WO2003091084A1 - Procede et dispositif de commande de mouvement de vehicule - Google Patents

Procede et dispositif de commande de mouvement de vehicule Download PDF

Info

Publication number
WO2003091084A1
WO2003091084A1 PCT/JP2003/005071 JP0305071W WO03091084A1 WO 2003091084 A1 WO2003091084 A1 WO 2003091084A1 JP 0305071 W JP0305071 W JP 0305071W WO 03091084 A1 WO03091084 A1 WO 03091084A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
steering
motor
transmission ratio
steering wheel
Prior art date
Application number
PCT/JP2003/005071
Other languages
English (en)
French (fr)
Inventor
Hiroaki Kato
Minekazu Momiyama
Yoshiyuki Yasui
Wataru Tanaka
Kenji Asano
Yuzou Imoto
Eiichi Ono
Yuji Muragishi
Original Assignee
Toyoda Koki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Koki Kabushiki Kaisha filed Critical Toyoda Koki Kabushiki Kaisha
Priority to DE60320247T priority Critical patent/DE60320247T2/de
Priority to US10/506,690 priority patent/US20050240327A1/en
Priority to EP03723161A priority patent/EP1508500B1/en
Publication of WO2003091084A1 publication Critical patent/WO2003091084A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • B62D5/0463Controlling the motor calculating assisting torque from the motor based on driver input
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/008Changing the transfer ratio between the steering wheel and the steering gear by variable supply of energy, e.g. by using a superposition gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/008Control of feed-back to the steering input member, e.g. simulating road feel in steer-by-wire applications

Definitions

  • the present invention relates to a vehicle motion control method and a vehicle motion control device.
  • Steering wheel (handle) As a vehicle motion control device equipped with a variable transmission ratio mechanism that varies the transmission ratio by driving a motor in the middle of a steering transmission system that connects the steering wheel (handle) and the steered wheels, as shown in FIG. , Steering wheel (handle)
  • a vehicle motion control device 100 composed of a variable ratio mechanism 32, VGRS-ECU 40 and the like.
  • a variable ratio mechanism 32 that varies the transmission ratio by driving an electric motor in the middle of a steering transmission system that connects the steering wheel and the steered wheels '' may be referred to as a VGRS (Vriable Gear Ratio System). is there.
  • the variable gear ratio mechanism 32 includes a motor, a speed reducer, and the like.
  • One end of the second steering shaft 23 is connected to the output side, and the other end of the second steering shaft 23 is connected to the output side.
  • the input side of the EPS actuator 24 is connected.
  • the EPS actuator 24 is an electric power steering device, and converts the rotational motion input by the second steering shaft 23 into the axial motion of the rod 25 by a rack and pinion gear (not shown).
  • the assist motor controlled by the EPS_ECU 30 generates assisting force according to the steering state to assist the driver in steering.
  • the rotation angle (steering angle) of the first steering shaft 22 is detected by the steering angle sensor 26 and is sent to the VGRS_ECU 40 as a steering angle signal.
  • the steering torque due to 23 is detected by the torque sensor 28 and output as a torque signal to the EPS control processing 30a, and the vehicle speed is detected by the vehicle speed sensor 27 and output to the EPS_ECU 30 and VGRS_ECU 40 as a vehicle speed signal. It is configured so that each can be input. Further, a steering wheel (not shown) is mounted on the rod 25.
  • variable gear ratio mechanism 32 and the VGRS-ECU 40 change the ratio of the output gear to the input gear in real time by the motor and the reducer according to the vehicle speed.
  • the ratio of the output angle of the second steering shaft 23 to the steering angle of 2 is varied.
  • the EPS actuator 24 and EPS_ECU 30 use an assist motor to assist the driver in steering according to the driver's steering state and vehicle speed detected by the torque sensor 28 and the vehicle speed sensor 27. generate.
  • the steering gear ratio corresponding to the vehicle speed for example, the output angle of the variable gear ratio mechanism 32 is set to be larger than the steering angle of the steering wheel when the vehicle is stopped or running at low speed, while it is possible to set the output angle of the variable gear ratio mechanism 32 to be smaller than the steering angle, it is possible to generate an appropriate assist force corresponding to the vehicle speed by the assist motor.
  • the steering gear ratio is set to be small by the variable gear ratio mechanism 32 and the assist motor is increased by the assist motor. Cuts sharply. This makes it easier for the driver to steer.
  • the assist force of the assist motor is reduced, and the steering gear ratio is set by the variable gear ratio mechanism 32, so that the steering operation becomes heavy and the steering becomes large. Even if it turns, the steerable wheels are only small. This can be expected to further improve the stability of vehicle control.
  • the torque sensor 28 that detects the steering torque detects the torque by the second steering shaft 23 that is the output shaft of the variable gear ratio mechanism 32. That is, steering wheel 2 A variable gear ratio mechanism 32 is interposed between 1 and the torque sensor 28. Therefore, since the steering wheel torque generated by the steering wheel 21 and the torque detected by the torque sensor 28 do not always match, if the torque detected by the torque sensor 28 is used as the steering torque for the control of the EPS actuator 24, There is a problem that a slight inconsistency that can occur between the driver's steering sensation and the actual steering can give a slight sense of strangeness to the steering sensation.
  • Such a problem can be solved by providing a torque sensor on the first steering shaft 22 which is an input shaft of the gear ratio variable mechanism 32, and using a torque signal from the torque sensor for controlling the EPS actuator 24. Can do it.
  • the torque sensor needs to be provided separately from the torque sensor 28 of the second steering shaft 23, a new problem arises in that the number of parts increases and the product cost increases.
  • the present invention has been made in order to solve the above-described problems, and an object of the present invention is to provide a vehicle motion control method and vehicle capable of improving the vehicle motion controllability without increasing the number of parts. To provide a motion control device. Disclosure of the invention
  • the vehicle motion control method includes a transmission ratio variable mechanism that varies a transmission ratio by driving a motor in a steering transmission system that connects a handle and a steered wheel.
  • An assist motor that supplements a steering force based on a steering torque
  • a vehicle motion control method comprising: a transmission ratio variable mechanism based on a motion equation expressing torque transmission by the transmission ratio variable mechanism.
  • the steering torque generated by operating the steering wheel is obtained using the steering torque generated on the output shaft of the motor, the motor torque generated by the motor of the transmission ratio variable mechanism, and the rotation angle of the motor.
  • a technical feature is to control the assist motor using torque as the steering torque.
  • a transmission ratio variable mechanism that varies a transmission ratio by driving a motor in a steering transmission system that connects the steering wheel and the steered wheels, and a steering ratio based on the steering torque.
  • a motion control device for a vehicle comprising: an assist motor for supplementing a steering force; and a motion representing torque transmission by the variable transmission ratio mechanism. Based on the equation, a steering torque generated by operating the steering wheel is obtained by using a steering torque generated on an output shaft of the transmission ratio variable mechanism, a motor torque generated by a motor of the transmission ratio variable mechanism, and a rotation angle of the motor.
  • a steering wheel torque calculating means and controlling the assist motor using the steering wheel torque obtained by the steering wheel torque calculating means as the steering torque.
  • the steering torque generated on the output shaft of the variable transmission ratio mechanism based on the equation of motion representing the torque transmission by the variable transmission ratio mechanism, the variable transmission ratio
  • the motor torque generated by the motor of the mechanism and the rotation angle of the motor, a steering wheel torque generated by operating the steering wheel is obtained, and the obtained steering wheel torque is used as the steering torque to control the assist motor.
  • the steering wheel torque can be known without adding a new torque sensor or the like.
  • the steering torque Tp generated on the output shaft of the variable transmission ratio mechanism is detected by the existing torque sensor, and the motor torque Tvm and the motor rotation angle ⁇ vm are detected by the existing rotation angle sensor and the existing rotation angle sensor used for controlling the motor. If each is detected by a current sensor, the steering wheel torque Th can be obtained by arithmetic processing by a control computer or the like. Therefore, the motion controllability of the vehicle can be improved without increasing the number of parts.
  • Th-T p + Tvm JvmXd2 ⁇ vm / dt 2 + RvmXsign (d0 vm / dt) (1)
  • Th is the handle torque (Nm)
  • T p is the output of the variable transmission ratio mechanism.
  • the steering torque (N'm) generated on the shaft Tvm is the motor torque (N'm) generated by the motor of the variable transmission ratio mechanism, Jvm is the motor inertia (kg.m2) of the variable transmission ratio mechanism, and 0vm is the transmission.
  • the motor rotation angle (rad) and Rvm of the variable ratio mechanism represent the Coulomb frictional resistance (N ⁇ mZrad) of the variable transmission ratio mechanism, respectively.
  • Equation (1) “dZdt” of d 2 ⁇ vm / dt 2 and d 0 vm / dt in Equation (1) represents a differential operation with time t, and signO represents an operation for finding a sign in parentheses.
  • the transmission ratio variable mechanism is a component of a motion equation representing torque transmission by the transmission ratio variable mechanism. It is a technical feature that the steering wheel torque is obtained using at least one of an inertia term according to the above and a Coulomb friction term due to the transmission ratio variable mechanism.
  • the steering wheel torque calculating means includes a motion equation component expressing a torque transmission by the transmission ratio variable mechanism. It is a technical feature that the steering wheel torque is obtained using at least one of an inertia term of the variable transmission ratio mechanism and a Coulomb friction term of the variable transmission ratio mechanism.
  • FIG. 1 is an explanatory diagram showing a schematic configuration of a vehicle motion control device.
  • FIG. 2 is a functional block diagram showing a vehicle motion control process by the EPS-ECU and the VGRS-ECU of the vehicle motion control device according to the present embodiment.
  • FIG. 3 is a flowchart showing a flow of a steering wheel nok operation process by the EPS_ECU of the vehicle motion control device according to the present embodiment.
  • vehicle motion control device 20 is the same as the above-described vehicle motion control device 100 in mechanical structure, so that the vehicle motion control device 20 (100) shown in FIG. ).
  • the vehicle motion control device 20 includes a steering wheel 21, a first steering shaft 22, a second steering shaft 23, an EPS actuator 24, a rod 25, and a steering angle sensor 2. 6, vehicle speed sensor 27, tonnox sensor 28, EPS-ECU 30, variable gear ratio mechanism 32, VGRS_ECU 40, etc.
  • the mechanical and electrical coupling relationship is as described above.
  • FIG. 2 is a functional block diagram showing a vehicle motion control process by the EPS-ECU 30 and the VGRS_ECU 40 of the vehicle motion control device 20 according to the present embodiment.
  • the vehicle motion control device 20 has a function of variably controlling the steering gear ratio by the VGRS control process 40 a by the VGRS_ECU 4 ⁇ according to the speed of the vehicle by the variable gear ratio mechanism 32, EPS—Equipped with an EPS control process 30a by the ECU 30 to generate assisting force according to the steering state and assist the driver in steering.
  • ECU Electronic Control Unit
  • variable gear ratio mechanism 32 and the VGRS ECU 40 the motor 32 m And the speed reducer 32g, the ratio of the output gear to the input gear is changed in real time according to the vehicle speed, and the ratio of the output angle of the second steering shaft 23 to the steering angle of the first steering shaft 22 is G v is variable.
  • the steering torque signal Tp from the torque sensor 28, the vehicle speed signal V from the vehicle speed sensor 27 and the force SEPS_ECU 30 are input to the SEPS_ECU 30 to uniquely correspond to the vehicle speed.
  • a process for determining the current command value of the assist motor 24 m of the EPS actuator 24 determined from the motor current map (not shown) is performed, and a motor voltage corresponding to the determined current command value is determined by the motor drive circuit. supply to m.
  • the EPS actuator 24 and the EPS-ECU 30 perform the EPS control processing 30a according to the driver's steering state and vehicle speed detected by the torque sensor 28 and the vehicle speed sensor 27, respectively.
  • the assist motor that assists the steering of the vehicle is generated by an assist motor 24 m.
  • the functional outlines of the EPS control processing 30a by the EPS_ECU 30 and the VGRS control processing 40a by the VGRS_ECU 40 are basically the same as the vehicle motion control processing by the vehicle motion control device 100 described above.
  • the vehicle motion control device 20 according to the present embodiment directly converts the steering torque T p detected by the torque sensor 28 into the EPS control process 30 a calculated by the EPS—ECU 30. This is different from the conventional vehicle motion control device 100 in that the input is made via the steering wheel torque calculation processing 300b without being input.
  • the present inventors express the torque transmission by the variable gear ratio mechanism 32 as a motion equation as shown in the following equation (2), and based on the motion equation (equation (2)), handle torque T h Is calculated by the calculation processing by EPS_ECU30, and the calculated The steering wheel torque Th is used for controlling the EPS actuator 24.
  • the motor torque Tvm by the motor 32 m of the variable gear ratio mechanism 32 is calculated by the equation (3).
  • Th is the steering wheel torque (Nm)
  • Tp is the steering torque (Nm) generated on the second steering shaft 23, which is the output shaft of the variable gear ratio mechanism 32
  • Gv is the gear.
  • Gear ratio (unitless number) of variable ratio mechanism 32 Tvm is motor torque (N ⁇ m) generated by motor 32m
  • J vm is motor inertia (kg'm2) of variable gear ratio mechanism 32
  • 0vm Motor 3 2m motor rotation angle (rad)
  • Rvm is gear ratio variable mechanism 32 Coulomb frictional resistance of 2 (Nm / radZsec)
  • Kvt is motor 3
  • the motor torque constant (N-m / A) of 2 m, and Ivm represent the motor current (A) of the motor 32 m, respectively.
  • “d / dt” in d2 ⁇ vm / dt 2 and (1 ⁇ vm / dt) in Expression (1) represents a differential operation with respect to time t
  • signO represents an operation for finding a sign in parentheses.
  • the steering torque T p is detected by the torque sensor 28, and the motor current I vm and the motor rotation angle ⁇ ⁇ of the motor 32 m are determined by the current sensor 32 normally used for drive control of the motor 32 m.
  • the first term on the right-hand side of the equation (2) is the motor inertia Jvm, and the second term is the Coulomb friction term.
  • the frictional resistance Rvm is appropriately set as necessary by giving the measured value or the design value of the variable gear ratio mechanism 32.
  • the motor torque constant Kvt of the motor 32m is also set as required.
  • the motor torque Tvm generated by the motor 32 m can be calculated by the above equation (3), and the steering wheel torque Th can be calculated by the above equation (2).
  • the steering wheel torque Th is determined by executing the steering wheel torque calculation processing 30 b shown in FIG. 3 by the EPS_ECU 30.
  • the steering wheel torque calculation processing 30b is repeatedly executed periodically (for example, every 5 milliseconds) by a predetermined timer interruption processing or the like. That is, as shown in FIG. 3, in the steering wheel torque calculation processing 30b, after a predetermined initialization processing, first, in step S101, the steering torque Tp, the motor current I vm, the motor rotation angle and the gear ratio Gv are calculated. A process of reading data is performed.
  • the steering torque Tp is detected by the torque sensor 28, the motor current I vm is detected by the current sensor 32 i, and the motor rotation angle 0 V m is detected by the rotation angle sensor 32 s and input to the EPS_ECU 30.
  • These data are read by taking in by interrupt processing or the like.
  • Data is read by receiving the gear ratio GV of the variable gear ratio mechanism 32 from the VGRS control processing 40a by the VGRS-ECU 40.
  • step S103 a process of calculating a motor torque Tvm by the motor 32m of the variable gear ratio mechanism 32 is performed. This processing is performed based on the above-mentioned equation (3).
  • the motor torque constant Kvt is multiplied by the motor current Ivm read in step S101 to obtain the motor torque. Calculate Tvm.
  • step S105 a process (devmZdt) for differentiating the motor rotation angle 0vm with time t, and a process for further differentiating the result with time t (d 2 ⁇ vm / dt 2), that is, the aforementioned equation (2)
  • the processing to calculate d0 vm / dt and d2 evmZdtS in) is performed. Specifically, d0vm / dt is calculated by dividing the value obtained by subtracting the previous value 0 V m 'from the current ⁇ by the time t from the previous time to the current time, as shown in the following equation (4).
  • D20vm / dt2 is calculated by subtracting the previous value (devmZdt) from the current d0 vm Zdt, as shown in the following equation (5), and dividing by the time ⁇ t from the previous time to the current time. It is calculated by:
  • step SI07 by determining whether or not the force (d0vmdt) calculated in step S1 ⁇ 5 is equal to or greater than the force S0 (zero), the value of (d0vm / dt) is calculated.
  • the process of finding the sign that is, the process of calculating sign (d0 vm / dt) in the above equation (2) is performed.
  • step S107 the calculation formulas (6) and (7) corresponding to the sign of (d0vmZdt) are selected in step S107, and the following step S107 is selected. 109, the process proceeds to S111 to perform an arithmetic process for calculating the handle torque Th.
  • step S109 the steering wheel torque Th is calculated by the following equation (6) in which the Coulomb frictional resistance Rvm of the gear ratio variable mechanism 32 is added.
  • the steering wheel torque Th is calculated by the following equation (7) in which the Coulomb friction resistance Rvm of the variable gear ratio mechanism 32 is subtracted in step S109.
  • the equations (6) and (7) are modified from the above (2) to calculate the steering wheel torque Th.
  • Th Gv X (JvraXd2 ⁇ vm / dt 2 + Rvm- Tvm) + Tp (6)
  • Th G v X (JvraXd2 ⁇ vm / dt 2-Rvm- Tvm) + Tp (7)
  • the variable gear ratio mechanism As described above, according to the vehicle motion control device 20 according to the present embodiment, based on the above-described equation of motion (Equation (2)) expressing the torque transmission by the variable gear ratio mechanism 32, the variable gear ratio mechanism is used. Using the steering torque Tp generated on the second steering shaft 23, which is the output shaft of the motor 32, the motor torque Tvm generated by the motor 32m of the variable gear ratio mechanism 32, and the rotation angle ⁇ vm of the motor 32m, the steering wheel 2 The handle torque Th generated by the operation 1 is obtained by the handle torque calculation processing 30 b by the EPS_ECU 30.
  • the vehicle motion control device 20 adopts a configuration in which the gear ratio variable mechanism 32 is interposed between the steering wheel 21 and the torque sensor 28, the vehicle motion control device 20 is newly activated. It is possible to know the handle torque Th by the steering wheel 21 before passing through the variable gear ratio mechanism 32 without adding a torque sensor, etc., and use this handle torque Th for EPS control processing 30a. Accordingly, it is possible to control the actual steering in accordance with the steering feeling of the driver. Therefore, the motion controllability of the vehicle can be improved without increasing the number of parts, and subtle discomfort in the steering feeling can be eliminated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Power Steering Mechanism (AREA)

Description

明 細 書 車両の運動制御方法および車両の運動制御装置 技術分野
本発明は、 車両の運動制御方法および車両の運動制御装置に関する。 背景技術
ステアリングホイール (ハンドル) と操舵輪とを連結する操舵伝達系の途中 にモータの駆動により伝達比を可変する伝達比可変機構を備えた車両の運動制 御装置として、 例えば第 1図に示すように、 ステアリングホイール (ハンドル)
2 1、 第 1ステアリングシャフト 2 2、 第 2ステアリングシャフ ト 2 3、 E P Sァクチユエータ 2 4、 ロッド 2 5、 操舵角センサ 2 6、 車速センサ 2 7、 ト ノレクセンサ 2 8、 EPS.ECU 3 0、 ギヤ比可変機構 3 2、 VGRS— ECU 4 0等から構 成される車両運動制御装置 1 0 0がある。 なお、 このような 「ステアリングホ ィールと操舵輪とを連結する操舵伝達系の途中に電動モータの駆動により伝達 比を可変する伝達比可変機構」 を、 V G R S (Vriable Gear Ratio System) と 称する場合もある。
即ち、 ステアリングホイール 2 1に第 1ステアリングシャフト 2 2の一端が 接続され、 この第 1ステアリングシャフト 2 2の他端側にはギヤ比可変機構 3 2の入力側が接続される。 このギヤ比可変機構 3 2は、 モータ、 減速機等から 構成されており、 この出力側には第 2ステアリングシャフト 2 3の一端側が接 続され、 第 2ステアリングシャフト 2 3の他端側には、 E P Sァクチユエータ 2 4の入力側が接続される。 E P Sァクチユエータ 2 4は、 電気式動力舵取装 置であり、 図示しないラック · ピニオンギヤ等により、 第 2ステアリングシャ フト 2 3によって入力された回転運動をロッド 2 5の軸方向運動に変換して出 力し得るとともに、 EPS_ECU 3 0により制御されるアシス トモータにより操舵 状態に応じたアシストカを発生させて運転者による操舵をアシストする。なお、 第 1ステアリングシャフ ト 2 2の回転角 (操舵角) は操舵角センサ 2 6により 検出されて操舵角信号として VGRS_ECU 4 0に、 また第 2ステアリングシャフト 2 3による操舵トルクはトルクセンサ 2 8により検出されてトルク信号として E P S制御処理 3 0 aに、 さらに車両の速度は車速センサ 2 7により検出され て車速信号として EPS_ECU 3 0および VGRS_ECU 4 0に、 それぞれ入力され得る ように構成されている。 また、 ロッド 2 5には、 図略の操舵輪が装着されてい る。
このように構成することによって、 ギヤ比可変機構 3 2および VGRS— ECU 4 0 では、 モータと減速機により、 入力ギヤに対する出力ギヤの比を車速に応じて リアルタイムに変更し、 第 1ステアリングシャフト 2 2の操舵角に対する第2 ステアリングシャフト 2 3の出力角の比を可変する。 また、 E P Sァクチユエ ータ 2 4および EPS_ECU 3 0では、 トルクセンサ 2 8および車速センサ 2 7に より検出した運転者の操舵状態や車速に応じて、 運転者の操舵をアシストする アシストカをアシストモータにより発生させる。
これにより、 車速に対応したステアリングギヤ比、 例えば停車時や低速走行 時にはステアリングホイールの操舵角に対してギヤ比可変機構 3 2の出力角が 大きくなるように設定し、 また高速走行時にはステアリングホイールの操舵角 に対してギヤ比可変機構 3 2の出力角が小さくなるように設定することが可能 となる一方で、 車速に対応した適切なアシストカをアシストモータにより発生 させることが可能となる。
例えば、 車両が停車や低速走行している場合には、 ギヤ比可変機構 3 2によ るステアリングギヤ比が小さく設定されるとともに、 アシス トモータによるァ シストカを高めるので、 軽いステアリング操作でも操舵輪は大きく切れる。 こ れにより運転者の操舵を楽にすることができる。 一方、 車両が高速走行してい る場合には、 アシス トモータによるアシスト力が低下し、 ギヤ比可変機構 3 2 によるステアリングギヤ比が大きく設定されるので、 ステアリング操作が重く なるとともに、 たとえステアリングが大きく切れても操舵輪は小さく切れるに とどまる。 これにより車両制御の安定性のさらなる向上を期待することができ る。
しかしながら、 このような車両運動制御装置によると、 操舵トルクを検出す る トルクセンサ 2 8は、 ギヤ比可変機構 3 2の出力軸である第 2ステアリング シャフト 2 3によるトルクを検出している。 つまり、 ステアリングホイール 2 1と トルクセンサ 2 8との間にギヤ比可変機構 3 2が介在する。 そのため、 ス テアリングホイール 2 1によるハンドルトルクと トルクセンサ 2 8により検出 するトルクとは、 必ずしも一致しないことから、 トルクセンサ 2 8により検出 したトルクを操舵トルクとして E P Sァクチユエータ 2 4の制御に用いると、 運転者による操舵感覚と実操舵との間に生じ得る僅かな不一致から、 操舵感覚 に微妙な違和感を与え得るという問題がある。
このような問題は、 ギヤ比可変機構 3 2の入力軸である第 1ステアリングシ ャフト 2 2にトルクセンサを設け、 当該トルクセンサからのトルク信号を E P Sァクチユエータ 2 4の制御に用いることによって解決することはできる。 と ころが、 当該トルクセンサを、 第 2ステアリングシャフト 2 3のトルクセンサ 2 8とは別に設ける必要があるため、 部品点数の増加や製品コストの上昇を招 くという新たな問題を生じる。
本発明は、 上述した課題を解決するためになされたものであり、 その目的と するところは、 部品点数を増加させることなく、 車両の運動制御性を向上し得 る車両の運動制御方法および車両の運動制御装置を提供することにある。 発明の開示
上記目的を達成するため、 請求の範囲第 1項の車両の運動制御方法では、 ハ ンドルと操舵輪とを連結する操舵伝達系の途中にモータの駆動により伝達比を 可変する伝達比可変機構と、 操舵トルクに基づいて操舵力を補うアシス トモー タと、 を備えた車両の運動制御方法であって、 前記伝達比可変機構によるトル ク伝達を表した運動方程式に基づいて、 前記伝達比可変機構の出力軸に発生す る操舵トルク、 前記伝達比可変機構のモータにより発生するモータトルクおよ び該モータの回転角を用い、 前記ハンドルの操作により発生するハンドルトル クを求め、 この求めたハンドルトルクを前記操舵トルクとして前記アシストモ ータを制御することを技術的特徴とする。
また、 請求の範囲第 3項の車両の運動制御装置では、 ハンドルと操舵輪とを 連結する操舵伝達系の途中にモータの駆動により伝達比を可変する伝達比可変 機構と、 操舵トルクに基づいて操舵力を補うアシストモータと、 を備えた車両 の運動制御装置であって、 前記伝達比可変機構によるトルク伝達を表した運動 方程式に基づいて、 前記伝達比可変機構の出力軸に発生する操舵トルク、 前記 伝達比可変機構のモータにより発生するモータトルクおよび該モータの回転角 を用い、 前記ハンドルの操作により発生するハンドルトルクを求めるハンドル トルク算出手段、 を備え、 前記ハンドルトルク算出手段により求めたハンドル トルクを前記操舵トルクとして前記アシストモータを制御することを技術的特 徴とする。
請求の範囲第 1項および請求の範囲第 3項の発明によると、 伝達比可変機構 によるトルク伝達を表した運動方程式に基づいて、 伝達比可変機構の出力軸に 発生する操舵トルク、 伝達比可変機構のモータにより発生するモータトルクお よび該モータの回転角を用い、 ハンドルの操作により発生するハンドルトルク を求め、 この求めたハンドルトルクを前記操舵トルクとして前記アシストモ一 タを制御する。
例えば、 当該運動方程式が次式(1) であれば、 伝達比可変機構の出力軸に発 生する操舵トルク T p、 伝達比可変機構のモータにより発生するモータトルク Tvmおよび該モータの回転角 0 vmを用いてハンドルトルク Thを求めること力 S できるから、 新たにトルクセンサ等を追加することなく、 ハンドルトルクを知 ることができる。 これにより、 伝達比可変機構の出力軸に発生する操舵トルク T pを既存のトルクセンサにより検出し、 またモータトルク Tvmおよびモータ 回転角 Θ vmを該モータの制御に用いられる既存の回転角センサおょぴ電流セン サによりそれぞれ検出すれば、 ハンドルトルク T hを制御コンピュータによる 演算処理等により求めることができる。 したがって、 部品点数を増加させるこ となく、 車両の運動制御性を向上することができる。
Th-T p +Tvm= JvmXd2 Θ vm/dt 2 +RvmXsign(d0 vm/dt) · · · (1) ここで、 T hはハンドルトルク (N · m) 、 T pは伝達比可変機構の出力軸 に発生する操舵トルク (N ' m) 、 Tvmは伝達比可変機構のモータにより発生 するモータトルク (N ' m)、 J vmは伝達比可変機構のモータイナーシャ (kg . m2 ) 、 0vmは伝達比可変機構のモータ回転角 (rad ) 、 Rvmは伝達比可変 機構のクーロン摩擦抵抗 (N · mZrad ) をそれぞれ表す。 また式(1) 中の d 2 Θ vm/dt 2 および d 0 vm/dtの「dZdt」は時間 tによる微分演算を表し、 signOは括弧内の符号を求める演算を表す。 なお請求の範囲第 1項および請求 の範囲第 3項では式(1) 中の J vmおよび Rvmは定数とする。
さらに、 請求の範囲第 2項の車両の運動制御方法では、 請求の範囲第 1項に おいて、 前記伝達比可変機構によるトルク伝達を表した運動方程式の構成項の うち、 前記伝達比可変機構によるイナーシャ項および前記伝達比可変機構によ るクーロン摩擦項の少なくとも 1項を用いて前記ハンドルトルクを求めること を技術的特徴とする。
また、 請求の範囲第 4項の車両の運動制御装置では、 請求の範囲第 3項にお いて、 前記ハンドルトルク算出手段は、 前記伝達比可変機構によるトルク伝達 を表した運動方程式の構成項のうち、 前記伝達比可変機構のイナーシャ項およ び前記伝達比可変機構のクーロン摩擦項のうちの少なくとも 1項を用いて前記 ハンドルトルクを求めることを技術的特徴とする。
請求の範囲第 2項および請求の範囲第 4項の発明によると、 伝達比可変機構 によるトルク伝達を表した運動方程式の構成項のうち、 伝達比可変機構のイナ ーシャ項および伝達比可変機構のクーロン摩擦項のうちの少なくとも 1項を用 いてハンドルトルクを求める。 例えば、 当該運動方程式が上式 α) の場合、 式
(1) の右辺第 1項である伝達比可変機構のイナ一シャ項 (J vmの項) および式 (1) の右辺第 2項である伝達比可変機構のクーロン摩擦項 (Rvmの項) のうち の少なくとも 1項を用いてハンドルトルクを求めることから、 請求の範囲第 1 項および請求の範囲第 3項では定数に設定していた J vmおよび Rvmのうちの少 なくとも 1項に測定値や設計値を用いてハンドルトルクを求める。これにより、 ハンドルトルク T hを求める演算処理等の演算精度を向上することができる。 したがって、 部品点数を増加させることなく、 車両の運動制御性をさらに向上 することができる。 図面の簡単な説明
第 1図は、 車両運動制御装置の構成概要を示す説明図である。
第 2図は、 本実施形態に係る車両運動制御装置の EPS— ECU および VGRS— ECUに よる車両運動制御処理を表した機能プロック図である。
第 3図は、 本実施形態に係る車両運動制御装置の EPS_ECU によるハンドルト ノレク演算処理の流れを示すフローチャートである。 【発明の実施の形態】
以下、 本発明の車両の運動制御方法および車両の運動制御装置を適用した車 両運動制御装置の実施形態について図を参照して説明する。 なお、 本実施形態 に係る車両運動制御装置 2 0は、 前述した車両運動制御装置 1 0 0と機械的構 成に変わるところがないので、 第 1図に示す車両運動制御装置 2 0 ( 1 0 0 ) を参照して説明する。
第 1図に示すように、車両運動制御装置 2 0は、ステアリングホイール 2 1、 第 1ステアリングシャフト 2 2、 第 2ステアリングシャフト 2 3、 E P Sァク チユエータ 2 4、 ロッド 2 5、 操舵角センサ 2 6、 車速センサ 2 7、 トノレクセ ンサ 2 8、 EPS— ECU 3 0、ギヤ比可変機構 3 2、 VGRS_ECU 4 0等から構成され、 その機械的、 電気的な結合関係は前述したとおりであるから、 ここではこれら の説明を省略し、 主に本発明に係る特徴的なところを第 2図に基づいて説明す る。 なお、 第 2図には、 本実施形態に係る車両運動制御装置 2 0の EPS— ECU 3 0および VGRS_ECU 4 0による車両運動制御処理を表した機能ブロック図が示さ れている。
第 2図に示すように、本実施形態に係る車両運動制御装置 2 0では、 EPS_ECU 3 0による E P S制御処理 3 0 aと VGRS_ECU 4 0による V G R S制御処理 4 0 aとの 2つの処理がそれぞれの E C U (Electronic Control Unit ) によって 行われている。 つまり、 前述したように車両運動制御装置 2 0は、 VGRS_ECU 4 ◦による V G R S制御処理 4 0 aによってギヤ比可変機構 3 2によりステアリ ングギヤ比を車両の速度に応じて可変制御する機能を有するとともに、 EPS— ECU 3 0による E P S制御処理 3 0 aによって操舵状態に応じたアシストカを発生 させて運転者による操舵をアシストする機能を有する。
そのため、 V G R S制御処理 4 0 aでは、 操舵角センサ 2 6による操舵角信 号 0 hと車速センサ 2 7による車速信号 Vとが VGRS— ECU 4 0に入力されること により、 車速に対応して一義的に定められるギヤ比可変機構 3 2のモータ 3 2 mの回転角を図略のモータ回転角マップから決定する処理を行レ、、 決定した回 転角指令値に応じたモータ電圧をモータ駆動回路によりモータ 3 2 mに供給す る。 これにより、 ギヤ比可変機構 3 2および VGRS ECU 4 0では、 モータ 3 2 m と減速機 3 2 gによって、 入力ギヤに対する出力ギヤの比を車速に応じてリア ルタイムに変更し、 第 1ステアリングシャフト 2 2の操舵角に対する第 2ステ ァリングシャフト 2 3の出力角の比 G vを可変している。
また、 E P S制御処理 3 0 aでは、 トルクセンサ 2 8による操舵トルク信号 T pと車速センサ 2 7による車速信号 Vと力 SEPS_ECU 3 0に入力されることに より、 車速に対応して一義的に定められる E P Sァクチユエータ 2 4のアシス トモータ 2 4 mの電流指令値を図略のモータ電流マップから決定する処理を行 レ、、 決定した電流指令値に応じたモータ電圧をモータ駆動回路によりモータ 3 2 mに供給する。 これにより、 E P Sァクチユエータ 2 4および EPS— ECU 3 0 では、 E P S制御処理 3 0 aにより、 トルクセンサ 2 8およぴ車速センサ 2 7 により検出した運転者の操舵状態や車速に応じて、 運転者の操舵をアシストす るアシストカをアシストモータ 2 4 mにより発生させている。
このように EPS_ECU 3 0による E P S制御処理 3 0 aおよび VGRS_ECU 4 0に よる V G R S制御処理 4 0 aのそれぞれ機能概要は、 前述した車両運動制御装 置 1 0 0による車両運動制御処理と基本的に同じではあるが、 本実施形態に係 る車両運動制御装置 2 0では、 トルクセンサ 2 8により検出される操舵トルク T pを EPS— ECU 3 0により演算処理される E P S制御処理 3 0 aに直接入力す ることなく、 ハンドルトルク演算処理 3 0 bを介して入力している点が、 従来 の車両運動制御装置 1 0 0と異なる。
即ち、 第 1図に示すように、 車両運動制御装置 2 0は、 ステアリングホイ一 ノレ 2 1と トルクセンサ 2 8との間にギヤ比可変機構 3 2が介在する構成を採る ため、 ステアリングホイール 2 1によるハンドルトルク T hと トルクセンサ 2 8により検出するトルクとは、 必ずしも一致しない。 そのため、 [背景技術] のところで説明したように、 トルクセンサ 2 8により検出したトルクを操舵ト ルク T pとして E P Sァクチユエータ 2 4の制御に用いると、 運転者による操 舵感覚と実操舵との間に生じ得る僅かな不一致から、 操舵感覚に微妙な違和感 を与え得るという問題がある。
そこで、本願発明者らは、ギヤ比可変機構 3 2によるトルク伝達を次式 (2) に 示すような運動方程式に表すことにより、 当該運動方程式 (式 (2) ) に基づい てハンドルトルク T hを EPS_ECU 3 0による演算処理により算出し、 算出した ハンドルトルク Thを E P Sァクチユエータ 24の制御に用いることとした。 なお、ギヤ比可変機構 3 2のモータ 3 2 mによるモータトルク Tvmは、式(3) に より算出する。
(T h -T p ) /G V +Tvm= J vmXd2 Θ vm/dt 2 +RvmXsign(d Θ v / dt) · · · (2)
Tvra = KvtX I vm · · ' (3)
ここで、 T hはハンドルトルク (N · m) 、 T pはギヤ比可変機構 3 2の出 力軸である第 2ステアリングシャフト 2 3に発生する操舵トルク (N · m) 、 G vはギヤ比可変機構 3 2のギヤ比 (無単位数) 、 Tvmはモータ 3 2mにより 発生するモータトルク (N · m) 、 J vmはギヤ比可変機構 3 2のモータイナー シャ (kg ' m2 ) 、 0vmはモータ 3 2mのモータ回転角 (rad ) 、 Rvmはギ ャ比可変機構 3 2のクーロン摩擦抵抗 (N · m/radZsec) 、 Kvtはモータ 3
2 mのモータトルク定数 (N -m/A)、 I vmはモータ 3 2 mのモータ電流(A) をそれぞれ表す。また、式(1) 中の d2 Θ vm/dt 2 および (1Θ vm/dtの「d/dt」 は時間 tによる微分演算を表し、 signOは括弧内の符号を求める演算を表す。 具体的には、 操舵トルク T pはトルクセンサ 2 8により検出し、 モータ 3 2 mのモータ電流 I vmおよびモータ回転角 θ νπιは、 モータ 3 2 mの駆動制御に通 常使用している電流センサ 3 2 iおよび回転角センサ 3 2 sにより、 それぞれ 検出する。 なお、 上式 (2) の右辺第 1項であるイナ一シャ項はモータイナーシ ャ Jvmを、 また同第 2項であるクーロン摩擦項はクーロン摩擦抵抗 Rvmを、 そ れぞれ測定値あるいはギヤ比可変機構 3 2の設計値により与えることによって 必要に応じ適宜設定する。 またモータ 3 2mのモータトルク定数 Kvtもモータ
3 2 mの測定値あるいは設計値により設定する。
これにより、 モータ 3 2 mにより発生するモータトルク Tvmを上式(3) によ り、 またハンドルトルク T hを上式 (2) による演算により、 それぞれ算出する ことができるので、 本実施形態では第 3図に示すハンドルトルク演算処理 3 0 bを EPS_ECU 3 0により実行することによって、 ハンドルトルク Thを求める ことにした。 なお、 このハンドルトルク演算処理 3 0 bは、 所定のタイマ割り 込み処理等により定期的 (例えば 5ミリ秒ごと) に繰り返し実行されるもので ある。 即ち、 第 3図に示すように、 ハンドルトルク演算処理 30 bでは、 所定の初 期化処理の後、 まずステップ S 101により、 操舵トルク Tp、 モータ電流 I vm、 モータ回転角 およびギヤ比 Gvのデータを読み込む処理が行われる。 操舵トルク Tpはトルクセンサ 28により、 モータ電流 I vmは電流センサ 32 iにより、 モータ回転角 0Vmは回転角センサ 32 sにより、 それぞれ検出され て EPS_ECU 30に入力されるので、 それを適当な割り込み処理等により取り込 むことによってこれらのデータ読み込みが行われる。 またギヤ比可変機構 32 のギヤ比 G Vは、 VGRS— ECU40による VGR S制御処理 40 aから受け取るこ とによってデータ読み込みが行われる。
次のステップ S 103では、 ギヤ比可変機構 32のモータ 32 mによるモー タトルク Tvmの算出処理が行われる。 この処理は、 前述した式 (3) に基づいて 演算処理されるもので、 予め設定されているモータトルク定数 Kvtとステップ S 101により読み込んだモータ電流 Ivmのデータとを乗算することによって、 モータトルク Tvmを算出する。
続くステップ S 105では、 モータ回転角 0vmを時間 tにより微分演算する 処理 (devmZdt ) と、 その結果をさらに時間 tにより微分演算する処理 (d 2 Θ vm/dt 2 ) 、 即ち前述した式(2) 中の d0 vm/dtと d2 evmZdtS とを演 算する処理が行われる。 具体的には、 d0vm/dt は、 次式 (4) に示すように、 今回の θνπιから前回値である 0Vm' を減算した値を前回から今回までの時間厶 tで除算することによって算出し、 また d20vm/dt2 は、 次式 (5) に示すよ うに、 今回の d0 vm Zdtから前回値である (devmZdt ) , を減算した値を前 回から今回までの時間 Δ tで除算することによって算出する。
d Θ vm/dt = ( Θ vm- Θ vm' ) /Δ t . · . (4) d 2 Θ vm/dt 2 = (d6 vm/dt- (d Θ vm/dt) ' ) /Δ t · · · (5) ステップ S I 07では、 ステップ S 1◦ 5により演算した (d 0 vm dt ) 力 S 0 (零) 以上であるか否かを判断することにより、 (d 0 vm/dt ) の符号を求 める処理、 つまり前述した式 (2) 中の sign (d0 vm/dt )を演算する処理が行わ れる。
即ち、 ギヤ比可変機構 32のモータイナーシャ J vmおよびギヤ比可変機構 3 2のクーロン摩擦抵抗 Rvmを設計値等から設定することによって、 前述した式 (2) からハンドルトルク T hを求めるために必要なパラメータが全て揃うので、 (d0vmZdt )の符号に応じた演算式 (6) 、 (7) をステップ S 107により選択 することによって、 続くステップ S 109、 S 1 1 1に処理を移行してハンド ルトルク Thを求める演算処理を行う。
ステップ S 107による判断処理により (d0vmZdt ) が 0 (零) 以上であ ると判断されれば (S 107で Ye s) 、 (d Θ vm/dt ) の符号は正 (+ ) で あるから、 ステップ S 109によりギヤ比可変機構 32のクーロン摩擦抵抗 R vmを加算する次式 (6) によりハンドルトルク Thを算出する。 一方、 ステップ S 107による判断処理により (d0vm/dt ) が 0 (零) 以上であると判断さ れなければ (S 107で No) 、 (d Θ vm/dt ) の符号は負 (一) であるから、 ステップ S 109によりギヤ比可変機構 32のクーロン摩擦抵抗 Rvmを減算す る次式(7) によりハンドルトルク Thを算出する。 なお、 この式 (6)、 (7)は、 ハンドルトルク Thを算出するために、 前述した(2) を変形したものである。
Th=Gv X (JvraXd2 Θ vm/dt 2 + Rvm- Tvm) +Tp · · · (6) T h = G v X (JvraXd2 Θ vm/dt 2 - Rvm- Tvm) +Tp · · · (7) ステップ S 109またはステップ S 1 1 1により、 ハンドルトルク Thが算 出されると、 この算出結果を EPS制御処理 30 aに転送するとともに、 次回 の本ハンドルトルク演算処理 30 bに備えて、 今回算出した θνπιを 0vm' とし て、 また d0vmZdt を (d0 vm/dt ) ' として、 EPS_ECU 30の所定の記憶領 域にそれぞれ記憶 (格納) する処理が行われ、 一連の本ハンドルトルク演算処 理 30 bが終了する。
以上説明したように、 本実施形態に係る車両運動制御装置 20によると、 ギ ャ比可変機構 32によるトルク伝達を表した上述の運動方程式 (式 (2) ) に基 づいて、 ギヤ比可変機構 32の出力軸である第 2ステアリングシャフト 23に 発生する操舵トルク Tp、 ギヤ比可変機構 32のモータ 32 mにより発生する モータトルク Tvmおよびモータ 32 mの回転角 Θ vmを用い、 ステアリングホイ —ル 2 1の操作により発生するハンドルトルク Thを EPS_ECU 30によるハン ドルトルク演算処理 30 bにより求める。
これにより、 車両運動制御装置 20が、 ステアリングホイール 21と トルク センサ 28との間にギヤ比可変機構 32が介在する構成を採っても、 新たにト ルクセンサ等を追加することなく、 ギヤ比可変機構 3 2を介する前のステアリ ングホイール 2 1によるハンドルトルク T hを知ることができるので、 このハ ンドルトルク T hを E P S制御処理 3 0 aに用いることにより、 運転者による 操舵感覚と一致した実操舵の制御をすることができる。 したがって、 部品点数 を増加させることなく、 車両の運動制御性を向上することができ、 ひいては操 舵感覚の微妙な違和感を解消することができる。

Claims

請 求 の 範 囲
1 . ハンドルと操舵輪とを連結する操舵伝達系の途中にモータの駆動により伝 達比を可変する伝達比可変機構と、 操舵トルクに基づいて操舵力を補うアシス トモータと、 を備えた: 両の運動制御方法であって、
前記伝達比可変機構によるトルク伝達を表した運動方程式に基づいて、 前記 伝達比可変機構の出力軸に発生する操舵トルク、 前記伝達比可変機構のモータ により発生するモータトルクおよび該モータの回転角を用い、 前記ハンドルの 操作により発生するハンドルトルクを求め、 この求めたハンドルトルクを前記 操舵トルクとして前記アシストモータを制御することを特徴とする車両の運動 制御方法。
2 .前記伝達比可変機構によるトルク伝達を表した運動方程式の構成項のうち、 前記伝達比可変機構によるイナーシャ項およぴ前記伝達比可変機構によるクー ロン摩擦項の少なくとも 1項を用いて前記ハンドルトルクを求めることを特徴 とする請求の範囲第 1項記載の車両の運動制御方法。
3 . ハンドルと操舵輪とを連結する操舵伝達系の途中にモータの駆動により伝 達比を可変する伝達比可変機構と、 操舵トルクに基づいて操舵力を補うアシス トモータと、 を備えた車両の運動制御装置であって、
前記伝達比可変機構によるトルク伝達を表した運動方程式に基づいて、 前記 伝達比可変機構の出力軸に発生する操舵トノレク、 前記伝達比可変機構のモータ により発生するモータトルクおよび該モータの回転角を用い、 前記ハンドルの 操作により発生するハンドルトルクを求めるハンドルトルク算出手段、を備え、 前記ハンドルトルク算出手段により求めたハンドルトルクを前記操舵トルク として前記アシストモータを制御することを特徴とする車両の運動制御装置。
4 . 前記ハンドルトルク算出手段は、
前記伝達比可変機構によるトルク伝達を表した運動方程式の構成項のうち、 前記伝達比可変機構のィナーシャ項および前記伝達比可変機構のクーロン摩擦 項のうちの少なくとも 1項を用いて前記ハンドルトルクを求めることを特徴と する請求の範囲第 3項記載の車両の運動制御装置。
PCT/JP2003/005071 2002-04-26 2003-04-21 Procede et dispositif de commande de mouvement de vehicule WO2003091084A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE60320247T DE60320247T2 (de) 2002-04-26 2003-04-21 Verfahren zur steuerung der bewegung eines fahrzeugs und fahrzeugbewegungssteuerung
US10/506,690 US20050240327A1 (en) 2002-04-26 2003-04-21 Method for controlling motion of vehicle and motion controller of vehicle
EP03723161A EP1508500B1 (en) 2002-04-26 2003-04-21 Method for controlling motion of vehicle and motion controller of vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002126768A JP3998508B2 (ja) 2002-04-26 2002-04-26 車両の運動制御方法および車両の運動制御装置
JP2002-126768 2002-04-26

Publications (1)

Publication Number Publication Date
WO2003091084A1 true WO2003091084A1 (fr) 2003-11-06

Family

ID=29267616

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/005071 WO2003091084A1 (fr) 2002-04-26 2003-04-21 Procede et dispositif de commande de mouvement de vehicule

Country Status (5)

Country Link
US (1) US20050240327A1 (ja)
EP (1) EP1508500B1 (ja)
JP (1) JP3998508B2 (ja)
DE (1) DE60320247T2 (ja)
WO (1) WO2003091084A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4525257B2 (ja) * 2003-12-09 2010-08-18 日産自動車株式会社 車両用操舵制御装置
JP2008302900A (ja) 2007-06-11 2008-12-18 Nagoya Institute Of Technology 電動パワーステアリング装置の制御装置
JP5171487B2 (ja) * 2008-09-02 2013-03-27 本田技研工業株式会社 ステアリング装置
EP2374693B1 (en) * 2008-12-26 2015-08-26 Toyota Jidosha Kabushiki Kaisha Driving support system of vehicle
US10124827B2 (en) * 2016-08-31 2018-11-13 Deere & Company Methods and apparatuses for determining estimates of a vehicle's wheel angle and the vehicle's steering ratio
CN108974004B (zh) * 2018-08-09 2020-08-07 北京智行者科技有限公司 一种动力系统控制方法
JP2020059362A (ja) * 2018-10-09 2020-04-16 株式会社ジェイテクト ドライバトルク推定装置およびそれを備えた電動パワーステアリング装置
CN110562318B (zh) * 2018-11-26 2021-09-28 长城汽车股份有限公司 用于车辆的辅助控制系统及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04310474A (ja) * 1991-04-08 1992-11-02 Jidosha Kiki Co Ltd 電動式動力舵取装置
JPH05105103A (ja) * 1991-10-14 1993-04-27 Honda Motor Co Ltd 電動パワーステアリング装置
JPH111175A (ja) * 1997-06-13 1999-01-06 Toyota Motor Corp 車両用操舵装置
JPH1178945A (ja) * 1997-09-12 1999-03-23 Toyota Motor Corp ステアリング装置
US6102151A (en) * 1997-07-24 2000-08-15 Honda Giken Kogyo Kabushiki Kaisha Electric power steering apparatus
US6219603B1 (en) * 1998-05-18 2001-04-17 Toyota Jidosha Kabushiki Kaisha Steering control apparatus for vehicle

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4231910B2 (ja) * 2000-04-25 2009-03-04 日産自動車株式会社 車線維持装置
DE10032340A1 (de) * 2000-07-04 2002-01-31 Bosch Gmbh Robert Verfahren zum Lenken eines Fahrzeugs mit Servolenkung
JP3975823B2 (ja) * 2002-05-15 2007-09-12 株式会社ジェイテクト 車両用操舵装置
JP4058505B2 (ja) * 2002-07-12 2008-03-12 株式会社ジェイテクト 車両の運動制御方法および車両の運動制御装置
JP2004042796A (ja) * 2002-07-12 2004-02-12 Toyoda Mach Works Ltd 車両の運動制御方法および車両の運動制御装置
JP3891290B2 (ja) * 2003-04-02 2007-03-14 株式会社ジェイテクト 車両の運動制御方法および車両の運動制御装置
JP2005041283A (ja) * 2003-07-24 2005-02-17 Hitachi Unisia Automotive Ltd 操舵制御装置
JP4202872B2 (ja) * 2003-09-12 2008-12-24 株式会社ジェイテクト 車両用操舵装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04310474A (ja) * 1991-04-08 1992-11-02 Jidosha Kiki Co Ltd 電動式動力舵取装置
JPH05105103A (ja) * 1991-10-14 1993-04-27 Honda Motor Co Ltd 電動パワーステアリング装置
JPH111175A (ja) * 1997-06-13 1999-01-06 Toyota Motor Corp 車両用操舵装置
US6102151A (en) * 1997-07-24 2000-08-15 Honda Giken Kogyo Kabushiki Kaisha Electric power steering apparatus
JPH1178945A (ja) * 1997-09-12 1999-03-23 Toyota Motor Corp ステアリング装置
US6219603B1 (en) * 1998-05-18 2001-04-17 Toyota Jidosha Kabushiki Kaisha Steering control apparatus for vehicle

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1508500A4 *

Also Published As

Publication number Publication date
EP1508500A1 (en) 2005-02-23
JP3998508B2 (ja) 2007-10-31
DE60320247T2 (de) 2009-05-14
DE60320247D1 (de) 2008-05-21
EP1508500B1 (en) 2008-04-09
JP2003320949A (ja) 2003-11-11
EP1508500A4 (en) 2006-08-23
US20050240327A1 (en) 2005-10-27

Similar Documents

Publication Publication Date Title
JP5126357B2 (ja) 車両の操舵装置
EP1935757B1 (en) Vehicle steering apparatus
EP0775624A2 (en) Steering system for automobile
JPH10226346A (ja) 自動車の舵取装置
WO2005066009A1 (ja) 車両の操舵装置
JP6252027B2 (ja) ステアリング制御装置
JP4211366B2 (ja) ハンドル操舵状態検出装置
JP4792825B2 (ja) 車両用操舵装置
JP2004338562A (ja) 電動パワーステアリング制御装置
JP4007711B2 (ja) 車両の操舵制御装置
JP2007204034A (ja) 重畳角操作部の操作角及び出力トルクの制御のための方法及び制御構造
WO2003091084A1 (fr) Procede et dispositif de commande de mouvement de vehicule
WO2003091085A1 (fr) Procede et dispositif permettant de reguler la maniabilite d'un vehicule
JP2002337717A (ja) 電動パワーステアリング装置
JP5975242B2 (ja) 舵角比可変操舵装置
JP3699870B2 (ja) 車両用操舵装置
JP2002053055A (ja) 自動車の電動パワーステアリング装置
JP4978347B2 (ja) 車両用操舵装置
JP2003291836A (ja) パワーステアリング装置
JP4231430B2 (ja) 車両の操舵装置
JP4701697B2 (ja) 車両用操舵装置
JPH10218001A (ja) 車両用操舵装置
JP2001058577A (ja) 車両用操舵装置
JP2003063434A (ja) 車両用操舵装置
JP2002337716A (ja) 電動パワーステアリング装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10506690

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2003723161

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003723161

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2003723161

Country of ref document: EP