WO2003080223A1 - Procedimiento de combustión con separación integrada de co2 mediante carbonatación - Google Patents

Procedimiento de combustión con separación integrada de co2 mediante carbonatación Download PDF

Info

Publication number
WO2003080223A1
WO2003080223A1 PCT/ES2003/000118 ES0300118W WO03080223A1 WO 2003080223 A1 WO2003080223 A1 WO 2003080223A1 ES 0300118 W ES0300118 W ES 0300118W WO 03080223 A1 WO03080223 A1 WO 03080223A1
Authority
WO
WIPO (PCT)
Prior art keywords
separation
calciner
combustion
carbonation
sorbent
Prior art date
Application number
PCT/ES2003/000118
Other languages
English (en)
French (fr)
Inventor
Juan Carlos ABANADES GARCÍA
John Oakey
Original Assignee
Consejo Superior De Investigaciones Científicas
Cranfield University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Científicas, Cranfield University filed Critical Consejo Superior De Investigaciones Científicas
Priority to AU2003216925A priority Critical patent/AU2003216925B2/en
Priority to EP03712141A priority patent/EP1495794A1/en
Priority to CN038066807A priority patent/CN1642620B/zh
Priority to JP2003578042A priority patent/JP2005520678A/ja
Priority to CA2479886A priority patent/CA2479886C/en
Publication of WO2003080223A1 publication Critical patent/WO2003080223A1/es
Priority to US10/946,319 priority patent/US20050060985A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/343Heat recovery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/40Alkaline earth metal or magnesium compounds
    • B01D2251/404Alkaline earth metal or magnesium compounds of calcium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • the CO 2 content of the combustion gases in power plants of different type varies between 3 and 17% by volume , so that a prior separation stage is necessary
  • Shimizu et al (1999) propose for the first time the use of equilibrium (1) to separate C0 2 from combustion gases. They propose contacting CaO with flue gases from a thermal power plant at temperatures around 600 ° C to carry out the capture of C0 2 through the carbonation reaction. Partially carbonated solids are regenerated in a fluidized bed reactor where they are calcined at temperatures above 950 ° C, burning part of the fuel in the presence of 0 2 / CO 2 . The O 2 necessary for calcination comes from an air separation plant. The authors claim with this process a great saving in the air separation plant with respect to the use of O 2 / C0 2 mixtures for the entire fuel (technology described, among others, in Herzog and cois, 1997.
  • IPCC "Climate Change 2001: Mitigation”. I ntergovern mental Panel on climate Change, Technical Summary of the Working Group III Report. Filho et al. 2001, available at: López Ortiz, A; Harrison D. P .; Hydrogen production using surprise-enhanced reaction. Ind. Eng. Chem. Res. 2001, 40, 5102-5109
  • the object of the invention comprises a combustion chamber (1) where any type of fuel is burned with air, preferably at temperatures above 1000 ° C generating heat and a stream of high temperature combustion gases with a C0 2 content between 3 and 17% by volume depending on the fuel and the excess air used in combustion.
  • the combustion chamber can be, of any type, a fluidized bed, a conventional combustion boiler of pulverized coal, or a burner of natural gas or other liquid fuels. Combustion can be carried out at atmospheric pressure or at high pressure.
  • Our invention is based on which part of the heat (Q) generated in (1) must be transferred to the calciner (2) to maintain the calcination endothermic reaction and regenerate the CO 2 sorbent (CaO).
  • the calciner (2) works at temperatures below 900 ° C in atmospheres of pure CO 2 or CO 2 / H 2 O. To lower the calcination temperature and increase the thermal gradient between (1) and (2) the partial pressure of CO 2 in the calciner by applying a certain vacuum to (2) and / or steam injection to (2).
  • the heat exchange between (1) and (2) can be direct through metal walls or indirectly through the use of an inert solid (sand, alumina or others) that circulates continuously between (1) and (2) and is easily separable from active solids in the capture of CO 2 . Heat is extracted from the G1 gases, to condition them at a temperature (between 200 and 650 ° C) suitable for treatment in the carbonator (3).
  • Electricity can be generated with this heat extracted from G1, and if the combustion in (1) is carried out under pressure, the combustion gases G1 can be expanded in a gas turbine to generate additional electricity.
  • the cooled combustion gases enter the carbonation unit (3) at atmospheric pressure.
  • the carbonator of any type can be a circulating, entrained, cyclonic fluidized bed reactor depending on the particle size of the CaO and the reaction rate. In the carbonator the carbonation reaction occurs at 600-750 ° C and at atmospheric pressure, which are suitable conditions for a sufficiently rapid reaction between CaO and CO2. This reaction is exothermic, so heat from (3) must be extracted or an inlet temperature of G1 and / or s2 below 550 ° C must be adjusted to maintain the reactor (3) at the desired temperature.
  • the rest of CO 2 that was present in G1 is in the form of CaC0 3 and leaves the calciner (3) in the solid stream s3, which contains a mixture of CaO and CaC0 3.
  • the solid stream s3 is directed to the calciner (2) for regeneration as CaO and CO 2 .
  • the calciner must be operated to generate a pure stream of C0 2 at lower atmospheric pressure, or a C0 2 / vapor mixture easily separable by steam condensation (not included in Figure 1 for simplicity.)
  • a stream of regenerated solids flows out of the calciner (s2) that contain mostly CaO, capable of being recarbonated again in (3) Since there will be loss of sorbent due to internal sintering and / or attrition, the addition of a fresh sorbent flow to the calciner that is estimated between 2 is required. and 5% of the amount of solids flow in s2, and which has not been included in Figure 1 for simplicity.
  • the calciner can be a fluidized bed to take advantage of the high heat transfer coefficients. It can also be a entrained bed or of pneumatic transport constituted by a bed of tubes through which the s3 current is passed in. Outside the tubes would be the combustion environment (1), with temperature Nominal flame rates that may exceed 1300 ° C.
  • the object of the invention is outlined in Figure 1. It comprises a combustion chamber (1) where the fuel is burned with air at temperatures above 1000 ° C generating heat and a stream of high temperature combustion gases with a content of CO 2 between 3 and 17% by volume depending on the fuel and the excess air used in combustion.
  • the combustion chamber can be a fluidized bed, a conventional combustion boiler of pulverized coal, or a burner of natural gas or other liquid fuels. Combustion can be carried out at atmospheric pressure or at high pressure. Part of the heat (Q) generated in (1) must be transferred to the calciner (2) to maintain the endothermic calcination reaction and regenerate the sorbent CO2 (CaO).
  • the calciner (2) works at temperatures below 900 ° C in atmospheres of pure CO 2 or CO 2 / H 2 O. To lower the calcination temperature and increase the thermal gradient between (1) and (2) the partial pressure of CO 2 in the calciner by applying a certain vacuum to (2) and / or steam injection to (2).
  • the heat exchange between (1) and (2) can be direct through metal walls or indirectly through the use of an inert solid (sand, alumina or others) that circulates continuously between (1) and (2) and is easily separable from active solids in the capture of CO 2 .
  • this circulation current of inert solids capable of transporting heat Q between (1) and (2) has not been drawn in Figure 1.
  • fluidized bed coal combustion chamber working at 1100 ° C. It could be another type of combustion chamber (gas or pulverized burners) with nominal flame temperatures above 1300 ° C. It is assumed that there is no heat loss and that the combustion of the fuel is complete.
  • calciner operating as a fluidized bed at 850 ° C. It works at a partial pressure of CO 2 of 0.3 atm by application of vacuum and / or injection of a certain amount of steam. Under these conditions the calcination of solids with CaCO 3 (s3) is fast and complete.
  • Solids leaving the calciner only contain CaO in the example (although they may contain other inert materials if dolomites or other calcareous sorbents are used as CO 2 acceptors) (3) circulating fluidized bed working at 650 ° C. Carbonation is very fast, but limited to a certain conversion value (30% in the example) due to the internal sintering processes of CaO. The average conversion chosen (30%) can be increased by increasing the flow of fresh sorbent that is incorporated into (2). For simplicity, in the example this flow of fresh CaO has been omitted, which will be limited in normal operating conditions to 2-5% of the total CaO circulating in s2.
  • the carbon in the example has a calorific value of 25 MJ / kg and a carbon content of 65% by weight. For every 100 MW of power of the plant, 2.6 kg / s of ° C are generated (excess of 20% air) in the form of CO 2 that are present in the flue gas stream G1 (15.4% vol. C0 2 ). In the example, an efficiency in the capture of CO 2 in the combustion gases of 80% is proposed, so 32.4 kg / s of total CaO (current s2 and s3) are required circulating between the calciner (2) and the carbonator (3), of which only 30% are carbonated in (3). The calculations have been made assuming a heat capacity of 900 J / kg for all solid streams and 1250 J / kg for all gas streams.
  • the reference temperature in the heat balances is 20 ° C. It is assumed that there is no heat loss in any of the units. For every 100 MW entering (1), 38.6 MW must be transferred to (2) to maintain the calcination (9.4 to heat the solids s3 to 850 ° C and 29.2 MW for the calcination reaction), 47.8 are recoverable from G1 as useful energy in, for example, a steam cycle to generate electricity, and the The rest (13.6) leaves the combustion chamber as sensible heat in the stream of combustion gases G1 (at 270 ° C in the example) that is fed to the carbonator (3).
  • the example has been designed so that the carbonator works in autothermal conditions when the flue gas stream (G1 at 270 ° C) is brought into contact with the solids s2 (from which 16.8 MW of useful heat has been extracted to cool them, arbitrarily, at the same temperature of 270 ° C). Therefore, the 29.2 MW that are generated during the carbonation reaction manage to maintain the temperature of the carbonator at 650 ° C. Under the conditions of the example, 50.1 MW leave the carbonator as sensible heat of gases and solids at 650 ° C (27.4 MW as heat in the gases, from which useful heat can be extracted to generate electricity in the steam cycle, and 22.7 MW in the solid stream s3).
  • the calcination is produced at 850 ° C absorbing 29.2 MW, and the rest is distributed in 24.2 MW in solids s3 at 850 ° C (from which 16.8 MW of useful heat can be extracted to cool them to 270 ° C) and 7.9 in the current of C0 2 gas at 850 ° C, also recoverable in the steam cycle.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treating Waste Gases (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Gas Separation By Absorption (AREA)
  • Separation Of Gases By Adsorption (AREA)

Abstract

Se propone un proceso para la separación de CO2 de gases de combustión aplicable a puntos de gran emisión (centrales térmicas de cualquier combustible carbonoso). La corriente de CO2 separada es susceptible de utilización y/o confinamiento en formaciones geológicas. el proceso propuesto pretende reducir los altos costes de separación de CO2, que impiden el uso a gran escala de estas opciones de confinamiento de CO2, recogidas en los informes del IPCC de la ONU.La invención consiste en poner en contacto los gases de combustión con un sorbente calcáreo (caliza, dolomita calcinadas) a 650-750°C donde se produce la reacción de captura de CO2 por la rápida carbonatación del sorbente. la regeneración del sorbete se lleva a cabo en otro reactor (calcinador) que trabaja en atmosferas de CO2 o CO2/H2O y en a presión igual o inferior a la atmosférica.

Description

TÍTULO
PROCEDIMIENTO DE COMBUSTIÓN CON SEPARACIÓN INTEGRADA DE CO2 MEDIANTE CARBONAT ACIÓN
SECTOR DE LA TÉCNICA
Sector energético. Proceso para la producción de electricidad y/o calor a gran escala con separación integrada de CO2 de los gases de combustión.
ESTADO DE LA TÉCNICA El Panel Internacional para el Cambio Climático de la ONU (IPCC, 2001 ) considera como una opción de gran interés a medio y largo plazo la captura del CO2 generado en grandes fuentes estacionarias y su posterior confinamiento en una variedad de formaciones geológicas. La aplicación de estas tecnologías requiere la obtención previa de una corriente altamente concentrada en C02 (Herzog y cois, 1997. El contenido en CO2 de los gases de combustión en centrales térmicas de distinto tipo varia entre el 3 y el 17% en volumen, por lo que se hace necesaria una etapa de separación previa. Existe una variedad de procesos comerciales para la separación de CO2 en la industria del petróleo, del gas natural y química en general, basados principalmente en procesos de absorción a baja temperatura, pero su aplicación a la separación del C02 de gases de combustión provenientes de una central térmica presenta grandes limitaciones (Herzog y cois, 1997): los ingentes caudales de gas a tratar requieren instalaciones de gran tamaño y muy costosas, demandan gran cantidad de energía para la regeneración del sorbente lo que reduce las eficacias en la generación de electricidad y/o calor útil, los contaminantes en el combustible (S02, NOx) tienden a dañar el absorbente lo que origina altos costes de operación. Por ello, se han propuesto varios procesos nuevos para la generación de energía eléctrica en centrales térmicas de forma más económica incorporando la separación del CO2 antes, durante o después de la combustión (Herzog y cois, 1997. Todos ellos son procesos no comerciales, todavía en desarrollo. Los que se perciben como más competitivos son los basadas (Herzog y cois, 1997) en la combustión del combustible en mezclas de CO2/O2, previa separación del aire en sus componentes; y los basadas en distintas etapas de reformado del combustible con agua y separación de CO2 a presión con procesos comerciales de absorción física o de membranas (Herzog y cois, 1997. También se investiga intensamente en la optimización de procesos de absorción comerciales a baja temperatura a las condiciones presentes en un gas de combustión (Herzog y cois, 1997.
El proceso propuesto en esta invención se aleja de dichas propuestas y pretende hacer uso del equilibrio:
CaO+C02 = CaCO3 (1)
para la separación de C02 de gases de combustión. Este equilibrio ha sido utilizado ya con anterioridad en procesos de separación de C02 en el reformado de hidrocarburos y/o en la producción de H2. Gorin y cois (1963, 1980) han patentado y llevado a escala de demostración procesos basados en "aceptores" de CO2 que utilizan el equilibrio anterior. López Ortiz y Harrison (2001 ) también han estudiado la aplicación del equilibrio (1 ) a la producción de hidrógeno en un único reactor a partir de metano y vapor de agua, y recogen un buen número de patentes y referencias en este campo de separación de CO2 en ambientes reductores, que se remontan a 1868.
Shimizu et al (1999) proponen por primera vez la utilización del equilibrio (1 ) para separar C02 de los gases de combustión. Plantean poner en contacto con CaO los gases de combustión de una central térmica a temperaturas entorno a 600°C para llevar a cabo la captura de C02 mediante la reacción de carbonatación. Los sólidos parcialmente carbonatados se regeneran en un reactor de lecho fluidizado donde se calcinan a temperaturas superiores a 950°C, quemando parte del combustible en presencia de 02/CO2. El O2 necesario para la calcinación proviene de una planta de separación de aire. Los autores reivindican con este proceso un gran ahorro en la planta de separación de aire respecto al uso de mezclas O2/C02 para la totalidad del combustible (tecnología descrita, entre otros, en Herzog y cois, 1997. Sin embargo, la planta de separación de aire es todavía necesaria en el proceso descrito por Shimizu et al (1999). Además, estos autores ignoran los problemas de degeneración (perdida de capacidad de absorción de CO2) del sorbente descritos en la literatura cuando se calcina en atmósferas ricas en C02 y a temperaturas de 950 °C, altamente sinterizantes.
Referencias
Gorin, E; Retallick, W.B. Method for the production of hydrogen. US patent 1 ,938,202. 1963
Gorin, E.; Synthetic CO2 acceptor and gasification process therewith. US Patent 4,191 ,538 March 4, 1980.
Herzog, H.; Drake, E.; Adams, E. C02 Capture, Reuse, and Storage Technologies for Mitigating Global Climate Change — A White Paper; DOE 9 of 10 EST: What Future for Carbón Capture and Sequestration? Order No. DE- AF22-96PC01257; U.S. Government Printing Office: Washington, DC, 1997, available at:
IPCC. "Climate Change 2001 : Mitigation". I ntergovern mental Panel on Climate Change, Technical Summary of the Working Group III Report. Filho et al. 2001 , available at: López Ortiz, A; Harrison D. P.; Hydrogen production using sorption-enhanced reaction. Ind. Eng. Chem. Res. 2001 ,40, 5102-5109
Shimizu T, Hirama T, Hosoda H, Kitano K, Inagaki M, Tejima K; A twin fluid-bed reactor for removal of C02 from combustión processes Trans IChemE, 77, A, 1999
DESCRIPCIÓN DE LA INVENCIÓN
Se trata de un nuevo procedimiento de combustión con separación integrada de CO2 mediante carbonatación basado en la utilización de parte del calor generado en la cámara de combustión por parte del calcinador para mantener la reacción endotérmica de calcinación y regenerar el sorbente, sin la necesidad de utilizar planta de separación de aire; en combinación con un carbonatador para tratar los gases calientes y que a su vez generan energía durante la carbonatación. El objeto de la invención comprende una cámara de combustión (1 ) donde se quema cualquier tipo de combustible con aire, preferentemente a temperaturas superiores a 1000 °C generándose calor y una corriente de gases de combustión a alta temperatura con un contenido en C02 entre el 3 y el 17% en volumen dependiendo del combustible y del exceso de aire utilizado en la combustión. La cámara de combustión puede ser, de cualquier tipo, un lecho fluidizado, una caldera convencional de combustión de carbón pulverizado, o un quemador de gas natural o de otros combustibles líquidos. La combustión puede realizarse a presión atmosférica o a alta presión.
Nuestra invención se basa en que parte del calor (Q) generado en (1 ) debe ser transferido al calcinador (2) para mantener la reacción endotérmica de calcinación y regenerar el sorbente de CO2 (el CaO).
El calcinador (2) trabaja a temperaturas inferiores a 900 °C en atmósferas de CO2 puro o de CO2/H2O. Para rebajar la temperatura de calcinación y aumentar el gradiente térmico entre (1 ) y (2) puede rebajarse la presión parcial de CO2 en el calcinador mediante la aplicación de cierto vacío a (2) y/o la inyección de vapor a (2). El intercambio de calor entre (1 ) y (2) puede ser directo a través de paredes metálicas o indirecto mediante el uso de un sólido inerte (arena, alúmina u otros) que circule continuamente entre (1 ) y (2) y que sea fácilmente separable de los sólidos activos en la captura de CO2. De los gases G1 se extrae calor, para acondicionarlos a una temperatura (entre 200 y 650 °C) adecuada para su tratamiento en el carbonatador (3). Se puede generar electricidad con este calor extraído de G1 , y si la combustión en (1 ) se realiza a presión, los gases de combustión G1 pueden expandirse en una turbina de gas para generar electricidad adicional. Los gases de combustión enfriados entran a presión atmosférica a la unidad de carbonatación (3). El carbonatador de cualquier tipo puede ser, un reactor de lecho fluidizado circulante, arrastrado, ciclónico dependiendo del tamaño de partícula del CaO y de la velocidad de reacción. En el carbonatador se produce la reacción de carbonatación a 600-750°C y a presión atmosférica, que son condiciones adecuadas para una reacción suficientemente rápida entre el CaO y el CO2. Esta reacción es exotérmica, por lo que se debe extraer calor de (3) o ajusfar una temperatura de entrada de G1 y/o de s2 inferior a 550°C para mantener el reactor (3) a la temperatura deseada. Los gases de combustión G3, que abandonan la unidad (3) a temperaturas entre 600-750°C, contienen una reducida cantidad de CO2 (idealmente cercana a la de equilibrio a la temperatura de trabajo en (3). El resto de CO2 que estaba presente en G1 se encuentra en forma de CaC03 y abandona el calcinador (3) en la corriente sólida s3, que contiene una mezcla de CaO y CaC03. La corriente sólida s3 se dirige al calcinador (2) para su regeneración como CaO y CO2.
El calcinador debe operarse para generar una corriente pura de C02 a presión inferior a la atmosférica, o una mezcla C02/vapor fácilmente separable por condensación del vapor (no incluida en la Figura 1 por simplicidad. Del calcinador sale una corriente de sólidos regenerados (s2) que contienen mayormente CaO, capaz de recarbonatarse de nuevo en (3). Puesto que existirán perdidas de sorbente por sinterización interna y/o atrición, se requiere la adición de un flujo de sorbente fresco al calcinador que se estima entre el 2 y el 5% de la cantidad del flujo de sólidos en s2, y que no se ha incluido en la Figura 1 por simplicidad. El calcinador puede ser un lecho fluidizado para aprovechar los altos coeficientes de transmisión de calor. También puede ser un lecho arrastrado o de transporte neumático constituido por una bancada de tubos por cuyo interior se hace pasar la corriente s3. En el exterior de los tubos se encontraría el ambiente de combustión (1 ), con temperaturas nominales de llama que pueden ser superiores a 1300°C.
Las interconexiones de unidades desde el punto de vista de la transferencia de sólidos entre las distintas unidades, así como la separación de los sólidos de los gases que los arrastran, de los sólidos entre sí cuando tienen muy diferentes tamaños de partícula, se realiza mediante equipos y procedimientos que forman parte del estado del arte de las tecnologías de sistemas fluidizados gas / sólido.
BREVE DESCRIPCIÓN DEL CONTENIDO DE LAS FIGURAS
El objeto de la invención se esquematiza en la Figura 1. Comprende una cámara de combustión (1) donde se quema el combustible con aire a temperaturas superiores a 1000°C generándose calor y una corriente de gases de combustión a alta temperatura con un contenido en CO2 entre el 3 y el 17% en volumen dependiendo del combustible y del exceso de aire utilizado en la combustión. La cámara de combustión puede ser un lecho fluidizado, una caldera convencional de combustión de carbón pulverizado, o un quemador de gas natural o de otros combustibles líquidos. La combustión puede realizarse a presión atmosférica o a alta presión. Parte del calor (Q) generado en (1 ) debe ser transferido al calcinador (2) para mantener la reacción endotérmica de calcinación y regenerar el sorbente de CO2 (el CaO). El calcinador (2) trabaja a temperaturas inferiores a 900°C en atmósferas de CO2 puro o de CO2/H2O. Para rebajar la temperatura de calcinación y aumentar el gradiente térmico entre (1 ) y (2) puede rebajarse la presión parcial de CO2 en el calcinador mediante la aplicación de cierto vacío a (2) y/o la inyección de vapor a (2). El intercambio de calor entre (1 ) y (2) puede ser directo a través de paredes metálicas o indirecto mediante el uso de un sólido inerte (arena, alúmina u otros) que circule continuamente entre (1 ) y (2) y que sea fácilmente separable de los sólidos activos en la captura de CO2. Por simplicidad, no se ha dibujado en la Figura 1 esta corriente de circulación de sólidos inertes capaces de transportar el calor Q entre (1 ) y (2).
EJEMPLO DE REALIZACIÓN DE LA INVENCIÓN
Se describe como ejemplo as condiciones de operación en las distintas unidades
(1 ) cámara de combustión de carbón en lecho fluidizado trabajando a 1100°C. Podría ser otro tipo de cámara de combustión (quemadores de gas o pulverizados) con temperaturas nominales de llama superiores a 1300°C. Se supone que no hay pérdidas de calor y que la combustión del combustible es completa. (2) calcinador operando como lecho fluidizado a 850°C. Se trabaja a una presión parcial de CO2 de 0.3 atm por aplicación de vacío y/o inyección de cierta cantidad de vapor. En estas condiciones la calcinación de los sólidos con CaCO3 (s3) es rápida y completa. Los sólidos que abandonan el calcinador (s3) solo contienen CaO en el ejemplo (aunque pueden contener otros materiales inertes si se usan dolomitas u otros sorbentes calcáreos como aceptores de CO2) (3) lecho fluidizado de tipo circulante trabajando a 650°C. La carbonatación es muy rápida, pero limitada a un cierto valor de conversión (30% en el ejemplo) debido a los procesos de sinterización interna del CaO. La conversión media elegida (30%) puede aumentarse aumentando el flujo de sorbente fresco que se Incorpora a (2). Por simplicidad, en el ejemplo se ha omitido este flujo de CaO fresco, que se limitará en condiciones normales de operación al 2-5% del CaO total circulando en s2.
El carbón del ejemplo tiene un poder calorífico de 25 MJ/kg y un contenido en carbono del 65% en peso. Por cada 100 MW de potencia de la central, se generan (exceso de aire del 20%) 2.6 kg/s de °C en forma de CO2 que están presentes en la corriente de gases de combustión G1 (15.4% vol. C02). En el ejemplo, se plantea una eficacia en la captura del CO2 en los gases de combustión del 80%, por lo que se requieren 32.4 kg/s de CaO totales (corriente s2 y s3) circulando entre el calcinador (2) y el carbonatador (3), de los que solo el 30% se carbonatan en (3). Los cálculos se han realizado suponiendo una capacidad calorífica de 900 J/kg para todas las corrientes sólidas y de 1250 J/kg para todas las corrientes gaseosas. La temperatura de referencia en los balances de calor es 20°C. Se supone que no hay pérdidas de calor en ninguna de las unidades. Por cada 100 MW que entran a (1 ), 38.6 MW deben ser transferidos a (2) para mantener la calcinación (9.4 para calentar los sólidos s3 hasta 850 °C y 29.2 MW para la reacción de calcinación), 47.8 son recuperables de G1 como energía útil en, por ejemplo, un ciclo de vapor para generar electricidad, y el resto (13.6) abandonan el cámara de combustión como calor sensible en la corriente de gases de combustión G1 (a 270°C en el ejemplo) que se alimenta al carbonatador (3). El ejemplo se ha diseñado para que el carbonatador funcione en condiciones autotérmicas cuando la corriente de gases de combustión (G1 a 270°C) se pone en contacto con los sólidos s2 (de los que se ha extraído 16.8 MW de calor útil para enfriarlos, arbitrariamente, a la misma temperatura de 270°C). Por tanto, los 29.2 MW que se generan durante la reacción de carbonatación consiguen mantener la temperatura del carbonatador a 650°C. En las condiciones del ejemplo, 50.1 MW abandonan el carbonatador como calor sensible de gases y sólidos a 650°C (27.4 MW como calor en los gases, de los que se puede extraer calor útil para generar electricidad en el ciclo de vapor, y 22.7 MW en la corriente de sólidos s3). Por tanto, al calcinador (2) entran 38.7 MW desde el cámara de combustión (1 ) y 22.7 MW desde el carbonatador, como calor sensible en los sólidos s3. La calcinación se produce a 850°C absorbiendo 29.2 MW, y el resto se distribuye en 24.2 MW en los sólidos s3 a 850°C (de los que se puede extraer 16.8 MW de calor útil para enfriarlos a 270°C) y 7.9 en la corriente de C02 gas a 850°C, también recuperables en el ciclo de vapor.
Se desea resaltar que en el diseño conceptual descrito en el ejemplo se producirá una pérdida irreversible en la eficacia de generación de electricidad, asociada a la necesaria transferencia de un 38.6% de la energía que entra al cámara de combustión (a 1100°C) a otro sistema a menor temperatura (los 850°C del calcinador). Sin embargo, en términos prácticos, la eficacia de generación de electricidad mediante un ciclo de vapor en el ciclo propuesto debería ser muy similar al original (combustión a 1100°C sin captura de CO2), por realizarse todos el proceso de separación y regeneración a temperaturas elevadas, de cuyas unidades se puede recuperar energía de forma eficaz con un ciclo de vapor suficientemente optimizado al sistema objeto de invención.

Claims

REIVINDICACIONES
1. Procedimiento de combustión con separación integrada de CO2 mediante carbonatación basado en la utilización de parte del calor generado en la cámara de combustión por parte del calcinador para mantener la reacción endotérmica de calcinación y regenerar el sorbente, que comprende una cámara de combustión de cualquier tipo donde se quema cualquier tipo de combustible con aire, sin la necesidad de utilizar planta de separación, en combinación con un carbonatador para tratar los gases calientes y que a su vez generan energía.
2. Procedimiento de combustión con separación integrada de CO2 mediante carbonatación según la reivindicación 1 caracterizado porque el intercambio de calor puede realizarse de forma directa a través de paredes metálicas que separan la cámara de combustión (a temperaturas superiores a 1000°C) del calcinador (a temperaturas inferiores a 900°C).
3. Procedimiento de combustión con separación integrada de CO2 mediante carbonatación según la reivindicación 1 caracterizado porque el intercambio de calor puede realizarse de forma indirecta mediante un sólido inerte (arena, alúmina u otros) circulando entre las dos cámaras, y que sea fácilmente separable del sorbente por sus diferentes propiedades de partícula (densidad y/o tamaño) para poder operar de forma continua.
4. Procedimiento de combustión con separación integrada de CO2 mediante carbonatación según la reivindicación 1 caracterizado por la utilización de un calcinador trabajando a presiones parciales de CO2 por debajo de la atmosférica, generando una corriente de CO2 pura o de fácil purificación. La baja presión parcial de CO2 permite la rápida calcinación a temperaturas moderadas (igual o inferiores a 900°C), con la consiguiente mejora de la actividad del sorbente y aumento de la fuerza impulsora (ΔT) de intercambio de calor hacia el calcinador. Las presiones parciales de CO2 por debajo de la atmosférica se consiguen introduciendo vapor (fácilmente separable del C02 generado en la calcinación) y/o aplicando vacío al calcinador.
Procedimiento de combustión con separación integrada de CO2 mediante carbonatación según la reivindicación 1 caracterizado por la utilización de un carbonatador de polvo de CaO y CO2, que puede ser un lecho fluidizado circulante, un lecho arrastrado, o un reactor ciclónico (dependiendo del tamaño de partícula del CaO y de la velocidad de reacción) donde se produce la reacción de carbonatación del CaO o captura de CO2 entre 600-750°C.
PCT/ES2003/000118 2002-03-22 2003-03-14 Procedimiento de combustión con separación integrada de co2 mediante carbonatación WO2003080223A1 (es)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AU2003216925A AU2003216925B2 (en) 2002-03-22 2003-03-14 Combustion method with integrated CO2 separation by means of carbonation
EP03712141A EP1495794A1 (en) 2002-03-22 2003-03-14 Combustion method with integrated co sb 2 /sb separation by means of carbonation
CN038066807A CN1642620B (zh) 2002-03-22 2003-03-14 通过碳化作用进行综合co2分离的燃烧方法
JP2003578042A JP2005520678A (ja) 2002-03-22 2003-03-14 炭酸塩化によるco2の集積的分離を伴う燃焼方法
CA2479886A CA2479886C (en) 2002-03-22 2003-03-14 Combustion method with integrated carbon dioxide separation by means of carbonation
US10/946,319 US20050060985A1 (en) 2002-03-22 2004-09-21 Combustion method with integrated CO2 separation by means of carbonation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200200684A ES2192994B1 (es) 2002-03-22 2002-03-22 Procedimiento de combustion con separacion integrada de co2 mediante carbonatacion.
ESP200200684 2002-03-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/946,319 Continuation US20050060985A1 (en) 2002-03-22 2004-09-21 Combustion method with integrated CO2 separation by means of carbonation

Publications (1)

Publication Number Publication Date
WO2003080223A1 true WO2003080223A1 (es) 2003-10-02

Family

ID=28051967

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2003/000118 WO2003080223A1 (es) 2002-03-22 2003-03-14 Procedimiento de combustión con separación integrada de co2 mediante carbonatación

Country Status (8)

Country Link
US (1) US20050060985A1 (es)
EP (1) EP1495794A1 (es)
JP (1) JP2005520678A (es)
CN (1) CN1642620B (es)
AU (1) AU2003216925B2 (es)
CA (1) CA2479886C (es)
ES (1) ES2192994B1 (es)
WO (1) WO2003080223A1 (es)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005046863A1 (en) * 2003-11-14 2005-05-26 Her Majesty The Queen In Right Of Canada As Represented By The Minister Of Natural Resources Pre-treatment of lime-based sorbents using hydration
WO2005046862A1 (en) * 2003-11-14 2005-05-26 Her Majesty The Queen In Right Of Canada As Represented By The Minister Of Natural Resources Reactivation of lime-based sorbents by co2 shocking
WO2010058054A1 (es) 2008-11-21 2010-05-27 Gas Natural Sdg, S.A. Procedimiento y dispositivo para la combustión de biomasa sin emisión de dióxido de carbono

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7618606B2 (en) 2003-02-06 2009-11-17 The Ohio State University Separation of carbon dioxide (CO2) from gas mixtures
EP1899049A4 (en) * 2005-06-28 2010-12-08 Univ Ohio State GAS MIXTURE CARBON DIOXIDE (CO2) SEPARATION BY CALCIUM REACTION SEPARATION PROCESS (CARS-CO2)
CN101378826B (zh) * 2005-10-21 2013-02-27 Calix有限公司 用于煅烧/碳酸化循环处理的系统和方法
WO2007045048A1 (en) * 2005-10-21 2007-04-26 Calix Pty Ltd System and method for calcination/carbonation cycle processing
AU2006303828C1 (en) * 2005-10-21 2011-04-14 Calix Limited System and method for calcination/carbonation cycle processing
WO2007112496A1 (en) 2006-03-31 2007-10-11 Calix Ltd System and method for the calcination of minerals
ES2302610B1 (es) * 2006-03-31 2009-06-12 Consejo Superior Investig. Cientificas Procedimiento de calcinacion con produccion de co2 puro o facilmente purificable proveniente de la descomposicion de carbonatos.
FR2908327B1 (fr) * 2006-11-09 2009-01-30 Air Liquide Procede de fabrication de clinker a emission de co2 controlee
CA2891016C (en) * 2007-02-10 2019-05-07 Vast Power Portfolio, Llc Hot fluid recovery of heavy oil with steam and carbon dioxide
ES2345135B1 (es) * 2007-07-17 2011-07-18 Fundacion Circe- Centro De Investigacion De Recursos Y Consumos Energeticos Dispositivo ciclonico para calcinacion y procedimiento de separacion de co2 usando dicho dispositivo.
FR2921059B1 (fr) * 2007-09-14 2011-06-24 Rech S Geol Et Minieres Brgm Bureau De Procede et installation de production de clinker
US8632626B2 (en) * 2008-05-15 2014-01-21 Calix Limited System and method for processing flue gas
EP2296786A4 (en) 2008-06-05 2012-09-19 Ind Res Ltd GUEST RACE PROCEDURE
DE102008050816B4 (de) 2008-10-08 2013-09-05 Alstom Technology Ltd. Verfahren und Anordnung zur Abscheidung von CO2 aus Verbrennungsabgas
FR2944217B1 (fr) * 2009-04-08 2011-04-01 Inst Francais Du Petrole Procede de captage du dioxyde de carbone avec integration thermique de la regeneration avec la chaine de compression
DE102009039055A1 (de) * 2009-08-28 2011-03-10 Technische Universität Darmstadt Verfahren und Einrichtung zur Abscheidung von CO2 aus Abgas
WO2011035241A1 (en) * 2009-09-18 2011-03-24 Wormser Energy Solutions, Inc. Integrated gasification combined cycle plant with char preparation system
WO2011047409A1 (en) * 2009-10-24 2011-04-28 Calix Limited System and method for processing an input fuel gas and steam to produce carbon dioxide and an output fuel gas
US8647413B2 (en) * 2009-10-30 2014-02-11 General Electric Company Spray process for the recovery of CO2 from a gas stream and a related apparatus
ES2370619B1 (es) * 2010-04-27 2012-10-26 Fundación Investigación E Innovación Para El Desarrollo Social Procedimiento para la obtención de hidrogeno, a partir de la biomasa y carbón vegetal.
ES2401294B1 (es) * 2011-06-24 2014-05-09 Consejo Superior De Investigaciones Científicas (Csic) DISPOSITIVO Y PROCEDIMIENTO PARA LA CAPTURA DE CO2 POR CARBONATACION DE CaO
WO2013037938A1 (en) 2011-09-15 2013-03-21 Energy Knowledge Group Bv Process for the preparation of biofuel using algae
KR101863967B1 (ko) * 2011-09-30 2018-06-04 한국전력공사 저에너지 소비형 이산화탄소의 회수방법
NO343140B1 (no) * 2013-06-14 2018-11-19 Zeg Power As Fremgangsmåte for bærekraftig energiproduksjon i et kraftverk som omfatter en fastoksid brenselcelle
US9586827B2 (en) 2013-09-06 2017-03-07 David LeRoy Hagen CO2 producing calciner
TWI516302B (zh) * 2013-12-11 2016-01-11 財團法人工業技術研究院 循環塔二氧化碳捕獲系統、碳酸化爐、煅燒爐及其使用方法
KR101529823B1 (ko) * 2014-05-21 2015-06-29 현대중공업 주식회사 석탄가스화 복합발전 시스템
EP2959966B1 (en) * 2014-06-24 2018-09-05 General Electric Technology GmbH A calciner and a method for calcination of a carbon dioxide rich sorbent
CN104841363A (zh) * 2015-04-22 2015-08-19 马鞍山市顺达环保设备有限公司 一种矿热炉用吸附剂及其制备方法
US9956517B2 (en) * 2016-05-23 2018-05-01 General Electric Company Gmbh System and method for reducing carbon dioxide emissions from a flue gas generated via combusting a fossil fuel
CN106595363B (zh) * 2016-12-09 2018-10-23 南京工业大学 高温钙循环热化学储能方法及系统
NZ757085A (en) 2017-03-09 2021-07-30 Hot Lime Labs Ltd Improved method and apparatus for carbon dioxide capture and release
CN108619896B (zh) * 2018-05-16 2023-11-21 安徽建筑大学 一种基于切换式填充床反应器的co2循环脱除装置及方法
NO345216B1 (en) 2019-08-28 2020-11-09 Zeg Power As Hydrogen-fuelled gas turbine power system and method for its operation
US11572518B2 (en) 2019-11-25 2023-02-07 Wormser Energy Solutions, Inc. Char preparation system and gasifier for all-steam gasification with carbon capture

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1938202A (en) 1930-09-12 1933-12-05 Du Pont Hydrogen production
US4191538A (en) 1979-03-12 1980-03-04 Continental Oil Company Synthetic CO2 acceptor and gasification process therewith
ES2003265A6 (es) * 1987-04-21 1988-10-16 Espan Carburos Metal Procedimiento para la obtencion de co2 y n2 a partir de los gases generados en un motor o turbina de combustion interna
EP0487102A1 (en) * 1990-11-22 1992-05-27 Hitachi, Ltd. Recycling system for the recovery and utilization of CO2 gas
GB2291051A (en) * 1994-07-12 1996-01-17 Agency Ind Science Techn Separating carbon dioxide from gases containing it

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3108857A (en) * 1961-04-10 1963-10-29 Consolidation Coal Co Method for the production of hydrogen
CA1081466A (en) * 1976-03-26 1980-07-15 David S. Mitchell Countercurrent plug-like flow of two solids
NL9201179A (nl) * 1992-07-02 1994-02-01 Tno Werkwijze voor het regeneratief verwijderen van kooldioxide uit gasstromen.
JP3853398B2 (ja) * 1994-05-23 2006-12-06 株式会社四国総合研究所 二酸化炭素の回収方法及び二酸化炭素吸着剤
JPH10137533A (ja) * 1996-11-08 1998-05-26 Agency Of Ind Science & Technol 燃焼排ガス中の特定ガス成分の回収方法
JP2000120447A (ja) * 1998-10-12 2000-04-25 Toshiba Corp 火力発電プラント
JP2002079052A (ja) * 2000-09-08 2002-03-19 Toshiba Corp 二酸化炭素回収方法およびシステム
FR2814533B1 (fr) * 2000-09-27 2002-10-31 Alstom Power Nv Procede pour reduire simultanement les emissions de co2 de so2 dans une installation de combustion
US6667022B2 (en) * 2001-08-14 2003-12-23 General Electric Co. Process for separating synthesis gas into fuel cell quality hydrogen and sequestration ready carbon dioxide
US7067456B2 (en) * 2003-02-06 2006-06-27 The Ohio State University Sorbent for separation of carbon dioxide (CO2) from gas mixtures

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1938202A (en) 1930-09-12 1933-12-05 Du Pont Hydrogen production
US4191538A (en) 1979-03-12 1980-03-04 Continental Oil Company Synthetic CO2 acceptor and gasification process therewith
ES2003265A6 (es) * 1987-04-21 1988-10-16 Espan Carburos Metal Procedimiento para la obtencion de co2 y n2 a partir de los gases generados en un motor o turbina de combustion interna
EP0487102A1 (en) * 1990-11-22 1992-05-27 Hitachi, Ltd. Recycling system for the recovery and utilization of CO2 gas
GB2291051A (en) * 1994-07-12 1996-01-17 Agency Ind Science Techn Separating carbon dioxide from gases containing it

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
FILHO ET AL.: "Climate Change 2001: Mitigation", INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE, TECHNICAL SUMMARY OF THE WORKING GROUP III REPORT., 2001
GORIN, E; RETALLICK, W.B., METHOD FOR THE PRODUCTION OF HYDROGEN
LOPEZ ORTIZ, A; HARRISON D. P.: "Hydrogen production using sorption-enhanced reaction", IND. ENG. CHEM. RES., vol. 40, 2001, pages 5102 - 5109, XP002565216, DOI: doi:10.1021/ie001009c
SHIMIZU T. ET AL.: "A twin fluid-bed reactor for removal of C02 from combustion processes", TRANS ICHEME, vol. 77, 1999

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005046863A1 (en) * 2003-11-14 2005-05-26 Her Majesty The Queen In Right Of Canada As Represented By The Minister Of Natural Resources Pre-treatment of lime-based sorbents using hydration
WO2005046862A1 (en) * 2003-11-14 2005-05-26 Her Majesty The Queen In Right Of Canada As Represented By The Minister Of Natural Resources Reactivation of lime-based sorbents by co2 shocking
US7879139B2 (en) 2003-11-14 2011-02-01 Her Majesty The Queen In Right Of Canada As Represented By The Minister Of Natural Resources Reactivation of lime-based sorbents by CO2 shocking
WO2010058054A1 (es) 2008-11-21 2010-05-27 Gas Natural Sdg, S.A. Procedimiento y dispositivo para la combustión de biomasa sin emisión de dióxido de carbono
US8757072B2 (en) 2008-11-21 2014-06-24 Gas Natural Sdg, S.A. Method and device for biomass combustion without carbon dioxide emission

Also Published As

Publication number Publication date
CA2479886A1 (en) 2003-10-02
EP1495794A1 (en) 2005-01-12
US20050060985A1 (en) 2005-03-24
CN1642620A (zh) 2005-07-20
JP2005520678A (ja) 2005-07-14
CN1642620B (zh) 2011-08-10
ES2192994A1 (es) 2003-10-16
AU2003216925B2 (en) 2008-09-11
ES2192994B1 (es) 2005-02-16
AU2003216925A1 (en) 2003-10-08
CA2479886C (en) 2011-05-17

Similar Documents

Publication Publication Date Title
WO2003080223A1 (es) Procedimiento de combustión con separación integrada de co2 mediante carbonatación
US5520894A (en) Process for removing carbon dioxide regeneratively from gas streams
Zhao et al. Capturing CO2 in flue gas from fossil fuel-fired power plants using dry regenerable alkali metal-based sorbent
JP7332571B2 (ja) 二酸化炭素還元システム、及び二酸化炭素還元方法
TWI261616B (en) Hot solids gasifier with CO2 removal and hydrogen production
ES2671444T3 (es) Sistema y procedimiento de procesamiento de ciclo de calcinación/carbonatación
ES2384491T3 (es) Procedimiento de captura de CO2 mediante CaO y la reducción exotérmica de un sólido
JP4991681B2 (ja) 分圧スイングサイクル化学反応を介した二酸化炭素の分離
US11193074B2 (en) All-steam gasification with carbon capture
US8356992B2 (en) Method and system for capturing carbon dioxide in an oxyfiring process where oxygen is supplied by regenerable metal oxide sorbents
US5665319A (en) Method of separating carbon dioxide from carbon dioxide containing gas and combustion apparatus having function to separate carbon dioxide from the combustion gas
ES2838727T3 (es) Sistema para captura de CO2 de un gas de combustión mediante los ciclos de carbonatación-calcinación CaO/CaCO3
US8435470B2 (en) Method and arrangement for separation of CO2 from combustion flue gas
CN101200655A (zh) 使用非混合燃料处理器的系统和方法
Eide et al. Novel capture processes
US20200148963A1 (en) All-Steam Gasification for Supercritical CO2 Cycle System
MX2008012528A (es) Procedimiento de precalcinacion con produccion de co2 puro o facilmente purificable proveniente de la descomposicion de carbonatos.
US20140158030A1 (en) Method and system for capturing carbon dioxide in an oxyfiring process where oxygen is supplied by steam enhanced oxygen release from regenerable metal oxide sorbents
ES2650840B2 (es) Sistema integrado de captura de CO2 y producción de bicarbonato de sodio (NaHCO3) A partir de Trona (Na2CO3 - 2H2O - NaHCO3)
US8128735B1 (en) Process for CO2 capture using zeolites from high pressure and moderate temperature gas streams
US11702605B2 (en) Plant and method for the production of hydrogen with the use and storage of CO2 using fuels
DK2359925T3 (en) METHOD AND DEVICE FOR BIOMASS BURNING AND SIMULTANEOUS CAPTURE OF CARBON DIOXIDE In a combustor-carbonator
KR100534543B1 (ko) 소각 폐열 재생 산소부화 시스템
CZ31287U1 (cs) Nízkoemisní energetický systém tvořený integrovaným paroplynovým cyklem s precombustion záchytem CO2
ES2737875A1 (es) Instalacion y procedimiento de captura de co2

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2479886

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 10946319

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 20038066807

Country of ref document: CN

Ref document number: 2003578042

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2003712141

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2003216925

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 2003712141

Country of ref document: EP