CN101200655A - 使用非混合燃料处理器的系统和方法 - Google Patents

使用非混合燃料处理器的系统和方法 Download PDF

Info

Publication number
CN101200655A
CN101200655A CNA2007101801967A CN200710180196A CN101200655A CN 101200655 A CN101200655 A CN 101200655A CN A2007101801967 A CNA2007101801967 A CN A2007101801967A CN 200710180196 A CN200710180196 A CN 200710180196A CN 101200655 A CN101200655 A CN 101200655A
Authority
CN
China
Prior art keywords
fluid
hydrogen
reactor
receive
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2007101801967A
Other languages
English (en)
Inventor
P·P·库尔卡尼
R·G·里泽克
R·F·萨比亚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of CN101200655A publication Critical patent/CN101200655A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C99/00Subject-matter not provided for in other groups of this subclass
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • C01B13/0229Purification or separation processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/12Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/52Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with liquids; Regeneration of used liquids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/56Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/48Apparatus; Plants
    • C10J3/482Gasifiers with stationary fluidised bed
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/725Redox processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0415Purification by absorption in liquids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/042Purification by adsorption on solids
    • C01B2203/043Regenerative adsorption process in two or more beds, one for adsorption, the other for regeneration
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0475Composition of the impurity the impurity being carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0485Composition of the impurity the impurity being a sulfur compound
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/146At least two purification steps in series
    • C01B2203/147Three or more purification steps in series
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/80Aspect of integrated processes for the production of hydrogen or synthesis gas not covered by groups C01B2203/02 - C01B2203/1695
    • C01B2203/84Energy production
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0043Impurity removed
    • C01B2210/0046Nitrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/093Coal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0956Air or oxygen enriched air
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0973Water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1603Integration of gasification processes with another plant or parts within the plant with gas treatment
    • C10J2300/1606Combustion processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1625Integration of gasification processes with another plant or parts within the plant with solids treatment
    • C10J2300/1637Char combustion
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/164Integration of gasification processes with another plant or parts within the plant with conversion of synthesis gas
    • C10J2300/1643Conversion of synthesis gas to energy
    • C10J2300/165Conversion of synthesis gas to energy integrated with a gas turbine or gas motor
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1671Integration of gasification processes with another plant or parts within the plant with the production of electricity
    • C10J2300/1675Integration of gasification processes with another plant or parts within the plant with the production of electricity making use of a steam turbine
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1678Integration of gasification processes with another plant or parts within the plant with air separation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1807Recycle loops, e.g. gas, solids, heating medium, water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1853Steam reforming, i.e. injection of steam only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/99008Unmixed combustion, i.e. without direct mixing of oxygen gas and fuel, but using the oxygen from a metal oxide, e.g. FeO
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Industrial Gases (AREA)
  • Fuel Cell (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

在此公开了使用非混合燃料处理器(80)的系统和方法。在一个实施方案中,使用非混合燃料处理器(80)的系统包括:非混合燃料处理器(80)和发电单元(100)。非混合燃料处理器(80)包括:气化反应器(28)、氧化反应器(32)和再生反应器(30)。气化反应器(28)包括CO2吸附材料。氧化反应器(32)包括氧转移材料。再生反应器(30)被设置以从气化反应器(28)中接收废CO2吸附材料和将再生的CO2吸附材料送回到气化反应器(28),并且被设置以接收来自氧化反应器(32)的被氧化的氧转移材料,和将被还原的氧转移材料送回到氧化反应器(32)。发电单元(100)被设置以接收来自氧化反应器(32)的贫氧流体并产生电。

Description

使用非混合燃料处理器的系统和方法
技术领域
本申请总体涉及非混合(unmixed)燃料处理器,更具体而言,涉及使用非混合燃料处理器生产电和/或氢气的系统和方法。
现今,由于具有充足的国内供给,煤已经是美国最安全、可靠和可供给能源供应之一,气化煤来发电已经作为整体煤气化联合循环(IGCC)发电厂在商业上引入。然而,现代工业社会中一个最主要的问题是由基于化石燃料的传统燃烧系统带来的空气污染。最早认识到的空气污染问题是烟的排放。在现代锅炉和熔炉中,烟气排放可以得到避免或至少通过使用Over Fire Air(″OFA″)技术得到很大降低。燃烧产生的其它类型的空气污染包括颗粒物排放,例如粉煤燃烧的细灰颗粒、硫的氧化物(例如SO2和SO3)、一氧化碳排放、挥发性碳氢化合物排放和氮的两种氧化物(NO和NO2)的排放。近来,由于发电厂和其它燃烧系统排放的温室气体CO2引起的全球变暖问题已经成为人们最关心的环境问题。
另一个主要的技术问题涉及煤作为动力燃气涡轮燃料的使用。燃气涡轮是用来产生电能的最低成本消耗的系统。因为燃气涡轮的热动力效率随着涡轮入口温度升高而升高,所以努力提高涡轮效率通常包括将涡轮入口温度提高到更高的水平。因此,涡轮叶片和其它部件已经被设置以可以承受升高的高入口温度。众所周知,通过煤的燃烧产生的热空气含有飞灰(其对涡轮叶片具有腐蚀性)。在这些腐蚀性飞灰存在下,涡轮叶片可以使用的最大维护温度小于不存在飞灰的情况。这种局限明显降低了总工艺效率和降低了煤作为燃气涡轮燃料的竞争力。这些和其它的缺点已经阻止了低成本(并且丰富)的煤成为一种令人重视的燃气涡轮燃料。如果开发出一种方法,从而使得煤可以以产生不会浸蚀或腐蚀的热气体的方式燃烧,那么将会排除对温度降低的需要,并且煤将会变成更经济可行的燃气涡轮燃料。
美国专利US5339754、5509362和US5827496公开了一种使用催化剂燃烧燃料的方法,其中随着燃料和空气交替与催化剂接触,当催化剂处在被氧化状态时很容易地被还原,而处在被还原态时很容易地被氧化。燃料还原催化剂,并且被氧化成二氧化碳(CO2)和水蒸汽。依次地,空气氧化催化剂,并且消耗氧气。从而燃烧可以有效进行而不需要在燃烧步骤之前或进行中将燃料和空气混合。如果提供装置使得当离开燃烧步骤时,CO2和水蒸汽与贫氧空气可以在不同方向导出,那么就可以完全避免燃料和空气的混合。这种特殊的燃烧方法在本领域被公知为“非混合燃烧”。
因此,仍然需要更有效、环境友好、可靠的发电方法。
发明内容
在此公开了使用非混合燃料处理器的系统和方法的实施方案。在一种实施方案中,使用非混合燃料处理器的系统包括:非混合燃料处理器和动力生成单元。非混合燃料处理器包括:气化反应器、氧化反应器和再生反应器。气化反应器具有固体碳氢燃料入口、水入口、和氢出口,并且包括CO2吸附材料。氧化反应器具有空气入口和流体出口,并且包括氧转移材料。再生反应器具有CO2流体(stream)出口,并被设置以从气化反应器中接收废CO2吸附材料和将再生的CO2吸附材料送回到气化反应器,并且被设置以接收来自氧化反应器的被氧化的氧转移材料(oxygen transfermaterial),和将被还原的氧转移材料送回到氧化反应器。发电单元被设置以接收来自氧化反应器的贫氧流体(oxygen depleted stream)并产生电。
在一个实施方案中,使用非混合燃料处理器的方法包括:使用水气化固体碳氢燃料;使用CO2吸附材料捕集CO2,以产生废(spent)CO2吸附材料和含氢的氢流体;在氧化反应器中氧化氧转移材料并产生贫氧流体;再生废CO2吸附材料和被氧化的氧转移材料,并产生CO2流体;和在发电单元中使用贫氧流体发电。
通过以下附图和发明详述,将举例说明上述和其它的特征。
附图说明
现参考附图,其是示例性而非限制性的,其中相同的部件使用相同的标记。
图1是非混合燃料处理器(UFP)系统的示例性实施方案的示意图。
图2是整体气化联合循环(IGCC)多元(polygeneration)装置的示例性实施方案的示意图,其中该装置包括CO2捕集。
图3是具有CO2分离的非混合燃料处理器多元(polygen)系统的实施方案的示意图。
图4是具有PSA废气燃烧的非混合燃料处理器多元(polygen)系统的实施方案示意图。
图5是使用H2和CO2和/或N2的非混合燃料处理器多元(polygen)系统的实施方案示意图。
图6是具有CO2分离的非混合燃料处理器多元(polygen)系统的实施方案的示意图,其用于产生低压电。
发明详述
整体煤气化联合循环(IGCC)技术很好地满足了比其它技术更加清洁的用煤发电的要求。该技术与碳截存(carbon sequestration)和生产氢燃料相一致。而且,因为非混合燃料处理器(UFP)技术相对与其它气化和燃烧系统提供了降低费用、增加工艺效率、和/或降低排放的可能性,所以组合循环(CC)和UFP技术相结合能够以环境友好形式提高效率。这种结合的技术能够与燃料电池和/或与其它装置(例如尿素和/或氨生产装置)相结合使用,以生产电、尿素、和/或氨,同时还产生适于CO2截存(seques tration)的流体。
现参考附图,其中在多个附图中相同的部件使用相同的标记表示,以利于方便和清楚的看图,但是并不是涉及每个附图都进行讨论。图1示意性图示了非混合燃料处理器80和其流程。在非混合燃料处理器技术中,固体碳氢燃料(例如煤、植物燃料等)、水(例如蒸汽)和空气在气化反应器28中转化成分离的富含氢气体流、再生反应器30中产生可以进行截存的富含CO2气体、和在氧化反应器32中(在高温(例如大约1100℃-大约1300℃)和高压(例如大约1大气压(atm)-大约60atm,)下)生成可以被用来发电(例如在燃气涡轮膨胀机中)的贫(耗尽)氧空气。UFP技术在高温(大约600℃-大约1200℃,或更优选大约750℃-大约1100℃)和高压(大约1大气压(atm)-大约60atm,或更优选大约20atm)下使用CO2吸附材料捕集CO2。而且,由于燃料和空气没有混合一起,并且还因为较低的燃气涡轮入口温度(与其它燃气涡轮系统的1400℃相比,温度小于或等于1300℃),UFP方法与非UFP方法相比能够产生更低量的污染物,例如NOx
UFP技术原理基本上使用三循环流化床反应器,该流化床反应器中含有CO2吸附材料和氧转移材料(OTM)。CO2吸附材料(例如金属氧化物和/或金属碳酸盐系统,这些系统基于例如钙(Ca)、镁(Mg)、钠(Na)、锂(Li)、硅(Si)、以及至少含有至少一种前述金属元素的组合的元素基础上)吸收和/或吸附CO2以形成碳酸盐(吸收剂-CO2)。OTM是金属氧化物(例如铁、镍、铜、锰等的氧化物,以及包括至少一种前述物质的组合),其可以被氧化形成金属氧化物(OTM-O)。在每个反应器中都存在床材料的混合物,并且当床材料从一个反应器中转移到另一反应器时经过多个转换和反应。每个反应器用作不同的关键性目的:气化、CO2释放或氧化。
气化反应器28开始气化固体碳氢燃料(例如煤和/或其它含有C、H、O元素的化石燃料,以及含有至少一种前述物质的组合);进料到该反应器中的煤(例如粉煤)与水(例如过热蒸汽)一起部分气化,以产生H2、CO和CO2。气化反应器中的条件(例如约600℃-约900℃的温度,或更优选约750℃-约850℃的温度,和大约1atm-大约60atm的压力,或更优选大约15atm-大约20atm的压力)促进了CO2吸附材料吸收CO2。气相中CO2浓度的降低使得水-气转移反应的平衡转向消耗气相中的CO(CO+H2O→H2+CO2)。气化反应器28中CO和CO2的减少生成了富含H2产品流体。床材料的循环提供了连续从再生反应器30中供应CO2吸附材料和将废CO2吸附材料转移到再生反应器30中。
再生反应器30是从废CO2吸附材料中释放CO2的地方(吸收剂-CO2+热量→吸收剂+CO2),从而再生CO2吸附剂。当来自氧化反应器32的热床材料(氧转移材料,例如温度为大约1100℃-大约1300℃)加热再生反应器30时发生再生,将床的温度升高到足够CO2释放的水平,例如升高到大约900℃-大约1100℃(例如压力为大约1atm-大约20atm)。CO2释放产生了适合截存(sequestration)的富含CO2产品流体。另外,来自氧化反应器32的被氧化的氧转移材料被焦化气化产生的合成气还原,同时提供了将CO氧化成CO2和将H2氧化成H2O所需的氧气。
OTM-O+CO→OTM+CO2
OTM-O+H2→OTM+H2O
被还原的氧转移材料在氧化反应器32中被氧化:
OTM+1/2O2→OTM-O+热量
因此,进料到氧化反应器32的空气通过高放热反应将氧转移材料再氧化,所述反应消耗了空气进料中大部分的氧气。从而,氧化反应器32产生了用在燃气涡轮膨胀机中的高温(大约1100℃-大约1300℃的温度)、高压(例如大于或等于15atm的压力,更优选大约15atm-大约20atm的压力)的贫(耗尽)氧空气,同时产生了通过固体转移物转移到气化反应器28和再生反应器30的热量。基本上,再生反应器30与气化反应器28和氧化反应器32交换床材料,而不是气化反应器与氧化反应器之间直接转移,从而允许CO2吸附材料和氧转移材料的再生和循环。CO2吸附材料在气化反应器28中捕集CO2并在再生反应器30中释放CO2,而氧转移材料在氧化反应器32中被氧化,而在再生反应器30中被还原。可以在此公开的系统中使用的其它示例性UFP单元公开在Kulkarni等的美国申请序列号11/609124,Attorney Docket No.217323-1(GE3-0180)中,在此同时公开。
现参考图2,该图是用于由固体碳氢燃料(例如煤)发电的示例性整体气化联合循环(IGCC)截存装置的示意图。该装置包括空气分离单元2,用于接收空气并分离氧气和氮气。分离的氧气与煤一起进入合成气发生器发生器4。来自发生器4的合成气在进入水气转换反应器(转换反应器)8之前在热交换器6中冷却,其中在转换反应器8中流体中的一氧化碳转变成二氧化碳。来自转换反应器8的流体随后流过气体清洁单元(例如合成气清洁单元、酸性气体回收(ARG)单元等)10以除去硫、流过二氧化碳洗涤器12以除去二氧化碳(CO2)、流过变压吸附(PSA)单元14以从氢气(H2)流中分离杂质。分离的杂质与来自空气分离单元的氮流体和来自压缩机18的压缩空气一起在燃烧器16中燃烧。燃烧流体进入动力发生单元100中,其中动力发生单元100包括任选的一个或多个膨胀机(expander)20(例如涡轮机)、热回收蒸汽发生器(HRSG)22、蒸汽涡轮24和发电机26。
图3显示了图1中描述的UFP工艺,该工艺整合在多元(polygen)装置中,该装置能够生产氢和/或电以及捕集CO2。在图3中,与很多多元(polygen)装置一样,空气分离单元并不是必需的(未示出),CO2分离为非混合燃料处理器(UFP)80所固有,其中处理器80包括反应器1(R1)、2(R2)、和3(R3),并且由于在膨胀机20中使用了贫氧空气(耗尽流体),热交换损失得到降低和避免。在这种装置中,空气在进入UFP80之前直接被引入到压缩机40中。压缩机可以将空气压缩到大约2atm-大约60atm的压力,或优选大约15atm-大约20atm之间的压力。在UFP80中,空气和来自PSA单元14的压缩的PSA废气进入氧化反应器32中,在那里氧转移材料在进入CO2释放反应器30(再生反应器)之前被氧化。
来自CO2释放反应器30的被还原的氧转移材料返回到氧化反应器32中,而再生的CO2吸附材料进入到气化反应器28,同时富含CO2流体在截存(sequestration)之前可以流过热回收蒸汽发生器和冷凝器36和或流过压缩机38。CO2流体随后可以被截存(sequestration),部分高压CO2流体可以循环回到CO2释放反应器30中。CO2的循环降低了蒸汽流化态的需要,因此增加了方法的总效率(例如效率增加大于或等于0.5%,或甚至高于或等于大约2%)。
在气化反应器28中,煤被气化,并且CO2吸附材料捕集CO2;促进了水气转换反应,从而将额外的CO转化成吸附的CO2,并产生富含H2的流体,在合成流体中含有大于或等于大约60体积%(vol%)H2,或更优选在合成气中含有大约60vol%-大约90vol%H2。CO2吸附材料返回到CO2释放反应器30中,而气化反应器流出物(CO2还原流体)可以流过气化反应器28,并且流过热回收蒸汽发生器34、转换反应器8、气体清洁(例如酸性气回收(AGR))单元10、和变压吸附单元14。转换反应器8可以降低CO2还原流体中的CO浓度,其浓度可以从大约10vol%-大约30vol%降低到小于或等于大约1vol%,同时生成更多的H2。酸性气体回收单元10从流体(例如从源自煤的合成气)中除去杂质,例如氯、硫、和氨。变压吸附单元14进一步净化来自转换反应器的流体以产生纯化的H2流(例如99.99%的纯度),其可以被用在例如基于燃料电池的应用中。
来自PSA单元14的氢流体可以根据需要(例如液化、燃料电池、涡轮等)使用,而PSA废气可以在压缩机18中压缩,并返回到氧化反应器32中和/或被燃烧。换句话说,所有的PSA废气都可以循环到氧化反应器32中,或所有的PSA废气都可以被燃烧,或部分PSA废气可以循环到氧化反应器32中而其它部分PSA废气可以被燃烧。因为CO2循环到再生反应器30中,可以减少流向该反应器的蒸汽,因此操作费用可以得到降低。来自氧化反应器32和/或燃烧器(参见图4)的流出流体随后可以用在发电单元100中。
如在图4中标出和示出的,PSA废气可以被导入到氧化反应器32或燃烧器16中。当所有或部分PSA废气被燃烧时,燃烧流体可以被导入到发电单元100的膨胀机20中。由于向膨胀机20中导入了较高温度(大约1300℃-大约1400℃的温度)的气体,PSA废气的燃烧提高了系统效率。另外,或可选择的,在燃烧器16中使用PSA废气,全部或部分来自PSA单元的氢流体可以在各种装置42中使用。(参见图5)可能的装置42包括尿素、氨等装置以及包括至少一种这些装置的结合。
在图6中,PSA单元已经被燃料电池44代替。在该实施方案中,压缩机40和膨胀机20已经被去掉,使得压缩机18和氧化反应器之间、氧化反应器和热回收蒸汽发生器22之间直接流体相连。任选地去掉压缩机40和膨胀机22(参见图3),以允许低压电生成(low pressure electricitygeneration)。结果,与低压、低温电生产有关的的资本支出可以最小化。
在此公开的采用非混合燃料处理器(UFP)发电的这些系统与没有采用UFP的系统相比增加了很多优点。例如:(i)可以向系统增加燃料电池以另外能够发电和/或备份发电,空气分离单元并不是象一些发电系统一样必需;(ii)CO2分离在公开的UFP系统中是固有的;(iii)来自UFP的氢大量富含(例如大于或等于大约80vol%),从而降低了变压吸附器的负荷;(iv)因为热贫氧流体可以直接送到发电单元,免去了热交换损失;(v)CO2循环回到再生反应器中,降低了该反应器中蒸汽的需要量,从而提高了系统效率;(vi)用来燃烧部分或全部PSA废气的燃烧器的使用增加了膨胀机的入口温度,也增加了系统效率;和(vii)系统中产生的氢气和氮气处在可以用于生产尿素和/或氨的条件。
在此公开的范围是包含或可结合的(例如范围“至多为25wt%,或优选大约5wt%-大约20wt%”包括端点和范围“大约5wt%-大约20wt%”的所有中间值等)。“结合”包括混合、合金反应产物等等。此外,术语“第一”、“第二”等在此并不指代任何顺序、数量或重要性,而是另外被用来区分一个元素和另一元素,措词“a”和“an”在此并不是对数量的限定,而是指存在至少一种引用组分。与数量相关的修饰语“大约”是包括指定的值并具有左右范围规定的含义(例如包括与特定值测量相关的误差程度)。在此使用的后缀“(s)”是指包括单个和多个被修饰的术语,因此包括一个或多个该术语(例如着色剂包括一种或多种着色剂)。整个说明书中提及到的“一个实施方案”、“另一实施方案”、“一种实施方案”等等是指与实施方案相关描述的特定部件(例如特征、结构和/或特性)包括在至少一个在此描述的实施方案中,而可以在其它实施方案中存在或不存在。另外,应当理解描述的部件可以在各种实施方案中以任何合适的方式结合。
所有引用的专利、专利申请、和其它参考文献在此通过参考全文结合。然而,如果在本申请中的条款与这些结合的参考文献相矛盾或不一致,则本申请的条款优于结合文献的不一致条款。
虽然本发明已经描述了优选的实施方案,但是本领域技术人员应当理解在不背离本发明范围的情况下,可以进行各种改变,并且可以使用等同物对部件进行替换。另外,在不背离发明实质性范围的情况下,可以作出一些改进以使得特殊位置和材料适合本发明技术。因此,目的并不是将本发明限制成作为实现本发明的最佳方式而公开的特定实施方案,而且本发明将包括落入附加的权利要求范围内的所有实施方案。

Claims (10)

1.一种使用非混合燃料处理器(80)的系统,包括:
非混合燃料处理器(80),该处理器包括:
气化反应器(28),具有固体碳氢燃料入口、水入口、和氢出口,并且包括CO2吸附材料;
氧化反应器(32),具有空气入口和流出出口,并且包括氧转移材料;和
再生反应器(30),具有水入口和CO2流体出口,其中再生反应器(30)被设置以从气化反应器(28)中接收废CO2吸附材料和将再生的CO2吸附材料送回气化反应器(28),还被设置以接收来自氧化反应器(32)的被氧化的氧转移材料,和将被还原的氧转移材料送回氧化反应器(32);和
发电单元(100),其被设置以接收来自氧化反应器(32)的贫氧流体并产生电。
2.权利要求1的系统,其中发电单元(100)包括:
膨胀机(20),其被设置以降低贫氧流体的压力以生成降压的流体;
第一热回收蒸汽发生器(22),其被设置以将降压的流体中的热量传递到水流中,以生成蒸汽;和
蒸汽涡轮机(24),其被设置以由蒸汽产生电。
3.权利要求1-2任一项的系统,进一步包括:
第二热回收蒸汽发生器(34),其被设置以接收来自气化反应器(28)的氢流体;
转换反应器(8),其被设置以接收来自第二热回收蒸汽发生器(34)的氢流体,并将氢流体中的CO转化成CO2
气体清洁单元,被设置以接收来自转换反应器(8)的氢流体,并降低氢流体中杂质的浓度;和
变压吸附单元(14),其被设置以接收来自气体清洁单元的氢流体,并将氢流体中的氢气从其它流体组分中分离出,以生成纯化的氢流体和PSA废气;和
压缩机(18,38,40),其被设置以接收和压缩PSA废气,以生成被压缩的PSA废气;
其中氧化反应器(32)和/或燃烧器(16)被设置以接收被压缩的PSA废气。
4.权利要求1-2任一项的系统,进一步包括:
第二热回收蒸汽发生器(34),其被设置以接收来自气化反应器(28)的氢流体;
转换反应器(8),其被设置以接收来自第二热回收蒸汽发生器(34)的氢流体,并将氢流体中的CO转化成CO2
气体清洁单元,被设置以接收来自转换反应器(8)的氢流体,并从氢流体中除去;和
燃料电池,其被设置以接收来自气体清洁单元的氢流体并产生电和副产物流;
其中压缩机(18,38,40)被设置以接收来自燃料电池的副产物流;
5.权利要求1-4任一项的系统,其中再生反应器(30)被设置以接收循环的CO2流体。
6.一种产生电的方法,包括:
用水来气化煤;
使用CO2吸附材料来吸附CO2,以产生废CO2吸附材料和含氢的氢流体;
在氧化反应器(32)中氧化氧转移材料并产生贫氧流体;
再生废CO2吸附材料和被氧化的氧转移材料,并产生CO2流体;和
在发电单元(100)中使用贫氧流体发电。
7.权利要求6的方法,其中产生电进一步包括:
在燃料电池中使用氢生成电;
通过来自贫氧流体的转移热来生成蒸汽;和
将蒸汽流过蒸汽涡轮(24)以产生额外的电。
8.权利要求6-7任一项的方法,进一步包括将氢气反应,以生成选自以下物质的材料:尿素(42)、氨(42)、和至少包括一种前述物质的组合。
9.权利要求6的方法,进一步包括:
从氢流体中回收热量;
将氢流体中的CO转化为CO2
降低氢流体中的杂质浓度;和
将富氢合成气流体中的氢气从其它流体组分中分离出来,以生成纯化的氢流体和PSA废气;
压缩PSA废气。
10.权利要求9的方法,进一步包括:
燃烧被压缩的PSA废气,以生成燃烧流体,并产生电和燃烧流体;和/或将被压缩的PSA废气导入氧化反应器(32)中。
CNA2007101801967A 2006-12-11 2007-10-11 使用非混合燃料处理器的系统和方法 Pending CN101200655A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/609109 2006-12-11
US11/609,109 US20080134666A1 (en) 2006-12-11 2006-12-11 Systems and Methods Using an Unmixed Fuel Processor

Publications (1)

Publication Number Publication Date
CN101200655A true CN101200655A (zh) 2008-06-18

Family

ID=39135126

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2007101801967A Pending CN101200655A (zh) 2006-12-11 2007-10-11 使用非混合燃料处理器的系统和方法

Country Status (5)

Country Link
US (1) US20080134666A1 (zh)
EP (1) EP1933087A2 (zh)
JP (1) JP2008144136A (zh)
CN (1) CN101200655A (zh)
RU (1) RU2007137645A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102010738A (zh) * 2010-11-24 2011-04-13 北京低碳清洁能源研究所 一种煤或生物质中低温热解提质系统和利用该系统生产提质煤、高热值热解气和焦油或液化合成油的方法
CN102187153A (zh) * 2008-10-15 2011-09-14 乔治洛德方法研究和开发液化空气有限公司 产生能量和俘获co2的方法
CN104025356A (zh) * 2011-05-04 2014-09-03 兹特克公司 具有二氧化碳废气利用的零排放发电站
CN106629600A (zh) * 2016-09-13 2017-05-10 武汉凯迪工程技术研究总院有限公司 粗合成气吸附催化制氢工艺及其设备
CN113831939A (zh) * 2020-06-08 2021-12-24 国家能源投资集团有限责任公司 发电并捕集二氧化碳的系统及方法

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007046260A1 (de) * 2007-09-26 2009-04-09 Uhde Gmbh Verfahren zur Reinigung des Rohgases aus einer Feststoffvergasung
US20100018216A1 (en) * 2008-03-17 2010-01-28 Fassbender Alexander G Carbon capture compliant polygeneration
IT1393168B1 (it) * 2008-09-08 2012-04-11 Senneca Impianto e processo per combustione di tipo "looping" di solidi carboniosi
FR2936301B1 (fr) * 2008-09-23 2010-09-10 Inst Francais Du Petrole Procede et dispositif optimises de combustion par boucle chimique sur des charges hydrocarbonees liquides
EP3666858A3 (en) 2008-09-26 2020-08-19 The Ohio State University A method of preparing ceramic composite particles
FR2937334A1 (fr) * 2008-10-17 2010-04-23 Jean Xavier Morin Dispositif d'extraction de co2 de l'atmosphere
FR2941689B1 (fr) * 2009-01-30 2011-02-18 Inst Francais Du Petrole Procede integre d'oxydation, reduction et gazeification pour production de gaz de synthese en boucle chimique
AU2010292310B2 (en) 2009-09-08 2017-01-12 The Ohio State University Research Foundation Synthetic fuels and chemicals production with in-situ CO2 capture
US9371227B2 (en) 2009-09-08 2016-06-21 Ohio State Innovation Foundation Integration of reforming/water splitting and electrochemical systems for power generation with integrated carbon capture
US8356992B2 (en) * 2009-11-30 2013-01-22 Chevron U.S.A. Inc. Method and system for capturing carbon dioxide in an oxyfiring process where oxygen is supplied by regenerable metal oxide sorbents
FR2955865B1 (fr) 2010-02-01 2012-03-16 Cotaver Procede de recyclage du dioxyde de carbone (co2)
FR2955866B1 (fr) * 2010-02-01 2013-03-22 Cotaver Procede et systeme d'approvisionnement en energie thermique d'un systeme de traitement thermique et installation mettant en oeuvre un tel systeme
FR2955854B1 (fr) 2010-02-01 2014-08-08 Cotaver Procede et systeme de production d'hydrogene a partir de matiere premiere carbonee
FR2955918B1 (fr) 2010-02-01 2012-08-03 Cotaver Procede et systeme de production d'une source d'energie thermodynamique par la conversion de co2 sur des matieres premieres carbonees
CA2816800C (en) 2010-11-08 2019-01-08 The Ohio State University Circulating fluidized bed with moving bed downcomers and gas sealing between reactors
US9903584B2 (en) 2011-05-11 2018-02-27 Ohio State Innovation Foundation Systems for converting fuel
ES2880629T3 (es) 2011-05-11 2021-11-25 Ohio State Innovation Foundation Materiales portadores de oxígeno
WO2013112619A1 (en) 2012-01-23 2013-08-01 Battelle Memorial Institute Separation and/or sequestration apparatus and methods
US20130255272A1 (en) * 2012-03-30 2013-10-03 Alstom Technology Ltd. Method for carbon capture in a gas turbine based power plant using chemical looping reactor system
CN102719269B (zh) * 2012-06-08 2014-11-26 新疆大学 减压渣油悬浮床加氢裂化催化剂及制备方法和使用方法
EP2867484B1 (en) 2012-06-27 2020-02-12 Grannus, LLC Polygeneration production of power and fertilizer through emissions capture
US10144640B2 (en) 2013-02-05 2018-12-04 Ohio State Innovation Foundation Methods for fuel conversion
US9938861B2 (en) * 2013-02-21 2018-04-10 Exxonmobil Upstream Research Company Fuel combusting method
JP5900972B2 (ja) * 2013-03-22 2016-04-06 一般財団法人電力中央研究所 Nh3併産型の発電プラント
WO2015131117A1 (en) * 2014-02-27 2015-09-03 Ohio State Innovation Foundation Systems and methods for partial or complete oxidation of fuels
WO2017096337A1 (en) 2015-12-04 2017-06-08 Grannus, Llc Polygeneration production of hydrogen for use in various industrial processes
WO2017180763A1 (en) 2016-04-12 2017-10-19 Ohio State Innovation Foundation Chemical looping syngas production from carbonaceous fuels
EP3648881B1 (en) 2017-07-31 2023-10-25 Ohio State Innovation Foundation Reactor system with unequal reactor assembly operating pressures
DE102017008577A1 (de) * 2017-09-13 2019-03-14 Christian Blank Verfahren zur Speicherung von aus fossiler Kohle oder beliebiger Biomasse gewonnenem Wasserstoff
US10549236B2 (en) 2018-01-29 2020-02-04 Ohio State Innovation Foundation Systems, methods and materials for NOx decomposition with metal oxide materials
US11413574B2 (en) 2018-08-09 2022-08-16 Ohio State Innovation Foundation Systems, methods and materials for hydrogen sulfide conversion
AU2020271068A1 (en) 2019-04-09 2021-09-30 Ohio State Innovation Foundation Alkene generation using metal sulfide particles

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4217201A (en) * 1978-10-23 1980-08-12 Hydrocarbon Research, Inc. Integrated coal cleaning, liquefaction, and gasification process
GB2039293B (en) * 1979-01-09 1982-11-17 Exxon Research Engineering Co Conversion of fuel to reducing and/or synthesis gas
GB8309359D0 (en) * 1983-04-06 1983-05-11 Ici Plc Synthesis gas
US5827496A (en) * 1992-12-11 1998-10-27 Energy And Environmental Research Corp. Methods and systems for heat transfer by unmixed combustion
US5509362A (en) * 1992-12-11 1996-04-23 Energy And Environmental Research Corporation Method and apparatus for unmixed combustion as an alternative to fire
US5339754A (en) * 1992-12-11 1994-08-23 Energy And Environmental Research Method and apparatus for prevention of puffing by rotary kiln and other incinerators and combustion systems
US6007699A (en) * 1996-08-21 1999-12-28 Energy And Environmental Research Corporation Autothermal methods and systems for fuels conversion
US6572761B2 (en) * 2001-07-31 2003-06-03 General Electric Company Method for efficient and environmentally clean utilization of solid fuels
US6669917B2 (en) * 2001-07-31 2003-12-30 General Electric Co. Process for converting coal into fuel cell quality hydrogen and sequestration-ready carbon dioxide
US6494153B1 (en) * 2001-07-31 2002-12-17 General Electric Co. Unmixed combustion of coal with sulfur recycle
US6667022B2 (en) * 2001-08-14 2003-12-23 General Electric Co. Process for separating synthesis gas into fuel cell quality hydrogen and sequestration ready carbon dioxide
US7780749B2 (en) * 2006-12-11 2010-08-24 General Electric Company Unmixed fuel processors and methods for using the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102187153A (zh) * 2008-10-15 2011-09-14 乔治洛德方法研究和开发液化空气有限公司 产生能量和俘获co2的方法
CN102010738A (zh) * 2010-11-24 2011-04-13 北京低碳清洁能源研究所 一种煤或生物质中低温热解提质系统和利用该系统生产提质煤、高热值热解气和焦油或液化合成油的方法
WO2012068930A1 (zh) * 2010-11-24 2012-05-31 北京低碳清洁能源研究所 一种煤或生物质中低温热解提质系统和利用该系统生产提质煤、高热值热解气和焦油或液化合成油的方法
CN102010738B (zh) * 2010-11-24 2013-06-19 北京低碳清洁能源研究所 一种煤或生物质中低温热解提质系统和利用该系统生产提质煤、高热值热解气和焦油或液化合成油的方法
CN104025356A (zh) * 2011-05-04 2014-09-03 兹特克公司 具有二氧化碳废气利用的零排放发电站
CN104025356B (zh) * 2011-05-04 2017-04-26 兹特克公司 具有二氧化碳废气利用的零排放发电站
CN106629600A (zh) * 2016-09-13 2017-05-10 武汉凯迪工程技术研究总院有限公司 粗合成气吸附催化制氢工艺及其设备
CN113831939A (zh) * 2020-06-08 2021-12-24 国家能源投资集团有限责任公司 发电并捕集二氧化碳的系统及方法
CN113831939B (zh) * 2020-06-08 2022-11-25 国家能源投资集团有限责任公司 发电并捕集二氧化碳的系统及方法

Also Published As

Publication number Publication date
RU2007137645A (ru) 2009-04-20
US20080134666A1 (en) 2008-06-12
EP1933087A2 (en) 2008-06-18
JP2008144136A (ja) 2008-06-26

Similar Documents

Publication Publication Date Title
CN101200655A (zh) 使用非混合燃料处理器的系统和方法
Rajabi et al. Chemical looping technology in CHP (combined heat and power) and CCHP (combined cooling heating and power) systems: A critical review
US7780749B2 (en) Unmixed fuel processors and methods for using the same
US8480768B2 (en) Hot solids gasifier with CO2 removal and hydrogen production
EP1247004B1 (en) Method of operating a power plant
EP1194508B1 (en) Electric power generating system by gasification
CN102655928A (zh) 通过CaO和固体的放热还原回收CO2的方法
MX2014009685A (es) Reaccion de oxidacion parcial con enfriamiento de ciclo cerrado.
JP2019537631A (ja) 部分酸化を使用した電力生産のためのシステムおよび方法
JP2019512062A (ja) メタン生成を含む電力生産のためのシステムおよび方法
JPH04244504A (ja) 二酸化炭素回収型石炭火力発電システム
JP2008069017A (ja) 水素製造方法
JP2013006990A (ja) 石炭ガス化複合発電プラント及び石炭ガス化プラント
US8555652B1 (en) Air-independent internal oxidation
WO2012164371A2 (en) Flue gas recirculation
CN215208467U (zh) 耦合化学链反应及co2分离捕集的高效低能耗氢电热冷多联产系统
Luo et al. Capture of CO 2 from coal using chemical-looping combustion: Process simulation
CN112408324A (zh) 耦合化学链反应及co2分离捕集的高效低能耗氢电热冷多联产系统及方法
JP2010531214A (ja) H2及びcoを別々に生成するためのガス廃棄物の処理方法並びにシステム
JP6229115B2 (ja) 発電装置および発電方法
CN114542223B (zh) 一种发电方法及系统
Jin et al. Investigation of a novel gas turbine cycle with coal gas fueled chemical-looping combustion
CN110129100B (zh) 高效燃烧系统及方法
WO2023215952A1 (en) Calcination apparatus and processes with improved co 2 capture
WO2021198819A1 (en) Incineration process for waste and device therefore

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20080618