結果を表6に示す。
Figure JPOXMLDOC01-appb-T000006
 表6に示すように、平均粒径が1000nm以下であれば蓄積電荷量は1.3以下に維持される(実験No.4およびNo.11~13)。しかしながら、平均粒径が1000nmを超えると、蓄積電荷量が1.5を超えるとともに、直流破壊電界の値も低下し破壊耐性が低下する(No.112)。また表6には記載していないが、平均粒径が10nm未満の無機充填材は、粒径が細かすぎて取り扱いが難しく、分散性に問題があったため物性の評価には至らなかった。これらの結果から、無機充填材の平均粒径は10nm以上1000nm以下である必要が有ることが分かる。
 (本開示の絶縁材用樹脂組成物の効果の実証例(4):種々の無機充填材と物性との関係の検証)
 絶縁材用樹脂組成物が酸化亜鉛以外の無機充填材を含有する場合についても効果を検証した。結果を表7に示す。
Figure JPOXMLDOC01-appb-T000007
 表7に示すように、無機充填材としては、金属又はケイ素の酸化物、水酸化物および炭酸塩からなる群から選択される少なくとも1種である限り、無機充填材の種類の違いによる影響は少ないことが分かる。
 このように、本実施の形態に係るによれば、耐熱性と電荷の蓄積しにくさとを両立する絶縁材を形成可能な樹脂組成物を提供することが可能となる。また、上記絶縁材用樹脂組成物からなる絶縁材は、絶縁材として充分な耐熱性を有していることから、樹脂成分を架橋することなく未架橋のまま使用することが可能である。未架橋の樹脂はリサイクルがしやすく、架橋副産物等による悪影響も少ない点で有利である。このような絶縁材用樹脂組成物および絶縁材は、絶縁電線若しくはケーブルの絶縁被覆、又は絶縁チューブとして好適に使用することができる。
 今回開示された実施の形態および実施例はすべての点で例示であって、どのような面からも制限的なものではないと理解されるべきである。本発明の範囲は上記した意味ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
10 絶縁材
20 樹脂層部
30 粒子部
40 絶縁電線
50 ケーブル
80 絶縁チューブ
110 導体部
120 絶縁被覆
210 導体部
220 内部半導電層
230 絶縁層
240 外部半導電層
250 遮蔽部
260 押えテープ
270 シース

Claims (10)

  1.  融点130℃以上のポリプロピレン系樹脂を含む樹脂成分と、
     金属又はケイ素の酸化物、水酸化物および炭酸塩からなる群から選択される少なくとも1種の無機充填材と、を含み、
     前記樹脂成分100質量部に対し、前記無機充填材の含有量が0.2質量部以上4質量部以下であり、
     前記無機充填材の平均粒径が10nm以上1000nm以下である、絶縁材用樹脂組成物。
  2.  前記ポリプロピレン系樹脂は架橋されていない、請求項1に記載の絶縁材用樹脂組成物。
  3.  前記無機充填材が、球状酸化マグネシウム又は酸化亜鉛である、請求項1又は2に記載の絶縁材用樹脂組成物。
  4.  前記無機充填材が、その表面にさらにコート層を有する、請求項1~請求項3のいずれか一項に記載の絶縁材用樹脂組成物。
  5.  前記ポリプロピレン系樹脂が、ホモポリプロピレン、ポリプロピレンランダムコポリマー、ポリプロピレンブロックコポリマー、およびオレフィン系エラストマーからなる群から選択される少なくとも1種である、請求項1~請求項4のいずれか一項に記載の絶縁材用樹脂組成物。
  6.  請求項1~請求項5のいずれか一項に記載の前記絶縁材用樹脂組成物から形成され、
     前記ポリプロピレン系樹脂を含む樹脂層と、
     前記樹脂層に分散された、前記無機充填材の粒子部と、
     を備える絶縁材。
  7.  前記絶縁材は、絶縁電線若しくはケーブルの絶縁被覆、又は絶縁チューブである、請求項6に記載の絶縁材。
  8.  絶縁材用樹脂組成物から形成された絶縁材であって、
     前記絶縁材用樹脂組成物は、
     融点130℃以上のポリプロピレン系樹脂を含む樹脂成分と、
     金属又はケイ素の酸化物、水酸化物および炭酸塩からなる群から選択される少なくとも1種の無機充填材と、を含み、
     前記樹脂成分100質量部に対し、前記無機充填材の含有量が0.2質量部以上4質量部以下であり、
     前記無機充填材の平均粒径が10nm以上1000nm以下であり、
     前記ポリプロピレン系樹脂が、ホモポリプロピレン、ポリプロピレンランダムコポリマー、ポリプロピレンブロックコポリマー、およびオレフィン系エラストマーからなる群から選択される少なくとも1種であり、
     前記絶縁材は、
     前記ポリプロピレン系樹脂を含む樹脂層と前記樹脂層に分散された前記無機充填材の粒子部とを備え、
     前記絶縁材は、
     絶縁電線若しくはケーブルの絶縁被覆、又は絶縁チューブである絶縁材。
  9.  線状の導体部と、
     前記導体部の外周側を覆うように配置される、請求項6に記載の前記絶縁材である絶縁被覆と、
     を備える、絶縁電線。
  10.  線状の導体部と、
     前記導体部の外周側を覆うように配置される、請求項6に記載の前記絶縁材である絶縁被覆と、
     を備えるケーブル。
PCT/JP2018/045216 2017-12-15 2018-12-10 絶縁材用樹脂組成物、絶縁材、絶縁電線及びケーブル WO2019117055A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019559613A JP7272276B2 (ja) 2017-12-15 2018-12-10 絶縁材用樹脂組成物、絶縁材、絶縁電線及びケーブル

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-240792 2017-12-15
JP2017240792 2017-12-15

Publications (1)

Publication Number Publication Date
WO2019117055A1 true WO2019117055A1 (ja) 2019-06-20

Family

ID=66819218

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/045216 WO2019117055A1 (ja) 2017-12-15 2018-12-10 絶縁材用樹脂組成物、絶縁材、絶縁電線及びケーブル

Country Status (2)

Country Link
JP (1) JP7272276B2 (ja)
WO (1) WO2019117055A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112300496A (zh) * 2019-07-30 2021-02-02 耐克森公司 具有改进的热导率的电缆
WO2022201279A1 (ja) * 2021-03-23 2022-09-29 三菱電機株式会社 半導電性部材、固定子コイルおよび回転電機

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005525444A (ja) * 2002-05-14 2005-08-25 トレオファン・ジャーマニー・ゲーエムベーハー・ウント・コンパニー・カーゲー ポリプロピレンのための高度に活性なβ−核形成添加剤
JP2009103730A (ja) * 2007-10-19 2009-05-14 Dainippon Printing Co Ltd 光学フィルム、偏光板及び画像表示装置
JP2012199070A (ja) * 2011-03-22 2012-10-18 Yazaki Corp 被覆電線
JP2016084409A (ja) * 2014-10-24 2016-05-19 国立大学法人北陸先端科学技術大学院大学 水酸化マグネシウムとポリオレフィンとを含むナノ複合体およびその製造方法
JP2017506708A (ja) * 2014-01-10 2017-03-09 株式会社納米未来生活Nano, Future And Life, Inc. 抗菌ファイバ素材、抗菌ファイバ、抗菌ファイバ製造用マスターバッチ、及び抗菌ファイバの製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001064330A (ja) * 1999-06-24 2001-03-13 Ube Ind Ltd カレンダー成形用ポリプロピレン系樹脂、樹脂組成物およびこの成形物
JP2007084806A (ja) * 2005-08-22 2007-04-05 Mitsui Chemicals Inc プロピレン系樹脂組成物
JP2009216937A (ja) * 2008-03-10 2009-09-24 Dainippon Printing Co Ltd 光学フィルム、偏光板及び画像表示装置
JP5285587B2 (ja) * 2009-12-10 2013-09-11 大日精化工業株式会社 成形用の樹脂組成物及びそれを成形して得られる成形物
JP2014060146A (ja) * 2012-08-23 2014-04-03 Toray Ind Inc 多孔性ポリオレフィンフィルムおよび蓄電デバイス
CA2909301C (en) * 2013-04-12 2019-02-05 China Petroleum & Chemical Corporation Polymer/filler/metal composite fiber and preparation process thereof
JP5860910B2 (ja) * 2014-02-14 2016-02-16 株式会社フジクラ 難燃性樹脂組成物、及び、これを用いた成形体
WO2016140253A1 (ja) * 2015-03-03 2016-09-09 古河電気工業株式会社 シラン架橋性ゴム組成物及びシラン架橋ゴム成形体とそれらの製造方法、並びに、シラン架橋ゴム成形品
JP2016190466A (ja) * 2015-03-31 2016-11-10 株式会社トッパン・コスモ 化粧シート
ES2794673T3 (es) * 2015-10-13 2020-11-18 China Petroleum & Chem Corp Polvo de resina de poliolefina para sinterización selectiva por láser y método de preparación del mismo

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005525444A (ja) * 2002-05-14 2005-08-25 トレオファン・ジャーマニー・ゲーエムベーハー・ウント・コンパニー・カーゲー ポリプロピレンのための高度に活性なβ−核形成添加剤
JP2009103730A (ja) * 2007-10-19 2009-05-14 Dainippon Printing Co Ltd 光学フィルム、偏光板及び画像表示装置
JP2012199070A (ja) * 2011-03-22 2012-10-18 Yazaki Corp 被覆電線
JP2017506708A (ja) * 2014-01-10 2017-03-09 株式会社納米未来生活Nano, Future And Life, Inc. 抗菌ファイバ素材、抗菌ファイバ、抗菌ファイバ製造用マスターバッチ、及び抗菌ファイバの製造方法
JP2016084409A (ja) * 2014-10-24 2016-05-19 国立大学法人北陸先端科学技術大学院大学 水酸化マグネシウムとポリオレフィンとを含むナノ複合体およびその製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112300496A (zh) * 2019-07-30 2021-02-02 耐克森公司 具有改进的热导率的电缆
EP3772069A1 (fr) * 2019-07-30 2021-02-03 Nexans Câble électrique présentant une conductivité thermique améliorée
FR3099631A1 (fr) * 2019-07-30 2021-02-05 Nexans Câble électrique présentant une conductivité thermique améliorée
WO2022201279A1 (ja) * 2021-03-23 2022-09-29 三菱電機株式会社 半導電性部材、固定子コイルおよび回転電機

Also Published As

Publication number Publication date
JP7272276B2 (ja) 2023-05-12
JPWO2019117055A1 (ja) 2020-12-17

Similar Documents

Publication Publication Date Title
KR101426900B1 (ko) 전도성 필러를 포함하는 반전도성 폴리올레핀 조성물
EP3033391B1 (en) Thermoplastic blend formulations for cable insulations
KR101318481B1 (ko) 직류 전력 케이블용 절연 조성물 및 이를 이용하여 제조된 직류 전력 케이블
EP2637178A2 (en) Insulating composition and electric cable comprising same
JP2017506414A (ja) 改善されたカバーを備えるケーブルを形成する方法
JP6350129B2 (ja) 電線被覆材用組成物、絶縁電線およびワイヤーハーネス
JPH01246707A (ja) 半導電性樹脂組成物
ES2803429T3 (es) Composición de polímero semiconductora
KR102358045B1 (ko) 수지 조성물, 무기 충전제, 직류 전력 케이블, 및 직류 전력 케이블의 제조 방법
WO2019117055A1 (ja) 絶縁材用樹脂組成物、絶縁材、絶縁電線及びケーブル
US20200350095A1 (en) Power cable
KR101318457B1 (ko) 직류 전력 케이블용 절연 조성물 및 이를 이용하여 제조된 직류 전력 케이블
JP6069301B2 (ja) 電気デバイスのためのポリマー組成物
JP2022037067A (ja) 直流電力ケーブル
JP2021075621A (ja) 樹脂組成物、樹脂組成物成形体および電力ケーブル
JP2011001495A (ja) ノンハロゲン難燃性樹脂組成物及びその製造方法並びにこれを用いた電線・ケーブル
WO2021090578A1 (ja) 樹脂組成物、樹脂組成物成形体および電力ケーブル
JP7287268B2 (ja) 絶縁電線、ケーブルおよび絶縁電線の製造方法
EP3033390B1 (en) Thermoplastic blend formulations for cable insulations
KR102020068B1 (ko) 전력 케이블
CN114599724A (zh) 树脂组合物、树脂组合物成型体以及电力电缆
JP2011111567A (ja) 難燃性樹脂組成物、成形体、および絶縁電線
JP2011219662A (ja) 難燃性樹脂組成物及びそれを用いた成形物品
JP4754187B2 (ja) 耐熱性と耐電圧特性に優れた難燃性組成物及び電線
JP2014072133A (ja) 直流電力ケーブル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18888446

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019559613

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18888446

Country of ref document: EP

Kind code of ref document: A1