WO2022201279A1 - 半導電性部材、固定子コイルおよび回転電機 - Google Patents
半導電性部材、固定子コイルおよび回転電機 Download PDFInfo
- Publication number
- WO2022201279A1 WO2022201279A1 PCT/JP2021/011847 JP2021011847W WO2022201279A1 WO 2022201279 A1 WO2022201279 A1 WO 2022201279A1 JP 2021011847 W JP2021011847 W JP 2021011847W WO 2022201279 A1 WO2022201279 A1 WO 2022201279A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- metal particles
- semiconductive
- resin
- stator coil
- layer
- Prior art date
Links
- 239000002923 metal particle Substances 0.000 claims abstract description 90
- 229920005989 resin Polymers 0.000 claims abstract description 76
- 239000011347 resin Substances 0.000 claims abstract description 76
- 229920001187 thermosetting polymer Polymers 0.000 claims abstract description 49
- 238000002844 melting Methods 0.000 claims abstract description 29
- 230000008018 melting Effects 0.000 claims abstract description 27
- 239000000463 material Substances 0.000 claims description 31
- 239000002245 particle Substances 0.000 claims description 28
- 239000004020 conductor Substances 0.000 claims description 14
- 239000002131 composite material Substances 0.000 claims description 12
- 238000004804 winding Methods 0.000 claims description 11
- 239000007822 coupling agent Substances 0.000 claims description 8
- 239000012756 surface treatment agent Substances 0.000 claims description 6
- 239000010445 mica Substances 0.000 claims description 5
- 229910052618 mica group Inorganic materials 0.000 claims description 5
- 238000013329 compounding Methods 0.000 claims 1
- 239000004065 semiconductor Substances 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 7
- 239000000758 substrate Substances 0.000 abstract description 5
- 230000020169 heat generation Effects 0.000 abstract description 2
- 238000005470 impregnation Methods 0.000 abstract description 2
- 238000007599 discharging Methods 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 52
- 239000003822 epoxy resin Substances 0.000 description 27
- 229920000647 polyepoxide Polymers 0.000 description 27
- 230000000052 comparative effect Effects 0.000 description 18
- 239000000126 substance Substances 0.000 description 17
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 16
- 239000004744 fabric Substances 0.000 description 14
- 239000003795 chemical substances by application Substances 0.000 description 13
- 238000010438 heat treatment Methods 0.000 description 13
- 238000002156 mixing Methods 0.000 description 12
- 239000000203 mixture Substances 0.000 description 12
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 11
- 239000011521 glass Substances 0.000 description 11
- -1 triiron tetroxide Chemical compound 0.000 description 10
- 229910020888 Sn-Cu Inorganic materials 0.000 description 9
- 229910019204 Sn—Cu Inorganic materials 0.000 description 9
- 238000001035 drying Methods 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 9
- 238000010008 shearing Methods 0.000 description 9
- 229910020220 Pb—Sn Inorganic materials 0.000 description 8
- 230000006866 deterioration Effects 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 230000009471 action Effects 0.000 description 6
- 239000011248 coating agent Substances 0.000 description 6
- 238000000576 coating method Methods 0.000 description 6
- 239000006229 carbon black Substances 0.000 description 5
- 239000010954 inorganic particle Substances 0.000 description 5
- 239000000654 additive Substances 0.000 description 4
- FPIPGXGPPPQFEQ-OVSJKPMPSA-N all-trans-retinol Chemical compound OC\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-OVSJKPMPSA-N 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 239000011800 void material Substances 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 238000010292 electrical insulation Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 235000019169 all-trans-retinol Nutrition 0.000 description 2
- 239000011717 all-trans-retinol Substances 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000005979 thermal decomposition reaction Methods 0.000 description 2
- BPSIOYPQMFLKFR-UHFFFAOYSA-N trimethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CO[Si](OC)(OC)CCCOCC1CO1 BPSIOYPQMFLKFR-UHFFFAOYSA-N 0.000 description 2
- 229920006337 unsaturated polyester resin Polymers 0.000 description 2
- 239000002966 varnish Substances 0.000 description 2
- SJECZPVISLOESU-UHFFFAOYSA-N 3-trimethoxysilylpropan-1-amine Chemical compound CO[Si](OC)(OC)CCCN SJECZPVISLOESU-UHFFFAOYSA-N 0.000 description 1
- XDLMVUHYZWKMMD-UHFFFAOYSA-N 3-trimethoxysilylpropyl 2-methylprop-2-enoate Chemical compound CO[Si](OC)(OC)CCCOC(=O)C(C)=C XDLMVUHYZWKMMD-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 239000006087 Silane Coupling Agent Substances 0.000 description 1
- 229910020836 Sn-Ag Inorganic materials 0.000 description 1
- 229910020988 Sn—Ag Inorganic materials 0.000 description 1
- IDCBOTIENDVCBQ-UHFFFAOYSA-N TEPP Chemical compound CCOP(=O)(OCC)OP(=O)(OCC)OCC IDCBOTIENDVCBQ-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 239000002390 adhesive tape Substances 0.000 description 1
- 229920000180 alkyd Polymers 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- CEGOLXSVJUTHNZ-UHFFFAOYSA-K aluminium tristearate Chemical compound [Al+3].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CEGOLXSVJUTHNZ-UHFFFAOYSA-K 0.000 description 1
- 229940063655 aluminum stearate Drugs 0.000 description 1
- KMJRBSYFFVNPPK-UHFFFAOYSA-K aluminum;dodecanoate Chemical compound [Al+3].CCCCCCCCCCCC([O-])=O.CCCCCCCCCCCC([O-])=O.CCCCCCCCCCCC([O-])=O KMJRBSYFFVNPPK-UHFFFAOYSA-K 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- CXKCTMHTOKXKQT-UHFFFAOYSA-N cadmium oxide Inorganic materials [Cd]=O CXKCTMHTOKXKQT-UHFFFAOYSA-N 0.000 description 1
- CFEAAQFZALKQPA-UHFFFAOYSA-N cadmium(2+);oxygen(2-) Chemical compound [O-2].[Cd+2] CFEAAQFZALKQPA-UHFFFAOYSA-N 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 239000002734 clay mineral Substances 0.000 description 1
- 239000011370 conductive nanoparticle Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- FWDBOZPQNFPOLF-UHFFFAOYSA-N ethenyl(triethoxy)silane Chemical compound CCO[Si](OCC)(OCC)C=C FWDBOZPQNFPOLF-UHFFFAOYSA-N 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 229920006158 high molecular weight polymer Polymers 0.000 description 1
- 150000003949 imides Chemical class 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- ARYZCSRUUPFYMY-UHFFFAOYSA-N methoxysilane Chemical compound CO[SiH3] ARYZCSRUUPFYMY-UHFFFAOYSA-N 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 150000001451 organic peroxides Chemical class 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 229920003055 poly(ester-imide) Polymers 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 238000007665 sagging Methods 0.000 description 1
- 238000000790 scattering method Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 239000012748 slip agent Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 239000004034 viscosity adjusting agent Substances 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K3/00—Details of windings
- H02K3/42—Means for preventing or reducing eddy-current losses in the winding heads, e.g. by shielding
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K3/00—Details of windings
- H02K3/02—Windings characterised by the conductor material
Definitions
- This application relates to semi-conductive members, stator coils, and rotating electric machines.
- the main insulating layer that covers the conductor part where the wire conductors are bundled is used to suppress the corona discharge that occurs in the minute space between the iron core and the main insulating layer.
- a semiconductive layer wound with a semiconductive tape is disposed on the outer layer. This semi-conductive tape plays a role in reducing the voltage distributed to the minute space on the surface of the core by alleviating the potential gradient between the core and the main insulating layer.
- the semiconductive tape is produced by disposing a semiconductive resin layer in which conductive particles such as carbon black are added to a resin on a fibrous insulating base material such as glass cloth or nonwoven fabric.
- a semiconductive resin layer in which at least one inorganic particle selected from layered clay mineral particles, oxide particles, and nitride particles is added to a resin is used as a fibrous insulation.
- a semiconductive tape applied to a substrate has been disclosed (see, for example, US Pat. Further, a semi-conductive tape is disclosed in which a mixture of conductive particles and non-conductive nanoparticles added to a polymer is placed on a fibrous insulating substrate (see, for example, Patent Document 2).
- JP 2006-246599 A (paragraph 0008, FIG. 1)
- International patent WO2018/002974 (paragraph 0050, FIG. 4)
- Deterioration caused by partial discharge is broadly classified into impact by charged particles, thermal decomposition by local temperature rise, and chemical action by activated gas generated by discharge. These act synergistically to progress deterioration. do.
- activated gases such as ozone (O 3 ) and atomic oxygen (O) generated by electrical discharge
- O 3 ozone
- O atomic oxygen
- the semiconductive tapes disclosed in the above patent documents can be expected to improve the initial corona resistance, etc., but the organic resins and high molecular weight polymers are not suitable for the above partial discharge. Due to the oxidation action of ozone and atomic oxygen generated in the process, it deteriorates quickly and decomposes into low-molecular volatile products, so it is difficult to maintain initial corona resistance over a long period of time. there were.
- the present application discloses a technique for solving the above problems, and aims to provide a semiconductive member, a stator coil, and a rotating electric machine that can exhibit stable corona resistance over a long period of time. .
- the semiconductive member disclosed in the present application is a semiconductive member in which a semiconductive resin layer in which metal particles are dispersed and mixed is arranged on a fibrous insulating base material, and the metal particles are made of a thermosetting resin. has a melting point higher than the curing temperature of the fibrous insulating base material and lower than the softening point of the fibrous insulating base material.
- the stator coil disclosed in the present application includes a conductor portion in which strand conductors are bundled, an insulating layer formed by winding a mica member around the outer circumference of the conductor portion, and the semiconductive member described above wound around the outer circumference of the insulating layer. It is characterized by having windings formed from a semi-conductive layer formed by winding, and the thermosetting resin impregnated in the windings.
- a rotating electrical machine disclosed in the present application is characterized by comprising the stator coil described above.
- FIG. 1 is a schematic cross-sectional view showing the configuration of a semiconductive tape according to Embodiment 1.
- FIG. 4 is a schematic cross-sectional view showing another configuration of the semiconductive tape according to Embodiment 1.
- FIG. 4 is a flow chart diagram showing a manufacturing process of the semiconductive tape according to Embodiment 1.
- FIG. 1 is a schematic cross-sectional view showing the configuration of a semiconductive tape evaluation apparatus according to Embodiment 1.
- FIG. 1 is a schematic cross-sectional view showing the configuration of a semiconductive tape 1 according to Embodiment 1 of the present application.
- a semiconductive tape 1 as a semiconductive member includes semiconductive resin layers 14a and 14b in which metal particles 2 as conductive particles are dispersed and mixed in thermosetting resins 3a and 3b. are held on both sides of the fibrous insulating base material 4, respectively.
- the feature of the semiconductive tape 1 according to the first embodiment is that the melting point of the metal particles 2 is higher than the curing temperature of the thermosetting resin to be impregnated, and is higher than the softening point of the fibrous insulating base material 4.
- the object is to use low-melting-point metal particles in a low range.
- FIG. 2 is a schematic cross-sectional view showing the configuration of the stator coil 6 using the semiconductive tape 1 according to Embodiment 1.
- the stator coil 6 includes a conductor portion 7 in which wire conductors are bundled, a main insulating layer 8 formed by winding a mica tape around the outer periphery of the conductor portion 7, and a main insulating layer 8.
- a winding composed of a semiconductive layer 9 formed by winding a semiconductive tape 1 on the outside is impregnated under pressure using an electrical insulating varnish, and then heat-cured.
- the stator coil 6 shown in FIG. 2 is applied to a rotating electric machine such as a motor.
- application examples of the semi-conductive tape 1 of the present application are not limited to the semi-conductive layer of the stator coil in the above-described rotating machine stator, etc. It can be used for various applications such as materials.
- FIG. 3 is a schematic cross-sectional view showing another configuration of the semiconductive tape 1 according to Embodiment 1 of the present application, and is an enlarged view of area A in FIG.
- the metal particles 2 are locally unevenly distributed in the thermosetting resin 3b. good too.
- the metal particles 2 are unevenly distributed on the interface side with the main insulating layer 8. As shown in FIG. In this case, when an electric discharge occurs inside the void existing at the interface between the main insulating layer and the semiconducting layer, the metal particles 2 can be melted and connected with adjacent particles, resulting in higher ozone resistance. It becomes easier to form conductivity, and the corona resistance of the thermosetting resin can be improved.
- FIG. 4 is also a schematic cross-sectional view showing another configuration of the semiconductive tape 1 according to Embodiment 1 of the present application, and is an enlarged view of region A in FIG.
- a semiconductive resin layer 14c in which metal particles 2 are dispersed and mixed in a thermosetting resin 3c, and other conductive particles 5 are thermoset.
- a semiconductive resin layer composed of semiconductive resin layers 14a and 14b dispersed and mixed in the conductive resins 3a and 3b may also be used.
- the metal particles 2 are unevenly distributed in the semiconductive resin layer 14c on the interface side with the main insulating layer 8. FIG.
- the metal particles 2 can be melted and connected to nearby particles, thereby further improving the ozone resistance. It becomes easy to form the conductivity that it has, and it is possible to improve the corona resistance of the thermosetting resin.
- the surface resistance value is desirably in the range of 100 ⁇ or more and 100k ⁇ or less. If the surface resistance value is less than 100 ⁇ , eddy currents are generated on the surface of the semiconductive layer during actual operation, which is not preferable.
- Metal particles As the metal particles 2, low-melting metal particles having a curing temperature higher than the curing temperature of the thermosetting resin impregnated in the stator coil manufacturing process and lower than the softening point of the fibrous insulating base material 4 are used. This allows the metal particles 2 to melt due to the local temperature rise caused by the partial discharge.
- the metal particles 2 include low-melting-point metals such as composite components containing Pb--Sn, composite components containing Sn--Sb, composite components containing Sn--Cu, and composite components containing Sn--Ag. These metal particles 2 are melted by heating to 200° C. or higher, which is higher than the curing temperature (100 to 190° C.) of the thermosetting resin that is generally impregnated in the manufacturing process of the stator coil (200° C.). °C or higher).
- the melting point is the temperature at which the metal undergoes a phase transformation from solid to liquid when heated from room temperature. Defined as the melting point of the metal.
- the composition of the Pb is 0 mass% or more (including the case of Sn alone), 2.5 mass% or less, 75 mass% or more and 100 mass% or less (Pb It is more desirable to include it in the range of (including the case of a single substance). At 2.5 mass% or more and less than 75 mass%, the melting point is below 200°C even when various additive elements are added. Desired electrical insulation properties of the child coil 6 are not obtained.
- the composition preferably contains Sn in the range of 25 mass% or more and 100 mass% or less (including the case of single Sn).
- the composition preferably contains Sn in the range of 15 mass % or more and 100 mass % or less (including single Sn). Outside the above range, the melting point exceeds 700° C. even when various additive elements are added, so the melting action during discharge does not occur, and the desired effect of improving ozone resistance described later cannot be obtained.
- the metal particles 2 can be used singly or as a mixture of two or more types including other conductive particles.
- Conductive particles can be appropriately used as long as they are particles having conductivity, and the type thereof is not particularly limited. Examples include carbon black, graphite, conductive diamond, carbon fiber, carbon nanotube, and the like.
- Conductive carbon materials or conductive metal oxides such as indium oxide, cadmium oxide, triiron tetroxide, zinc oxide, tin oxide, titanium oxide, metals, etc. are used.
- the metal particles 2 low-melting metal particles having a melting point in a temperature range higher than the curing temperature of the thermosetting resin to be impregnated and lower than the softening point of the fibrous insulating base material 4 are used. Even when the metal particles 2 having a melting temperature range are dispersed in the thermosetting resin 3, if a partial discharge occurs starting from the void, the deterioration effect of the partial discharge (the oxidation effect of ozone and atomic oxygen) occurs. As a result, the thermosetting resin 3 is oxidatively decomposed into low volatility products.
- the metal particles 2 existing in the vicinity of the void melt and spread along the inner surface of the void, and the melted metal particles 2 in the vicinity are bonded together. , the inner surfaces of the voids are coated with metal particles. Therefore, the metal particles coated on the inner surfaces of the voids function as a protective layer, thereby suppressing thermal decomposition of the thermosetting resin 3 around the voids and exhibiting corona resistance.
- the corona resistance of the thermosetting resin 3 can be improved. Therefore, it is possible to exhibit stable corona resistance over a long period of time and maintain the initial resistance value of the semiconductive tape 1 .
- the average particle diameter of the metal particles 2 is preferably 1 nm or more and 10 ⁇ m or less, more preferably 10 nm or more and 1 ⁇ m or less, in median diameter (50% diameter, D50).
- Examples of the method for measuring the average particle size when defining the above range include a laser diffraction scattering method particle size distribution apparatus (Microtrac (registered trademark) MT3300). If the average particle size of the metal particles 2 is smaller than 1 nm, the volume melted when the temperature rises locally due to partial discharge becomes small, and the above-described desired ozone resistance cannot be exhibited. On the other hand, when the average particle size of the metal particles 2 exceeds 10 ⁇ m, the distance between the particles increases proportionally, making it difficult to connect with neighboring particles when generating heat due to discharge. unable to demonstrate sexuality.
- the metal particles 2 are dispersed in the thermosetting resin 3, and the amount of the metal particles 2 to be blended is preferably in the range of 1 to 50 vol% with respect to the thermosetting resin 3. If the amount of the metal particles 2 is less than 1 vol % with respect to the thermosetting resin 3, the desired corona resistance cannot be exhibited. On the other hand, if the amount of the metal particles 2 exceeds 50 vol % with respect to the thermosetting resin 3, the viscosity of the thermosetting resin 3 increases, making it difficult to disperse the metal particles 2 uniformly. , the thermosetting resin 3 becomes brittle and difficult to use as a tape.
- the metal particles 2 are locally unevenly distributed in the vicinity of one side surface of the semiconductive tape 1, It is desirable that the average particle-to-particle distance between the metal particles 2 is less than 1 ⁇ m. If the average particle-to-particle distance of the metal particles 2 exceeds 1 ⁇ m, it becomes difficult for the metal particles 2 to connect with adjacent particles when generating heat due to discharge, and the above-described desired corona resistance cannot be exhibited.
- the surfaces of the metal particles 2 are coated with a coupling agent or a surface treatment agent. It may be modified or coated before use.
- Such coupling agents include, for example, ⁇ -glycidoxy-propyltrimethoxysilane, ⁇ -aminopropyl-trimethoxysilane, vinyltriethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-glycidyloxypropyl-trimethoxysilane.
- Examples include silane coupling agents such as methoxysilane, titanate coupling agents, and aluminum coupling agents.
- Surface treatment agents include aluminum laurate, aluminum stearate, iron-alumina stearate, silica, zirconia, and silicone. These coupling agents or surface treatment agents can be used alone or as a mixture of two or more.
- thermosetting resin 3 any thermosetting resin that is flexible even after being applied to the fibrous insulating base material 4 can be used as appropriate, and the type thereof is not particularly limited.
- Thermosetting resins 3 having such properties include, for example, phenol resins, imide resins, alkyd resins, unsaturated polyester resins, polyesterimide resins, and epoxy resins.
- any material can be appropriately used as long as it has insulating properties and can be coated with a thermosetting resin, and the type thereof is not particularly limited.
- the fibrous insulating base material 4 having such properties includes, for example, glass cloth (softening point 950° C.), polyester cloth (softening point 240° C.), Tetron cloth (softening point 260° C.), mica sheet (softening point 750° C.). °C) and the like.
- additives may be blended as necessary as the constituent materials of the semiconductive tape 1 according to Embodiment 1, as long as the effects of the present application are not hindered.
- Other additives blended as materials for the semiconductive tape 1 include reactive diluents, viscosity modifiers such as toluene and xylene, curing accelerators, anti-sagging agents, anti-settling agents, anti-foaming agents, leveling agents, Slip agents, dispersant-based wetting agents, and the like.
- FIG. 5 is a flowchart showing manufacturing steps in the method for manufacturing the semiconductive tape 1 according to the first embodiment.
- thermosetting resin 3 and the metal particles 2 are kneaded (step S501). It is desirable that the step of kneading the metal particles 3 into the thermosetting resin 3 is performed by applying a shearing force. It is possible to uniformly disperse the metal particles 3 in the thermosetting resin 3 by applying a shearing force.
- any device that can mix while applying a shearing force can be used as appropriate, and the type is not particularly limited. Specific examples include bead mill mixers, three-roll mill mixers, homogenizer mixers, labo plastomill mixers, and the like.
- a curing agent is added to and mixed with the mixture of the thermosetting resin 3 and the metal particles 2 (step S502). After mixing, it is applied to the fibrous insulating base material 4 (step S503) and heat-cured (step S504) to obtain the desired semiconductive tape 1.
- FIG. 1 A curing agent is added to and mixed with the mixture of the thermosetting resin 3 and the metal particles 2 (step S502). After mixing, it is applied to the fibrous insulating base material 4 (step S503) and heat-cured (step S504) to obtain the desired semiconductive tape 1.
- the coupling agent or surface treatment agent described above is appropriately added and mixed as necessary.
- the interface between the thermosetting resin 3 and the metal particles 2 can be firmly adhered.
- the organic compound present at the interface imparts affinity to the epoxy resin, and the metal particles 2 are uniformly dispersed in the thermosetting resin 3. becomes possible.
- the semiconductive resin layers 14a and 14b in which the metal particles 2 are dispersed are arranged on the fibrous insulating substrate 4.
- the metal particles 2 have a melting point higher than the curing temperature of the thermosetting resin to be impregnated and lower than the softening point of the fibrous insulating base material 4.
- the stator coil 6 according to the first embodiment the conductor portion 7 in which the wire conductors are bundled, the main insulating layer 8 formed by winding the mica tape around the outer circumference of the conductor portion 7, and the outer circumference of the main insulating layer 8 and a thermosetting resin impregnated in the winding.
- the stator coil since the stator coil is provided, heat generation and discharge during operation of the rotary electric machine consumes the thermosetting resin and impairs the semiconductivity. It is possible to suppress things like putting away.
- the metal particles develop resistance to activated gases such as ozone and atomic oxygen generated by partial discharge inside the voids, and suppress the deterioration of the thermosetting resin over time. sexuality is exhibited.
- Example 2 Pb-Sn (Pb95-Sn5, manufactured by Mitsui Kinzoku Co., Ltd.) type metal particles with a melting point of 300 ° C. are added to an epoxy resin (bisphenol A type epoxy resin, manufactured by Mitsubishi Chemical Co., Ltd.), and a mixing device (ultrasonic homogenizer, Japan Alex) was used to mix while applying a shearing force.
- a curing agent modified alicyclic amine, manufactured by Mitsubishi Chemical Corporation
- the semiconductive tape 1 was produced by coating it on a glass cloth, which is a fibrous insulating base material, and heating and drying it.
- Sn—Cu (Sn40—Cu60) metal particles with a melting point of 600° C. are added to an epoxy resin (bisphenol A type epoxy resin, manufactured by Mitsubishi Chemical Corporation) using a mixer (ultrasonic homogenizer, manufactured by Alex Japan). The mixture was mixed while applying shear force.
- a curing agent modified alicyclic amine, manufactured by Mitsubishi Chemical Corporation
- the semiconductive tape 1 was produced by coating it on a glass cloth, which is a fibrous insulating base material, and heating and drying it.
- Sn-Cu (Sn25-Cu75) metal particles with a melting point of 700 ° C. are added to an epoxy resin (bisphenol A type epoxy resin, manufactured by Mitsubishi Chemical Corporation) using a mixing device (ultrasonic homogenizer, manufactured by Alex Japan). The mixture was mixed while applying shear force.
- a curing agent modified alicyclic amine, manufactured by Mitsubishi Chemical Corporation
- the semiconductive tape 1 was produced by coating it on a glass cloth, which is a fibrous insulating base material, and heating and drying it.
- Example 5 A silicone resin (manufactured by Shin-Etsu Silicone Co., Ltd.) is mixed with Pb-Sn (Pb2.5-Sn97.5, manufactured by Mitsui Kinzoku Co., Ltd.)-based metal particles having a melting point of 200 ° C., and a mixing device (ultrasonic homogenizer, manufactured by Nippon Alex) ) was used to mix while applying shear force. After that, the semiconductive tape 1 was produced by coating it on a glass cloth, which is a fibrous insulating base material, and heating and drying it.
- Pb-Sn Pb2.5-Sn97.5, manufactured by Mitsui Kinzoku Co., Ltd.
- a mixing device ultrasonic homogenizer, manufactured by Nippon Alex
- Pb-Sn (Pb2.5-Sn97.5, manufactured by Mitsui Kinzoku Co., Ltd.) type metal particles with a melting point of 200 ° C. are added to an epoxy resin (bisphenol A type epoxy resin, manufactured by Mitsubishi Chemical Corporation) in a mixing device (super A sonic homogenizer (manufactured by Nippon Alex) was used to mix while applying a shearing force.
- a curing agent modified alicyclic amine, manufactured by Mitsubishi Chemical Corporation
- the semiconductive tape 1 was produced by applying it to a polyester cloth, which is a fibrous insulating base material, and heating and drying it.
- Epoxy resin bisphenol A type epoxy resin, manufactured by Mitsubishi Chemical Corporation
- carbon black manufactured by Denka Corporation
- a curing agent modified alicyclic amine, manufactured by Mitsubishi Chemical Corporation
- Table 1 shows the formulations used in the semiconductive tapes of Examples 1-7 and Comparative Examples 1-3.
- a discharge test was performed using the evaluation device 10 shown in FIG.
- a semiconductive tape 1 was placed between the ground electrode 11a and the ground electrode 11b of the evaluation device 10, and the surface resistance value between AB before the start of discharge was measured.
- a gap of 1 mm was provided from the surface of the semiconductive tape 1, and the electrode 12 was fixed via the insulator 13.
- a voltage of 5.0 kV was applied between the ground electrodes 11 a and 11 b and the electrode 12 to generate a partial discharge D in the gap between the semiconductive tape 1 and the electrode 12 .
- the surface resistance between A and B was measured.
- the semiconductive tapes of Comparative Examples 1 to 3 were also subjected to discharge tests, and the surface resistance values between AB were measured.
- Table 2 shows the surface resistance values between AB of the semiconductive tapes of Examples 1 to 7 and Comparative Examples 1 to 3 before and after the discharge test.
- the semiconductive tapes 1 of Examples 1 to 7 had lower surface resistance values due to partial discharge than the semiconductive tapes of Comparative Examples 1 and 3. rise is restrained.
- the metal particles were melted and connected in the heating and drying process, and the surface resistance value between A and B fell below the proper range.
- the surface resistance of the semiconductive tape is low, and eddy currents may be generated in the semiconductive layer during actual operation, which is not preferable.
- Example 1 metal particles having a melting point of 200° C. are dispersed in epoxy resin.
- Comparative Example 1 the epoxy resin was filled with carbon black as conductive particles instead of metal particles.
- the surface resistance values after discharge in Table 2 in Example 1, the metal particles dispersed in the epoxy resin were melted by a local temperature rise due to partial discharge, and the corona resistance was developed, and the epoxy resin is suppressed, the rise in the surface resistance value is small.
- Comparative Example 1 since the carbon black and the thermosetting resin are consumed by the oxidation action of ozone generated by discharge, the surface resistance increases and the properties as a semiconductive tape are lost.
- Example 1 Compare Example 1 and Comparative Example 2.
- the resistance value of Example 1 is reduced. The rise is kept small.
- the metal particles dispersed in the epoxy resin are melted by a local temperature rise due to partial discharge, exhibiting corona resistance, and suppressing consumption of the epoxy resin, so that the increase in resistance value is small.
- the melting point of the metal particles of Pb5-Sn95 is 190°C, which is within the range of the heating and drying temperature (100 to 190°C) in the semiconductive tape manufacturing process.
- the surface resistance value fell below the appropriate range.
- Desired electrical characteristics of the stator coil cannot be obtained due to the possibility of eddy currents being generated in the semi-conductive layers during actual operation.
- the metal particles are not foreign matter in the electrical insulating varnish during the impregnation process. As a result, the desired electrical insulation properties of the stator coil cannot be obtained.
- Example 4 and Comparative Example 3 are compared.
- Sn—Cu metal particles are filled in an epoxy resin, which is a thermosetting resin.
- the increase in the surface resistance value was kept small, but in Comparative Example 3, the surface resistance value increased greatly.
- Sn25-Cu75 metal particles with a melting point of 700° C. are dispersed in the epoxy resin. Since consumption of the resin is suppressed, an increase in the surface resistance value is small.
- the metal particles of Sn20-Cu80 which have a melting point of 710° C., do not melt when the temperature rises due to partial discharge. Since it is consumed by action, the surface resistance value increases and the characteristics as a semiconductive tape are lost.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Insulation, Fastening Of Motor, Generator Windings (AREA)
Abstract
Description
図1は、本願の実施の形態1に係る半導電性テープ1の構成を示す断面模式図である。図1に示すように、半導電性部材としての半導電性テープ1は、熱硬化性樹脂3a、3b内に導電性粒子としての金属粒子2が分散混入された半導電性樹脂層14a、14bをそれぞれ繊維状絶縁基材4の両面に保持する。本実施の形態1に係る半導電性テープ1の特徴は、金属粒子2の溶融点が含侵処理をする熱硬化性樹脂の硬化温度よりも高く、繊維状絶縁基材4の軟化点よりも低い範囲である低融点金属粒子を用いることにある。この特徴により、部分放電に起因する局所的な温度上昇が発生するとボイド付近に存在する金属粒子が溶融して、ボイド内表面に沿って耐オゾン性を有する導電性を形成し、熱硬化性樹脂の耐コロナ性向上を図ることができる。
<金属粒子>
金属粒子2には、固定子コイルの製造工程において含侵処理をする熱硬化性樹脂の硬化温度よりも高く、繊維状絶縁基材4の軟化点よりも低い低融点金属粒子を用いる。これにより、部分放電に起因する局所的な温度上昇によって金属粒子2の溶融が可能となる。
熱硬化性樹脂3としては、繊維状絶縁基材4に塗布後も柔軟性を有する熱硬化性樹脂であれば適宜に使用可能であり、その種類は特に限定されるものではない。このような性質を有する熱硬化性樹脂3には、例えば、フェノール樹脂、イミド樹脂、アルキッド樹脂、不飽和ポリエステル樹脂、ポリエステルイミド樹脂、エポキシ樹脂などが挙げられる。
繊維状絶縁基材4としては、絶縁性を有し熱硬化性樹脂を塗布できるものであれば適宜に使用可能であり、その種類は特に限定されるものではない。このような性質を有する繊維状絶縁基材4には、例えば、ガラスクロス(軟化点950℃)、ポリエステルクロス(軟化点240℃)、テトロンクロス(軟化点260℃)、マイカシート(軟化点750℃)などが挙げられる。
〔実施例1〕
エポキシ樹脂(ビスフェノールA型エポキシ樹脂、三菱ケミカル社製)に、溶融点が200℃であるPb―Sn(Pb2.5-Sn97.5、三井金属社製)系の金属粒子を、混合装置(超音波ホモジナイザー、日本アレックス製)を用いて剪断力を加えながら混合した。硬化後に柔軟性を付与できる硬化剤(変性脂環族アミン、三菱ケミカル社製)を添加、混合した。その後、繊維状絶縁基材であるガラスクロスに塗布し、加熱乾燥して半導電性テープ1を作製した。
エポキシ樹脂(ビスフェノールA型エポキシ樹脂、三菱ケミカル社製)に、溶融点が300℃であるPb―Sn(Pb95-Sn5、三井金属社製)系の金属粒子を、混合装置(超音波ホモジナイザー、日本アレックス製)を用いて剪断力を加えながら混合した。硬化後に柔軟性を付与できる硬化剤(変性脂環族アミン、三菱ケミカル社製)を添加、混合した。その後、繊維状絶縁基材であるガラスクロスに塗布し、加熱乾燥して半導電性テープ1を作製した。
エポキシ樹脂(ビスフェノールA型エポキシ樹脂、三菱ケミカル社製)に、溶融点が600℃であるSn―Cu(Sn40-Cu60)系の金属粒子を、混合装置(超音波ホモジナイザー、日本アレックス製)を用いて剪断力を加えながら混合した。硬化後に柔軟性を付与できる硬化剤(変性脂環族アミン、三菱ケミカル社製)を添加、混合した。その後、繊維状絶縁基材であるガラスクロスに塗布し、加熱乾燥して半導電性テープ1を作製した。
エポキシ樹脂(ビスフェノールA型エポキシ樹脂、三菱ケミカル社製)に、溶融点が700℃であるSn―Cu(Sn25-Cu75)系の金属粒子を、混合装置(超音波ホモジナイザー、日本アレックス製)を用いて剪断力を加えながら混合した。硬化後に柔軟性を付与できる硬化剤(変性脂環族アミン、三菱ケミカル社製)を添加、混合した。その後、繊維状絶縁基材であるガラスクロスに塗布し、加熱乾燥して半導電性テープ1を作製した。
シリコーン樹脂(信越シリコーン社製)に、溶融点が200℃であるPb―Sn(Pb2.5-Sn97.5、三井金属社製)系の金属粒子を、混合装置(超音波ホモジナイザー、日本アレックス製)を用いて剪断力を加えながら混合した。その後、繊維状絶縁基材であるガラスクロスに塗布し、加熱乾燥して半導電性テープ1を作製した。
不飽和ポリエステル樹脂(昭和電工社製)に、溶融点が200℃であるPb―Sn(Pb2.5-Sn97.5、三井金属社製)系の金属粒子および硬化剤(有機過酸化物、三菱ケミカル社製)を、混合装置(超音波ホモジナイザー、日本アレックス製)を用いて剪断力を加えながら混合した。その後、繊維状絶縁基材であるガラスクロスに塗布し、加熱乾燥して半導電性テープ1を作製した。
エポキシ樹脂(ビスフェノールA型エポキシ樹脂、三菱ケミカル社製)に、溶融点が200℃であるPb―Sn(Pb2.5-Sn97.5、三井金属社製)系の金属粒子を、混合装置(超音波ホモジナイザー、日本アレックス製)を用いて剪断力を加えながら混合した。硬化後に柔軟性を付与できる硬化剤(変性脂環族アミン、三菱ケミカル社製)を添加、混合した。その後、繊維状絶縁基材であるポリエステルクロスに塗布し、加熱乾燥して半導電性テープ1を作製した。
エポキシ樹脂(ビスフェノールA型エポキシ樹脂、三菱ケミカル社製)に、導電性粒子としてカーボンブラック(デンカ社製)を、混合装置(超音波ホモジナイザー、日本アレックス製)を用いて剪断力を加えながら混合した。硬化後に柔軟性を付与できる硬化剤(変性脂環族アミン、三菱ケミカル社製)を添加、混合した。その後、繊維状絶縁基材であるガラスクロスに塗布し、加熱乾燥して半導電性テープを作製した。
エポキシ樹脂(ビスフェノールA型エポキシ樹脂、三菱ケミカル社製)に、溶融点が190℃であるPb―Sn(Pb5-Sn95、三井金属社製)系の金属粒子を、混合装置(超音波ホモジナイザー、日本アレックス製)を用いて剪断力を加えながら混合した。硬化後に柔軟性を付与できる硬化剤(変性脂環族アミン、三菱ケミカル社製)を添加、混合した。その後、繊維状絶縁基材であるガラスクロスに塗布し、加熱乾燥して半導電性テープを作製した。
エポキシ樹脂(ビスフェノールA型エポキシ樹脂、三菱ケミカル社製)に、溶融点が710℃であるSn-Cu(Sn20-Cu80)系の金属粒子を、混合装置(超音波ホモジナイザー、日本アレックス製)を用いて剪断力を加えながら混合した。硬化後に柔軟性を付与できる硬化剤(変性脂環族アミン、三菱ケミカル社製)を添加、混合した。その後、繊維状絶縁基材であるガラスクロスに塗布し、加熱乾燥して半導電性テープを作製した。
Claims (10)
- 金属粒子が分散混入された半導電性樹脂層が繊維状絶縁基材に配置された半導電性部材であって、
前記金属粒子は、熱硬化性樹脂が硬化する温度よりも高く、前記繊維状絶縁基材の軟化点よりも低い溶融点を有することを特徴とする半導電性部材。 - 前記金属粒子は、200℃以上、700℃以下の溶融点を有することを特徴とする請求項1に記載の半導電性部材。
- 前記金属粒子は、Pb―Snを含む複合成分、Sn―Sbを含む複合成分、Sn―Cuを含む複合成分、またはSn―Agを含む複合成分で構成されていることを特徴とする請求項1または請求項2に記載の半導電性部材。
- 前記金属粒子は、配合量が前記半導電性樹脂層の樹脂部に対して1vol%以上、50vоl%以下の範囲であることを特徴とする請求項1から請求項3のいずれか1項に記載の半導電性部材。
- 前記金属粒子は、平均粒径が1nm以上、10μm以下の範囲であることを特徴とする請求項1から請求項4のいずれか1項に記載の半導電性部材。
- 前記金属粒子は、前記半導電性樹脂層の樹脂部との界面にカップリング剤または表面処理剤を介在させたことを特徴とする請求項1から請求項5のいずれか1項に記載の半導電性部材。
- 素線導体を束ねた導体部、前記導体部の外周にマイカ部材を巻回してなる絶縁層および前記絶縁層の外周に請求項1から請求項6のいずれか1項に記載の半導電性部材を巻回してなる半導電性層とから形成された巻線と、前記巻線に含侵させた前記熱硬化性樹脂とを有することを特徴とする固定子コイル。
- 前記半導電性層は、前記絶縁層との界面に接する半導電性部材において前記絶縁層との界面側に前記金属粒子が偏在していることを特徴とする請求項7に記載の固定子コイル。
- 前記半導電性層は、前記偏在している金属粒子以外の金属粒子の代わりに、導電性粒子を用いることを特徴とする請求項8に記載の固定子コイル。
- 請求項7から請求項9のいずれか1項に記載の固定子コイルを備えることを特徴とする回転電機。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202180095900.7A CN116982240A (zh) | 2021-03-23 | 2021-03-23 | 半导电性构件、定子线圈和旋转电机 |
JP2023508196A JP7536178B2 (ja) | 2021-03-23 | 2021-03-23 | 半導電性部材、固定子コイルおよび回転電機 |
US18/276,656 US20240128820A1 (en) | 2021-03-23 | 2021-03-23 | Semiconductive member, stator coil, and rotating electric machine |
PCT/JP2021/011847 WO2022201279A1 (ja) | 2021-03-23 | 2021-03-23 | 半導電性部材、固定子コイルおよび回転電機 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2021/011847 WO2022201279A1 (ja) | 2021-03-23 | 2021-03-23 | 半導電性部材、固定子コイルおよび回転電機 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022201279A1 true WO2022201279A1 (ja) | 2022-09-29 |
Family
ID=83396410
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/011847 WO2022201279A1 (ja) | 2021-03-23 | 2021-03-23 | 半導電性部材、固定子コイルおよび回転電機 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20240128820A1 (ja) |
JP (1) | JP7536178B2 (ja) |
CN (1) | CN116982240A (ja) |
WO (1) | WO2022201279A1 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001069709A (ja) * | 1999-08-24 | 2001-03-16 | Hitachi Ltd | 回転電機 |
JP2006109600A (ja) * | 2004-10-04 | 2006-04-20 | Toshiba Corp | 回転電機の固定子コイルおよびその固定方法 |
JP2006246599A (ja) * | 2005-03-02 | 2006-09-14 | Toshiba Corp | 半導電性テープ、半導電性テープの製造方法、絶縁コイル及び回転電機 |
US20120169172A1 (en) * | 2011-01-05 | 2012-07-05 | Alstom Technology Ltd | Method for manufacturing a stator and a stator bar, stator and stator bar |
WO2019117055A1 (ja) * | 2017-12-15 | 2019-06-20 | 住友電気工業株式会社 | 絶縁材用樹脂組成物、絶縁材、絶縁電線及びケーブル |
-
2021
- 2021-03-23 WO PCT/JP2021/011847 patent/WO2022201279A1/ja active Application Filing
- 2021-03-23 JP JP2023508196A patent/JP7536178B2/ja active Active
- 2021-03-23 CN CN202180095900.7A patent/CN116982240A/zh active Pending
- 2021-03-23 US US18/276,656 patent/US20240128820A1/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001069709A (ja) * | 1999-08-24 | 2001-03-16 | Hitachi Ltd | 回転電機 |
JP2006109600A (ja) * | 2004-10-04 | 2006-04-20 | Toshiba Corp | 回転電機の固定子コイルおよびその固定方法 |
JP2006246599A (ja) * | 2005-03-02 | 2006-09-14 | Toshiba Corp | 半導電性テープ、半導電性テープの製造方法、絶縁コイル及び回転電機 |
US20120169172A1 (en) * | 2011-01-05 | 2012-07-05 | Alstom Technology Ltd | Method for manufacturing a stator and a stator bar, stator and stator bar |
WO2019117055A1 (ja) * | 2017-12-15 | 2019-06-20 | 住友電気工業株式会社 | 絶縁材用樹脂組成物、絶縁材、絶縁電線及びケーブル |
Also Published As
Publication number | Publication date |
---|---|
JPWO2022201279A1 (ja) | 2022-09-29 |
CN116982240A (zh) | 2023-10-31 |
JP7536178B2 (ja) | 2024-08-19 |
US20240128820A1 (en) | 2024-04-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2004055185A (ja) | エナメル線 | |
EP2982721B1 (en) | Coating material for electrical equipment, method for manufacturing coating material for electrical equipment, and encapsulated type insulating device | |
WO2011138413A2 (de) | Elektrisches isolationsmaterial und isolationsband für eine elektrische isolation einer mittel- und hochspannung | |
JP7478098B2 (ja) | コロナ耐性ポリイミド絶縁体を持つマグネットワイヤ | |
TW201627157A (zh) | 具有增強之擊穿強度之介電材料 | |
JP2009118719A (ja) | 電気絶縁材として用いられる非線形誘電体 | |
US20170301429A1 (en) | Insulation System | |
JP6338686B2 (ja) | 電気機械用のコロナシールド系、特に外側コロナシールド系 | |
JP2006246599A (ja) | 半導電性テープ、半導電性テープの製造方法、絶縁コイル及び回転電機 | |
US8163999B2 (en) | Insulation-coated wire | |
US20240136900A1 (en) | Slot Insulation System for an Electrical Rotating Machine, Method for Producing a Slot Insulation System | |
DE102010019723A1 (de) | Elektroisolationssystem für eine elektrische Hochspannungsrotationsmaschine | |
WO2022201279A1 (ja) | 半導電性部材、固定子コイルおよび回転電機 | |
JP2018129273A (ja) | 導電材、導電材を含む電気機械、及び導電材の製造方法 | |
JP2005239765A (ja) | 無機フィラー分散絶縁塗料および絶縁電線 | |
JP6891887B2 (ja) | 回転電機用コイル、回転電機用コイルの製造方法、マイカテープ、マイカテープの硬化物及び絶縁物 | |
Varghese et al. | Investigating the characteristics of amino silane functionalized alumina nanoparticles doped epoxy nanocomposite for high-voltage insulation | |
CN106716788B (zh) | 电机的电晕屏蔽系统 | |
US20190149006A1 (en) | Method for producing corona discharge-preventing structure, corona discharge-preventing structure, and rotating electrical machine | |
JP4966257B2 (ja) | エナメル線の製造方法 | |
JP6967965B2 (ja) | コロナシールドテープ及び当該コロナシールドテープを備える電気機械 | |
US20200312483A1 (en) | Insulation System, Insulant, and Insulation Material for Producing the Insulation System | |
WO2023105745A1 (ja) | コイル固定部材およびこれを用いた回転電機 | |
JP2023030380A (ja) | マイクロバリスタコンポジット、マイクロバリスタコンポジットの分散液、非線形抵抗材料及び電界緩和構造 | |
JP5108251B2 (ja) | 絶縁電線およびこれを用いた電気コイル |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21932889 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2023508196 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18276656 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202180095900.7 Country of ref document: CN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21932889 Country of ref document: EP Kind code of ref document: A1 |