WO2003083381A1 - Dispositif a cycle frigorifique - Google Patents

Dispositif a cycle frigorifique Download PDF

Info

Publication number
WO2003083381A1
WO2003083381A1 PCT/JP2003/003782 JP0303782W WO03083381A1 WO 2003083381 A1 WO2003083381 A1 WO 2003083381A1 JP 0303782 W JP0303782 W JP 0303782W WO 03083381 A1 WO03083381 A1 WO 03083381A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
refrigerant
compressor
pressure
refrigeration cycle
Prior art date
Application number
PCT/JP2003/003782
Other languages
English (en)
French (fr)
Inventor
Yuuichi Yakumaru
Masami Funakura
Fumitoshi Nishiwaki
Noriho Okaza
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to AT03712980T priority Critical patent/ATE521860T1/de
Priority to KR10-2004-7009849A priority patent/KR20040091615A/ko
Priority to US10/501,748 priority patent/US7302807B2/en
Priority to EP03712980A priority patent/EP1489367B1/en
Publication of WO2003083381A1 publication Critical patent/WO2003083381A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3205Control means therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3205Control means therefor
    • B60H1/3217Control means therefor for high pressure, inflamable or poisonous refrigerants causing danger in case of accidents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3228Cooling devices using compression characterised by refrigerant circuit configurations
    • B60H1/32281Cooling devices using compression characterised by refrigerant circuit configurations comprising a single secondary circuit, e.g. at evaporator or condenser side
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1405Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification in which the humidity of the air is exclusively affected by contact with the evaporator of a closed-circuit cooling system or heat pump circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/153Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification with subsequent heating, i.e. with the air, given the required humidity in the central station, passing a heating element to achieve the required temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B45/00Arrangements for charging or discharging refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/04Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/04Compression machines, plants or systems, with several condenser circuits arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3236Cooling devices information from a variable is obtained
    • B60H2001/3248Cooling devices information from a variable is obtained related to pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3236Cooling devices information from a variable is obtained
    • B60H2001/3255Cooling devices information from a variable is obtained related to temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3269Cooling devices output of a control signal
    • B60H2001/3285Cooling devices output of a control signal related to an expansion unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3286Constructional features
    • B60H2001/3288Additional heat source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F2003/144Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by dehumidification only
    • F24F2003/1446Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by dehumidification only by condensing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0403Refrigeration circuit bypassing means for the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0409Refrigeration circuit bypassing means for the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/19Pumping down refrigerant from one part of the cycle to another part of the cycle, e.g. when the cycle is changed from cooling to heating, or before a defrost cycle is started
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/26Problems to be solved characterised by the startup of the refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/17Control issues by controlling the pressure of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21171Temperatures of an evaporator of the fluid cooled by the evaporator
    • F25B2700/21173Temperatures of an evaporator of the fluid cooled by the evaporator at the outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/006Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass for preventing frost

Definitions

  • the present invention relates to a refrigeration cycle device using carbon dioxide (hereinafter, referred to as co 2 refrigerant) as a working medium.
  • co 2 refrigerant carbon dioxide
  • HFC refrigerants have the disadvantage of having a large global warming potential as a material property, while HC refrigerants have the disadvantage of having a low global warming potential but being highly flammable.
  • ammonia refrigerant conventionally used has a global warming potential of 0, it has a disadvantage that it is weakly flammable and toxic.
  • the critical temperature of the CO 2 refrigerant is as low as 31.1 ° C, and the condensation of the CO 2 refrigerant does not occur on the high pressure side of a normal refrigeration cycle device.
  • Japanese Patent No. 21332329 discloses an internal part that exchanges heat between the outlet line of the high-pressure side cooler 102 and the suction line of the compressor 101. By having the heat exchanger 103, the outlet of the cooler 102 is bypassed.
  • a low-pressure receiver 106 is provided as a means for managing the capacity by cooling and adjusting the amount of refrigerant.
  • the indoor heat exchanger In the case of air conditioners such as room air conditioners and car air conditioners, the indoor heat exchanger needs to be downsized.On the other hand, the outdoor heat exchanger has energy saving during cooling by improving condensing capacity and heating by improving heat absorbing capacity. It is larger than indoor heat exchangers in order to increase capacity at the time. Therefore, the optimal amount of refrigerant that can be operated with high efficiency during cooling operation, in which the high-density refrigerant is condensed by the outdoor heat exchanger with a large capacity being on the high pressure side, is larger than the optimal amount of refrigerant during heating operation. Therefore, it is effective to use a receiver that also performs its buffering function.
  • the patent No. 2931 168 discloses a throttle valve 4 according to a predetermined set value in order to minimize the energy consumption of the device when a predetermined capacity is required. Is adjusted.
  • the heat pump cycle COP is obtained by adding 1 to the refrigeration cycle COP, in the case of the heat pump cycle, the value of the high pressure (hereinafter referred to as “high side pressure”) that maximizes C ⁇ P is the same as that of the refrigeration cycle.
  • the refrigeration cycle shown in FIG. 19 can be used, for example, as a cooling device.
  • a compressor that performs cooling and heating dehumidification requires a compressor to compress the refrigerant at a higher pressure than a cooling device, and the temperature of the refrigerant compressed by the compressor is also higher.
  • the conventional refrigeration cycle shown in FIGS. 1 and 9 is used as a dehumidifier for performing cooling and dehumidification by adding a hot water cycle.
  • operating at a high side pressure that minimizes energy consumption increases the compression ratio when the radiator temperature is high, that is, when the radiator ambient temperature is high or when a small radiator is used. Therefore, the compressor efficiency is greatly reduced, and the reliability of the compressor may be impaired.
  • the high side pressure is high, so the pressure-resistant design to ensure safety is stricter. Becomes
  • the amount of refrigerant held on the high pressure side of the refrigeration cycle device differs between heating and dehumidifying and cooling, which causes an imbalance in the optimal refrigerant amount. Therefore, the amount of refrigerant held in the first heat exchanger 13 is changed by changing the intermediate pressure. By adjusting, it is necessary to eliminate the imbalance in the amount of refrigerant between cooling and heating and dehumidification. Disclosure of the invention
  • the present invention provides a refrigeration cycle device that uses a CO 2 refrigerant to solve the above-mentioned problems, and utilizes the features of a co 2 refrigeration system to reduce the size or use of a low-pressure receiver and to ensure reliability and efficiency. It is an object of the present invention to provide a refrigeration cycle apparatus capable of performing a safe operation and a method of operating the refrigeration cycle apparatus.
  • the present invention is directed to a dehumidifier using a co 2 refrigerant by adjusting the intermediate pressure without increasing the high side pressure by utilizing the features of the co 2 refrigeration system. It is an object of the present invention to provide a dehumidifying apparatus and a dehumidifying method which can ensure an efficient operation while ensuring reliability while eliminating an imbalance between the optimal amounts of refrigerant during cooling and heating and dehumidifying.
  • a first present invention provides a compressor (10), a refrigerant / water heat exchanger (11), a first pressure reducer (12), and a first heat exchanger (12). 13), a second pressure reducer (15), a second heat exchanger (16), an internal heat exchanger (14), and a hot water cycle (17, 18, 19, 20, 20),
  • the hot water cycle (17, 18, 19, 20) has a heater core (19) for sucking hot water downstream of the refrigerant / water heat exchanger (11), and the compressor (10) includes carbon dioxide. Compresses a refrigerant that is
  • the refrigerant / water heat exchanger (11) exchanges heat between the compressed refrigerant and hot / cold water of the hot water cycle (17, 18, 19, 20).
  • the first decompressor (12) decompresses or does not decompress the compressed refrigerant,
  • the first heat exchanger (13) exchanges heat with the refrigerant depressurized by the first decompressor (12),
  • the internal heat exchanger (14) exchanges heat between the refrigerant heat-exchanged in the first heat exchanger (13) and the refrigerant sucked in the compressor (10),
  • the second decompressor (15) decompresses the refrigerant that has undergone heat exchange in the internal heat exchanger (14),
  • the second heat exchanger (16) exchanges heat with the refrigerant depressurized by the second decompressor (15),
  • the first pressure reducer (12) and Z or the second pressure reducer (15) are operated to change the refrigerant pressure of the first heat exchanger (13), thereby changing the pressure of the first heat exchanger (13).
  • This is a refrigeration cycle device that reduces the imbalance in the amount of refrigerant between cooling and dehumidifying by adjusting the amount of refrigerant held in the heat exchanger (13).
  • a second aspect of the present invention is a compressor discharge temperature detecting means (35) for detecting a discharge temperature of the compressor (10) or a compressor suction temperature detecting means for detecting a suction temperature of the compressor (10). Or a compressor discharge pressure detecting means for detecting a discharge pressure of the compressor (10),
  • Adjusting the refrigerant holding amount of the first heat exchanger (13) by changing the refrigerant pressure of the first heat exchanger (13) means that the compressor discharge temperature detection means (35)
  • the refrigeration cycle according to the first aspect of the present invention wherein the second pressure reducer (15) is controlled using a value detected by the compressor suction temperature detecting means or the compressor discharge pressure detecting means.
  • a third aspect of the present invention provides the method according to the first aspect, further comprising: P0303782
  • the present invention according to a fourth aspect, comprising a first heat exchanger temperature detecting means (36) for detecting a refrigerant temperature of the first heat exchanger (13),
  • a third control device for controlling the first pressure reducer (12) or the first on-off valve (21). Is a refrigeration cycle device of the present invention.
  • the fifth invention includes a second bypass circuit (24) connecting the inlet and the outlet of the second heat exchanger (16) via a second on-off valve (23).
  • is a refrigeration cycle apparatus of the first invention.
  • a third bypass circuit (26) for connecting an inlet and an outlet of the first heat exchanger (13) via a third on-off valve (25) is provided.
  • 1 is a refrigeration cycle apparatus according to a first aspect of the present invention.
  • a seventh invention is the refrigeration cycle apparatus according to the first invention, comprising a fourth on-off valve (27) at an inlet of the first heat exchanger (13).
  • an eighth aspect of the present invention provides a fifth switch valve (28) between the outlet of the refrigerant ice heat exchanger (11) and the first pressure reducer (12),
  • a fourth bypass circuit connecting the outlet between the refrigerant water heat exchanger (11) and the fifth on-off valve (28) inlet as one end and the first three-way valve (30) as the other end; (2 9) and
  • a fifth valve connecting the second three-way valve (31) as one end, and connecting the fifth open / close valve (28) outlet and the first pressure reducer (12) inlet as the other end. And the bypass circuit (3 2)
  • One end is provided between the outlet of the first heat exchanger (13) and the first three-way valve (30), and the second three-way valve (31) and the second pressure reducer (1 And a sixth bypass circuit (3 4) connected to the other end through a sixth on-off valve (3 3).
  • a refrigeration cycle apparatus comprising a refrigerant circulation mode switching means for selectively switching between a start mode circulating in a bypass circuit (32) and a start mode.
  • a ninth aspect of the present invention provides a compressor, a refrigerant / water heat exchanger, a first pressure reducer, a first heat exchanger, a second pressure reducer, and a second heat exchanger.
  • the method of operating a refrigeration cycle apparatus that operates a refrigeration cycle apparatus having a heater core that draws in hot or cold water downstream of the refrigerant / water heat exchanger.
  • the compressor compresses a refrigerant that is carbon dioxide
  • the refrigerant / water heat exchanger performs heat exchange between the compressed refrigerant and hot / cold water of the hot water cycle
  • the first decompressor decompresses or does not decompress the compressed refrigerant
  • the first heat exchanger heat-exchanges the refrigerant depressurized by the first decompressor
  • the internal heat exchanger performs heat exchange between the refrigerant that has been heat-exchanged in the first heat exchanger and the refrigerant that is sucked into the compressor
  • the second decompressor reduces the pressure of the refrigerant that has been heat-exchanged in the internal heat exchanger, JP03 / 03782
  • the second heat exchanger exchanges heat with the refrigerant depressurized by the second decompressor, and causes the first depressurizer and / or the second depressurizer to act, thereby causing the first heat exchanger to operate.
  • a tenth aspect of the present invention provides a compressor (110), a refrigerant water heat exchanger (111), a first pressure reducer (112), and a first heat exchanger (113). ), A second decompressor (1 15), a second heat exchanger (1 16), an internal heat exchanger (1 14), and a hot water cycle (1 17, 11, 18, 11) 9, 120) and
  • the hot water cycle (1 17, 1 18, 1 19, 120) has a heater core (1 19) on the downstream side of the refrigerant water heat exchanger (1 1 1) for sucking hot water.
  • the compressor (110) compresses a refrigerant that is carbon dioxide
  • the refrigerant / water heat exchanger (111) exchanges heat between the compressed refrigerant and hot / cold water of the hot water cycle (117, 118, 119, 120).
  • the pressure reducer (1 1 2) reduces the pressure of the compressed refrigerant
  • the first heat exchanger (1 1 3) reduces the pressure of the refrigerant reduced by the first pressure reducer (1 1 2). Heat exchange the refrigerant,
  • the internal heat exchanger (114) performs heat exchange between the refrigerant heat-exchanged in the first heat exchanger (113) and the refrigerant sucked in the compressor (110).
  • the second decompressor (1 15) decompresses the refrigerant heat-exchanged in the internal heat exchanger (1 14),
  • the second heat exchanger (1 16) is reduced by the second pressure reducer (1 15).
  • a dehumidifier for exchanging heat with the pressurized refrigerant is provided.
  • the eleventh aspect of the present invention includes a second heat exchanger refrigerant temperature detecting means (130) for detecting a temperature of the refrigerant in the second heat exchanger (116).
  • the decompressor (1 15) of the present invention is a dehumidifier according to a tenth aspect of the present invention, wherein the pressure reduction level is controlled based on the temperature detected by the second heat exchanger temperature detecting means (130). .
  • the first decompressor (112) is provided with a decompression level based on the temperature detected by the second heat exchanger temperature detecting means (130). Is the eleventh dehumidifier of the present invention in which is controlled.
  • a thirteenth aspect of the present invention comprises the first heat exchanger refrigerant temperature detecting means (131) for detecting the temperature of the refrigerant in the first heat exchanger (113).
  • the decompressor (111) according to the tenth aspect of the present invention, wherein the pressure-reducing level is controlled based on the temperature detected by the first heat exchanger refrigerant temperature detecting means (131).
  • Device for detecting the temperature of the refrigerant in the first heat exchanger (113).
  • a fourteenth aspect of the present invention provides a blower air temperature detecting means (134) for detecting a blown air temperature blown through the heater core (119), and an operating frequency of the compressor (110).
  • the compressor operating frequency control means (132) is a tenth aspect of the present invention, wherein the operating frequency of the compressor (110) is controlled based on the detected air temperature.
  • a fifteenth aspect of the present invention provides a discharge refrigerant temperature detecting means (133) for detecting a discharge refrigerant temperature of the compressor (1 10),
  • the on-off valve (135) is the tenth dehumidifier of the present invention, the on-off of which is controlled based on the detected refrigerant temperature.
  • a sixteenth aspect of the present invention is the tenth aspect of the present invention, which is used as a vehicle air conditioner.
  • a seventeenth aspect of the present invention provides a compressor, a refrigerant / water heat exchanger, a first pressure reducer, a first heat exchanger, a second pressure reducer, and a second heat exchanger.
  • the compressor compresses a refrigerant that is carbon dioxide
  • the refrigerant / water heat exchanger performs heat exchange between the compressed refrigerant and hot / cold water of the hot water cycle
  • the first decompressor decompresses the compressed refrigerant
  • the first heat exchanger heat-exchanges the refrigerant depressurized by the first pressure reducer
  • the internal heat exchanger performs heat exchange between the refrigerant that has been heat-exchanged in the first heat exchanger and the refrigerant that is sucked into the compressor
  • the second decompressor reduces the pressure of the refrigerant that has undergone heat exchange in the internal heat exchanger
  • the second heat exchanger is a dehumidifying method for exchanging heat of the refrigerant depressurized by the second decompressor.
  • FIG. 1 is a configuration diagram of a refrigeration cycle apparatus according to Embodiment 1 of the present invention. You.
  • FIG. 2 is a configuration diagram of a refrigeration cycle apparatus according to Embodiment 3 of the present invention '.
  • FIG. 3 is a configuration diagram of a refrigeration cycle apparatus according to Embodiment 4 of the present invention.
  • FIG. 4 is a configuration diagram of a refrigeration cycle apparatus according to Embodiment 5 of the present invention.
  • FIG. 5 is a configuration diagram of a refrigeration cycle apparatus according to Embodiment 6 of the present invention. '.
  • FIG. 6 is a configuration diagram of a refrigeration cycle apparatus according to Embodiment 7 of the present invention.
  • FIG. 7 is a configuration diagram of a refrigeration cycle apparatus according to Embodiment 8 of the present invention.
  • FIG. 8 is a control flow chart of a refrigeration cycle apparatus according to Embodiment 2 of the present invention.
  • FIG. 9 is a Mollier diagram of a refrigeration cycle apparatus according to Embodiment 6 of the present invention.
  • FIG. 10 is a configuration diagram of a refrigeration cycle apparatus according to Embodiment 9 of the present invention. .
  • FIG. 11 is a configuration diagram of a refrigeration cycle apparatus according to Embodiment 10 of the present invention.
  • FIG. 12 is a configuration diagram of a refrigeration cycle apparatus according to Embodiment 11 of the present invention.
  • FIG. 13 is a configuration diagram of a refrigeration cycle apparatus according to Embodiment 12 of the present invention.
  • FIG. 14 shows a refrigeration cycle apparatus Mollier according to a ninth embodiment of the present invention.
  • FIG. 15 is a control flowchart of the refrigeration cycle apparatus according to Embodiment 9 of the present invention.
  • FIG. 16 is a control flowchart of the refrigeration cycle apparatus according to Embodiment 10 of the present invention.
  • FIG. 17 is a control flowchart of the refrigeration cycle apparatus according to Embodiment 11 of the present invention.
  • FIG. 18 is a control flowchart of the refrigeration cycle apparatus according to Embodiment 12 of the present invention.
  • FIG. 19 is a configuration diagram of a conventional refrigeration cycle device.
  • FIG. 20 is a Mollier diagram of a conventional refrigeration cycle apparatus.
  • FIG. 21 is a diagram showing the relationship between the radiator outlet temperature and the high side pressure when the optimum COP of the conventional refrigeration cycle device is reached.
  • Throttle means Low-pressure refrigerant receiver Compressor
  • FIG. 1 is a configuration diagram illustrating a refrigeration cycle device according to Embodiment 1 of the present invention.
  • This refrigeration cycle uses a co 2 refrigerant as a working fluid, a compressor 10, a refrigerant water heat exchanger 11, and a first decompression.
  • the heat exchanger 12, the first heat exchanger 13, the internal heat exchanger 14, the second decompressor 15, and the second heat exchanger 16 are basic components.
  • the outlet line of the first heat exchanger 13 and the suction line of the compressor 10, which is the outlet of the second heat exchanger 16, are configured to be heat-exchanged by the internal heat exchanger 14. .
  • the hot water cycle T JP03 / 03782 the hot water cycle
  • It consists of a pump 18 for circulating hot water heated by a heat exchanger, a heater core 19, a radiator 20 and a power engine 17.
  • the operation of the refrigeration cycle apparatus of FIG. 1 during cooling will be described.
  • the first pressure reducer 12 is fully opened, and the second pressure reducer 15 acts as a pressure reducer. . That is, the refrigerant compressed into high-temperature and high-pressure gas by the compressor 10 passes through the first heat exchanger 13 from the refrigerant water heat exchanger 11 through the first decompressor 12 and is cooled by outside air. Is done. Then, the heat is exchanged with the refrigerant in the suction line of the compressor 10 in the internal heat exchanger 14 to be further cooled, and then the pressure is reduced in the second pressure reducer 15 to a low-temperature, low-pressure gas-liquid two-phase state.
  • the second heat exchanger 16 evaporates due to heat absorption from indoor air to become a gas-liquid two-phase or gas state, and the refrigerant and heat flowing from the first heat exchanger 13 in the internal heat exchanger 14 After being exchanged and further absorbing heat, it is compressed again by the compressor 10. The air is cooled in the second heat exchanger 16.
  • the first pressure reducer 12 and the second pressure reducer 15 perform the function as a pressure reducer.
  • the refrigerant compressed into high-temperature and high-pressure gas by the compressor 10 is heat-exchanged with the cooling water of the water circuit circulated by the pump 18 in the refrigerant-water heat exchanger 11, and is cooled.
  • the pressure is reduced to an intermediate pressure by the first pressure reducer 12 and introduced into the first heat exchanger 13.
  • the refrigerant cooled by the outside air in the first heat exchanger 13 is further cooled by exchanging heat with the refrigerant in the suction line of the compressor 10 in the internal heat exchanger 14, and then cooled.
  • the pressure is reduced by the second pressure reducer 15 to be in a low-temperature low-pressure gas-liquid two-phase state, and is introduced into the second heat exchanger 16.
  • the heat is evaporated from indoor air to evaporate to a gas-liquid two-phase or gas state, and the first heat exchanger 13 After exchanging heat with the refrigerant flowing therefrom to further absorb heat, it is compressed by the recycle compressor 10.
  • the cooling water heated by the refrigerant / water heat exchanger 11 flows into the heater core 19 provided in the room and heats the air cooled and dehumidified by the second heat exchanger 16, thereby It can be heated while dehumidifying. Then, the cooling water is heated by the power engine 17 (for example, a heat source such as an engine or a battery) and flows through the coolant / water heat exchanger 11 again.
  • the power engine 17 for example, a heat source such as an engine or a battery
  • carbon dioxide is a high-pressure refrigerant, so instead of using a fin-tube heat exchanger, use a heat exchanger with a smaller diameter (for example, a micro-tube heat exchanger) in terms of pressure resistance design.
  • a heat exchanger with a smaller diameter for example, a micro-tube heat exchanger
  • the necessity of the air conditioner for vehicles and the reduction of capacity and weight are particularly important points for the vehicle. Therefore, during cooling, the first heat exchanger 13 with a large volume is on the high pressure side, but during heating and dehumidification, the refrigerant water heat exchanger 11 with a small volume is on the high pressure side. Since there is a large difference in the amount of refrigerant, the balance between the optimal amount of refrigerant during cooling and the optimal amount of refrigerant during heating and dehumidification was examined.
  • the first decompressor 12 and the second depressurizer 15 are actuated, and during heating and dehumidification, the inside of the first heat exchanger 13 is set to an intermediate pressure, and the first heat exchanger 13
  • the amount of refrigerant held inside it is possible to eliminate the imbalance between the amounts of refrigerant during cooling and during heating and dehumidification, and to reduce the size of the receiver or operate a highly efficient refrigeration cycle device without using it. It is possible to do so.
  • Embodiment 2 of the present invention will be described with reference to the flowchart of FIG. 8 in which the operation of the second decompressor 15 at the time of chamber dehumidification in the refrigeration cycle apparatus of FIG.
  • the second pressure reducer 15 is a valve whose flow rate can be adjusted.
  • the discharge temperature Td detected by the compressor discharge temperature detecting means 35 in step 40 is compared with the target discharge temperature TX. If Td is equal to or greater than TX, it indicates that the refrigerant is insufficient, and the process proceeds to step 41 to control the second decompressor 15 to increase the opening degree. As a result, the intermediate pressure in the first heat exchanger 13 is reduced, and the refrigerant holding amount in the first heat exchanger 13 is reduced, so that the refrigerant shortage state can be resolved. it can. After controlling the second pressure reducer 15, the process returns to step 40.
  • Td is smaller than TX, it indicates that the refrigerant is in an excessive amount, and the process proceeds to step 42 to control the opening degree of the second decompressor 15 to be small. As a result, the intermediate pressure in the first heat exchanger 13 is increased, and the refrigerant hold amount in the first heat exchanger 13 is increased. This can eliminate the excessive refrigerant state.
  • the target compared in step 40 may be not the discharge temperature but the suction temperature, the discharge pressure or the suction superheat.
  • FIG. 2 is a configuration diagram illustrating a refrigeration cycle apparatus according to Embodiment 3 of the present invention.
  • This refrigeration cycle apparatus is provided with a first bypass circuit 22 that connects the outlet of the compressor 10 and the inlet of the first heat exchanger 13 via a first on-off valve 21.
  • first bypass circuit 22 that connects the outlet of the compressor 10 and the inlet of the first heat exchanger 13 via a first on-off valve 21.
  • the operation during heating and dehumidification will be described.
  • the first on-off valve 21 is fully closed, and the first pressure reducer 12 and the second pressure reducer 15 act as a pressure reducer. That is, at the time of heating and dehumidification, the same operation as in Embodiment 1 is performed.
  • FIG. 3 is a configuration diagram illustrating a refrigeration cycle device according to Embodiment 4 of the present invention. Hereinafter, differences from Embodiment 3 will be described.
  • This refrigeration cycle apparatus includes first heat exchanger temperature detection means 36 for detecting the refrigerant temperature of the first heat exchanger 13.
  • the operation of the refrigeration cycle apparatus of FIG. 3 during cooling will be described.
  • the first pressure reducer 12 is fully closed, the first on-off valve 21 is fully open, and the second pressure reducer 15 acts as a pressure reducer. Therefore, the same operation as in the third embodiment is performed during cooling.
  • the operation during heating and dehumidification will be described.
  • the first on-off valve 21 is fully closed, and the first pressure reducer 12 and the second pressure reducer 15 act as a pressure reducer.
  • the temperature T eva of the first heat exchanger 13 is compared with the set temperature T y (for example, 0 ° C) . If T eva is equal to or less than T y, the first heat exchange There is a risk that frost will occur in the device 13 and the COP will decrease, and the opening of the first pressure reducer 12 is controlled to be fully opened. As a result, the first heat exchanger 13 acts as a radiator, so that frost formation can be avoided.
  • T eva is larger than T y, the first decompressor 12 operates as a regenerator. Therefore, the defrosting operation can be performed without driving in a reverse cycle to lower the indoor air temperature and impair comfort. Inversion can be performed.
  • the temperature T eva of the first heat exchanger 13 is compared with a set temperature T y (for example, 0 ° C.), and when T eva is equal to or less than T y, the first on-off valve 21 is fully opened. In this case, the refrigerant water heat exchanger 11 acting as a radiator is bypassed, so that the amount of heat radiation in the first heat exchanger 13 can be further increased. Therefore, the defrosting operation can be completed in a shorter time.
  • T eva is larger than T y, the first on-off valve 21 is controlled to be fully closed again.
  • FIG. 4 is a configuration diagram illustrating a refrigeration cycle apparatus according to Embodiment 5 of the present invention. Hereinafter, differences from Embodiment 1 will be described.
  • This refrigeration cycle apparatus includes a second bypass circuit 24 that connects the inlet and the outlet of the second heat exchanger 16 via a second on-off valve 23.
  • the operation of the refrigeration cycle apparatus of FIG. 4 during cooling will be described.
  • the first decompressor 12 is fully opened, the second on-off valve 23 is fully closed, and the second decompressor 15 acts as a decompressor. That is, during cooling, the same operation as in Embodiment 1 is performed.
  • the second on-off valve 23 is fully opened, and the first pressure reducer 12 and the second pressure reducer 15 act as a pressure reducer.
  • the amount of heat absorbed by the second heat exchanger 16, which is the indoor heat exchanger is reduced, so that the indoor heating capacity can be quickly increased.
  • the refrigerant having a small degree of dryness flows through the second bypass circuit 24.
  • the internal heat exchanger 14 exchanges heat with the refrigerant flowing out of the outlet of the first heat exchanger 13 and is heated, there is a possibility that the liquid refrigerant is sucked into the compressor 10. Low.
  • the second heat exchanger 16 is required to maintain the dehumidifying capacity to a certain value or more.
  • the second on-off valve 23 is controlled to be fully closed. Further, the timing at which the second on-off valve 23 is fully closed may be the time elapsed from the start of the rotation of the compressor 10 (for example, 0.1 O min).
  • the heating performance can be improved immediately after the start of the compressor operation during heating and dehumidification.
  • the device can be operated.
  • FIG. 5 is a configuration diagram illustrating a refrigeration cycle device according to Embodiment 6 of the present invention. Hereinafter, differences from Embodiment 1 will be described.
  • This refrigeration cycle apparatus is provided with a third bypass circuit 26 that connects the inlet and the outlet of the first heat exchanger 13 via a third on-off valve 25.
  • the operation of the refrigeration cycle apparatus in FIG. 5 during cooling will be described.
  • the first decompressor 12 is fully opened, the third on-off valve 25 is fully closed, and the second decompressor 15 acts as a decompressor. Therefore, at the time of cooling, the operation is the same as that of the first embodiment, and the same effect is obtained.
  • the third on-off valve 25 is fully opened, and the first pressure reducer 12 and the second pressure reducer 15 act as a pressure reducer.
  • the refrigerant compressed into high-temperature and high-pressure gas by the compressor 10 is circulated by the pump 18 in the refrigerant / water heat exchanger 11. It is cooled by exchanging heat with cooling water. Then, the refrigerant cooled by the refrigerant water heat exchanger 11 is decompressed to an intermediate pressure by the first decompressor 12 and branched into the first heat exchanger 13 and the third bypass circuit 26. Flows. Here, by making the flow path resistance of the third bypass circuit 26 smaller than that of the first heat exchanger 13, almost no refrigerant flows through the first heat exchanger 13.
  • the refrigerant flowing through the first heat exchanger 13 or the third bypass circuit 26 exchanges heat with the refrigerant in the suction line of the compressor 10 in the internal heat exchanger 14, and then the second pressure reducer The pressure is further reduced at 15.
  • the refrigerant enters a low-temperature, low-pressure gas-liquid two-phase state, is introduced into the second heat exchanger 16, evaporates by absorbing heat from the indoor air, and is first evaporated by the internal heat exchanger 14. After exchanging heat with the refrigerant flowing from 13 to further absorb heat, it is compressed again by the compressor 10.
  • the refrigeration cycle becomes a ⁇ b ⁇ c ⁇ d ⁇ g ⁇ h, and the refrigerant almost exchanges heat in the intermediate pressure range.
  • the first heat exchanger 13 performs heat radiation as a ⁇ b ⁇ ⁇ e ⁇ f ⁇ h, so the second heat exchanger 1
  • the specific enthalpy value of the inlet refrigerant of No. 6 decreases by ⁇ H. That is, the amount of heat absorbed by the second heat exchanger 16 that is the indoor heat exchanger increases, which causes a decrease in the indoor blowing temperature.
  • the third bypass circuit 26 it is possible to prevent a decrease in the indoor blowing temperature, so that the refrigeration cycle apparatus can be operated with a higher heating capacity.
  • FIG. 6 is a configuration diagram showing a refrigeration cycle apparatus according to Embodiment 7 of the present invention. Hereinafter, differences from Embodiment 6 will be described.
  • This refrigeration cycle apparatus has a fourth on-off valve 27 at the inlet of the first heat exchanger 13. ing.
  • the operation of the refrigeration cycle apparatus of FIG. 6 during cooling will be described.
  • the first decompressor 12 is fully open
  • the third on-off valve 25 is fully closed
  • the fourth on-off valve 27 is fully open
  • the second decompressor 15 acts as a depressor. I do. Therefore, at the time of cooling, the operation is the same as that of the sixth embodiment, and the same effect is obtained.
  • the operation during heating and dehumidification will be described.
  • the third on-off valve 25 is fully opened
  • the fourth on-off valve 27 is fully closed
  • the first and second decompressors 12 and 15 function as a decompressor. Do.
  • the refrigerant which has been compressed by the compressor 10 and has become a high-temperature and high-pressure gas exchanges heat with the cooling water of the water circuit circulated by the pump 18 in the refrigerant water heat exchanger 11. And cooled. Then, the refrigerant cooled by the refrigerant water heat exchanger 11 is depressurized to the intermediate pressure by the first decompressor 12 and flows only through the third bypass circuit 26.
  • the change in the outdoor temperature and the change in the wind speed due to the change in the vehicle speed can be used. It is possible to prevent the controllability from becoming difficult due to a change in the refrigerant hold amount / the heat release amount in the first heat exchanger 13.
  • FIG. 7 is a configuration diagram illustrating a refrigeration cycle device according to Embodiment 8 of the present invention.
  • This refrigeration cycle apparatus includes a fifth on-off valve 28, a fourth bypass circuit 29, a first three-way valve 30, a second three-way valve 31, a fifth bypass circuit 32, a sixth The on-off valve 33 and the sixth bypass circuit 34 are provided.
  • the present invention is characterized in that the refrigerant circulation mode is switched between the start of the compressor and the steady operation during heating and dehumidifying lotus rotation. First, the operation of the refrigeration cycle apparatus of FIG. 7 during cooling will be described.
  • the first decompressor 12 is fully open, the fifth on-off valve 28 is fully open, the sixth on-off valve 33 is fully closed, and the first three-way valve 30 is in the A direction.
  • the second three-way valve 31 is controlled in the direction A so that the second pressure reducer 15 acts as a pressure reducer. That is, at the time of cooling, the same operation as in the first embodiment is performed.
  • the refrigerant that has been compressed by the compressor 10 and has become a high-temperature and high-pressure gas is combined with the cooling water in the water circuit circulated by the pump 18 in the refrigerant water heat exchanger 11. It is cooled by heat exchange.
  • the heated cooling water flows into the heater core 19, so that the indoor heating capacity at the time of starting the compressor 10 can be further increased.
  • the refrigerant cooled in the refrigerant water heat exchanger 11 flows through the fourth bypass circuit 29 and exchanges heat with the refrigerant in the suction line of the compressor 10 in the internal heat exchanger 14.
  • the pressure is reduced by the first pressure reducer 12 to be in a low-temperature low-pressure gas-liquid two-phase state, and is introduced into the first heat exchanger 13.
  • the heat is evaporated from the outdoor air to evaporate into a gas-liquid two-phase or gas, which flows through the sixth bypass circuit 34 and the second decompressor 1 After passing through 5, it is introduced into the second heat exchanger 16.
  • the heat is evaporated by the endothermic heat from the indoor air to form a gas-liquid two-phase or gas, and the first heat exchanger 1 After exchanging heat with the refrigerant flowing from 3 to further absorb heat, it is compressed again by the compressor 10.
  • the function as a radiator is performed by the refrigerant / water heat exchanger 11 and the first heat exchanger 13 and the second heat exchanger 16 absorb heat, thereby securing a larger heat absorption amount.
  • the heating capacity can be improved.
  • the refrigerant amount during heating and dehumidification becomes excessive, but the refrigerant amount is increased from the outlet of the refrigerant water heat exchanger 11.
  • the volume on the high pressure side is increased. Therefore, the amount of refrigerant held on the high-pressure side during heating and dehumidification increases, and the imbalance in the amount of refrigerant between cooling and heating and dehumidification can be reduced.
  • the suction line of the compressor 10 exchanges heat with the high-temperature refrigerant at the outlet of the refrigerant / water heat exchanger 11, so that a decrease in the suction temperature of the compressor 10, that is, a decrease in the discharge temperature due to an excessive amount of refrigerant. Can be prevented.
  • the fifth on-off valve 28 is fully opened, the sixth on-off valve 33 is fully closed, the first three-way valve 30 is in the A direction, and the second three-way The valve 31 is controlled in the A direction, and the first pressure reducer 12 and the second pressure reducer 15 act as a pressure reducer. Performs the action of
  • the refrigerant that has been compressed by the compressor 10 to become a high-temperature and high-pressure gas is cooled by the coolant and heat of the water circuit circulated by the pump 18 in the refrigerant water heat exchanger 11.
  • the pressure is reduced to an intermediate pressure by the first pressure reducer 12 and introduced into the first heat exchanger 13.
  • the refrigerant cooled by the outside air in the first heat exchanger 13 is further cooled by exchanging heat with the refrigerant in the suction line of the compressor 10 in the internal heat exchanger 14, and then cooled by the second decompressor.
  • the pressure is reduced at 15 to be in a low-temperature low-pressure gas-liquid two-phase state, and is introduced into the second heat exchanger 16.
  • the refrigerant evaporates by absorbing heat from the indoor air to be in a gas-liquid two-phase or gas state, and the refrigerant and the heat flowing from the first heat exchanger 13 in the internal heat exchanger 14. After being exchanged and further absorbing heat, it is compressed again by the compressor 10.
  • the same operation as in Embodiment 1 is performed.
  • the provision of the fourth bypass circuit 29 and the fifth bypass circuit 32 allows the refrigerant amount to be reduced at the time of startup during heating and dehumidification and at the time of steady operation. Since the fan balance can be alleviated, it is possible to operate the refrigeration cycle apparatus with high efficiency in both cooling and dehumidifying operations without downsizing or providing a receiver.
  • the present embodiment is characterized in that the first pressure reducer 12 and the second pressure reducer 15 are operated in the refrigeration cycle device using carbon dioxide as a refrigerant, and By changing the amount of refrigerant held in the heat exchanger 13 to an intermediate pressure, the imbalance in the amount of refrigerant between cooling and heating and dehumidification can be reduced, and the receiver can be downsized or High-efficiency refrigeration cycle operation can be performed without using the refrigeration cycle. Even in the case of changes, by controlling the second decompressor 15, the imbalance in the amount of refrigerant during cooling and during heating and dehumidification can be eased, so the receiver can be reduced in size or used without using It is possible to operate a highly efficient refrigeration cycle device.
  • the first bypass circuit 22 it is possible to reduce the pressure loss of the refrigerant / water heat exchanger 11 during cooling, so that a more efficient refrigeration cycle device can be operated. .
  • the third bypass circuit 26 it is possible to prevent a decrease in the indoor outlet temperature, so that the refrigeration cycle apparatus can be operated with a higher heating capacity.
  • the fourth closing valve 27 to prevent the refrigerant from flowing to the first heat exchanger 13
  • the refrigerant in the first heat exchanger 13 is changed due to a change in the outdoor air temperature or the like. It is possible to prevent the controllability from becoming difficult due to a change in the hold amount / the heat radiation amount.
  • the fourth bypass circuit 29 and the fifth bypass circuit 32 it is possible to reduce the imbalance in the amount of refrigerant during startup and steady operation during heating and dehumidification. High efficiency for both cooling and heating dehumidification without downsizing or installing a receiver The operation of the refrigeration cycle apparatus can be performed efficiently.
  • FIG. 10 is a configuration diagram showing a refrigeration cycle apparatus according to Embodiment 9 of the present invention.
  • This refrigeration cycle uses a CO 2 refrigerant as a working fluid, a compressor 110, and a refrigerant water heat exchanger 11 1, Basic structure of 1st decompressor 1 1 2, 1st heat exchanger 1 1 3, Internal heat exchanger 1 1 4, 2nd decompressor 1 1 5, 2nd heat exchanger 1 1 6 Elements.
  • the outlet line of the first heat exchanger 1 13 and the suction line of the compressor 110 which is the outlet of the second heat exchanger 1 16 are heat-exchanged by the internal heat exchanger 1 14.
  • the hot water cycle consists of a pump 118 that circulates hot water heated by the refrigerant water heat exchanger 111, a heater core 119, a radiator 120, and a power engine 117. .
  • refrigeration cycle device of the present embodiment is an example of the dehumidifying device of the present invention.
  • the first pressure reducer 112 is fully opened, and the second pressure reducer 115 acts as a pressure reducer. That is, the refrigerant that has been compressed by the compressor 110 to become a high-temperature and high-pressure gas flows from the refrigerant water heat exchanger 111 through the first pressure reducer 112 to the first heat exchanger 111. Is cooled by outside air. However, at this time, since heating is not performed by the heater core 119, hot water does not flow to the refrigerant water heat exchanger 111.
  • the heat is exchanged with the refrigerant in the suction line of the compressor 110 in the internal heat exchanger 114 to be further cooled, and then reduced in the second decompressor 115 to produce a low-temperature, low-pressure gas-liquid two-phase. In a state, it is introduced into the second heat exchanger 1 16. In this second heat exchanger 1 16, it evaporates due to heat absorption from the indoor air and becomes a gas-liquid two-phase or gas state, The heat is exchanged with the refrigerant flowing from the first heat exchanger 113 in the heat exchanger 114 to further absorb heat, and then compressed again in the compressor 110. The air is cooled in the second heat exchanger 1 16.
  • the first pressure reducer 112 and the second pressure reducer 115 act as a pressure reducer.
  • the refrigerant compressed into high-temperature and high-pressure gas by the compressor 110 is cooled by exchanging heat with the hot water of the hot water cycle circulated by the pump 118 in the refrigerant water heat exchanger 111.
  • the pressure is reduced to an intermediate pressure by the first pressure reducer 112 and introduced into the first heat exchanger 113.
  • the refrigerant cooled by the outside air in the first heat exchanger 113 is further cooled by exchanging heat with the refrigerant in the suction line of the compressor 110 in the internal heat exchanger 114, and then cooled in the second heat exchanger 111.
  • the gas is decompressed by the pressure reducer 115 of the first embodiment, and is introduced into the second heat exchanger 116 in a low-temperature, low-pressure gas-liquid two-phase state.
  • the heat is evaporated from the indoor air to evaporate to a gas-liquid two-phase or gas state. After exchanging heat with the flowing refrigerant to further absorb heat, it is compressed again by the compressor 110.
  • the hot water heated by the coolant / water heat exchanger 111 flows into the heater core 119 provided in the room, and heats the air cooled and dehumidified by the second heat exchanger 116. However, it can be heated while dehumidifying. Then, the hot water is heated by the power engine 1 17 (for example, a heat source such as an engine or a battery) and flows through the coolant / water heat exchanger 1 1 ′ again.
  • the power engine 1 17 for example, a heat source such as an engine or a battery
  • FIG. 21 is a graph showing the logical relationship between the optimal ⁇ side pressure for maximizing COP and the refrigerant temperature at the radiator outlet with three different evaporation temperatures as parameters.
  • the heating capacity of the refrigerant / water heat exchanger 1 1 during heating and dehumidification is 1.5 kW
  • the inlet refrigerant temperature of the refrigerant / water heat exchanger 1 1 1 is 1 2
  • the outlet refrigerant temperature of the refrigerant / water heat exchanger 1 11 is considered to be around 60 ° C.
  • the value of the high-side pressure at which the minimum energy is obtained is calculated to be about 150 bar as shown in FIG. 21 according to the set value of the conventional example.
  • the value of the high side pressure is higher during heating and dehumidification than during cooling operation.
  • the refrigeration cycle apparatus is operated at such a high pressure by setting the refrigerant of the first heat exchanger 113 to the intermediate pressure by the first pressure reducer 112. You don't have to.
  • the second pressure reducer 1 15 is a valve capable of adjusting the flow rate.
  • the refrigerant temperature T eva detected by the second heat exchanger refrigerant temperature detection means 130 in step 14 1 and the target set temperature T x eva (for example, dew point temperature: 0 ° C) ) are compared. If T eva is equal to or greater than T x eva, it indicates that the second heat exchanger 1 16 which is the indoor heat exchanger is not dehumidified, and Step 1 4 2 Then, the opening degree of the second pressure reducer 1 15 is controlled to be small.
  • the opening of the first decompressor 112 it is not necessary to control the opening of the first decompressor 112, but it may be controlled to increase the opening.
  • This increases the intermediate pressure in the first heat exchanger 113 and increases the refrigerant temperature in the first heat exchanger 113, thereby increasing the heat in the internal heat exchanger 114.
  • Replace low pressure side and high Since the temperature difference from the pressure side increases, the amount of internal heat exchange increases.
  • the refrigeration cycle is indicated by a ⁇ b ⁇ c ⁇ d ⁇ e ⁇ f.
  • the opening of the heat exchanger 1 15 is reduced, the amount of heat exchange in the internal heat exchanger 114 increases as shown by k ⁇ b ⁇ g ⁇ h ⁇ i ⁇ j.
  • the specific enthalpy value of the inlet refrigerant at 1 16 becomes smaller by ⁇ .
  • the heat absorbing capacity of the second heat exchanger 116 can be increased without reducing the efficiency of the compressor to a large value ⁇ ′; ⁇ . '
  • T eva is smaller than T x eva, it indicates that dehumidification is performed in the second heat exchanger 1 16 which is the indoor heat exchanger. Then, control is performed so that the opening degree of the second pressure reducer 115 is increased.
  • the opening degree of the first pressure reducer 112 it is not necessary to control the opening degree of the first pressure reducer 112, but the opening degree may be controlled to be small.
  • the intermediate pressure in the first heat exchanger 113 is reduced, and the refrigerant temperature in the first heat exchanger 113 is reduced. Since the temperature difference between the low-pressure side and the high-pressure side to be exchanged becomes small, the amount of internal heat exchange is reduced, preventing excessive blowing and lowering of the temperature. Then, after controlling the second decompressor 1 15, the process returns to step 14 1.
  • the first pressure reducer 1 12 or the second pressure reducer 1 15 is operated to set the inside of the first heat exchanger 1 13 to an intermediate pressure, and
  • the refrigerant temperature of the heat exchanger 113 By adjusting the refrigerant temperature of the heat exchanger 113, the amount of heat exchange of the internal heat exchanger 114 can be adjusted, so that the high-side pressure, which is the minimum energy calculated in the conventional example, can be reduced.
  • the operation of the refrigeration cycle device with high energy efficiency while securing the reliability while eliminating the imbalance of the optimal refrigerant amount during cooling and heating and dehumidifying with less energy consumption than the operation of the conventional example Can be performed.
  • First decompressor: t12 is a valve whose flow rate can be adjusted.
  • the refrigerant hold amount on the high-pressure side of the refrigeration cycle device differs between heating and dehumidifying and cooling, an imbalance occurs in the optimal refrigerant amount. Accordingly, by adjusting the hold amount of the refrigerant in the first heat exchanger 113 by changing the intermediate pressure, it is possible to eliminate the imbalance in the refrigerant amount during cooling and during heating and dehumidification.
  • the refrigerant temperature T m detected by the first heat exchanger refrigerant temperature detecting means 13 1 in step 144 is compared with the target set temperature T xm (for example, 20 ° C).
  • Txm is a value set so as to be the optimum refrigerant amount at which the efficiency becomes highest during the heating and dehumidification.
  • Tm is equal to or greater than Txm, it indicates that the intermediate pressure of the first heat exchanger 113 is higher than the set value and the amount of circulating refrigerant is lower than the optimum value. Then, the process proceeds to step 144, where the opening degree of the first pressure reducer 112 is controlled to be small.
  • the refrigeration cycle apparatus can be operated with the optimum amount of refrigerant during heating and dehumidification.
  • the process proceeds to step 146, and the opening of the first pressure reducer 112 is controlled to be large.
  • the refrigeration cycle device can be operated with the quantity.
  • step 1 4 7 the refrigerant temperature T eva detected by the second heat exchanger refrigerant temperature detecting means 130 and the target set temperature
  • T x eva for example, dew point temperature: 0 ° C.
  • the first heat exchanger 1 1 2 and the second pressure reducer 1 1 6 are operated to change the intermediate pressure in the first heat exchanger 1 13, whereby the first heat exchange Since it is possible to adjust the amount of refrigerant held in the heat exchanger 113, the refrigeration cycle apparatus can be operated with an optimal amount of refrigerant without providing a receiver for adjusting refrigerant during heating and dehumidification.
  • the opening of the second decompressor 115 is mainly adjusted as in the ninth embodiment, the dryness of the suction refrigerant of the compressor fluctuates greatly, making it difficult to control the capacity of the refrigeration cycle apparatus.
  • the opening degrees of the first pressure reducer 1 12 and the second pressure reducer 1 15 as described above such a problem is alleviated, and a more stable operation of the refrigeration cycle device is performed. Can be.
  • Embodiment 11 of the present invention the first pressure reducer 112 and the second pressure reducer 115 during heating and dehumidification in the refrigeration cycle apparatus shown in FIG. The operation will be described with reference to the flowchart in FIG. Hereinafter, differences from the ninth embodiment will be described.
  • An outlet temperature detecting means 134 for detecting the temperature of the air blown out through the heater core 119 and a compressor operating frequency control means 132 for controlling the operating frequency of the compressor 110 are provided.
  • the refrigerant temperature Tm detected by the first heat exchanger refrigerant temperature detecting means 131 in step 150 is compared with the target set temperature Txm (for example, 20 ° C.).
  • the target set temperature Txm for example, 20 ° C.
  • step 156 the blow-out temperature Tf detected by the blow-out temperature detecting means 134 is compared with a target set temperature Txf (for example, 40 ° C.).
  • Txf is the value of the outlet temperature required during heating and dehumidification. If the temperature is equal to or higher than Xf, the blowout temperature Tf is higher than the target set temperature TXf, which indicates that the heating capacity is high. After controlling to reduce the operating frequency, return to step 150.
  • T f is smaller than TX f
  • the outlet temperature T f is lower than the target set temperature TX f, indicating that the heating capacity is low. After controlling so as to increase the operating frequency of, return to step 150.
  • the heating capacity can be adjusted by changing the operating frequency of the compressor 110, so that the refrigeration cycle apparatus can be operated with the optimal refrigerant amount without impairing the comfort. Can be.
  • FIG. 13 is a configuration diagram showing a refrigeration cycle device according to Embodiment 12 of the present invention.
  • This refrigeration cycle apparatus includes a discharge refrigerant temperature detecting means 13 3 for detecting a discharge refrigerant temperature of the compressor 110, and an opening / closing valve for an outlet of the second heat exchanger 116 and an inlet of the compressor 110.
  • a bypass circuit 1 36 that bypasses through 1 35 is provided. The operation of the on-off valve 135 during the heating and dehumidifying operation in the refrigeration cycle apparatus shown in FIG. 13 will be described with reference to the flowchart in FIG.
  • the discharged refrigerant temperature Td detected by the discharged refrigerant temperature detecting means 133 in step 160 is compared with the target set temperature Tx (for example, 140 ° C.). At this time, the target temperature is set to a value close to the upper limit temperature in the operating range of the compressor 110. If Td is equal to or greater than Tx, it indicates that the temperature exceeds the upper limit of the operating range of the compressor 110, and the process proceeds to step 161, where the release valve 1 3 5 Is controlled to open the opening of.
  • Td is smaller than Txd, it indicates that the temperature is lower than the upper limit temperature of the operating range of the compressor 110. Control to close the opening and return to step 160.
  • Embodiment 13 of the present invention is characterized in that the refrigeration cycle device is a vehicle air conditioner.
  • the refrigeration cycle device is a vehicle air conditioner.
  • the outdoor heat exchanger ie, the first heat exchanger 113 acts as an evaporator.
  • the temperature of the refrigerant flowing through the first heat exchanger 113 is 0 °.
  • the temperature becomes C or less and frost occurs it is very difficult to quickly and completely remove the defrost because the refrigerant temperature is unlikely to increase even if the operation is performed as a radiator by performing the reverse cycle operation.
  • the first decompressor 112 or the second depressor 115 is actuated to make the inside of the first heat exchanger 113 an intermediate pressure, and the first By adjusting the refrigerant temperature of the heat exchanger 113, frost formation on the first heat exchanger 113 can be prevented beforehand. Higher and more efficient refrigeration cycle device operation can be performed.
  • the first pressure reducer 1 12 or the second pressure reducer 1 15 is operated to cause the inside of the first heat exchanger 1 13 to operate.
  • the refrigerant temperature of the first heat exchanger 113 By adjusting the refrigerant temperature of the first heat exchanger 113 to an intermediate pressure, the amount of heat exchange in the internal heat exchanger 114 can be adjusted. It is possible to operate the refrigeration cycle apparatus with high efficiency while securing reliability with less energy consumption than the conventional example, without setting the high side pressure to be the minimum energy.
  • the refrigeration cycle device can be operated with an optimum amount of refrigerant without providing a receiver for refrigerant adjustment during heating and dehumidification.
  • the refrigeration cycle apparatus can be operated with the optimal refrigerant amount without impairing the performance.
  • first pressure reducer 1 1 2 or the second pressure reducer 1 15 is actuated to bring the inside of the first heat exchanger 1 13 to an intermediate pressure, and the first heat exchanger 1 13 is cooled.
  • frost formation on the first heat exchanger 113 can be prevented beforehand, so even in vehicle air conditioners, more comfortable and more efficient refrigeration can be achieved.
  • the operation of the cycle device can be performed. Industrial applicability
  • the present invention secures the reliability of a refrigeration cycle device using a co 2 refrigerant by utilizing the features of the co 2 refrigeration system without downsizing or using a low-pressure receiver.
  • a refrigeration cycle apparatus and an operation method for the refrigeration cycle apparatus which enable efficient operation.
  • the present invention provides a dehumidifier using a co 2 refrigerant, which utilizes the characteristics of the co 2 refrigeration system and adjusts the intermediate pressure without increasing the high side pressure to optimize the refrigerant during cooling and heating dehumidification. Amount imbalance Thus, it is possible to provide a dehumidifying apparatus and a dehumidifying method which can ensure efficient operation while ensuring reliability.

Description

明 細 冷凍サ 技術分野
本発明は、 作動媒体として二酸化炭素 (以下、 c o 2冷媒という) を使 用した冷凍サイクル装置に関するものである。 背景技術
近年の冷凍サイクル装置における作動流体は、 オゾン層に対し有害な 影響があるとされる従来の C F C冷媒ゃ H C F C冷媒から、 代替冷媒と してォゾン破壊係数が 0である H F C冷媒ゃ H C冷媒に移行されつつあ る。
しかし、 H F C冷媒は、 物質の特性として地球温暖化係数が大きいと いう欠点を有し、 一方、 H C冷媒は、 地球温暖化係数は小さいものの、 強燃性であるという欠点を有している。 また、 従来から用いられてきた アンモニア冷媒は、 地球温暖化係数は 0であるものの、 弱燃性でかつ毒 性を有するという欠点がある。
したがって、 物質としての地球温暖化係数がほとんどなく、 不燃性で 無毒、 かつ低コストの C〇2冷媒が注目されている。 しかしながら、 C O 2冷媒は、 臨界温度が 3 1 . 1 °Cと低く、 通常の冷凍サイクル装置の高圧 側では C O 2冷媒の凝縮が生じない。
このため、 特許第 2 1 3 2 3 2 9号公報は図 1 9のように、 高圧側の 冷却器 1 0 2の出口ラインと圧縮機 1 0 1の吸入ラインとの熱交換を行 う内部熱交換器 1 0 3を有することによって、 冷却器 1 0 2の出口を過 冷却し、 冷媒量調整による能力管理手段として低圧レシーバ 1 0 6を設 けている。
なお、 特許第 2 1 3 2 3 2 9号公報の文献の全ての開示は、 そっくり そのまま引用する (参照する) ことにより、 ここに一体化する。
また、 冷暖房のルームエアコンやカーエアコンなどの場合は、 室内側 熱交換器は小型化が要求され、 一方、 室外側熱交換器は凝縮能力向上に よる冷房時の省エネルギー化や吸熱能力向上による暖房時の高能力化の ために室内熱交換器に比べて大型化されている。 したがって、 大きな容 積の室外側熱交換器が高圧側となって高密度冷媒の凝縮が行われる冷房 運転時にて高効率で運転される最適冷媒量は、 暖房運転時の最適冷媒量 よりも大きくなるため、 その緩衝的な機能も果たすレシーバを用いるこ とは有効である。
また、 特許第' 2 9 3 1 6 6 8号公報は図 1 9 .のように、 所定の能力要 求において装置のエネルギ消費を最小とするために、 予定の設定値にし たがって絞り弁 4の開度を調整している。
すなわち、 図 2 0で示すように高圧が Pである冷凍サイクルから高圧 が P 1である冷凍サイクルに変化した場合、 入力 Wのェンタルピ差の增 加に対して冷凍能力 Qのェンタルピ差の増加の方が大きいため C O Pは 高くなるが、 高圧が P 1である冷凍サイクルから高圧が P 2である冷凍 サイクルになると、 逆に入力 Wのェンタルピ差の増加に対して冷凍能力 Qのェンタルピ差の増加の方が小さくなるため C O Pは低下する。 すな わち、 図 2 0の高圧が P 1である冷凍サイクルに示すように、 C〇2冷媒 には理論的に C O P最大となる高圧が存在する。
また、 ヒートポンプサイクル C O Pは冷凍サイクル C O Pに 1を加え たものであるから、 ヒートポンプサイクルの場合も、 C〇P最大となる 高圧 (以下、 高サイド圧力という) の値は冷凍サイクルと同値である。 図 1 9に示す冷凍サイクルは、 例えば冷房装置として用いることが出 来る。
しかしながら、 低圧にレシーバを設けることはコストゃ容積が大きく なるといつた欠点があり、 実使用運転範囲においては、 従来の冷凍サイ クル装置に用いられている H C F C冷媒ゃ H F C冷媒に対し C 0 2冷媒の 圧力が非常に高くなることを考えると、 安全性確保のための耐圧設計は より厳しいものとなる。 特に、 カーエアコンの場合は、 さらなる省容量 化おょぴ軽量化が求められている。
また、 一般に冷房装置よりも冷暖房除湿を行う装置の方が圧縮機はよ り高圧に冷媒を圧縮する必要があり、 また、 圧縮機で圧縮された冷媒温 度もより高温になる。
すなわち、 従来の図 1 9の冷凍サイクルに温水サイクルを付加して冷 暖房除湿を行う除湿装置として用いた場合には、 より高サイ ド圧力で運 転する必要があり、 また、 放熱器の温度もより高くなり、 圧縮比も高く なる。
従って、 従来の図 1 ·9の冷凍サイクルに温水サイクルを付加して冷暧 房除湿を行う除湿器として用いる場合には次のような問題が生じる。 すなわち、 エネルギ消費が最小とされる高サイド圧力で運転すること は、 放熱器の温度が高い場合、 すなわち放熱器雰囲気温度が高い場合や 、 小型放熱器を用いる場合においては、 圧縮比が高くなるために圧縮機 の効率が大きく低下することや、 圧縮機の信頼性を損なう恐れがあると いった欠点があり、 また高サイド圧力が高いため、 安全性確保のための 耐圧設計はより厳しいものとなる。
また、 暖房除湿時と冷房時とでは、 冷凍サイクル装置の高圧側の冷媒 ホールド量が異なるため、 最適冷媒量にアンバランスが生じる。 したが つて、 第 1の熱交換器 1 3内の冷媒ホールド量は中間圧力を変動させて 調整することにより、 冷房時と暖房除湿時との冷媒量のアンバランスを 解消させることが必要となる。 発明の開示
本発明は、 上述した課題に対して、 CO 2冷媒を使用した冷凍サイクル 装置において、 co2冷凍システムの特徴を生かし、 低圧レシーバを小型 化、 あるいは用いることなく、 信頼性を確保して効率的な運転を可能と する冷凍サイクル装置、 及ぴ冷凍サイクル装置の運転方法を提供するこ とを目的とするものである。
また、 本発明は、 上述した課題に対して、 co2冷媒を使用した除湿装 置において、 co2冷凍システムの特徴を生かし、 高サイド圧力を高くす ることなく、 中間圧力を調整することにより冷房時と暖房除湿時の最適 冷媒量のアンバランスを解消しつつ、 信頼性を確保して効率的な運転を 可能とする除湿装置及び除湿方法を提供することを目的とするものであ る。
上述した課題を解決するために、 第 1の本発明は、 圧縮機 (10) と 、 冷媒水熱交換器 (11) と、 第 1の減圧器 ( 12 ) と、 第 1の熱交換 器 (13) と、 第 2の減圧器 (15) と、 第 2の熱交換器 (16) と、 内部熱交換器 (14) と、 温水サイクル (17、 18、 19、 20、 ) とを備え、
前記温水サイクル (17、 18、 19、 20) は、 前記冷媒水熱交換 器 (11) の下流側に、 湯水を吸入するヒータコア (19) を有し、 前記圧縮機 (10) は、 二酸化炭素である冷媒を圧縮し、
前記冷媒水熱交換器 (11) は、 圧縮された前記冷媒と前記温水サイ クル (17、 18、 19、 20) の湯水との熱交換を行い、 前記第 1の減圧器 (1 2) は、 圧縮された前記冷媒を減圧しまたは減 圧せず、
前記第 1の熱交換器 (1 3) は、 前記第 1の減圧器 (12) で減圧さ れた前記冷媒を熱交換し、
前記内部熱交換器 (14) は、 前記第 1の熱交換器 (13) で熱交換 された前記冷媒と前記圧縮機 (10) に吸引される冷媒とで熱交換を行 い、
前記第 2の減圧器 (1 5) は、 前記内部熱交換器 (14) で熱交換さ れた前記冷媒を減圧し、
前記第 2の熱交換器 (1 6) は、 前記第 2の減圧器 (15) で減圧さ れた前記冷媒を熱交換し、
前記第 1の減圧器 (1 2) 及び Zまたは前記第 2の減圧器 (1 5) を 作用させることにより前記第 1の熱交換器 (13) の冷媒圧力を変動さ せて前記第 1の熱交換器 (13) の冷媒ホールド量を調整することによ つて、 冷房時と暖房除湿時との冷媒量のアンバランスを緩和させる冷凍 サイクル装置である。
また、 第 2の本発明は、 前記圧縮機 (10) の吐出温度を検出する圧 縮機吐出温度検出手段 (35) または前記圧縮機 (10) の吸入温度を 検出する圧縮機吸入温度検出手段または前記圧縮機 (10) の吐出圧力 を検出する圧縮機吐出圧力検出手段を備え、
前記第 1の熱交換器 (1 3) の冷媒圧力を変動させて前記第 1の熱交 換器 (1 3) の冷媒ホールド量を調整するとは、 前記圧縮機吐出温度検 出手段 (35) または前記圧縮機吸入温度検出手段または前記圧縮機吐 出圧力検出手段によって検出された値を用いて、 前記第 2の減圧器 (1 5) を制御することである第 1の本発明の冷凍サイクル装置である。 また、 第 3の本発明は、 前記圧縮機 (10) の吐出側と前記第 1の熱 P0303782
6
交換器 (1 3) 入口とを第 1の開閉弁 (2 1 ) を介して接続する第 1の バイパス回路 (2 2) を備えた第 1の本発明の冷凍サイクル装置である c また、 第 4の本発明は、 前記第 1の熱交換器 (1 3) の冷媒温度を検 出する第 1の熱交換器温度検出手段 (3 6) を備え、
前記第 1の熱交換器温度検出手段 (3 6) によって検出された値を用 いて、 前記第 1の減圧器 (1 2) または前記第 1の開閉弁 (2 1) を制 御する第 3の本発明の冷凍サイクル装置である。
また、 第 5の本発明は、 前記第 2の熱交換器 (1 6) の入口と出口と を第 2の開閉弁 (2 3) を介して接続する第 2のバイパス回路 (24) を備えた第 1の本発明の冷凍サイクル装置である。 ·
また、 第 6の本発明は、 前記第 1の熱交換器 (1 3) の入口と出口と を第 3の開閉弁 (2 5) を介して接続する第 3のパイパス回路 (2 6) を備えた第 1の本発明の冷凍サイクル装置である。
また、 第 7の本発明は、 前記第 1の熱交換器 (1 3) の入口に第 4の 開閉弁 (27) を備えた第 1の本発明の冷凍サイクル装置である。
また、 第 8の本発明は、 前記冷媒氷熱交換器 (1 1) 出口と前記第 1 の減圧器 (1 2) との間に第 5の開閉弁 (28) と、
前記第 1の熱交換器 (1 3) 出口と前記内部熱交換器 (1 4) 入口の 間に第 1の 3方弁 (3 0) と、
前記冷媒水熱交換器 (1 1) 出口と前記第 5の開閉弁 (28) 入口と の間を一端とし、 前記第 1の 3方弁 (30) を他端として接続する第 4 のバイパス回路 (2 9) と、
前記内部熱交換器 (1 4) 出口と前記第 2の減圧器 (1 5) 入口の間 に第 2の 3方弁 (3 1) と、
前記第 2の 3方弁 (3 1 ) を一端とし、 前記第 5の開閉弁 (28) 出 口と前記第 1の減圧器 (1 2) 入口の間を他端として接続する第 5のパ ィパス回路 (3 2 ) と、
前記第 1の熱交換器 (1 3 ) 出口と前記第 1の 3方弁 (3 0 ) との間 を一端とし、 前記第 2の 3方弁 (3 1 ) と第 2の減圧器 (1 5 ) との間 を他端として第 6の開閉弁 (3 3 ) を介して接続する第 6のバイパス回 路 (3 4 ) と、
前記冷媒水熱交換器 (1 1 ) から流出した冷媒が、 前記第 5の開閉弁 ( 2 8 ) を介して循環する定常モードと、 前記第 4のバイパス回路 (2 9 ) と前記第 5のバイパス回路 (3 2 ) を循環する起動モードとを選択 的に切替える冷媒循環モード切替手段とを備えた第 1の本発明の冷凍サ ィクル装置である。
また、 第 9の本発明は、 圧縮機と、 冷媒水熱交換器と、 第 1の減圧器 と、 第 1の熱交換器と、 第 2の減圧器と、 第 2の熱交換器と、 内部熱交 換器と、 温水サイクルとを備え、
前記温水サイクルは、 前記冷媒水熱交換器の下流側に、 湯水を吸入す るヒータコアを有する冷凍サイクル装置を運転する冷凍サイクル装置の 運転方法であって、
前記圧縮機が、 二酸化炭素である冷媒を圧縮し、
前記冷媒水熱交換器が、 圧縮された前記冷媒と前記温水サイクルの湯 水との熱交換を行い、
前記第 1の減圧器が、 圧縮された前記冷媒を減圧しまたは減圧せず、 前記第 1の熱交換器が、 前記第 1の減圧器で減圧された前記冷媒を熱 交 し、
前記内部熱交換器が、 前記第 1の熱交換器で熱交換された前記冷媒と 前記圧縮機に吸引される冷媒とで熱交換を行い、
前記第 2の減圧器が、 前記内部熱交換器で熱交換された前記冷媒を減 圧し、 JP03/03782
8
前記第 2の熱交換器が、 前記第 2の減圧器で減圧された前記冷媒を熱 交換し、 前記第 1の減圧器及び/または前記第 2の減圧器を作用させ ることにより前記第 1の熱交換器の冷媒圧力を変動させて前記第 1の熱 交換器の冷媒ホールド量を調整することによって、 冷房時と暖房除湿時 との冷媒量のアンパランスを緩和させる冷凍サイクル装置の運転方法で あ 。
また、 第 10の本発明は、 圧縮機 (1 10) と、 冷媒水熱交換器 (1 1 1) と、 第 1の減圧器 ( 1 1 2 ) と、 第 1の熱交換器 (1 13) と、 第 2の減圧器 (1 1 5) と、 第 2の熱交換器 (1 1 6) と、 内部熱交換 器 (1 14) と、 温水サイクル (1 1 7、 1 18、 1 1 9、 120) と を備え、
前記温水サイクル (1 1 7、 1 1 8、 1 1 9、 120) は、 前記冷媒 水熱交換器 (1 1 1) の下流側に、 湯水を吸入するヒータコア (1 1 9 ) を有し、
前記圧縮機 (1 1 0) は、 二酸化炭素である冷媒を圧縮し、
前記冷媒水熱交換器 (1 1 1) は、 圧縮された前記冷媒と前記温水サ ィクル (1 1 7、 1 18、 1 1 9、 1 20) の湯水との熱交換を行い、 前記第 1の減圧器 (1 1 2) は、 圧縮された前記冷媒を減圧し、 前記第 1の熱交換器 (1 1 3) は、 前記第 1の減圧器 (1 1 2) で減 圧された前記冷媒を熱交換し、
前記内部熱交換器 (1 14) は、 前記第 1の熱交換器 (1 1 3) で熱 交換された前記冷媒と前記圧縮機 (1 10) に吸引される冷媒とで熱交 換を行い、
前記第 2の減圧器 (1 1 5) は、 前記内部熱交換器 (1 14) で熱交 換された前記冷媒を減圧し、
前記第 2の熱交換器 (1 1 6) は、 前記第 2の減圧器 (1 1 5) で減 圧された前記冷媒を熱交換する除湿装置である。
また、 第 1 1の本発明は、 前記第 2の熱交換器 (1 1 6) の前記冷媒 の温度を検出する第 2の熱交換器冷媒温度検出手段 (1 30) を備え、 前記第 2の減圧器 (1 1 5) は、 前記第 2の熱交換器温度検出手段 ( 1 30) で検出された前記温度に基づいてその減圧レベルが制御される 第 10の本発明の除湿装置である。
また、 第 1 2の本発明は、 前記第 1の減圧器 (1 1 2) は、 前記第 2 の熱交換器温度検出手段 (1 30) で検出された前記温度に基づいてそ の減圧レベルが制御される第 1 1の本発明の除湿装置である。
また、 第 1 3の本発明は、 前記第 1の熱交換器 (1 1 3) 内の前記冷 媒の温度を検出する第 1の熱交換器冷媒温度検出手段 (131) を備え 前記第 1の減圧器 (1 1 2) は、 前記第 1の熱交換器冷媒温度検出手 段 (1 3 1) で検出された前記温度に基づいてその減圧レベルが制御さ れる第 10の本発明の除湿装置である。
また、 第 14の本発明は、 前記ヒータコア (1 19) を介して吹出さ れる吹出し空気温度を検出する吹出し空気温度検出手段 (1 34) と、 前記圧縮機 (1 1 0) の運転周波数を制御する圧縮機運転周波数制御 手段 (1 32) とを備え、
前記圧縮機運転周波数制御手段 (1 32) は、 検出された前記空気温 度に基づいて前記圧縮機 (1 1 0) の運転周波数を制御する第 10の本 発明の除湿装置である。
また、 第 1 5の本発明は、 前記圧縮機 (1 10) の吐出冷媒温度を検 出する吐出冷媒温度検出手段 (1 33) と、
前記第 2の熱交換器 (1 16) 出口と前記圧縮機 (1 10) の入口を 開閉弁 (1 35) を介してバイパスするパイパス回路 (136) とを備 え、
前記開閉弁 (1 3 5 ) は検出された前記吐出冷媒温度に基づいてその 開閉が制御される第 1 0の本発明の除湿装置である。
また、 第 1 6の本発明は、 車両用空調装置として用いられる第 1 0の 本発明の除湿装置である。
また、 第 1 7の本発明は、 圧縮機と、 冷媒水熱交換器と、 第 1の減圧 器と、 第 1の熱交換器と'、 第 2の減圧器と、 第 2の熱交換器と、 内部熱 交換器と、 温水サイクルとを備え、 前記温水サイクルは、 前記冷媒水熱 交換器の下流側に、 湯水を吸入するヒータコアを有する除湿装置を用い て除湿する除湿方法であって、
前記圧縮機が、 二酸化炭素である冷媒を圧縮し、
前記冷媒水熱交換器が、 圧縮された前記冷媒と前記温水サイクルの湯 水との熱交換を行い、
前記第 1の減圧器が、 圧縮された前記冷媒を減圧し、
前記第 1の熱交換器が、 前記第 1の減圧器で減圧された前記冷媒を熱 交換し、
前記内部熱交換器が、 前記第 1の熱交換器で熱交換された前記冷媒と 前記圧縮機に吸引される冷媒とで熱交換を行い、
前記第 2の減圧器が、 前記内部熱交換器で熱交換 れた前記冷媒を減 圧し、
前記第 2の熱交換器が、 前記第 2の減圧器で減圧された前記冷媒を熱 交換する除湿方法である。 図面の簡単な説明
図 1は、 本発明の実施の形態 1である冷凍サイクル装置の構成図であ る。
図 2は、 本発明'の実施の形態 3である冷凍サイクル装置の構成図であ る。
図 3は、 本発明の実施の形態 4である冷凍サイクル装置の構成図であ る。
図 4は、 本発明の実施の形態 5である冷凍サイクル装置の構成図であ る。
図 5は、 本発明の実施の実施 6である冷凍サイクル装置の構成図であ る。 '.
図 6は、 本発明の実施の実施 7である冷凍サイクル装置の構成図であ る。
図 7は、 本発明の実施の実施 8である冷凍サイクル装置の構成図であ る。
図 8は、 本発明の実施の実施 2である冷凍サイクル装置の制御フロー チャートである。
図 9は、 本発明の実施の実施 6である冷凍サイクル装置のモリエル線 図である。
図 1 0は、 本発明の実施の形態 9である冷凍サイクル装置の構成図で あ。。
図 1 1は、 本発明の実施の形態 1 0である冷凍サイクル装置の構成図 である。
図 1 2は、 本発明の実施の形態 1 1である冷凍サイクル装置の構成図 である。
図 1 3は、 本発明の実施の形態 1 2である冷凍サイクル装置の構成図 である。
図 1 4は、 本発明の実施の形態 9である冷凍サイクル装置のモリエル 線図である。
図 1 5は、 本発明の実施の形態 9である冷凍サイクル装置の制御フロ 一チャート図である。
図 1 6は、 本発明の実施の形態 1 0である冷凍サイクル装置の制御フ ローチャート図である。 図 1 7は、 本発明の実施の形態 1 1である冷凍サイクル装置の制御フ ローチャート図である。 図 1 8は、 本発明の実施の形態 1 2である冷凍サイクル装置の制御フ ローチャート図である。 図 1 9は、 従来の冷凍サイクル装置の構成図である。
図 2 0は、 従来の冷凍サイクル装置のモリエル線図である。
図 2 1は、 従来の冷凍サイクル装置の最適 C O Pとなるときの放熱器 出口温度と高サイ ド圧力との関係を示す図である。
(符号の説明)
1 0 圧縮機
1 1 冷媒水熱交換器
1 2 第 1の減圧器
1 3 第 1の熱交換器
1 4 内部熱交換器
1 5 第 2の減圧器
1 6 第 2の熱交換器
1 7 動力機関 '
1 8 ポンプ
1 9 ヒータコア
2 0 ラジエータ 第 1の開閉弁
第 1のバイパス回路 第 2の開閉弁
第 2のパイパス回路 第 3の開閉弁
第 3のパイパス回路 第 4の開閉弁
第 5の開閉弁
第 4のバイパス回路 第 1の 3方弁
第 2の 3方弁
第 5のバイパス回路 第 6の開閉弁
第 6 回路 圧縮機吐出温度検出手段 第 1の熱交換器温度検出手段 圧縮機
冷却装置
内部熱交換器
絞り手段 低圧冷媒レシーバ 圧縮機
冷媒水熱交換器
第 1の減圧器
第 1の熱交換器 P T/JP03/03782
14
114 内部熱交換器
115 第 2の減圧器
116 第 2の熱交換器
117 動力機関
118 ポンプ
119 ヒータコア
120 ラジェ一タ
130 第 2の熱交換器冷媒温度検出手段
131 第 1の熱交換器冷媒温度検出手段
132 圧縮機運転周波数検出手段
133 圧縮機吐出冷媒温度検出手段
134 吹出し温度検出手段
135 開閉弁
136 バイパス回路 発明を実施するための最良の形態
以下に、 本発明の実施の形態を図面を参照して説明する。
(実施の形態 1)
図 1は、 本発明の実施の形態 1における冷凍サイクル装置を示す構成 図であり、 この冷凍サイクルは、 co2冷媒を作動流体とし、 圧縮機 10 、 冷媒水熱交換器 11、 第 1の減圧器 12、 第 1の熱交換器 13、 内部 熱交換器 14、 第 2の減圧器 15、 第 2の熱交換器 16を基本構成要素 としている。 第 1の熱交換器 13の出口側ラインと、 第 2の熱交換器 1 6の出口である圧縮機 10の吸入ラインは、 内部熱交換器 14により熱 乂換されるように構成されている。 一方、 温水サイクルは、 冷媒水熱交 T JP03/03782
15
換器で加熱された温水を循環させるポンプ 1 8、 ヒータコア 1 9、 ラジ エータ 2 0、 動力機関 1 7で構成されている。
ここで、 図 1の冷凍サイクル装置の冷房時での動作について説明する まず、 冷房時には、 第 1の減圧器 1 2は全開にして、 第 2の減圧器 1 5で減圧器としての作用を行う。 すなわち、 圧縮機 1 0で圧縮されて高 温高圧のガスとなった冷媒は、 冷媒水熱交換器 1 1から第 1の減圧器 1 2を経て第 1の熱交換器 1 3で外気によって冷却される。 そして、 内部 熱交換器 1 4で圧縮機 1 0の吸入ラインの冷媒と熱交換してさらに冷却 されたのち、 第 2の減圧器 1 5で減圧されて低温低圧の気液二相状態と なって第 2の熱交換器 1 6に導入される。 この第 2の熱交換器 1 6では 、 室内の空気からの吸熱により蒸発して気液二相またはガス状態となり 、 内部熱交換器 1 4で第 1の熱交換器 1 3から流れる冷媒と熱交換して さらに吸熱したのち再び圧縮機 1 0で圧縮される。 空気は、 第 2の熱交 換器 1 6で冷却される。
次に、 暖房除湿時での動作について説明する。
暖房除湿時では、 第 1の減圧器 1 2と第 2の減圧器 1 5で減圧器とし ての作用を行う。
すなわち、 圧縮機 1 0で圧縮されて高温高圧のガスとなった冷媒は、 冷媒水熱交換器 1 1でポンプ 1 8により循環する水回路の冷却水と熱交 換して冷却されたのち、 第 1の減圧器 1 2により中間圧力まで減圧され て第 1の熱交換器 1 3に導入される。 第 1の熱交換器 1 3で外気によつ て冷却された冷媒は、 内部熱交換器 1 4で圧縮機 1 0の吸入ラインの冷 媒と熱交換してさらに冷却.されたのち、 第 2の減圧器 1 5で減圧されて 低温低圧の気液二相状態となって第 2の熱交換器 1 6に導入される。 こ の第 2の熱交換器 1 6では、 室内の空気からの吸熱により蒸発して気液 二相またはガス状態となり、 内部熱交換器 1 4で第 1の熱交換器 1 3か ら流れる冷媒と熱交換してさらに吸熱したのち再ぴ圧縮機 1 0で圧縮さ れる。
また、 冷媒水熱交換器 1 1で加熱された冷却水は室内に設けられたヒ ータコア 1 9に流入して第 2の熱交換器 1 6で冷却除湿された空気を加 熱することにより、 除湿しながら暖房することができる。 そして冷却水 は動力機関 1 7 (例えばエンジンやバッテリーなどの発熱源) で加熱さ れて再び冷媒水熱交換器 1 1を流れる。
ところで上述したように、 二酸化炭素は高圧冷媒であることから、 耐 圧設計の面においてフィンチューブ式熱交換器ではなく、 より細径化し た熱交換器 (例えばマイクロチューブ式熱交換器) を用いる必要性があ ることや、 車両用空気調和装置においては、 特に省容量化および軽量化 が大きな訴求点となっている。 したがって、 冷房時は容積の大きい第 1 の熱交換器 1 3が高圧側になるが、 暖房除湿時は容積の小さい冷媒水熱 交換器 1 1が高圧側となるため、 高圧側の冷媒'ホールド量に大きな差が 生じるため、 冷房時での最適冷媒量と暖房除湿時での最適冷媒量とのァ ンパランスについて検討を行った。 検討の結果、 暖房除湿時で第 1の減 圧器 1 2のみを作用させた場合、 容積の大きい第 1の熱交換器 1 3が低 圧側になるため、 (暖房除湿時の最適冷媒量) ぐ (冷房時の最適冷媒量 ) となることが分かった。 したがって、 冷房時の最適冷媒量を充填した 場合、 暖房除湿時には、 第 1の減圧器 1 2のみで作用させると冷媒量過 多の状態となり、 高圧が過昇するという課題が生じた。
また暖房除湿時で、 冷房時と同様に第 2の減圧器 1 5のみを作用させ た場合、 冷房時よりも暖房除湿時の方が第 1の熱交換器 1 3に導入され る空気が低温であるため、 冷媒温度も低下して冷媒密度は高くなり、 第 1の熱交換器 1 3内にホールドされる冷媒量は冷房時よりも大きくなる すなわち (暖房除湿時の最適冷媒量) > (冷房時の最適冷媒量) となる ことが分かった。 したがって、 冷房時の最適冷媒量を充填した場合、 暖 房除湿時には、 第 2の減圧器 1 5のみで作用させると冷媒量が少ない状 態となり、 吸入温度の上昇による循環量の低下や吐出温度の過昇という 課題がある。
そこで、 第 1の減圧器 1 2と第 2の減圧器 1 5を作用させて、 暖房除 湿時には、 第 1の熱交換器 1 3内を中間圧力にして、 第 1の熱交換器 1 3内の冷媒ホールド量を調整することにより、 冷房時と暖房除湿時との 冷媒量のアンパランスを解消させることができ、 レシーバを小型化、 あ るいは用いることなく高効率な冷凍サイクル装置の運転を行うことが可 能となる。
(実施の形態 2 )
本発明の実施の形態 2について、 図 1の冷凍サイクル装置における暧 房除湿時での第 2の減圧器 1 5の動作を図 8のフロ一チヤ一トを用いて 説明する。 第 2の減圧器 1 5は流量調整が可能な弁である。
暖房除湿時では、 ステップ 4 0で圧縮機吐出温度検出手段 3 5にて検 出された吐出温度 T dと、. ねらいの設定吐出温度 T Xが比較される。 そ して、 T dが T X以上の場合には、 冷媒不足の状態であることを示して おり、 ステップ 4 1に移り、 第 2の減圧器 1 5の開度は大きくするよう に制御する。 このことにより、 第 1の熱交換器 1 3内の中間圧力を低下 させて、 第 1の熱交換器 1 3内の冷媒ホールド量を低下させることによ り、 冷媒不足状態を解消することができる。 第 2の減圧器 1 5を制御し たのちステップ 4 0に戻る。
また、 T dが T Xよりも小さい場合には、 冷媒過多の状態であること を示しており、 ステップ 4 2に移り、 第 2の減圧器 1 5の開度を小さく するように制御する。 このことにより、 第 1の熱交換器 1 3内の中間圧 力を増加させて、 第 1の熱交換器 1 3内の冷媒ホールド量を増加させる ことにより、 冷媒過多状態を解消することができる。 そして第 2の減圧 器 1 5を制御したのちステップ 4 0に戻る。 なお、 ステップ 4 0で比較 する対象は、 吐出温度ではなく吸入温度や吐出圧力あるいは吸入過熱度 でも構わない。
このように、 雰囲気温度や圧縮機回転数の変化など冷凍サイクルが大 きく変化する場合においても、 第 2の減圧器 1 5を制御することで冷房 時と暖房除湿時との冷媒量のアンバランスを緩和することができる'ので 、 レシーバを小型化、 あるいは用いることなく汎用性のある高効率な冷 凍サイクル装置の運転を行うことができる。
(実施の形態 3 )
図 2は、 本発明の実施の形態 3における冷凍サイクル装置を示す構成 図であり、 以下、 実施の形態 1と異なる点について説明する。 この冷凍 サイクル装置は、 圧縮機 1 0の出口と第 1の熱交換器 1 3入口とを第 1 の開閉弁 2 1を介して接続する第 1のバイパス回路 2 2を設けている。 まず、 図 2の冷凍サイクル装置の冷房時での動作について説明する。 冷房時には第 1の減圧器 1 2は全閉に、 第 1の開閉弁 2 1は全開にして 、 第 2の減圧器 1 5で減圧器としての作用を行う。 したがって、 第 1の 開閉弁 2 1を開いて第 1のバイパス回路 2 2に冷媒を流すことにより、 冷媒水熱交換器 1 1での冷媒の圧力損失を生じさせないようにすること ができる。
次に、 暖房除湿時での動作について説明する。 暖房除湿時には、 第 1 の開閉弁 2 1は全閉に、 第 1の減圧器 1 2と第 2の減圧器 1 5で減圧器 としての作用を行う。 すなわち暖房除湿時においては、 実施の形態 1と 同様の作用がなされる。
このように、 第 1のバイパス回路 2 2を設けることにより、 冷房時で の圧力損失の低減を図ることができるので、 冷暖房ともに高効率な冷凍 サイクル装置の運転を行うことができる。
(実施の形態 4 )
図 3は、 本発明の実施の形態 4における冷凍サイクル装置を示す構成 図であり、 以下、 実施の形態 3と異なる点について説明する。 この冷凍 サイクル装置は、 第 1の熱交換器 1 3の冷媒温度を検出する第 1の熱交 換器温度検出手段 3 6を設けている。
まず、 図 3の冷凍サイクル装置の冷房時での動作について説明する。 冷房時には第 1の減圧器 1 2は全閉に、 第 1の開閉弁 2 1は全開にして 、 第 2の減圧器 1 5で減圧器としての作用を行う。 したがって、 冷房時 においては、 実施の形態 3と同様の作用がなされる。
次に.、 暖房除湿時での動作について説明する。 暖房除湿時には、 第 1 の開閉弁 2 1は全閉にして、 第 1の減圧器 1 2と第 2の減圧器 1 5で減 圧器としての作用を行う。
ここで、 外気温度が低い場合や、 第 1の熱交換器 1 3の放熱ファンが 作動していない場合には、 低圧が低下して第 1の熱交換器 1 3に着霜が 生じ、 冷凍サイクル装置の成績係数 (C O P ) が低下するという課題が ある。 そこで、 このような場合にも対応した図 3の冷凍サイクル装置に おける第 1の減圧器 1 2または第 1の開閉弁 2 1の動作を説明する。 暖房除湿時は、 第 1の熱交換器 1 3の温度 T evaと、 設定温度 T y (例 えば 0 °C) を比較して、 T evaが T y以下の場合は、 第 1の熱交換器 1 3 に着霜が発生して C O Pが低下する危険性がある状態であり、 第 1の減 圧器 1 2の開度を全開にするように制御する。 このことにより、 第 1の 熱交換器 1 3が放熱器として作用するので、 着霜を回避することが可能 となる。 そして、 T evaが T yよりも大きい場合は第 1の減圧器 1 2は再 ぴ減圧器として作用させる。 したがって、 逆サイクルにして室内の吹出 し温度を低下させて快適性を損なうような運転をすることなく、 除霜運 転を行うことができる。
また、 第 1の熱交換器 1 3の温度 T evaと、 設定温度 T y (例えば 0 °C ) を比較して、 T evaが T y以下の場合に、 第 1の開閉弁 2 1を全開にす るように制御すると、 放熱器として作用している冷媒水熱交換器 1 1を パイパスすることになるため、 第 1の熱交換器 1 3での放熱量をより高 くすることができるので、 より短い時間で除霜運転を終了させることが できる。 そして、 T evaが T yよりも大きい場合は第 1の開閉弁 2 1は再 ぴ全閉になるように制御する。
このように、 第 1の減圧器 1 2または第 1の開閉弁 2 1を制御するこ とにより、 暖房除湿時の着霜回避を図ることができるので、 快適性の高 いより高効率な冷凍サイクル装置の運転を行うこどができる。
(実施の形態 5 )
図 4は、 本発明の実施の形態 5における冷凍サイクル装置を示す構成 図であり、 以下、 実施の形態 1と異なる点について説明する。 この冷凍 サイクル装置は、 第 2の熱交換器 1 6の入口と出口とを第 2の開閉弁 2 3を介して接続する第 2のバイパス回路 2 4を設けている。
まず、 図 4の冷凍サイクル装置の冷房時での動作について説明する。 冷房時には、 第 1の減圧器 1 2は全開、 第 2の開閉弁 2 3は全閉にして 、 第 2の減圧器 1 5で減圧器としての作用を行う。 すなわち冷房時にお いては、 実施の形態 1と同様の作用がなされる。
次に、 暖房除湿時での動作について説明する。 暖房除湿時には、 第 2 の開閉弁 2 3は全開に、 第 1の減圧器 1 2と第 2の減圧器 1 5で減圧器 としての作用を行う。 このことにより、 室内熱交換器である第 2の熱交 換器 1 6での吸熱量が小さくなるので、 室内暖房能力を早急に高くする ことができる。
このとき、 第 2のバイパス回路 2 4には乾き度の小さい冷媒が流れる ことになるが、 内部熱交換器 1 4で第 1の熱交換器 1 3の出口から流出 した冷媒と熱交換して加熱されるため、 圧縮機 1 0に液冷媒が吸入され る可能性は低い。
そして、 圧縮機 1 0の運転開始から一定値以上 (例えば 7 0 °C) の吐 出温度になった場合は、 第 2の熱交換器 1 6の除湿能力を一定値以上に 確保するために第 2の開閉弁 2 3を全閉にするように制御する。 また、 第 2の開閉弁 2 3を全閉にするタイミングは、 圧縮機 1 0の蓮転開始か ら経過した時間 (例えば.1 O m i n ) でも構わない。
以上のように、 第 2のバイパス回路 2 4を設けることにより、 暖房除 湿時において、 圧縮機運転開始直後の暖房能力の立ち上がり性能を向上 させることができるので、 即暖性に優れた冷凍サイクル装置の運転を行 うことができる。
(実施の形態 6 )
図 5は、 本発明の実施の形態 6における冷凍サイクル装置を示す構成 図であり、 以下、 実施の形態 1と異なる点について説明する。 この冷凍 サイクル装置は、 第 1の熱交換器 1 3の入口と出口とを第 3の開閉弁 2 5を介して接続する第 3のバイパス回路 2 6を設けている。
まず、 図 5の冷凍サイクル装置の冷房時での動作について説明する。 冷房時には第 1の減圧器 1 2は全開に、 第 3の開閉弁 2 5は全閉にして 、 第 2の減圧器 1 5で減圧器としての作用を行う。 したがって、 冷房時 は実施の形態 1と同様の動作となり、 同様の効果が得られる。
次に、 暖房除湿時での動作について説明する。 暖房除湿時には、 第 3 の開閉弁 2 5は全開にして、 第 1の減圧器 1 2と第 2の減圧器 1 5で減 圧器としての作用を行う。
すなわち暖房除湿時では、 圧縮機 1 0で圧縮されて高温高圧のガスと なった冷媒は、 冷媒水熱交換器 1 1でポンプ 1 8により循環する水回路 の冷却水と熱交換して冷却される。 そして、 冷媒水熱交換器 1 1で冷却 された冷媒は、 第 1の減圧器 1 2により中間圧力まで減圧されて第 1の 熱交換器 1 3と第 3のパイパス回路 2 6に分岐して流れる。 ここで、 第 3のバイパス回路 2 6の流路抵抗を第 1の熱交換器 1 3よりも小さくす ることにより、 第 1の熱交換器 1 3にはほとんど冷媒が流れないように する。 第 1の熱交換器 1 3または第 3のバイパス回路 2 6を流れた冷媒 は、 内部熱交換器 1 4で圧縮機 1 0の吸入ラインの冷媒と熱交換したの ち、 第 2の減圧器 1 5にてさらに減圧される。 ここで冷媒は低温低圧の 気液二相状態となり、 第 2の熱交換器 1 6に導入され、 室内の空気から の吸熱により蒸発して、 内部熱交換器 1 4で第 1の熱交換器 1 3から流 れる冷媒と熱交換してさらに吸熱したのち再び圧縮機 1 0で圧縮される。
よって、 図 9のモリエル線図に示すように、 第 3のパイパス回路 2 6 を設けた場合は a→b→c→d→g→hで示す冷凍サイクルとなり中間 圧力域でほとんど冷媒が熱交換をしないが、 第 3のパイパス回路 2 6が ない場合は a→b→ →e→ f →hのように第 1の熱交換器 1 3が放熱 作用を行うため、 第 2の熱交換器 1 6の入口冷媒の比ェンタルピ値が Δ Hほど小さくなる。 すなわち室内側熱交換器である第 2の熱交換器 1 6 の吸熱量が増加するということになり、 室内の吹出し温度の低下を招い てしまう。
したがって、 第 3のパイパス回路 2 6を設けることによって室内の吹 出し温度の低下を防止することができるので、 より高い暖房能力で冷凍 サイクル装置の運転を行うことができる。
(実施の形態 7 ) ' 図 6は、 本発明の実施の形態 7における冷凍サイクル装置を示す構成 図であり、 以下、 実施の形態 6と異なる点について説明する。 この冷凍 サイクル装置は、 第 1の熱交換器 1 3の入口に第 4の開閉弁 2 7を設け ている。
まず、 図 6の冷凍サイクル装置の冷房時での動作について説明する。 冷房時には第 1の減圧器 1 2は全開に、 第 3の開閉弁 2 5は全閉に、 第 4の開閉弁 2 7は全開にして、 第 2の減圧器 1 5で減圧器としての作用 を行う。 したがって、 冷房時は実施の形態 6と同様の動作となり、 同様 の効果が得られる。
次に、 暖房除湿時での動作について説明する。 暖房除湿時には、 第 3 の開閉弁 2 5は全開に、 第 4の開閉弁 2 7は全閉にして、 第 1の減圧器 1 2と第 2の減圧器 1 5で減圧器としての作用を行う。
すなわち運転が開始されると、 圧縮機 1 0で圧縮されて高温高圧のガ スとなった冷媒は、 冷媒水熱交換器 1 1でポンプ 1 8により循環する水 回路の冷却水と熱交換して冷却される。 そして、 冷媒水熱交換器 1 1で 冷却された冷媒は、 第 1の減圧器 1 2により中間圧力まで減圧されて第 3のパイパス回路 2 6のみを流れる。
したがって、 第 4の閉止弁 2 7を全閉にして第 1の熱交換器 1 3に冷 媒が流れないようにすることで、 室外気温の変化や車速の変化に伴う風 速の変化などによって第 1の熱交換器 1 3内の冷媒ホールド量ゃ放熱量 が変化して制御性が困難となるのを防止することができる。
(実施の形態 8 )
図 7は、 本発明の実施の形態 8における冷凍サイクル装置を示す構成 図であり、 以下、 実施の形態 1と異なる点について説明する。 この冷凍 サイクル装置は、 第 5の開閉弁 2 8、 第 4のパイパス回路 2 9、 第 1の 3方弁 3 0、 第 2の 3方弁 3 1、 第 5のバイパス回路 3 2、 第 6の開閉 弁 3 3、 第 6のパイパス回路 3 4を設けている。 本発明は暖房除湿蓮転 にお る圧縮機起動時と定常運転時とで冷媒循環モードを切り替えるこ とを特徴とする。 まず、 図 7の冷凍サイクル装置の冷房時での動作について説明する。 冷房時には、 第 1の減圧器 1 2は全開に、 第 5の開閉弁 2 8は全開に、 第 6の開閉弁 3 3は全閉に.、 第 1の 3方弁 3 0は A方向に、 第 2の 3方 弁 3 1は A方向に制御して、 第 2の減圧器 1 5で減圧器としての作用を 行う。 すなわち冷房時においては、 実施の形態 1と同様の作用がなされ る。
次に、 暖房除湿運転の圧縮機起動時と定常運転時の動作についてそれ ぞれ説明する。
暖房除湿運転の圧縮機起動時は、 暖房能力を早急に向上させる必要が あるため、 第 2の減圧器 1 5は全開に、 第 5の開閉弁 2 8は全閉に、 第 6の開閉弁 3 3は全開に、 第 1の 3方弁 3 0は B方向に、 第.2の 3方弁 3 1は B方向に制御して、 第 1の減圧器 1 2のみで減圧器としての作用 を行う。
すなわち暖房除湿運転の圧縮機起動時は、 圧縮機 1 0で圧縮されて高 温高圧のガスとなった冷媒は、 冷媒水熱交換器 1 1でポンプ 1 8により 循環する水回路の冷却水と熱交換して冷却される。 加熱された冷却水は ヒータコア 1 9に流入して圧縮機 1 0の起動時の室内暖房能力をより高 くすることができる。 そして、 冷媒水熱交換器 1 1で冷却された冷媒は 、 第 4のバイパス回路 2 9を流れて内部熱交換器 1 4で圧縮機 1 0の吸 入ラインの冷媒と熱交換したのち、 第 5のバイパス回路 3 2を流れて、 第 1の減圧器 1 2で減圧されて低温低圧の気液二相状態となり、 第 1の 熱交換器 1 3に導入される。 こ'の第 1の熱交換器 1 3では、 室外の空気か らの吸熱により蒸発して気液二相またはガスとなり、 第 6のバイパス回 路 3 4を流れて、 第 2の減圧器 1 5を経て第 2の熱交換器 1 6に導入さ れる。 この第 2の熱交換器 1 6では、 室内の空気からの吸熱により蒸発 して気液二相またはガスとなり、 内部熱交換器 1 4で第 1の熱交換器 1 3から流れる冷媒と熱交換してさらに吸熱したのち再び圧縮機 1 0で圧 縮される。
すなわち、 放熱器としての作用は冷媒水熱交換器 1 1で行い、 第 1の 熱交換器 1 3および第 2の熱交換器 1 6で吸熱させることにより、 より 大きな吸熱量を確保することができるので、 暖房能力の向上を図ること ができる。
ここで実施の形態 1で述ぺたように、 第 1の減圧器 1 2のみを作用さ せると暖房除湿時の冷媒量は過多の状態になるが、 冷媒水熱交換器 1 1 の出口から第 1の減圧器 1 2の間に内部熱交換器 1 4と、 第 4のバイパ ス回路 2 9および第 5のパイパス回路 3 2を設けることにより、 高圧側 の容積が増加することになる。 したがって、 暖房除湿時に高圧側にホー ルドされる冷媒量が大きくなるため、 冷房時と暖房除湿時との冷媒量の アンバランスを緩和することができる。 また、 圧縮機 1 0の吸入ライン は冷媒水熱交換器 1 1の出口の高温冷媒と熱交換することになるので、 冷媒量過多による圧縮機 1 0の吸入温度の低下すなわち吐出温度の低下 を防ぐことができる。
したがって、 冷媒水熱交換器 1 1の出口から第 1の減圧器 1 2の間に 内部熱交換器 1 4と、 第 4のバイパス回路 2 9および第 5のバイパス回 路 3 2を設けることにより、 第 1の減圧器 1 2のみを減圧器として作用 させた場合においても、 冷房時と暖房除湿時の冷媒量のアンバランスを 緩和して圧縮機 1 0の起動時での暖房能力確保を行うことができる。 次に、 冷凍サイクル装置の暖房除湿時での定常運転時における動作に ついて説明する。
暖房除湿時の定常運転時は、 第 5の開閉弁 2 8は全開に、 第 6の開閉 弁 3 3は全閉に、 第 1の 3方弁 3 0は A方向に、 第 2の 3方弁 3 1は A 方向に制御して、 第 1の減圧器 1 2と第 2の減圧器 1 5で減圧器として の作用を行う。
すなわち暖房除湿時の定常運転時は、 圧縮機 1 0で圧縮されて高温高 圧のガスとなった冷媒は、 冷媒水熱交換器 1 1でポンプ 1 8により循環 する水回路の冷却水と熱交換して冷却されたのち、 第 1の減圧器 1 2に より中間圧力まで減圧されて第 1の熱交換器 1 3に導入される。 第 1の 熱交換器 1 3で外気によって冷却された冷媒は、 内部熱交換器 1 4で圧 縮機 1 0の吸入ラインの冷媒と熱交換してさらに冷却されたのち、 第 2 の減圧器 1 5で減圧されて低温低圧の気液二相状態となって第 2の熱交 換器 1 6に導入される。 この第 2の熱交換器 1 6では、 室内の空気から の吸熱により蒸発して気液二相またはガス状態となり、 内部熱交換器 1 4で第 1の熱交換器 1 3から流れる冷媒と熱交換してさらに吸熱したの ち再び圧縮機 1 0で圧縮される。 このように暖房除湿時の定常 ¾転時に おいては、 実施の形態 1と同様の作用がなされる。
以上のように、 実施の形態 8において、 第 4のパイパス回路 2 9およ ぴ第 5のバイパス回路 3 2を設けることによって、 暖房除湿時の起動時 およぴ定常運転時において、 冷媒量のァンバランスを緩和することがで きるので、 レシーバを小型化、 あるいは設けることなく冷房時および暧 房除湿時それぞれにお'いて高効率な冷凍サイクル装置の運転を行うこと ができる。
以上述べたところから明らかなように、 本実施の形態は、 二酸化炭素 を冷媒として用いた冷凍サイクル装置において、 第 1の減圧器 1 2と第 2の減圧器 1 5を作用させて、 第 1の熱交換器 1 3内の冷媒ホールド量 を変動させて中間圧力にすることにより、 冷房時と暖房除湿時との冷媒 量のアンバランスを緩和させることができ、 レシーバを小型化、 あるい は用いることなく高効率な冷凍サイクル装置の運転を行うことができる さらに、 雰囲気温度や圧縮機回転数の変化など冷凍サイクルが大きく 変化する場合においても、 第 2の減圧器 1 5を制御することで冷房時と 暖房除湿時との冷媒量のアンバランスを緩和することができるので、 レ シーパを小型化、 あるいは用いることなく汎用性のある高効率な冷凍サ ィクル装置の運転を行うことができる。
さらに、 第 1のバイパス回路 2 2を設けることにより、 冷房時の冷媒 水熱交換器 1 1の圧力損失の低減を図ることができるので、 より高効率 な冷凍サイクル装置の運転を行うことができる。
さらに、 第 1の熱交換器温度検出手段 3 6により検出された値を用い て、 第 1の減圧器 1 2または第 1の開閉弁 2 1を制御することにより、 暖房除湿時の着霜回避を図ることができるので、 快適性の高いより高効 率な冷凍サイクル装置の運転を行うこどができる。
さらに、 第 2のバイパス回路 2 4を設けることにより、 暖房除湿時に おいて、 圧縮機 1 0の運転開始直後の室内暖房能力の立ち上がり性能を 向上させることができるので、 即暖性に優れた冷凍サイクル装置の運転 を行うことができる。
さらに、 第 3のパイパス回路 2 6を設けることによって室内の吹出し 温度の低下を防止することができるので、 より高い暖房能力で冷凍サイ クル装置の運転を行うことができる。
さらに、 第 4の閉止弁 2 7を全閉にして第 1の熱交換器 1 3に冷媒が 流れないようにすることで、 室外気温の変化などによって第 1の熱交換 器 1 3内の冷媒ホールド量ゃ放熱量が変化して制御性が困難となるのを 防止することができる。
さらに、 第 4のパイパス回路 2 9および第 5のパイパス回路 3 2を設 けることによって、 暖房除湿時の起動時おょぴ定常運転時において、 冷 媒量のアンバランスを緩和することができるので、 レシーバを小型化、 あるいは設けることなく冷房時および暖房除湿時それぞれにおいて高効 率な冷凍サイクル装置の運転を行うことができる。
(実施の形態 9 )
図 1 0は、 本発明の実施の形態 9における冷凍サイクル装置を示す構 成図であり、 この冷凍サイクルは、 C O 2冷媒を作動流体とし、 圧縮機 1 1 0、 冷媒水熱交換器 1 1 1、 第 1の減圧器 1 1 2、 第 1の熱交換器 1 1 3、 内部熱交換器 1 1 4、 第 2の減圧器 1 1 5、 第 2の熱交換器 1 1 6を基本構成要素としている。 第 1の熱交換器 1 1 3の出口ラインと、 第 2の熱交換器 1 1 6の出口である圧縮機 1 1 0の吸入ラインは、 内部 熱交換器 1 1 4により熱交換されるように構成されている。 一方、 温水 サイクルは、 .冷媒水熱交換器 1 1 1で加熱された温水を循環させるボン プ 1 1 8、 ヒータコア 1 1 9、 ラジェータ 1 2 0、 動力機関 1 1 7で構 成されている。
なお、 本実施の形態の冷凍サイクル装置は本発明の除湿装置の例であ る。
ここで、 図 1 0の冷凍サイクル装置の冷房時での動作について説明す る。
まず、 冷房時には、 第 1の減圧器 1 1 2は全開にして、 第 2の減圧器 1 1 5で減圧器としての作用を行う。 すなわち、 圧縮機 1 1 0で圧縮さ れて高温高圧のガスとなった冷媒は、 冷媒水熱交換器 1 1 1から第 1の 減圧器 1 1 2を経て第 1の熱交換器 1 1 3で外気によって冷却される。 ただし、 このときヒータコア 1 1 9で暖房を行わないため、 冷媒水熱交 換器 1 1 1には温水は流れない。 そして、 内部熱交換器 1 1 4で圧縮機 1 1 0の吸入ラインの冷媒と熱交換してさらに冷却されたのち、 第 2の 減圧器 1 1 5で減圧されて低温低圧の気液二相状態となって第 2の熱交 換器 1 1 6に導入される。 この第 2の熱交換器 1 1 6では、 室内の空気 からの吸熱により蒸発して気液二相またはガス状態となり、 内部熱交換 器 1 1 4で第 1の熱交換器 1 1 3から流れる冷媒と熱交換してさらに吸 熱しこのち再び圧縮機 1 1 0で圧縮される。 空気は、 第 2の熱交換器 1 1 6で冷却される。
次に、 暖房除湿時での動作について説明する。
暖房除湿時では、 第 1の減圧器 1 1 2と第 2の減圧器 1 1 5で減圧器 としての作用を行う。
すなわち、 圧縮機 1 1 0で圧縮されて高温高圧のガスとなった冷媒は 、 冷媒水熱交換器 1 1 1でポンプ 1 1 8により循環する温水サイクルの 温水と熱交換して冷却されたのち、 第 1の減圧器 1 1 2により中間圧力 まで減圧されて第 1の熱交換器 1 1 3に導入される。
第 1の熱交換器 1 1 3で外気によって冷却された冷媒は、 内部熱交換 器 1 1 4で圧縮機 1 1 0の吸入ラインの冷媒と熱交換してさらに冷却さ れたのち、 第 2の減圧器 1 1 5で減圧されて低温低圧の気液二相状態と なって第 2の熱交換器 1 1 6に導入される。 この第 2の熱交換器 1 1 6 では、 室内の空気からの吸熱により蒸発して気液二相またはガス状態と なり、 内部熱交換器 1 1 4で第 1の熱交換器 1 1 3から流れる冷媒と熱 交換してさらに吸熱したのち再び圧縮機 1 1 0で圧縮される。
また、 冷媒水熱交換器 1 1 1で加熱された温水は室内に設けられたヒ ータコア 1 1 9に流入して第 2の熱交換器 1 1 6で冷却除湿された空気 を加熱することにより、 除湿しながら暖房することができる。 そして温 水は動力機関 1 1 7 (例えばエンジンやバッテリーなどの発熱源) で加 熱されて再び冷媒水熱交換器 1 1 1'を流れる。
図 2 1は、 3つの異なる蒸発温度をパラメータとして、 C O Pを最大 にする最適髙サイド圧力と、 放熱器の出口の冷媒温度との'間の論理的な 関係を示すグラフである。 ここで、 暖房除湿時の冷媒水熱交換器 1 1 1 の加熱能力を 1 . 5 k W、 冷媒水熱交換器 1 1 1の入口冷媒温度を 1 2 0 °C, 冷媒流量を 6 0 k g Z h、 蒸発温度を o °cと伖定すると、 冷媒水 熱交換器 1 1 1の出口冷媒温度は 6 0 °C付近になることが考えられ、 そ のときに最小エネルギとなる高サイド圧力の値は、 従来例の設定値に従 うと図 2 1で示すように約 1 5 0 b a rと算出される。 このように従来 例では、 冷房運転時よりも暖房除湿時の方が高サイド圧力の値も高くな る。
しかしながらこのような高い圧力で冷凍サイクル装置を運転する場合 、 圧縮比が大きくなるため圧縮機 1 1 0の効率の大幅な低下が生じ、 実 際の消費エネルギは最小とはならないことが推察できる。
本発明の実施の形態 9では、 第 1の減圧器 1 1 2により、 第 1の熱交 換器 1 1 3の冷媒を中間圧力とすることによって、 このような高い圧力 で冷凍サイクル装置を運転しなくてもよいようにした。
そこで、 本発明の実施の形態 9について、 図 1 0に示す冷凍サイクル 装置における暖房除湿運転時での第 2の減圧器 1 1 5の動作を図 1 5の フローチヤ一トを用いて説明する。 第 2の減圧器 1 1 5は流量調整が可 能な弁である。
暖房除湿時では、 ステップ 1 4 1で第 2の熱交換器冷媒温度検出手段 1 3 0にて検出された冷媒温度 T evaと、 ねらいの設定温度 T x eva (例 えば露点温度: 0 °C) が比較される。 そして、 T evaが T x eva以上の場 合には、 室内側熱交換器である第 2の熱交換器 1 1 6では除湿していな い状態であることを示しており、 ステップ 1 4 2に移り、 第 2の減圧器 1 1 5の開度は小さくするように制御する。
このとき、 第 1の減圧器 1 1 2の開度は制御する必要はないが、 開度 を大きくするように制御してもよい。 このことにより、 第 1の熱交換器 1 1 3内の中間圧力を増加させて、 第 1の熱交換器 1 1 3内の冷媒温度 を増加させることにより、 内部熱交換器 1 1 4で熱交換する低圧側と高 圧側との温度差が大きくなるので、 内部熱交換量は増加する。 第 2の減 圧器 1 1 5を制御したのちステップ 1 4 0に戻る。
よって、 図 1 4のモリエル線図に示すように、 第 2の減圧器 1 1 5を 動作する前は a→b→c→d→ e→ f で示す冷凍サイクルであるが、 第 2の減圧器 1 1 5の開度を小さくした場合は k→b→g→h→ i→ j の ように内部熱交換器 1 1 4での熱交換量が大きくなるため、 第 2の熱交 換器 1 1 6の入口冷媒の比ェンタルピ値が Δ Ηほど小さくなる。
した^って、 第 2の熱交換器 1 1 6のェンタルピ差が大きくなるので 吸熱能力が増加し、 第 2の熱交換器 1 1 6の蒸発温度は低下するように 冷凍サイクルがバランスするので、 除湿することが可能となる。
したがって、 高圧を増加させることがないので、 圧縮機の効率を大 Φ ';虽 に低下させることなく第 2の熱交換器 1 1 6の吸熱能力を増加させるこ とができる。 '
また、 T evaが T x evaよりも小さい場合には、 室内側熱交換器である 第 2の熱交換器 1 1 6で除湿している状態であることを示しており、 ス テツプ 4 3に移り、 第 2の減圧器 1 1 5の開度を大きくするように制御 する。
このとき、 第 1の減圧器 1 1 2の'開度は制御する必要はないが、 開度 を小さくする うに制御してもよい。 このことにより、 第 1の熱交換器 1 1 3内の中間圧力を低下させて、 第 1の熱交換器 1 1 3内の冷媒温度 を低下させることにより、 内部熱交換器 1 1 4で熱交換する低圧側と高 圧側との温度差が小さくなるので、 内部熱交換量は低下し、 過度に吹出 し温度が低下するのを防止する。 そして第 2の減圧器 1 1 5を制御した のちステップ 1 4 1に戻る。
このように暖房除湿時には、 第 1の減圧器 1 1 2または第 2の減圧器 1 1 5を作用させて第 1の熱交換器 1 1 3内を中間圧力にして、 第 1の 熱交換器 1 1 3の冷媒温度を調整することにより、 内部熱交換器 1 1 4 の熱交換量を調整することができるので、 従来例で算出している最小ェ ネルギとなる高サイド圧力に設定することなく、 従来例の動作よりも小 さい消費エネルギで、 冷房時と暖房除湿時との最適冷媒量のアンバラン スを解消しつつ、 信頼性を確保して高効率な冷凍サイクル装置の運転を 行うことが可能となる。
(実施の形態 1 0 )
本発明の実施の形態 1 0について、 図 1 1に示す冷凍サイクル装置に おける暖房除湿時での第 1の減圧器 1 1 2および第 2の減圧器 1 1 5の 動作を図 1 6のフローチャートを用いて説明する。 以下、 実施の形態 9 と異なる点について説明する。 第 1の減圧器: t 1 2は流量調整が可能な 弁である。
暖房除湿時と冷房時とでは、 冷凍サイクル装置の高圧側の冷媒ホール ド量が異なるため、 最適冷媒量にアンバランスが生じる。 したがって、 第 1の熱交換器 1 1 3内の冷媒ホールド量を中間圧力を変動させて調整 することにより、 冷房時と暖房除湿時との冷媒量のァンバランスを解消 させることが可能となる。
暖房除湿時では、 ステップ 1 4 4で第 1の熱交換器冷媒温度検出手段 1 3 1にて検出された冷媒温度 T mと、 ねらいの設定温度 T x m (例えば 2 0 °C) が比較される。 この T x mの値は、 暖房除湿時に最も効率が良 くなる最適冷媒量になるように設定された値である。 そして、 T mが T x m以上の場合には、 第 1の熱交換器 1 1 3の中間圧力が設定値よりも 高く、 循環冷媒量が最適値よりも低い状態であることを示しているため 、 ステップ 1 4 5に移り、 第 1の減圧器 1 1 2の開度は小さくするよう に制御する。 このことにより、 第 1の熱交換器 1 1 3内の中間圧力を低 下させて、 第 1の熱交換器 1 1 3内の冷媒ホールド量を低下させること により、 暖房除湿時に最適な冷媒量で冷凍サイクル装置を運転すること ができる。
また、 T mが T x mよりも小さい場合には、 第 1の熱交換器 1 1 3の 中間圧力が設定値よりも低く、 循環冷媒量が最適値よりも高い状態であ ることを示しているため、 ステップ 1 4 6に移り、 第 1の減圧器 1 1 2 の開度は大きくするように制御する。 このことにより、 第' 1の熱交換器 1 1 3内の中間圧力を増加させて、 第 1の熱交換器 1 1 3内の冷媒ホー ルド量を增加させることにより、 暖房除湿時に最適な冷媒量で冷凍サイ クル装置を運転することができる。
以上のステップ 1 4 5とステップ 1 4 6の後、 ステップ 1 4 7に移り 、 第 2の熱交換器冷媒温度検出手段 1 3 0にて検出された冷媒温度 T ev aと、 ねらいの設定温度 T x eva (例えば露点温度: 0 °C) が比較される c 以下の動作は上述した実施の形態 9と同様である。
以上のように、 第 1の減圧器 1 1 2および第 2の減圧器 1 1 6を作用 させて第 1の熱交換器 1 1 3内の中間圧力を変動させることによって、 第 1の熱交換器 1 1 3内の冷媒ホールド量を調整することが可能となる ので、 暖房除湿時に冷媒調整用のレシーバを設けることなく、 最適な冷 媒量で冷凍サイクル装置を運転することができる。
また、 実施の形態 9のように第 2の減圧器 1 1 5の開度を主導的に調 整すると、 圧縮機の吸入冷媒乾き度が大きく変動して冷凍サイクル装置 の能力制御が困難となるが、 上述した うに第 1の減圧器 1 1 2および 第 2の減圧器 1 1 5の開度を調整することにより、 このような不具合は 緩和され、 より安定した冷凍サイクル装置の運転を行うことができる。
(実施の形態 1 1 )
本発明の実施の形態 1 1について、 図 1 2に示す冷凍サイクル装置に おける暖房除湿時での第 1の減圧器 1 1 2およぴ第 2の減圧器 1 1 5の 動作を図 1 8のフローチャートを用いて説明する。 以下、 実施の形態 9 と異なる点について説明する。 前記ヒータコア 1 1 9を介して吹出され る吹出し空気温度を検出する吹出し温度検出手段 1 34と、 前記圧縮機 1 10の運転周波数を制御する圧縮機運転周波数制御手段 1 32を設け ている。
暖房除湿時では、 ステップ 1 50で第 1の熱交換器冷媒温度検出手段 1 31にて検出された冷媒温度 Tmと、 ねらいの設定温度 T xm (例えば 20°C) が比較される。 以下の動作は上述した実施の形態 10と同様で あり、 ステップ 144〜 149は、 それぞれステツプ 1 50〜 1 55に 相当する。
そして、 ステップ 1 54またはステップ 1 55からステップ 156に 移り、 吹出し温度検出手段 134にて検出された吹出し温度 T f と、 ね らいの設定温度 Tx f (例えば 40°C) が比較される。 この Tx f の値 は、 暖房除湿時に要求される吹出し温度の値である。 そして、 丁 が丁 X f 以上の場合には、 吹出し温度 T f がねらいの設定温度 T X f よりも 高いので、 暖房能力が高いことを示しており、 ステップ 157に移り、 圧縮機 1 1 0の運転周波数を小さくするように制御したのち、 ステップ 1 50に戻る。
また、 T f が T X f よりも小さい場合には、 吹出し温度 T f がねらい の設定温度 T X f よりも低いので、 暖房能力が低いことを示しており、 ステップ 1 58に移り、 圧縮機 1 10の運転周波数を大きくするように 制御したのち、 ステップ 1 50に戻る。
以上のように、 圧縮機 1 10の運転周波数を変動させることによって 、 暖房能力を調整することが可能となるので、 快適性を損なわずに、 最 適な冷媒量で冷凍サイクル装置を運転することができる。
(実施の形態 12) 図 1 3は、 本発明の実施の形態 1 2における冷凍サイクル装置を示す 構成図であり、 以下、 実施の形態 9と異なる点について説明する。 この 冷凍サイクル装置は、 圧縮機 1 1 0の吐出冷媒温度を検出する吐出冷媒 温度検出手段 1 3 3と、 第 2の熱交換器 1 1 6の出口と圧縮機 1 1 0の 入口を開閉弁 1 3 5を介してパイパスするバイパス回路 1 3 6を設けて いる。 図 1 3に示す冷凍サイクル装置における暖房除湿運転時での開閉 弁 1 3 5の動作を図 1 7のフローチヤ一トを用いて説明する。
暖房除湿時では、 ステップ 1 6 0で吐出冷媒温度検出手段 1 3 3にて 検出された吐出冷媒温度 T dと、 ねらいの設定温度 T x (例えば 1 4 0 °C) が比較される。 このとき、 ねらいの設定温度は、 圧縮機 1 1 0の使 用範囲での上限温度に近い値となるようにする。 そして、 T dが T x以 上の場合には、 圧縮機 1 1 0の使用範囲の上限温度を超えている状態で あることを示しており、 ステップ 1 6 1に移り、 開放弁 1 3 5の開度を 開くように制御する。 このことにより、 第 2の熱交換器 1 1 6から流出 する冷媒がパイパス回路 1 3 6を流れるので、 内部熱交換器 1 1 4での 内部熱交換量が小さくなり、 圧縮機 1 1 0の吸入冷媒温度は低下し、 吐 出冷媒温度も低下する。 開放弁 1 3 5を制御したのちステップ 1 6 0に 戻る。
また、 T dが T x dよりも小さい場合には、 圧縮機 1 1 0の使用範囲 の上限温度よりも低い状態であることを示しており、 ステップ 1 6 2に 移り、 開放弁 1 3 5の開度を閉じるように制御して、 ステップ 1 6 0に 戻る。
このように、 開放弁 1 3 5を制御することにより、 圧縮機 1 1 0の吐 出温度の過昇を圧縮機の運転周波数を低下させずに防止することができ るので、 快適性の高い、 より高効率な冷凍サイクル装置の運転を行うこ とができる。 (実施の形態 1 3 )
本発明の実施の形態 1 3は、 冷凍サイクル装置が車両用空調装置であ ることを特徴としている。 ここで、 冷媒水熱交換器 1 1 1のみを放熱器 として作用させる場合 (例えば立上り運転時など) 、 室外側熱交換器す なわち第 1の熱交換器 1 1 3は蒸発器として作用するが、 車両用空調装 置の場合、 車両走行中には第 1の熱交換器 1 1 3は走行風を受けること になるため、 第 1の熱交換器 1 1 3を流れる冷媒温度が 0 °C以下になり 着霜が発生した場合、 逆サイクル運転にして放熱器として作用させても 、 冷媒温度が高くなりにくいために迅速かつ完全に除霜を行うことが非 常に困難である。
したがって、 実施の形態 9に示すように第 1の減圧器 1 1 2または第 2の減圧器 1 1 5を作用させて第 1の熱交換器 1 1 3内を中間圧力にし て、 第 1の熱交換器 1 1 3の冷媒温度を調整することにより、 第 1の熱 交換器 1 1 3への着霜の発生を未然に防止することができるので、 車両 用空調装置においても、 快適性の高い、 より高効率な冷凍サイクル装置 の運転を行うことができる。
以上述べたところから明らかなように、 本実施の形態によれば、 第 1 の減圧器 1 1 2または第 2の減圧器 1 1 5を作用させて第 1の熱交換器 1 1 3内を中間圧力にして、 第 1の熱交換器 1 1 3の冷媒温度を調整す ることにより、 内部熱交換器 1 1 4の熱交換量を調整することができる ので、 従来例で算出している最小エネルギとなる高サイド圧力に設定す ることなく、 従来例よりも小さい消費エネルギで、 信頼性を確保しつつ 高効率な冷凍サイクル装置の運転を行うことが可能となる。
さらに、 第 1の減圧器 1 1 2および第 2の減圧器 1 1 5を作用させて 第 1の熱交換器 1 1 3内の中間圧力を変動させることによって、 第 1の 熱交換器 1 1 3内の冷媒ホールド量を調整することが可能となるので、 暖房除湿時に冷媒調整用のレシーバを設けることなく、 最適な冷媒量で 冷凍サイクル装置を運転することができる。
さらに、 第 1の減圧器 1 1 2および第 2の減圧器 1 1 5を作用させ、 圧縮機 1 1 0の運転周波数を変動させることによって、 暖房能力を調整 することが可能となるので、 快適性を損なわずに、 最適な冷媒量で冷凍 サイクル装置を運転することができる。
さらに、 開放弁 1 3 5を制御することにより、 圧縮機 1 1 0の吐出温 度の過昇を圧縮機の運転周波数を低下させずに防止することができるの で、 快適性の高い、 より高効率な冷凍サイクル装置の運転を行うことが できる。
さらに、 第 1の減圧器 1 1 2または第 2の減圧器 1 1 5を作用させて 第 1の熱交換器 1 1 3内を中間圧力にして、 第 1の熱交換器 1 1 3の冷 媒温度を調整することにより、 第 1の熱交換器 1 1 3への着霜の発生を 未然に防止することができるので、 車両用空調装置においても、 快適性 の高い、 より高効率な冷凍サイクル装置の運転を行うことができる。 産業上の利用可能性
以上説明したところから明らかなように、 本発明は、 c o 2冷媒を使用 した冷凍サイクル装置において、 c o 2冷凍システムの特徴を生かし、 低 圧レシーバを小型化、 あるいは用いることなく、 信頼性を確保して効率 的な運転を可能とする冷凍サイクル装置、 及び冷凍サイクル装置の運転 方法を提供することが出来る。
また、 本発明は、 c o 2冷媒を使用した除湿装置において、 c o 2冷凍 システムの特徴を生かし、 高サイド圧力を高くすることなく、 中間圧力 を調整することにより冷房時と暖房除湿時の最適冷媒量のアンパランス を解消しつつ、 信頼性を確保して効率的な運転を可能とする除湿装置及 び除湿方法を提供することが出来る。

Claims

請 求 の 範 囲
1 . 圧縮機と、 冷媒水熱交換器と、 第 1の減圧器と、 第 1の熱交換 器と、 第 2の減圧器と、 第 2の熱交換器と、 内部熱交換器と、 温水サイ クルとを備え、
前記温水サイクルは、 前記冷媒水熱交換器の下流側に、 湯水を吸入す るヒータコアを有し、
前記圧縮機は、 二酸化炭素である冷媒を圧縮し、
前記冷媒水熱交換器は、 圧縮された前記冷媒と前記温水サイクルの湯 水との熱交換を行い、
前記第 1の減圧器は、 圧縮された前記冷媒を減圧しまたは減圧せず、 . 前記第 1の熱交換器は、 前記第 1の減圧器で減圧された前記冷媒を熱 父 し、
前記内部熱交換器は、 前記第 1の熱交換器で熱交換された前記冷媒と 前記圧縮機に吸引される冷媒とで熱交換を行い、
前記第 2の減圧器は、 前記内部熱交換器で熱交換された前記冷媒を減 圧し、
前記第 2の熱交換器は、 前記第 2の減圧器で減圧された前記冷媒を熱 交換し、 前記第 1の減圧器及びノまたは前記第 2の減圧器を作用させ ることにより前記第 1の熱交換器の冷媒圧力を変動させて前記第 1の熱 交換器の冷媒ホールド量を調整することによって、.冷房時と暖房除湿時 との冷媒量のアンパランスを緩和させる冷凍サイクル装置。
2 . 前記圧縮機の吐出温度を検出する圧縮機吐出温度検出手段また は前記圧縮機の吸入温度を検出する圧縮機吸入温度検出手段または前記 圧縮機の吐出圧力を検出する圧縮機吐出圧力検出手段を備え、
前記第 1の熱交換器の冷媒圧力を変動させて前記第 1の熱交換器の冷 媒ホールド量を調整するとは、 前記圧縮機吐出温度検出手段または前記 圧縮機吸入温度検出手段または前記圧縮機吐出.圧力検出手段によって検 出された値を用いて、 前記第 2の減圧器を制御することである請求項 1 記載の冷凍サイクル装置。
3 . 前記圧縮機の吐出側と前記第 1の熱交換器入口とを第 1の開閉 弁を介して接続する第 1のパイパス回路を備えた請求項 1記載の冷凍サ ィクル装置。
4 . 前記第 1の熱交換器の冷媒温度を検出する第 1の熱交換器温度 検出手段を備え、
前記第 1の熱交換器温度検出手段によって検出された値を用いて、 前 記第 1の減圧器または前記第 1の開閉弁を制御する請求項 3記載の冷凍
5 . 前記第 2の熱交換器の入口と出口とを第 2の開閉弁を介して接 続する第 2のバイパス回路を備えた請求項 1記載の冷凍サイクル装置。
6 . 前記第 1の熱交換器の入口と出口とを第 3の開閉弁を介して接 続する第 3のパイパス回路を備えた請求項 1記載の冷凍サイクル装置。
7 . 前記第 1の熱交換器の入口に第 4の開閉弁を備えた請求項 1記 載の冷凍サイクル装置。
8 . 前記冷媒水熱交換器出口と前記第 1の減圧器との間に第 5の開 閉弁と、
前記第 1の熱交換器出口と前記内部熱交換器入口の間に第 1の 3方弁 と、
前記冷媒水熱交換器出口と前記第 5の開閉弁入口との間を一端とし、 前記第 1の 3方弁を他端として接続する第 4のパイパス回路と、
前記内部熱交換器出口と前記第 2の減圧器入口の間に第 2の 3方弁と 前記第 2の 3方弁を一端とし、 前記第 5の開閉弁出口と前記第 1の減 圧器入口の間を他端として接続する第 5のバイパス回路と、
前記第 1の熱交換器出口と前記第 1の 3方弁との間を一端とし、 前記 第 2の 3方弁と第 2の減圧器との間を他端として第 6の開閉弁を介して 接続する第 6のバイパス回路と、
前記冷媒水熱交換器から流出した冷媒が、 前記第 5の開閉弁を介して 循環する定常モードと、 前記第 4のパイパス回路と前記第 5のバイパス 回路を循環する起動モードとを選択的に切替える冷媒循環モード切替手 段とを備えた請求項 1記載の冷凍サイクル装置。
PCT/JP2003/003782 2002-03-28 2003-03-27 Dispositif a cycle frigorifique WO2003083381A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AT03712980T ATE521860T1 (de) 2002-03-28 2003-03-27 Kühlkreislaufvorrichtung
KR10-2004-7009849A KR20040091615A (ko) 2002-03-28 2003-03-27 냉동사이클장치
US10/501,748 US7302807B2 (en) 2002-03-28 2003-03-27 Refrigerating cycle device
EP03712980A EP1489367B1 (en) 2002-03-28 2003-03-27 Refrigerating cycle device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002092139 2002-03-28
JP2002-92139 2002-03-28
JP2002-188661 2002-06-27
JP2002188661 2002-06-27

Publications (1)

Publication Number Publication Date
WO2003083381A1 true WO2003083381A1 (fr) 2003-10-09

Family

ID=28677563

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/003782 WO2003083381A1 (fr) 2002-03-28 2003-03-27 Dispositif a cycle frigorifique

Country Status (6)

Country Link
US (1) US7302807B2 (ja)
EP (1) EP1489367B1 (ja)
KR (1) KR20040091615A (ja)
CN (1) CN1610809A (ja)
AT (1) ATE521860T1 (ja)
WO (1) WO2003083381A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005080896A1 (en) * 2004-02-19 2005-09-01 Matsushita Electric Industrial Co., Ltd. Heat pump apparatus and operating method thereof
EP1610076A2 (en) * 2004-06-24 2005-12-28 Samsung Electronics Co., Ltd. Cooling cycle apparatus and method of operating the same
WO2016202195A1 (en) * 2015-06-15 2016-12-22 Byd Company Limited Air conditioning system for vehicle and vehicle having same
RU2612995C1 (ru) * 2013-03-14 2017-03-14 Мицубиси Электрик Корпорейшн Система кондиционирования воздуха, включающая в себя устройство для управления давлением и перепускной клапан
US9796247B2 (en) 2012-11-09 2017-10-24 Sanden Holdings Corporation Vehicle air conditioner with enlarged effective range of a dehumidifying and cooling mode

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7654104B2 (en) * 2005-05-27 2010-02-02 Purdue Research Foundation Heat pump system with multi-stage compression
EP1915580A4 (en) * 2005-07-28 2010-12-22 Carrier Corp CLOSED LOOP DEHUMIDIFICATION CIRCUIT FOR A REFRIGERATED SYSTEM
JP4600212B2 (ja) * 2005-08-23 2010-12-15 株式会社デンソー 超臨界冷凍サイクル装置
CN100458291C (zh) * 2006-06-09 2009-02-04 同方人工环境有限公司 一种冷热全效除湿通风空调系统
JP2008008523A (ja) * 2006-06-28 2008-01-17 Hitachi Appliances Inc 冷凍サイクル及び温水器
JP4505510B2 (ja) * 2007-02-20 2010-07-21 カルソニックカンセイ株式会社 車両用空調システム
DE102007021420A1 (de) * 2007-05-02 2008-11-06 Gerd Wurster Wärmetauscher, Verdampfungs-Kälteanlage und verfahrenstechnische Behandlungsanlage für Werkstücke
US8549868B2 (en) * 2007-06-22 2013-10-08 Panasonic Corporation Refrigeration cycle apparatus
JP2009190579A (ja) * 2008-02-14 2009-08-27 Calsonic Kansei Corp 空気調和システム
JP2009190687A (ja) * 2008-02-18 2009-08-27 Calsonic Kansei Corp 車両用空気調和システム
US9989280B2 (en) 2008-05-02 2018-06-05 Heatcraft Refrigeration Products Llc Cascade cooling system with intercycle cooling or additional vapor condensation cycle
JP2009270775A (ja) * 2008-05-08 2009-11-19 Sanden Corp 冷凍サイクル
JP5042262B2 (ja) * 2009-03-31 2012-10-03 三菱電機株式会社 空調給湯複合システム
FR2967759B1 (fr) 2010-11-22 2015-02-27 Valeo Systemes Thermiques Dispositif de conditionnement thermique d'un habitacle de vehicule
US9441851B2 (en) * 2010-12-09 2016-09-13 Mitsubishi Electric Corporation Air-conditioning apparatus
DE102011109506B4 (de) * 2011-08-05 2019-12-05 Audi Ag Kältemittelkreislauf
US9303925B2 (en) 2012-02-17 2016-04-05 Hussmann Corporation Microchannel suction line heat exchanger
JP5356565B2 (ja) * 2012-03-27 2013-12-04 パナソニック株式会社 車両用空調装置および圧縮装置
CN103542469B (zh) * 2012-07-12 2018-06-15 开利公司 温湿独立控制空调系统与方法
KR101416357B1 (ko) * 2012-09-07 2014-07-08 현대자동차 주식회사 차량용 히트펌프 시스템 및 그 제어방법
JP6103186B2 (ja) * 2012-11-20 2017-03-29 パナソニックIpマネジメント株式会社 車両用ヒートポンプ装置および車両用空調装置
US20140144160A1 (en) * 2012-11-25 2014-05-29 Kenneth J. Jackson Hv battery thermal control system and method
US9796246B2 (en) * 2012-12-06 2017-10-24 Panasonic Intellectual Property Management Co., Ltd. Vehicle heat pump device, and vehicle air-conditioning device
DE102013206171A1 (de) * 2013-04-09 2014-10-09 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Betreiben eines CO2-Kältemittelkreislaufs sowie CO2-Kältemittelkreislauf
WO2014195053A1 (de) * 2013-06-08 2014-12-11 Volkswagen Aktiengesellschaft Klimatisierungsvorrichtung für ein kraftfahrzeug und verfahren zu deren betrieb
JP6207958B2 (ja) * 2013-10-07 2017-10-04 サンデンホールディングス株式会社 車両用空気調和装置
CN104390293B (zh) * 2014-10-21 2016-10-05 北京建筑大学 一种雾霾空气处理装置
CN107107920B (zh) * 2015-01-13 2019-03-08 三菱电机株式会社 车用空调装置
EP3295095A1 (en) 2015-05-15 2018-03-21 Carrier Corporation Staged expansion system and method
CN105629957B (zh) * 2016-02-04 2018-08-03 西安理工大学 一种冷链运输车制冷机组故障分析云服务系统及控制方法
CN106705468A (zh) * 2016-12-28 2017-05-24 冯新华 水冷调温除湿热水机组
CN108626920A (zh) * 2017-03-15 2018-10-09 开利公司 制冷系统的压力卸载及回收回路、二氧化碳制冷系统及其控制方法
DE102018114762B4 (de) 2017-07-10 2023-12-28 Hanon Systems Verfahren zum Betreiben einer Klimaanlage eines Kraftfahrzeuges
FR3092161B1 (fr) * 2019-01-25 2021-02-19 Valeo Systemes Thermiques Circuit de climatisation de véhicule automobile et procédé de gestion associé
CN110103674A (zh) * 2019-05-10 2019-08-09 广东威灵汽车部件有限公司 空调系统及车辆
US20220196257A1 (en) * 2020-12-22 2022-06-23 Mir G&I Co., Ltd. IoT Based Smart Hybrid Dehumidifier System and Control Method
IT202100001262A1 (it) * 2021-01-25 2022-07-25 S I M Eng S R L Deumidificatore d’aria a ciclo frigorifero e procedimento di deumidificazione
CN113915894B (zh) * 2021-05-17 2023-04-07 海信冰箱有限公司 冰箱及其制冷方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0837291A2 (en) 1996-08-22 1998-04-22 Denso Corporation Vapor compression type refrigerating system
JP2001221458A (ja) * 2000-02-08 2001-08-17 Mitsubishi Electric Corp 除湿機
JP2002019443A (ja) * 2000-07-06 2002-01-23 Zexel Valeo Climate Control Corp ヒートポンプサイクル
JP2002081768A (ja) * 2000-06-21 2002-03-22 Matsushita Electric Ind Co Ltd ヒートポンプ給湯機
JP2002089883A (ja) * 2000-09-12 2002-03-27 Sanyo Electric Co Ltd 給湯ユニットを利用した冷房及び乾燥装置
JP2002274890A (ja) * 2001-03-22 2002-09-25 Nagase Chemtex Corp 鏡用ガラス板、それを用いた鏡および鏡用ガラス板の製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US152499A (en) * 1874-06-30 Improvement in operating stop-cocks
US152510A (en) * 1874-06-30 Improvement in shovel-plow and cultivator points
JPS59225255A (ja) 1983-06-01 1984-12-18 三菱電機株式会社 空気調和機
NO890076D0 (no) 1989-01-09 1989-01-09 Sinvent As Luftkondisjonering.
CA2119015C (en) 1991-09-16 2002-07-09 Gustav Lorentzen Method of high-side pressure regulation in transcritical vapor compression cycle device
JPH0718602A (ja) 1993-06-29 1995-01-20 Sekisui Chem Co Ltd 埋込栓
US6105386A (en) * 1997-11-06 2000-08-22 Denso Corporation Supercritical refrigerating apparatus
JP2000088360A (ja) 1998-09-10 2000-03-31 Shimadzu Corp 冷却システム
JP3227651B2 (ja) * 1998-11-18 2001-11-12 株式会社デンソー 給湯器
JP2000274890A (ja) 1999-03-18 2000-10-06 Nippon Soken Inc 超臨界サイクル
DE10029934A1 (de) * 2000-06-17 2002-01-03 Behr Gmbh & Co Klimaanlage mit Klimatisierungs- und Wärmepumpenmodus
JP4517529B2 (ja) * 2000-07-21 2010-08-04 株式会社日本自動車部品総合研究所 ヒートポンプサイクル、加熱装置、車両用暖房装置、暖房装置および蒸気圧縮式冷凍サイクル
US6585590B2 (en) * 2001-03-12 2003-07-01 Dotcom Entertainment Group, Inc. Method and system for operating a bingo game on the internet
NO20014258D0 (no) * 2001-09-03 2001-09-03 Sinvent As System for kjöle- og oppvarmingsformål
US6745589B2 (en) * 2001-11-22 2004-06-08 Sharp Kabushiki Kaisha Single-package air conditioner

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0837291A2 (en) 1996-08-22 1998-04-22 Denso Corporation Vapor compression type refrigerating system
JP2001221458A (ja) * 2000-02-08 2001-08-17 Mitsubishi Electric Corp 除湿機
JP2002081768A (ja) * 2000-06-21 2002-03-22 Matsushita Electric Ind Co Ltd ヒートポンプ給湯機
JP2002019443A (ja) * 2000-07-06 2002-01-23 Zexel Valeo Climate Control Corp ヒートポンプサイクル
JP2002089883A (ja) * 2000-09-12 2002-03-27 Sanyo Electric Co Ltd 給湯ユニットを利用した冷房及び乾燥装置
JP2002274890A (ja) * 2001-03-22 2002-09-25 Nagase Chemtex Corp 鏡用ガラス板、それを用いた鏡および鏡用ガラス板の製造方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005080896A1 (en) * 2004-02-19 2005-09-01 Matsushita Electric Industrial Co., Ltd. Heat pump apparatus and operating method thereof
CN100575842C (zh) * 2004-02-19 2009-12-30 松下电器产业株式会社 干燥装置及其操作方法
US7975502B2 (en) 2004-02-19 2011-07-12 Panasonic Corporation Heat pump apparatus and operating method thereof
EP1610076A2 (en) * 2004-06-24 2005-12-28 Samsung Electronics Co., Ltd. Cooling cycle apparatus and method of operating the same
EP1610076A3 (en) * 2004-06-24 2007-02-14 Samsung Electronics Co., Ltd. Cooling cycle apparatus and method of operating the same
US9796247B2 (en) 2012-11-09 2017-10-24 Sanden Holdings Corporation Vehicle air conditioner with enlarged effective range of a dehumidifying and cooling mode
RU2612995C1 (ru) * 2013-03-14 2017-03-14 Мицубиси Электрик Корпорейшн Система кондиционирования воздуха, включающая в себя устройство для управления давлением и перепускной клапан
WO2016202195A1 (en) * 2015-06-15 2016-12-22 Byd Company Limited Air conditioning system for vehicle and vehicle having same

Also Published As

Publication number Publication date
US20050061011A1 (en) 2005-03-24
CN1610809A (zh) 2005-04-27
EP1489367A4 (en) 2009-11-11
US7302807B2 (en) 2007-12-04
KR20040091615A (ko) 2004-10-28
ATE521860T1 (de) 2011-09-15
EP1489367B1 (en) 2011-08-24
EP1489367A1 (en) 2004-12-22

Similar Documents

Publication Publication Date Title
WO2003083381A1 (fr) Dispositif a cycle frigorifique
EP3062031B1 (en) Air conditioner
JP3708536B1 (ja) 冷凍サイクル装置およびその制御方法
JP4731806B2 (ja) 冷凍サイクル装置およびその制御方法
JP2014228190A (ja) 冷凍サイクル装置
JP2004218853A (ja) 空調装置
WO2004056594A1 (ja) 空調装置
JP2003291635A (ja) 空調装置
JPH07234038A (ja) 多室型冷暖房装置及びその運転方法
WO2008032645A1 (fr) dispositif de réfrigération
JP2009228979A (ja) 空気調和装置
JP2013203221A (ja) 車両用の空調装置
CN113614463A (zh) 空调装置
JP2006349258A (ja) 空気調和機
JP4156422B2 (ja) 冷凍サイクル装置
JP2000346466A (ja) 蒸気圧縮式冷凍サイクル
JP2015068564A (ja) ヒートポンプシステム、及び、ヒートポンプ式給湯器
JP2003042604A (ja) 蒸気圧縮式ヒートポンプサイクル及び空調装置
JP4622901B2 (ja) 空気調和装置
JP4400533B2 (ja) エジェクタ式冷凍サイクル
JP2008096072A (ja) 冷凍サイクル装置
JP2006242480A (ja) 蒸気圧縮サイクルシステム
JP2003287311A (ja) 空気調和装置および空気調和装置の制御方法
JP2020023224A (ja) ヒートポンプシステム
JP2012076589A (ja) 車両用空調装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003712980

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020047009849

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20038018306

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 10501748

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2003712980

Country of ref document: EP