WO2003070369A1 - Catalyseur servant a preparer aldehyde et acide carboxylique insatures et son procede de fabrication - Google Patents

Catalyseur servant a preparer aldehyde et acide carboxylique insatures et son procede de fabrication Download PDF

Info

Publication number
WO2003070369A1
WO2003070369A1 PCT/JP2003/001769 JP0301769W WO03070369A1 WO 2003070369 A1 WO2003070369 A1 WO 2003070369A1 JP 0301769 W JP0301769 W JP 0301769W WO 03070369 A1 WO03070369 A1 WO 03070369A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
particles
molding
catalyst component
producing
Prior art date
Application number
PCT/JP2003/001769
Other languages
English (en)
French (fr)
Inventor
Masahide Kondo
Seiichi Kawato
Toru Kuroda
Original Assignee
Mitsubishi Rayon Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co., Ltd. filed Critical Mitsubishi Rayon Co., Ltd.
Priority to US10/504,143 priority Critical patent/US20050159619A1/en
Priority to KR1020047012835A priority patent/KR100826760B1/ko
Priority to JP2003569321A priority patent/JP4515769B2/ja
Publication of WO2003070369A1 publication Critical patent/WO2003070369A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/25Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring
    • C07C51/252Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring of propene, butenes, acrolein or methacrolein
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/31Chromium, molybdenum or tungsten combined with bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8876Arsenic, antimony or bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/888Tungsten
    • B01J23/8885Tungsten containing also molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/188Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
    • B01J27/19Molybdenum
    • B01J27/192Molybdenum with bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0045Drying a slurry, e.g. spray drying
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/32Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/32Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
    • C07C45/33Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties
    • C07C45/34Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds
    • C07C45/35Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds in propene or isobutene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/32Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
    • C07C45/37Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of >C—O—functional groups to >C=O groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size

Definitions

  • the present invention provides a gas-phase catalytic oxidation of propylene, isobutylene, tert-butyl alcohol (hereinafter, referred to as TBA) and methyl-tert-butyl ether (hereinafter, referred to as MTBE) using molecular oxygen to obtain unsaturated aldehydes and unsaturated aldehydes.
  • TBA tert-butyl alcohol
  • MTBE methyl-tert-butyl ether
  • Unsaturated aldehydes containing at least molybdenum, bismuth and iron and catalysts for producing unsaturated carboxylic acids which are used in the production of carboxylic acids, methods for producing the same, and methods for producing the same, and unsaturated aldehydes and the like.
  • the present invention relates to a method for producing unsaturated ruponic acid. Background art
  • an extruded catalyst is produced through a step of kneading and extruding particles containing a catalyst component, and a supported molded catalyst is produced through a step of supporting a powder containing a catalyst component on a carrier.
  • the extruded catalyst for example, a method of improving strength and selectivity by adding graphite (inorganic fiber) at the time of production (Japanese Patent Application Laid-Open No. 60-150384) or extruding the catalyst A method of adding a certain type of cellulose derivative during molding (Japanese Patent Application Laid-Open No. Hei 7-16464) has been proposed.
  • Japanese Patent Application Laid-Open No. 2000-77019 discloses that particles obtained by calcining dried particles obtained by a spray dryer are added with a surfactant (Example) or not added ( Comparative Example) describes that the mixture is kneaded and extruded. These are all production methods by one-stage molding.
  • 2000-71313 describes a method for forming a porous molded body.
  • a material to be filled in a piston type extruder is previously extruded by screw extrusion molding. It is stated that it can be molded into a cylinder of a biston-type extrusion molding machine in a filling and shading shape using an apparatus or the like.
  • Example 4 of this document as an example, a method for forming an isobutylene oxidation catalyst containing molybdenum, bismuth and iron is specifically described. It is not molded.
  • the present invention has been made in order to solve the above problems, and has a catalyst activity, an unsaturated aldehyde and an unsaturated carboxylic acid having excellent selectivity for unsaturated aldehydes and unsaturated carboxylic acids.
  • An object of the present invention is to provide a method for producing the catalyst, and a method for producing an unsaturated aldehyde and an unsaturated carboxylic acid in high yield using the catalyst.
  • the process for producing a catalyst for producing unsaturated aldehydes and unsaturated carboxylic acids according to the present invention comprises the steps of vaporizing at least one of propylene, isobutylene, tert-butyl alcohol, and methyl-tert-butyl ether using molecular oxygen.
  • a method for producing an extruded catalyst containing at least molybdenum, bismuth and iron, which is used in the production of unsaturated aldehydes and unsaturated carboxylic acids by phase-contact oxidation comprising the step of producing an aqueous solution containing molybdenum, bismuth and iron Spray drying the slurry to dry particles, or heat treating the dry particles to produce catalyst component particles as calcined particles, and mixing and kneading the catalyst component particles with at least a liquid,
  • the shape of the primary molded article formed in the primary molding step is cylindrical, and the cylinder of the biston molding machine used in the secondary molding step is used. It is desirable to have a diameter of 0.5 times or more and less than 1 time of the diameter.
  • the specific gravity of the primary molded product is desirably 1.1 to 2.7 kgZL.
  • the average particle diameter of the catalyst component particles is preferably 10 to 150 m.
  • the average particle crushing strength of the catalyst component particles is preferably 9 is 8 X 1 0- 4 ⁇ 9. 8 X 1 0- 2 N. It is desirable that the bulk specific gravity of the medium component particles be 0.5 to 1.8 kg / L.
  • the secondary molding piston molding machine when forming the primary molded product into the final shape by the secondary molding piston molding machine, it is desirable not to perform vacuum degassing. When performing primary molding, it is desirable to use a screw extruder for molding.
  • the amount of the liquid mixed with the catalyst component particles is desirably 35 to 55 parts by mass based on 100 parts by mass of the catalyst component particles.
  • the catalyst component particles are desirably calcined particles.
  • the present invention relates to a catalyst for producing an unsaturated aldehyde and an unsaturated carboxylic acid of the present invention, which is produced by the above-mentioned production method.
  • the shape of the catalyst is preferably a ring shape, and its outer diameter is preferably 3 to 15 mm or less.
  • the present invention relates to a method for producing unsaturated aldehydes and unsaturated rubonic acids, which comprises subjecting propylene, isobutylene, TBA or MTBE to gas-phase oxidation with molecular oxygen using the above catalyst.
  • the catalyst for producing unsaturated aldehydes and unsaturated carboxylic acids according to the present invention is an extruded catalyst produced by the production method described below, wherein propylene, isobutylene, TBA or MTBE, which is a reaction raw material, is used as a molecular oxygen.
  • the catalyst is used for producing unsaturated aldehydes and unsaturated carboxylic acids by gas phase catalytic oxidation by the above-mentioned catalyst.
  • the above-mentioned catalyst contains at least molybdenum, bismuth and iron as catalyst components.
  • catalyst components other than molybdenum, bismuth and iron include silicon, cobalt, nickel, chromium, lead, manganese, canoresium, and magnesium.
  • Niobium silver, barium, tin, tantalum, zinc, phosphorus, boron, sulfur, selenium, tellurium, cerium, tungsten, antimony, titanium, lithium, sodium, potassium, rubidium, cesium, thallium and the like.
  • composition represented by the following general formula (I).
  • Mo, Bi, Fe, Si and O represent molybdenum, bismuth, iron, silicon and oxygen, respectively
  • M is at least one selected from the group consisting of cobalt and nickel.
  • X represents at least one element selected from the group consisting of chromium, lead, manganese, calcium, magnesium, niobium, silver, barium, tin, tantalum and zinc
  • Y represents phosphorus
  • boron Z represents at least one element selected from the group consisting of sulfur, selenium, tellurium, cerium, tungsten, antimony and titanium
  • Z is at least one element selected from the group consisting of lithium, sodium, potassium, norevidium, cesium, and talium.
  • the production of the catalyst for producing unsaturated aldehydes and unsaturated carboxylic acids of the present invention comprises: (1) a step of producing catalyst component particles; (2) a step of kneading the obtained catalyst component particles; and (3) a kneading step. It is manufactured through a step of primary molding of the article, (4) a step of secondary molding of the primary molded article with a piston molding machine, and usually further (5) a step of drying and / or heat treating the molded article.
  • an aqueous slurry containing molybdenum, bismuth and iron is spray-dried to produce dry particles.
  • Spray drying has the characteristic that the resulting particles are spherical in shape.
  • the method for producing the aqueous slurry is not particularly limited, and various methods, such as a well-known precipitation method and an oxide mixing method, can be used unless significant uneven distribution of components is involved.
  • the raw materials for the catalyst component include oxides, sulfates, Nitrate, carbonate, hydroxide, ammonium salt, halide, etc. are used.
  • examples of the raw material containing molybdenum as a catalyst component include ammonium paramolybdate, molybdenum trioxide, and the like.
  • the raw material of the catalyst component one type may be used for each element, or two or more types may be used.
  • Spray drying can be performed using, for example, a spray dryer provided with a rotating disk type centrifugal atomizer, a two-fluid nozzle type atomizer, and the like. Conditions such as an inlet temperature and an outlet temperature of the spray dryer are appropriately set so as to obtain a desired average particle diameter. For example, 35 to 55 mass of solid matter. / 0 aqueous slurry using a spray dryer having a rotating disk-type centrifugal ⁇ preparative miser one conventional drying conditions for spray drying, the inlet temperature 1 0 0 to 5 0 0 ° C, outlet temperature The temperature is 100 to 200 ° C. and the rotation speed of the atomizer is 800 to 2000 rpm.
  • the dry particles thus obtained may contain salts such as nitric acid derived from the raw materials for the catalyst.
  • Decomposition of the salt by firing a molded article formed from dried particles containing a large amount of salt may reduce the strength of the molded article. For this reason, it is preferable that the particles are not only dried but also fired at this point to be fired particles.
  • the firing conditions at this time are not particularly limited, but the firing is usually performed in a temperature range of 200 to 600 ° C. in the presence or distribution of oxygen, air, or nitrogen.
  • the calcination time is appropriately selected depending on the raw material of the catalyst, the intended catalyst, and the like.
  • the average particle diameter is preferably 10 m or more, and more preferably 150 m or less. When the average particle diameter is in the range of 10; zm to 150 m, the balance between selectivity and mechanical strength is excellent.
  • the range of 0.5 to 1.8 kg / L is preferable from the viewpoints of handleability during molding and performance of the catalyst. Within this range, sufficient strength to withstand molding is obtained, so that the particles are not easily crushed during molding, and the activity and selectivity of the catalyst are high. In particular, 0.8 to 1.2 kgZL is preferable.
  • the bulk specific gravity is measured by the method described in JI SK 6721.
  • the bulk specific gravity of the catalyst component particles can be adjusted by, for example, the concentration of the aqueous slurry to be spray-dried, the mixing speed and the stirring speed in preparing the aqueous slurry, the slurry concentration, and the like.
  • the average particle crushing strength of the catalyst component particles As for the average particle crushing strength of the catalyst component particles, a larger one tends to withstand molding, and a smaller one tends to have higher activity and selectivity. Therefore, from the viewpoint of performance of the handling property and the catalyst in molding 9. 8 X 1 0- 4 ⁇ 9. Of 8 X 1 0 _2 N range is preferred. Particularly 4. 9 X 1 0- 3 ⁇ 4. 9 X 1 0- 2 N is preferable.
  • the average particle crushing strength of the catalyst component particles can be adjusted by, for example, the concentration of the aqueous slurry to be spray-dried, the mixing speed and the stirring speed in preparing the aqueous slurry, the slurry concentration, and the like.
  • Preferred liquids used in this step include water and alcohol.
  • the alcohol include lower alcohols such as ethanol, methyl alcohol, propyl alcohol, and butyl alcohol.
  • One of these liquids may be used, or two or more of them may be used in combination. However, in this case, it is more preferable to use water from the viewpoint of economy and handleability.
  • the amount of the liquid used is appropriately selected depending on the type and size of the catalyst component particles, the type of the liquid, and the like, but is usually 10 to 70 parts by mass with respect to 100 parts by mass of the catalyst component particles. As the amount of liquid used increases, extrusion molding can be performed more smoothly, so that spherical particles are less likely to be crushed, and large voids, that is, large pores, are formed in dried and fired molded products, which tends to improve selectivity. There is. Therefore, the amount of the liquid used is preferably at least 20 parts by mass, more preferably at least 30 parts by mass, based on 100 parts by mass of the catalyst component particles. Particularly preferred is 35 parts by mass or more.
  • the amount of the liquid used is preferably 60 parts by mass or less, more preferably 50 parts by mass or less, and particularly preferably 45 parts by mass or less with respect to 100 parts by mass of the catalyst component particles.
  • a molding aid such as an organic binder
  • a molding aid IJ include methylcenorelose, ethylsenorellose, carboxylmethylsenorose, sodium carboxymethylcellulose, hydroxyxethylsilenololose, hydroxypropinoresenolose, and hydroxy.
  • examples thereof include propinolemethinoresenolellose, hydrazine kissinolenomethinoresenorelose, hydroxybutinolemethinoresenorelose, etinolehydroxishetinoresenorelose, and hydroxypropyl cellulose.
  • the addition amount of these molding aids is preferably at least 0.1 part by mass, more preferably at least 2 parts by mass, per 100 parts by mass of the particles containing the catalyst component.
  • the amount of the molding aid added is preferably 10 parts by mass or less, and more preferably 6 parts by mass with respect to 100 parts by mass of the particles containing the catalyst component, since post-treatment such as heat treatment after molding is simplified. The following are particularly preferred.
  • conventionally known additives may be added to the above mixture. Examples of such additives include inorganic compounds such as graphite and clay, glass fiber, ceramic fiber, and carbon fiber. And inorganic fibers such as fibers.
  • the device for kneading the mixture of the catalyst component particles and the liquid is not particularly limited, and may be a batch-type kneader using a double-armed stirring blade, a continuous rotation type such as an axial reciprocating type or a self-cleaning type.
  • a batch-type kneading machine can be used, but a batch-type kneading machine is preferred in that kneading can be performed while checking the state of the kneaded product.
  • the end point of kneading is usually determined by time, visual observation or touch.
  • the kneaded product obtained in the kneading step is molded into a primary molded product by an apparatus such as an extruder or a press.
  • An apparatus that can perform kneading and primary molding continuously (one pass) can also be used.
  • the state of kneading It is desirable to perform kneading with a batch-type kneading machine and perform primary molding with a screw extruder from the viewpoint of kneading while checking the condition and productivity.
  • the shape of the primary molded product is not particularly limited, but the shape of the primary molded product must be a cylindrical shape having a diameter of 0.5 times or more and less than 1 time the cylinder diameter of the biston molding machine that performs the secondary molding. Is preferred.
  • the smaller the diameter of the cylindrical primary molded product the easier it is to fill the piston molded machine with the primary molded product. Excess air is less likely to enter, reducing the load on the catalyst particles.
  • the volume in the cylinder can be used effectively, the number of times of primary molding and secondary molding can be reduced when producing the same amount of molded products, and there is an advantage that productivity is improved.
  • the larger the diameter of the primary molding the smaller the mechanical load on the catalyst particles, which is advantageous in terms of pore control. Accordingly, a columnar shape having a diameter of 0.8 times or more and less than 1 time the cylinder diameter of the piston molding machine is particularly preferable.
  • the specific gravity of the primary molded product is preferably in the range of 1.1 to 2.7 kg / L, and is preferably in the range of 1.5 to 2.3 kg ZL. More preferably, a range of 1.7 to 2.1 kgL is particularly preferable.
  • the specific gravity is a value calculated by dividing the weight of the primary molded article containing the liquid used for kneading by the volume of the primary molded article.
  • Piston molding reduces bending during extrusion and improves product yield.
  • molding can be carried out with a uniform force and there is little excess air mixed in, a uniform molded body can be produced, and the powdering rate when the final catalyst is filled in the reaction tube is reduced and selected. The rate is improved.
  • the shape is adjusted by primary molding. Extrusion can be performed smoothly, so extra load is applied to the catalyst particles during molding.
  • the catalyst can be formed softly without breaking the catalyst particles, and the preferred pores are developed in the final catalyst, resulting in a catalyst with excellent catalytic activity and selectivity for unsaturated aldehydes and unsaturated carboxylic acids.
  • the secondary molding step when molding with a piston molding machine, it is preferable not to perform vacuum degassing so as not to reduce the pore volume of the catalyst.
  • the shape of the molded catalyst obtained by extrusion in the secondary molding is not particularly limited, and the catalyst molded article can be formed into an arbitrary shape such as a ring, a column, or a column having a star bottom.
  • the shape of the catalyst molded body is not particularly limited, but compared with a case where the catalyst is extruded into a final shape in one step using a screw extruder or the like and a conventional molding method in which irregular shaped particles are subjected to biston molding. Since it can be softly molded, it is suitable for a ring shape in which the load on the catalyst component particles is relatively large during molding, particularly a ring shape having an outer diameter of 3 to 15 mm.
  • the ring shape is also called “hollow cylindrical shape”.
  • the obtained catalyst is dried and / or fired to obtain a catalyst (product).
  • the drying method is not particularly limited, and generally known methods such as hot-air drying, humidity drying, far-infrared drying, and microwave drying can be arbitrarily used.
  • the drying conditions are appropriately selected so that the desired moisture content can be obtained.
  • the dried catalyst molded product is usually fired, but if the particles are fired in the step (1) and no organic binder is used, the firing of the catalyst molded product can be omitted. It is. Accordingly, if necessary, the dried catalyst molded body is fired.
  • the firing conditions are not particularly limited, and known firing conditions can be applied. It is usually carried out in the temperature range of 200 to 600 ° C. in the presence or flow of oxygen, air or nitrogen. The firing time is appropriately set depending on the target catalyst.
  • the catalyst thus obtained is a uniform molded body because uniform catalyst component particles are molded with a uniform force.
  • Powdering rate (%) ⁇ (1 0 0 0-X) Z 1 0 0 0 ⁇ X 1 0 0
  • a reaction tube made of stainless steel or the like is filled with the catalyst of the present invention to form a catalyst layer.
  • a raw material gas containing propylene, isobutylene, TBA or MTBE, which is a reaction raw material, and molecular oxygen is supplied to the catalyst layer, and the reaction raw material is subjected to gas phase catalytic oxidation.
  • the reaction raw material propylene, isobutylene, TBA or MTBE may be used alone or in combination of two or more.
  • the concentration of these reaction raw materials in the raw material gas can be changed in a wide range, but 1 to 20% by volume is appropriate, and particularly 3 to: 10 volumes. / 0 is preferred.
  • the oxygen concentration in the source gas is defined by the molar ratio to the reaction raw material, and this value is preferably 0.3 to 4 times, more preferably 0.5 to 3 times, the mole of the total of the raw materials.
  • the raw material gas preferably contains water in addition to the reaction raw material and molecular oxygen, and the concentration of water in the raw material gas is preferably 1 to 45% by volume. It is preferable that the source gas is diluted with an inert gas before use.
  • reaction pressure is preferably from atmospheric pressure to several hundred kPa.
  • Reaction temperature is 200 ⁇ 4 Although it can be selected in the range of 50 ° C, the range of 250 to 400 ° C is particularly preferred.
  • the contact time is preferably 1.5 to 15 seconds.
  • the catalyst may be diluted with an inert carrier such as silica, alumina, silica-alumina, silicon carbide, titania, magnesia, ceramic balls, and stainless steel.
  • an inert carrier such as silica, alumina, silica-alumina, silicon carbide, titania, magnesia, ceramic balls, and stainless steel.
  • Examples of production using the catalyst of the present invention include production of acrolein and acrylic acid by oxidation of propylene, and production of methacrolein and methacrylic acid by oxidation of isobutylene, TBA or MTBE.
  • parts is parts by mass, and a kneading machine equipped with a batch-type double-armed stirring blade was used for kneading.
  • the analysis of the source gas and the reaction gas was performed by gas chromatography.
  • reaction rate the reaction rate of the starting material olefin, TBA or MTBE (hereinafter referred to as the reaction rate), and the selectivity of the unsaturated aldehyde or unsaturated carboxylic acid to be produced were calculated by the following equations.
  • A is the number of moles of reacted olefin, TBA or MTBE
  • B is the number of moles of supplied olefin, TBA or MTBE
  • C is the number of moles of unsaturated aldehyde formed
  • D is It is the number of moles of the unsaturated carboxylic acid generated.
  • Specific gravity Calculated by dividing the weight of the primary molded product containing water by the volume of the primary molded product.
  • Particle crushing strength Measured with a micro compression tester (MCTM-200, manufactured by Shimadzu Corporation) did. The average crushing strength is the average value measured for 30 particles.
  • this aqueous slurry is spray-dried using a spray dryer equipped with a rotating disk-type centrifugal atomizer to obtain spherical dried particles having an average particle diameter of 60 m. did.
  • the rotation speed of the atomizer of the spray dryer was 11 000 rpm
  • the inlet temperature was 1 65 ° (:, the outlet temperature was 125 ° C. was calcined particles by sintering time.
  • the average particle diameter of the sintered particles is 52 mu m
  • average particle child crushing strength is 1.
  • bulk density was 0. 90 k g L.
  • this primary molded product was extruded using a biston-type extruder having a cylinder with a diameter of 50 mm and a length of 30 Omm, and a ring-shaped catalyst with an outer diameter of 6 mm, an inner diameter of 3 mm, and a length of 5 mm was used. A molded article was obtained. No vacuum degassing was performed during molding.
  • the resulting molded catalyst was dried at 11 ° C. using a hot air drier, and then calcined again at 510 ° C. for 3 hours under an air flow to obtain a final calcined product.
  • the composition of elements other than oxygen in the final fired product obtained (the same applies hereinafter) is Mo 12 W 0 . 9 F e 3 S b. 8 Co 4.2 Zno 5 K 0 . It was 6.
  • the final calcined product is filled in a stainless steel reaction tube, and a raw material gas of propylene 5%, oxygen 12%, steam 10% and nitrogen 73% (volume%) is applied under atmospheric pressure (pressure at the outlet of the catalyst layer). After passing through the catalyst layer for a contact time of 3.6 seconds, the reaction was carried out at 310 ° C. As a result, the conversion of propylene was 99.0%, the selectivity of acrolein was 91.1%, and the selectivity of acrylic acid was 6.6%.
  • Example 1 a catalyst molded body was produced and reacted in the same manner as in Example 1 except that the shape of the primary molded product was a column having a diameter of 20 mm and a length of 280 mm. As a result, the conversion of propylene was 98.8%, the selectivity of acrolein was 90.7%, and the selectivity of acrylic acid was 6.3%.
  • Example 1 was repeated except that the rotation speed of the atomizer of the spray dryer was 13500 rpm and the average particle diameter of the dried particles was 45 ⁇ m. Was done.
  • the average particle diameter of the sintered particles 41 mu m, an average particle crushing strength is 1. 4 X 10- 2 N, bulk density, specific gravity of 0. S lkg / L 1 primary molded article 1. 98 k GZL Met.
  • the conversion of propylene was 99.0%
  • the selectivity of acrolein was 91.0%
  • the selectivity of acrylic acid was 6.4%.
  • a catalyst molded body was produced and reacted in the same manner as in Example 1 except that the amount of pure water of the solution B was changed to 600 parts.
  • the average particle diameter of the dried particles 59 mu m, an average particle diameter of the sintered particles 5 1 m, the average particle crushing strength is 5. 4 X 1 0 one 2 N, bulk density, 1. 1 2 k gZL
  • the specific gravity of the primary molded product was 1.94 kgZL.
  • the conversion of propylene was 98.9%
  • the selectivity of acrolein was 90.9%
  • the selectivity of acrylic acid was 6.4%.
  • Example 1 the aqueous slurry was evaporated to dryness while heating and stirring without using a spray dryer for drying the aqueous slurry, and the obtained solid was dried at 130 ° C for 6 hours, and pulverized. Except for producing amorphous dry particles, a catalyst molded body was produced and reacted in the same manner as in Example 1.
  • the average particle diameter of the amorphous fired particles was 140 m, and the bulk specific gravity was 0.88 kg / L.
  • the specific gravity of the primary molded product is 2.10 k g / L.
  • the conversion of propylene was 98.6%
  • the selectivity of acrolein was 90.3%
  • the selectivity of acrylic acid was 6.1%.
  • this aqueous slurry was dried using a spray dryer equipped with a rotating disk-type centrifugal atomizer to obtain spherical dry particles having an average particle diameter of 60 m. .
  • the rotation speed of the atomizer of the spray dryer was 11000 rpm
  • the inlet temperature was 165 ° C
  • the outlet temperature was 125 ° C.
  • the dried particles were fired at 300 ° C for 1 hour, and further fired at 510 ° C for 3 hours to obtain fired particles.
  • the average particle diameter of the sintered particles 54 ⁇ , average particle crushing strength is 1. 3 X 10- 2 ⁇ , bulk density was 0. 96 kg / L.
  • this primary molded product is extruded using a biston-type extruder having a cylinder with a diameter of 50 mm and a length of 300 mm to form a ring-shaped catalyst with an outer diameter of 5 mm, an inner diameter of 2 mm, and a length of 5 mm. I got a body. No vacuum degassing was performed during molding.
  • the obtained catalyst molded body was dried at 110 ° C. using a hot air drier, and then calcined again at 400 ° C. for 3 hours under an air flow to obtain a final calcined product.
  • the composition of elements other than oxygen in the final fired product obtained was Mo 12 W 0 2 Bi. . 6 F e 2. 2 S b. . 7 N i ⁇ 2 C o 6. 5 P b o. 4 P 0. JC s o. Was 5.
  • the final calcined product is filled in a stainless steel reaction tube, and isobutylene 5%, oxygen 12 ° / o, 10% of steam and 73% (volume%) of nitrogen were passed through the catalyst layer at atmospheric pressure (pressure at the outlet of the catalyst layer) at a contact time of 3.6 seconds at 340 ° C. Was reacted.
  • isobutylene was 98.0%
  • selectivity of methacrolein was 89.9%
  • the selectivity of methacrylic acid was 4.0%.
  • a catalyst molded body was produced and reacted in the same manner as in Example 5, except that the amount of pure water at the time of kneading was changed to 165 parts. At this time, the specific gravity of the primary molded product was 2.13 kg / L. As a result of the reaction, the conversion of isobutylene was 97.8%, the selectivity of methacrolein was 89.8%, and the selectivity of methacrylic acid was 3.8%.
  • Example 5 a catalyst molded body was produced and reacted in the same manner as in Example 5, except that the preform was formed into a cylindrical shape having a diameter of 25 mm and a length of 280 mm. At this time, the specific gravity of the primary molded product 1. was 94 k g L. As a result, the reaction of isobutylene was 97.9%, the selectivity of methacrolein was 89.8%, and the selectivity of methacrylic acid was 3.9%.
  • Example 5 a molded catalyst was produced and reacted in the same manner as in Example 5, except that the amorphous kneaded product was directly extruded by a piston type without performing primary molding.
  • the conversion of isobutylene was 97.5%
  • the selectivity of methacrolein was 89.6%
  • the selectivity of methacrylic acid was 3.7%.
  • the ring-shaped catalyst molded body produced by this method was uneven and the yield was low.
  • Example 5 the aqueous slurry was evaporated to dryness while heating and stirring without using a spray drier to dry the aqueous slurry, and the solid obtained was dried at 130 ° C for 6 hours and pulverized.
  • a molded catalyst was produced and reacted in the same manner as in Example 5, except that dried particles were produced by the method described in Example 5.
  • the average particle diameter of the amorphous fired particles was 145 ⁇ m, and the bulk specific gravity was 0.87 kgZL.
  • the specific gravity of the primary molded product was 2.llk gZL.
  • the reaction results are as follows: isobutylene conversion 97.4%, methacrolein selection The rate was 89.5% and the selectivity for methacrylic acid was 3.6%.
  • the reaction was carried out in the same manner as in Example 5 except that the raw material was changed to TBA using the catalyst of Example 5. As a result of the reaction, the conversion of TBA was 100%, the selectivity of methacrolein was 88.7%, and the selectivity of methacrylic acid was 3.1%.
  • the reaction was carried out in the same manner as in Comparative Example 3, except that the raw material was changed to TBA using the catalyst of Comparative Example 3.
  • the conversion of TBA was 100%
  • the selectivity of methacrolein was 88.1%
  • the selectivity of methacrylic acid was 2.5%.
  • the catalyst for producing unsaturated aldehydes and unsaturated carboxylic acids of the present invention has excellent catalytic activity and selectivity for unsaturated aldehydes and unsaturated carboxylic acids. And unsaturated carboxylic acids can be produced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Description

明 細 書
不飽和アルデヒ ドおよび不飽和カルボン酸製造用触媒、
およびその製造方法 技術分野
本発明は、 プロピレン、 イソブチレン、 tert-ブチルアルコール (以下、 T B Aという) 、 メチル -tert-ブチルエーテル (以下、 M T B Eという) を分子状 酸素を用いて気相接触酸化し、 不飽和アルデヒ ドおよび不飽和カルボン酸を製造 する際に用いられる、 少なく ともモリブデン、 ビスマスおよび鉄を含む不飽和ァ ルデヒ ドおよび不飽和カルボン酸製造用触媒、 その製造方法、 およびその触媒を 用レ、た不飽和ァルデヒ ドおよび不飽和力ルポン酸の製造方法に関する。 背景技術
従来、 プロピレン、 イソブチレン、 T B Aまたは M T B Eを気相接触酸化して 不飽和アルデヒ ドおよび不飽和カルボン酸を製造する際に用いられる触媒やその 触媒の製造方法については数多くの提案がなされている。 このような触媒の多く は、 少なく ともモリブデン、 ビスマス、 および鉄を含む組成を有しており、 工業 的にはこのような組成の成形触媒が使用される。 これらはその成形方法により押 出成形触媒や担持成形触媒等に分類される。 通常、 押出成形触媒は触媒成分を含 む粒子を混練り し押出成形する工程を経て製造され、 担持成形触媒は、 触媒成分 を含む粉体を担体に担持させる工程を経て製造される。
押出成形触媒に関しては、 例えば、 製造の際にグラフアイ トゃ無機ファイバー を添加して強度や選択率を向上させる方法(特開昭 6 0 - 1 5 0 8 3 4号公報) や触媒を押出成形する際にある種のセルロース誘導体を添加する方法(特開平 7 - 1 6 4 6 4号公報)等が提案されている。 また、 特開 2 0 0 0— 7 0 7 1 9号 公報には、 スプレー乾燥機で得た乾燥粒子を焼成した粒子を、 界面活性剤を添加 して (実施例) 、 あるいは添加しないで (比較例) 、 混練り して押出成形するこ とが記載されている。 これらはいずれも一段成形による製造方法である。 また、 特開 2 0 0 0— 7 1 3 1 3号公報には多孔質成形体の成形方法が記載さ れており、 ピス トン式押出し成形機に充填する材料を、 予めスク リュー押出し成 形装置等にてビストン式押出し成形機のシリンダ一に充填しゃすい形状に成形し ておくこともできると記載されている。 この文献の実施例 4には、 その一例とし て、 モリブデン、 ビスマスおよび鉄を含むイソブチレン酸化触媒の成形方法が具 体的に記載されているが、 ビス トン式押出し成形機に充填する材料は予め成形さ れたものではない。
しかし、 これら公知の方法で得られる酸化触媒は、 触媒活性および目的生成物 選択性の点で工業用触媒としてまだ不十分である。 発明の開示
本発明は、 上記課題を解決するためになされたもので、 触媒活性、 不飽和アル デヒ ドおよび不飽和カルボン酸選択性に優れた不飽和アルデヒ ドおよび不飽和力 ルボン酸製造用触媒、 およびその触媒の製造方法、 そして、 この触媒を用いて高 収率で不飽和アルデヒ ドおよび不飽和カルボン酸を製造する方法を提供すること を目的とする。
本発明の不飽和アルデヒ ドおよび不飽和カルボン酸製造用触媒の製造方法は、 プロピレン、 イソブチレン、 tert-ブチルァノレコールまたはメチル -tert-ブチル エーテルの少なく とも 1種を分子状酸素を用いて気相接触酸化し、 不飽和アルデ ヒ ドおよび不飽和カルボン酸を製造する際に用いられる、 少なく ともモリブデン 、 ビスマスおよび鉄を含む押出成形触媒の製造方法において、 モリブデン、 ビス マスおよび鉄を含有する水性スラリ一を噴霧乾燥して乾燥粒子とするか、 または 該乾燥粒子をさらに熱処理して焼成粒子として触媒成分粒子を製造する工程と、 前記触媒成分粒子を少なくとも液体と混合して混練する工程と、 混練り品を 1次 成形する 1次成形工程と、 1次成形品をビス トン成形機で最終形状に成形する 2 次成形工程とを有することを特徴とする。
この製造方法において、 上記 1次成形工程によって成形される 1次成形品の形 状を円柱状とし、 2次成形工程において使用されるビス トン成形機のシリンダー 径の 0. 5倍以上 1倍未満の径をもつようにすることが望ましい。
1次成形品の比重は、 1. 1〜2. 7 k gZLであることが望ましい。
また、 触媒成分粒子の平均粒子直径は 10〜 1 50 mであることが望ましい
。 触媒成分粒子の平均粒子圧壊強度は、 9. 8 X 1 0— 4〜9. 8 X 1 0— 2Nで あることが望ましい。 媒成分粒子の嵩比重は、 0. 5〜1. 8 k g/Lであるこ とが望ましい。
また、 2次成形のピス トン成形機で 1次成形品を最終形状に成形する際に、 真 空脱気を行わないことが望ましい。 1次成形する際には、 スク リ ュー押出機を用 いて成形することが望ましい。
触媒成分粒子と混合する液体の量は、 触媒成分粒子 1 00質量部に対して 35 〜55質量部であることが望ましい。
また、 触媒成分粒子は、 焼成粒子であることが望ましい。
さらに本発明は、 上述の製造方法により製造された、 本発明の不飽和アルデヒ ドおよび不飽和カルボン酸製造用触媒に関する。 触媒の形状は、 特にリング状で 、 その外径が 3〜 1 5 mm以下であることが望ましい。
さらに本発明は、 上記触媒を用いて、 プロピレン、 イソプチレン、 TBAまた は MTB Eを分子状酸素により気相酸化することを特徴とする不飽和アルデヒ ド および不飽和力ルボン酸の製造方法に関する。 発明を実施するための最良の形態
本発明の不飽和アルデヒ ドおよび不飽和カルボン酸製造用触媒は、 後述する製 造方法によって製造される押出成形触媒であって、 反応原料であるプロピレン、 イソプチレン、 TB Aまたは MTB Eを分子状酸素により気相接触酸化して、 不 飽和アルデヒ ドおよび不飽和カルボン酸を製造するために用いられるものである 上記触媒は、 触媒成分として少なく ともモリブデン、 ビスマスおよび鉄を含む 触媒である。 また、 モリブデン、 ビスマスおよび鉄以外の触媒成分としては、 ケ ィ素、 コバルト、 ニッケル、 クロム、 鉛、 マンガン、 カノレシゥム、 マグネシウム 、 ニオブ、 銀、 バリウム、 スズ、 タンタル、 亜鉛、 リン、 ホウ素、 硫黄、 セレン 、 テルル、 セリ ウム、 タングステン、 アンチモン、 チタン、 リチウム、 ナトリウ ム、 カリ ウム、 ルビジウム、 セシウム、 タリウム等が挙げられる。
例えば、 下記の一般式 ( I ) で表される組成を有することが好ましい。
Mo aB i b F e cMdXeY f Z g S i hO , ( I )
(ここで式中、 Mo、 B i 、 F e、 S iおよび Oはそれぞれモリブデン、 ビスマ ス、 鉄、 ケィ素および酸素を示し、 Mはコバルトおよびニッケルからなる群より 選ばれた少なく とも 1種の元素を示し、 Xはクロム、 鉛、 マンガン、 カルシウム 、 マグネシウム、 ニオブ、 銀、 バリウム、 スズ、 タンタルおよび亜鉛からなる群 より選ばれた少なく とも 1種の元素を示し、 Yはリン、 ホウ素、 硫黄、 セレン、 テルル、 セリウム、 タングステン、 アンチモンおよびチタンからなる群より選ば れた少なくとも 1種の元素を示し、 Zはリチウム、 ナトリウム、 カリウム、 ノレビ ジゥム、 セシウムおよびタリゥムからなる群より選ばれた少なく とも 1種の元素 を示す。 また、 a、 b、 c、 d、 e、 f 、 g、 hおよび iは各元素の原子比率を 表し、 a = 1 2のとき b = 0. 0 1〜3、 c = 0. 0 1〜5、 d =l〜: 1 2、 e = 0 〜8、 f =0〜 5、 g = 0. 0 0 1〜2、 h = 0〜 2 0であり、 iは前記各成分の 原子価を満足するのに必要な酸素原子比率である。 )
本発明の不飽和アルデヒ ドおよび不飽和カルボン酸製造用触媒の製造は、 (1 ) 触媒成分粒子を製造する工程、 (2) 得られた触媒成分粒子を混練りする工程 、 (3) 混練り品を 1次成形する工程、 (4) 1次成形品をピス トン成形機で 2 次成形する工程、 および通常はさらに (5) 成形体を乾燥および/または熱処理 する工程を経て製造される。
( 1 ) 触媒成分粒子を製造する工程において、 モリブデン、 ビスマスおよび鉄 を含有する水性スラリーを噴霧乾燥して、 乾燥粒子を製造する。 噴霧乾燥は、 得 られる粒子の形状が整った球形であるという特徴を有している。
水性スラリーを製造する方法は、 特に限定されず、 成分の著しい偏在を伴わな い限り、 従来から良く知られた沈殿法、 酸化物混合法等の種々の方法を用いるこ とができる。 触媒成分の原料としては、 触媒成分である元素の酸化物、 硫酸塩、 硝酸塩、 炭酸塩、水酸化物、 アンモニゥム塩、 ハロゲン化物等が使用される。 例 えば、 モリブデンを触媒成分とする原料としては、 パラモリブデン酸アンモニゥ ム、 三酸化モリブデン等が挙げられる。 また触媒成分の原料としては、 各元素に 対して 1種類を用いてもよいし、 2種類以上を用いてもよい。
噴霧乾燥は、 例えば回転円板型遠心アトマイザ一、 二流体ノズル型アトマイザ 一等を備えたスプレ一乾燥機を使用して行うことができる。 スプレー乾燥機の入 口温度や出口温度等の条件は、 所望の平均粒子直径が得られるように適宜設定さ れる。 例えば、 固形物が 3 5〜5 5質量。 /0の水性スラリーを回転円板型遠心ァト マイザ一を備えたスプレー乾燥機を用いて噴霧乾燥する場合の一般的な乾燥条件 は、 入口温度 1 0 0〜5 0 0 °C、 出口温度 1 0 0〜2 0 0 °C、 ァトマィザ一回転 数は 8 0 0 0〜 2 0 0 0 0 r p mである。
このようにして得られた乾燥粒子は触媒原料等に由来する硝酸等の塩を含んで いることがある。 塩を多く含む乾燥粒子を成形した成形品を焼成して塩を分解す ると、 成形品の強度が低下することがある。 このため、 粒子は乾燥するだけでは なく、 この時点で焼成して焼成粒子としておくことが好ましい。 この際の焼成条 件は特に限定されないが、 通常、 2 0 0〜6 0 0 °Cの温度範囲で、 酸素、 空気ま たは窒素の存在下または流通下で焼成される。 焼成時間は触媒の原料や目的とす る触媒等によって適宜選択される。
以下、 触媒成分を含む乾燥粒子および焼成粒子をまとめて触媒成分粒子という 触媒成分粒子を潰さずに成形を行った場合、 その平均粒子直径が大きくなると 成形後の粒子間に大きな空隙、 すなわち大きな細孔が形成されて選択率が向上す る傾向があり、 小さくなると単位体積当たりの粒子同士の接触点が増加するので 得られる触媒成形体の機械的強度が向上する傾向がある。 これらを考慮すると、 平均粒子直径は 1 0 m以上が好ましく、 また 1 5 0 m以下が好ましい。 平均 粒子直径が 1 0 ;z m〜l 5 0 mの範囲であれば、 選択率および機械的強度のバ ランスに優れている。 さらに、 2 0 μ πι以上、 特に 4 5 μ m以上が特に好ましく 、 またさらに 1 0 0 μ m以下、 特に 6 5 μ m以下が好ましい。 触媒成分粒子の嵩比重は、 大きい方が成形に耐え、 小さい方が活性および選択 性が高くなる傾向がある。 従って、 成形する際の取り扱い性と触媒の性能の面か ら 0. 5〜 1. 8 k g/Lの範囲が好ましい。 この範囲であれば成形に耐えうる 十分な強度が得られるので成形の際に粒子が潰れ難く、 また、 触媒の活性および 選択性も高い。 特に 0. 8〜1. 2 k gZLが好ましい。 ここで、 嵩比重とは、 J I SK 6 72 1記載の方法で測定したものである。 触媒成分粒子の嵩比重は、 例えば、 噴霧乾燥する水性スラリーの濃度、 該水性スラリーを調製する際の混合 速度や攪拌速度、 スラリー濃度等で調節することができる。
触媒成分粒子の平均粒子圧壊強度は、 大きい方が成形に耐え、 小さい方が活性 および選択性が高くなる傾向がある。 従って、 成形する際の取り扱い性と触媒の 性能の面から 9. 8 X 1 0— 4〜9. 8 X 1 0_2Nの範囲が好ましい。 特に 4. 9 X 1 0— 3〜 4. 9 X 1 0— 2 Nが好ましい。 触媒成分粒子の平均粒子圧壊強度 は、 例えば、 噴霧乾燥する水性スラリーの濃度、 該水性スラリーを調製する際の 混合速度や攪拌速度、 スラリー濃度等で調節することができる。
次に、 (2) 得られた触媒成分粒子 (即ち、 乾燥粒子または焼成粒子) を混練 りする工程では、 少なく とも触媒成分粒子と液体とを混合したものを混練り して 混練品とする。
この工程で用いられる好ましい液体としては、 水およびアルコール等を挙げる ことができる。 アルコールとしては、 エタノール、 メチルアルコール、 プロピル アルコール、 ブチルアルコール等の低級アルコールが挙げられる。 これらの液体 は 1種を用いてもよいし、 2種以上を組み合わせて用いてもよいが、 ここでは経 済性と取り扱い性の点から水を使用するのがより好ましい。
液体の使用量は、 触媒成分粒子の種類や大きさ、 液体の種類等により適宜選択 されるが、 通常は触媒成分粒子 1 00質量部に対して 1 0〜70質量部である。 液体の使用量が多くなると、 よりスムーズに押出成形できるため、 球状粒子が潰 れにく くなり、 乾燥、 焼成した成形品に大きな空隙、 すなわち大きな細孔が形成 されて選択率が向上する傾向がある。 従って、 液体の使用量は触媒成分粒子 1 0 0質量部に対して 20質量部以上が好ましく、 30質量部以上がより好ましく、 3 5質量部以上が特に好ましい。 一方、 液体の使用量が少ない方が、 成形時の付 着性が低減して取り扱い性が向上する。 また、 液体の使用量が少なくなると、 成 形品がより密になるため成形品の強度が向上する傾向がある。 従って、 液体の使 用量は、 触媒成分粒子 1 0 0質量部に対して 6 0質量部以下が好ましく、 5 0質 量部以下がより好ましく、 4 5質量部以下が特に好ましい。
また (2 ) の工程においては、 触媒成分粒子と液体との混合物に、 有機バイン ダ一等の成形助剤を加えると、 強度が向上するため好ましい。 このような成形助 斉 IJとしては、 メチルセノレロース、 ェチルセノレロース、 カルボキシルメチルセノレ口 ース、 カルボキシルメチルセルロースナト リ ウム、 ヒ ドロキシェチルセノレロース 、 ヒ ドロキシプロピノレセノレロース、 ヒ ドロキシプロピノレメチノレセノレロース、 ヒ ド 口キシェチノレメチノレセノレロース、 ヒ ドロキシブチノレメチノレセノレロース、 ェチノレヒ ドロキシェチノレセノレロース、 ヒ ドロキシプロピルセルロース等を挙げることがで きる。 これらの成形助剤の添加量は、 触媒成分を含む粒子 1 0 0質量部に対して 0 . 1質量部以上が好ましく、 2質量部以上が特に好ましい。 また、 成形後の熱 処理等の後処理が簡単になる点から、 成形助剤の添加量は、 触媒成分を含む粒子 1 0 0質量部に対して 1 0質量部以下が好ましく、 6質量部以下が特に好ましい この他に、 上記混合物に、 従来公知の添加剤を加えてもよく、 このような添加 剤としては、 グラフアイ トゃケイソゥ土等の無機化合物、 ガラス繊維、 セラミツ クファイバーや炭素繊維等の無機ファイバ一等が挙げられる。
触媒成分粒子と液体とを混合したものを混練りする装置としては、 特に限定さ れず、 双腕型の攪拌羽根を使用するバッチ式の混練り機、 軸回転往復式やセルフ クリーニング型等の連続式の混練り機等が使用できるが、 混練り品の状態を確認 しながら混練りを行うことができる点では、 バッチ式が好ましレ、。 また、 混練り の終点は、 通常は時間、 目視または手触りによって判断される。
次に、 (3 ) 1次成形工程では、 混練り工程で得られた混練り品を、 押出機ま たはプレス機等の装置によって 1次成形品に成形する。 混練りと 1次成形を連続 (ワンパス) で行えるような装置を用いることもできる。 ここでは、 混練りの状 態を確認しながら混練りができる点と、 生産性の面からバッチ式の混練り機で混 練りを行い、 スク リユー押出機で 1次成形を行うことが望ましい。
1次成形品の形状は、 特に限定されないが、 1次成形品の形状が、 2次成形を 行うビストン成形機のシリンダー径の 0 . 5倍以上 1倍未満の径を有する円柱状 であることが好ましい。 円柱状の 1次成形品の径は、 径は小さいほどピストン成 形機に 1次成形品を充填することが容易であるが、 0 . 5倍以上 1未満の場合、 大きいほど 2次成形時に余分な空気が入り難くなり、 触媒粒子への負荷が小さく なる。 また、 シリンダー内の体積を有効に使えるため、 同量の成形品を製造する 場合に 1次成形、 2次成形の回数を減らすことができ、 生産性が向上するという 利点もある。 また、 この範囲で、 1次成形の径は大きいほど、 触媒粒子への機械 的な負荷を減らすことになるため、 細孔の制御の点で有利になる。 従って、 特に 、 ピス トン成形機のシリンダー径の 0 . 8倍以上 1倍未満の径を有する円柱状が 好ましい。
また、 製造された 1次成形品の比重は、 大きいほど最終的な触媒の強度は大き くなり、 比重が小さいほど最終的な触媒の選択性は向上する。 従って、 最終的な 触媒の強度および選択性を考慮すると、 1次成形品の比重は、 1 . 1 〜 2 . 7 k g / Lの範囲が好ましく、 1 . 5 〜 2 . 3 k g Z Lの範囲がより好ましく、 1 . 7 〜 2 . 1 k g Lの範囲が特に好ましい。 ここで、 比重とは混練りに使用した 液体を含んだ 1次成形品の重量を 1次成形品の体積で除して算出した値である。 次に ( 4 ) 2次成形工程では、 得られた 1次成形品をビストン成形機で 1次成 形品を最終形状に成形する。
ピス トン成形することで、 押出時の曲がり等が少なくなり、 製品の歩留まりが 向上する。 また、 均一な力で成形を行うことができ、 余分な空気が混入すること も少ないため、 均一な成形体ができ、 最終的な触媒を反応管に充填したときの粉 化率は低下し選択率が向上する。
また、 1次成形を行わずに、 不定形の混練り品を (ピス トン押出機等で) 直接 最終形状に押出成形する場合と比べて、 1次成形で形状を整えていることにより 、 よりスムーズに押出成形ができるため、 成形中の触媒粒子に余分な負荷を与え ず、 触媒粒子を破壊しないソフトな成形ができ、 最終的な触媒中に好ましい細孔 が発現することから、 触媒活性、 不飽和アルデヒ ドおよび不飽和カルボン酸の選 択性に優れた触媒が得られる。
2次成形工程において、 ピス トン成形機で成形する際には、 触媒の細孔容積を 減じないよう真空脱気を行わないのが好ましい。
また、 2次成形で押出成形により得られる触媒成形体の形状は、 特に限定され ず、 リング状、 円柱状、 底面が星型の柱状等、 任意の形状に成形することができ る。 ここで、 触媒成形体の形状は特に限定されないが、 スク リュー押出機等を用 いて一段階で最終形状に押出成形する場合や不定形の粒子をビス トン成形する従 来の成形方法に比べてソフトな成形ができるため、 成形時に触媒成分粒子への負 荷が比較的大きいリング状、 特に外径 3〜 1 5 m mのリング状に好適である。 な お、 リング状とは別名 「中空円筒状」 と呼ばれるものである。
次に、 (5 ) 触媒成形体を乾燥および または焼成する工程では、 得られた触 媒成形体を乾燥および/または焼成して触媒 (製品) を得る。
乾燥方法としては、 特に限定されず、 一般的に知られている熱風乾燥、 湿度乾 燥、 遠赤外線乾燥またはマイクロ波乾燥等の方法が任意に用いられる。 乾燥条件 は、 目的とする含水率とすることができれるように適宜選択される。
そして、 乾燥した触媒成形品は通常焼成されるが、 (1 ) の工程で粒子を焼成 しており、 かつ有機バインダー等を使用していない場合は、 触媒成形体の焼成を 省略することも可能である。 従って、 必要に応じて、 乾燥した触媒成形体を焼成 する。 焼成条件については、 特に限定はなく、 公知の焼成条件を適用することが できる。 通常は 2 0 0〜6 0 0 °Cの温度範囲で、 酸素、 空気または窒素の存在下 または流通下で行われる。 焼成時間は目的とする触媒によって適宜設定される。 このようにして得られた触媒は、 均一な触媒成分粒子を均一な力で成形してい るので均一な成形体である。 そして最終的な触媒として、 均一な成形体を後述の 不飽和アルデヒ ドおよび不飽和カルボン酸を製造する際に用いられる反応管に充 填すると、 極端に強度の小さい成形体がないため、 粉化率を低下させることがで きる。 粉化率は、 以下のように定義される。 成形触媒 1 0 0 0 gを、 水平方向に対し て垂直に設置した内径 2 . 7 5 c m , 長さ 6 mのステンレス製円筒容器上部より 落下させて容器内に充填した後、 容器底部より成形触媒を回収する。 回収された 成形触媒のうち、 目開き 1 . 1 9 m mのふるいを通過しないものが X gであった とすると、
粉化率 (%) = { ( 1 0 0 0 - X ) Z 1 0 0 0 } X 1 0 0
そして、 粉化率が低下すると、 圧損が小さくなるため、 選択率の高い触媒を得ら れる。 また、 噴霧乾燥以外の方法で得られた触媒成分粒子から製造する場合と比 ベて、 よりスムーズに押出成形ができるため、 成形中の触媒粒子に余分な負荷を 与えず触媒粒子を破壊しないソフトな成形ができる。 最終的な触媒中に好ましい 細孔が発現することから、 触媒活性、 不飽和アルデヒ ドおよび不飽和カルボン酸 の選択性に優れた触媒が得られる。
次に、 不飽和アルデヒ ドおよび不飽和カルボン酸の製造方法を説明する。 例えばステンレス製等の反応管に本発明の触媒を充填し、 触媒層を形成する。 そして、 触媒層に、 反応原料であるプロピレン、 イソプチレン、 T B Aまたは M T B Eと分子状酸素を含む原料ガスを供給し、 反応原料を気相接触酸化する。 反応原料であるプロピレン、 イソブチレン、 T B Aまたは M T B Eは、 1種類 を用いても、 2種類以上を組み合わせて用いてもよい。 また、 原料ガス中のこれ ら反応原料の濃度は広い範囲で変えることができるが、 1〜2 0容量%が適当で あり、 特に 3〜: I 0容量。 /0が好ましい。
分子状酸素源としては、 空気を用いることが経済的であるが、 必要ならば純酸 素で富化した空気も用いうる。 原料ガス中の酸素濃度は、 反応原料に対するモル 比で規定され、 この値は原料の合計 1モルに対して 0 . 3〜 4倍モル、 特に 0 . 5〜 3倍モルが好ましい。
原料ガスは反応原料と分子状酸素以外に水を含んでいることが好ましく、 原料 ガス中の水の濃度は 1〜4 5容量%が好ましい。 また原料ガスは不活性ガスで希 釈して用いることが好ましい。
反応圧力は大気圧から数 1 0 0 k P aまでが好ましい。 反応温度は 2 0 0〜4 50°Cの範囲で選ぶことができるが、 特に 2 50〜400°Cの範囲が好ましい。 接触時間は 1. 5〜 1 5秒が好ましい。
また、 反応管内において、 触媒はシリカ、 アルミナ、 シリカ一アルミナ、 シリ コンカーバイ ト、 チタニア、 マグネシア、 セラミックボールやステンレス鋼等の 不活性担体で希釈されていてもよい。
本発明の触媒による製造例として、 プロピレンの酸化によるァクロレインおよ びアクリル酸の製造、 およびイソブチレン、 TB Aまたは MTB Eの酸化による メタクロレインおよびメタクリル酸の製造等が挙げられる。 実施例
以下、 実施例および比較例により本発明を具体的に説明する。
なお、 実施例および比較例中の 「部」 は質量部であり、 混練りにはバッチ式の 双腕型の攪拌羽根を備えた混練り機を使用した。 また、 原料ガスおよび反応ガス の分析はガスクロマトグラフィ一によつて行った。
実施例および比較例中の原料ォレフィン、 TB Aまたは MTB Eの反応率(以 下、 反応率という)、 生成する不飽和アルデヒ ドまたは不飽和カルボン酸の選択 率は次式により算出した。
反応率 (%) - A/B X 1 00
不飽和アルデヒ ドの選択率 (%) =C/AX 1 00
不飽和カルボン酸の選択率 (%) =D/AX 1 00
ここで、 Aは反応した原料ォレフィン、 TB Aまたは MTB Eのモル数、 Bは供 給した原料ォレフィン、 T B Aまたは MT B Eのモル数、 Cは生成した不飽和ァ ルデヒ ドのモル数、 Dは生成した不飽和カルボン酸のモル数である。
また、 触媒成分粒子の嵩比重および 1次成形品の比重は、 以下のようにして測 定した。
嵩比重: J I S K 6 7 2 1記載の方法で測定した。
比重:水分を含んだ 1次成形品の重量を 1次成形品の体積で除して算出した。 粒子圧壊強度:微小圧縮試験機 (島津製作所社製、 MCTM— 200) で測定 した。 平均圧壊強度は 30個の粒子を測定した平均値である。
(実施例 1 )
純水 1 000部に、 パラモリブデン酸アンモニゥム 500部、 パラタンダステ ン酸アンモニゥム 6. 2部、 硝酸カリウム 1. 4部、 三酸化アンチモン 2 7. 5 部および三酸化ビスマス 49. 5部を加え、 加熱攪拌した (A液) 。 別に純水 1 000部に、 硝酸第二鉄 1 2 3. 9部、 硝酸コノくノレト 28 8. 4部および硝酸亜 鉛 35. 1部を順次加え、 溶解した (B液) 。 A液に B液を加えて水性スラリー とした後、 この水性スラリーを回転円板型遠心ァトマィザーを備えたスプレー乾 燥機を用いて噴霧乾燥し、 平均粒子直径 6 0 mの球状の乾燥粒子とした。 この とき、 スプレー乾燥機のァトマィザ一の回転数は 1 1 000 r p m、 入口温度は 1 6 5° (:、 出口温度は 1 25°Cであった。 そして、 この乾燥粒子を 300°Cで 1 時間焼成して焼成粒子とした。 この焼成粒子の平均粒子直径は 52 μ m、 平均粒 子圧壊強度は 1. 1 X 1 0— 2N、 嵩比重は 0. 90 k g Lであった。
このようにして得られた焼成粒子 500部に対してメチルセルロース 1 5部を 加え、 乾式混合した。 ここに純水 1 80部を混合し、 混練り機で粘土状になるま で混練り した後、 不定形の混練り品をスクリュー式押出し成形機を用いて押し出 し成形し、 直径 45mm、 長さ 280 mmの円柱状とした。 ここで、 この 1次成 形品の比重は 1. 95 k g/Lであった。 次いで、 この 1次成形品を直径 50 m m、 長さ 30 Ommのシリンダーを有するビス トン式押出し成形機を用いて押し 出し成形し、 外径 6mm、 内径 3mm、 長さ 5 mmのリング状の触媒成形体を得 た。 なお、 成形の際には真空脱気を行わなかった。
得られた触媒成形体を熱風乾燥機を用いて 1 1 o°cで乾燥し、 次いで空気流通 下に 5 1 0°Cで 3時間再度焼成して最終焼成品を得た。 得られた最終焼成品の酸 素以外の元素の組成 (以下同じ) は、 Mo 12W0. i B i。. 9 F e 3 S b。. 8 C o 4. 2 Z n o. 5K0. 。6であった。
この最終焼成品をステンレス製反応管に充填し、 プロピレン 5%、 酸素 1 2% 、 水蒸気 1 0%および窒素 73% (容量%) の原料ガスを大気圧下 (触媒層出口 部の圧力) で接触時間 3. 6秒にて触媒層を通過させ、 3 1 0°Cで反応させた。 その結果、 プロピレンの反応率 99. 0%、 ァクロレインの選択率 91. 1 %、 アクリル酸の選択率 6. 6%であった。
(実施例 2)
実施例 1において、 1次成形品の形状を直径 20 mm、 長さ 280mmの円柱 状とした点以外は、 実施例 1と同様に触媒成形体を製造し、 反応を行った。 反応 結果は、 プロピレンの反応率 98. 8%、 ァクロレインの選択率 90. 7%、 ァ クリル酸の選択率 6. 3%であった。
(実施例 3)
実施例 1において、 スプレー乾燥機のァトマィザ一の回転数を 1 3500 r p mとし、 乾燥粒子の平均粒子直径を 45 μ mとした点以外は、 実施例 1と同様に 触媒成形体を製造し、 反応を行った。 このとき、 焼成粒子の平均粒子直径は 41 μ m、 平均粒子圧壊強度は 1. 4 X 10— 2N、 嵩比重は、 0. S l k g/L 1次成形品の比重は 1. 98 k gZLであった。
最終焼成品を用いた反応結果は、 プロピレンの反応率 99. 0%、 ァクロレイ ンの選択率 9 1. 0%、 アク リル酸の選択率 6. 4%であった。
(実施例 4)
実施例 1において、 B液の純水の量を 600部とした点以外は、 実施例 1と同 様に触媒成形体を製造し、 反応を行った。 このとき、 乾燥粒子の平均粒子直径は 59 μ m、 焼成粒子の平均粒子直径は 5 1 m、 平均粒子圧壊強度は 5. 4 X 1 0一2 N、 嵩比重は、 1. 1 2 k gZL、 1次成形品の比重は 1. 94 k gZL であった。 反応結果は、 プロピレンの反応率 98. 9%、 ァクロレインの選択率 90. 9%、 アクリル酸の選択率 6. 4%であった。
(比較例 1 )
実施例 1において、 水性スラリーの乾燥にスプレー乾燥機を使用せず、 水性ス ラリーを加熱攪拌しながら蒸発乾固し、 得られた固形物を 1 30°Cで 6時間乾燥 したものを粉砕して不定形の乾燥粒子を製造した点以外は、 実施例 1と同様に触 媒成形体を製造し、 反応を行った。 不定形の焼成粒子の平均粒子直径は 140 m、 嵩比重は 0. 88 k g/Lであった。 また、 1次成形品の比重は 2. 1 0 k g/Lであった。 反応結果は、 プロピレンの反応率 98. 6%、 ァクロレインの 選択率 90. 3%、 アク リル酸の選択率 6. 1%であった。
(実施例 5 )
純水 1 000部に、 パラモリブデン酸アンモニゥム 500部、 パラタンダステ ン酸アンモニゥム 1 2. 4部、 硝酸セシウム 23. 0部、 三酸化アンチモン 24 . 0部および三酸化ビスマス 33. 0部を加え、 加熱攪拌した (A液) 。 別に純 水 1 000部に、 硝酸第二鉄 209. 8部、 硝酸ニッケル 82. 4部、 硝酸コバ ルト 446. 4部、 硝酸鉛 31. 3部および 85%リン酸 2. 8部を順次加え、 溶解した (B液) 。 A液に B液を加えて水性スラリーとした後、 この水性スラ リ 一を回転円板型遠心ァトマィザーを備えたスプレー乾燥機を用いて乾燥し、 平均 粒子直径 60 mの球状の乾燥粒子とした。 このとき、 スプレー乾燥機のアトマ ィザ一の回転数は 1 1000 r p m、 入口温度は 165°C、 出口温度は 1 25 °C であった。 そして、 この乾燥粒子を 300°Cで 1時間焼成し、 さらに 5 10°Cで 3時間焼成して焼成粒子とした。 この焼成粒子の平均粒子直径は 54 μηι、 平均 粒子圧壊強度は 1. 3 X 10— 2Ν、 嵩比重は 0. 96 k g/Lであった。
このようにして得られた焼成粒子 500部に対してメチルセルロース 18部を 加え、 乾式混合した。 ここに純水 1 85部を混合し、 混練り機で粘土状になるま で混練り した後、 不定形の混練り品をスクリユー式押出し成形機を用いて押し出 し成形し、 直径 45mm、 長さ 280 mmの円柱状とした。 ここで、 この 1次成 形品の比重は 1. 94 k gZLであった。 次いで、 この 1次成形品を直径 50 m m、 長さ 300 mmのシリンダーを有するビストン式押出し成形機を用いて押し 出し成形し、 外径 5mm、 内径 2mm、 長さ 5 mmのリング状の触媒成形体を得 た。 なお、 成形の際には真空脱気を行わなかった。
得られた触媒成形体を熱風乾燥機を用いて 1 1 0°Cで乾燥し、 次いで空気流通 下に 400°Cで 3時間再度焼成して最終焼成品を得た。 得られた最終焼成品の酸 素以外の元素の組成は、 Mo 12W0 2 B i。. 6F e 2. 2S b。. 7N i ^ 2C o 6. 5P b o. 4P0. jC s o. 5であった。
この最終焼成品をステンレス製反応管に充填し、 イソブチレン 5%、 酸素 1 2 °/o、 水蒸気 1 0%および窒素 73% (容量%) の原料ガスを大気圧下 (触媒層出 口部の圧力) で接触時間 3. 6秒にて触媒層を通過させ、 340°Cで反応させた 。 その結果は、 イソブチレンの反応率 98. 0%、 メタクロレインの選択率 89 . 9%、 メタクリル酸の選択率 4. 0%であった。
(実施例 6 )
実施例 5において、 混練りの際の純水の量を 1 6 5部とした点以外は、 実施例 5と同様に触媒成形体を製造し、 反応を行った。 このとき、 1次成形品の比重は 2. 1 3 k g/Lであった。 反応結果は、 イソブチレンの反応率 97. 8%、 メ タクロレインの選択率 89. 8 %、 メタクリル酸の選択率 3. 8%であった。
(実施例 7 )
実施例 5において、 予備成形品を直径 2 5 mm、 長さ 280 mmの円柱状とし た点以外は、 実施例 5と同様に触媒成形体を製造し、 反応を行った。 このとき、 1次成形品の比重は 1. 94 k g Lであった。 反応結果は、 イソブチレンの反 応率 9 7. 9%、 メタクロレインの選択率 8 9. 8%、 メタクリル酸の選択率 3 . 9%であった。
(比較例 2 )
実施例 5において、 1次成形を行わず、 不定形の混練り品を直接ピス トン式押 出し成形した点以外は、 実施例 5と同様に触媒成形体を製造し、 反応を行った。 反応結果は、 イソプチレンの反応率 9 7. 5%、 メタクロレインの選択率 8 9. 6%、 メタクリル酸の選択率 3. 7%であった。 また、 この方法で製造したリン グ状の触媒成形体は不均一で、 歩留まりが低かった。
(比較例 3 )
実施例 5において、 水性スラリーの乾燥にスプレー乾燥機を使用せず、 水性ス ラリーを加熱攪拌しながら蒸発乾固し、 得られた固形物を 1 30°Cで 6時間乾燥 したものを粉砕して乾燥粒子を製造した点以外は、 実施例 5と同様に触媒成形体 を製造し、 反応を行った。 不定形の焼成粒子の平均粒子直径は 1 45 μ m、 嵩比 重は 0. 8 7 k gZLであった。 また、 1次成形品の比重は 2. l l k gZLで あった。 反応結果は、 イソブチレンの反応率 9 7. 4%、 メタクロレインの選択 率 8 9. 5%、 メタクリル酸の選択率 3. 6%であった。
(実施例 8)
実施例 5の触媒を用い、 原料を TB Aに変え、 その他は実施例 5と同様にして 反応を行った。 反応結果は、 TB Aの反応率 1 00%、 メタクロレインの選択率 88. 7 %、 メタクリル酸の選択率 3. 1 %であった。
(比較例 4)
比較例 3の触媒を用い、 原料を TB Aに変え、 その他は比較例 3と同様にして 反応を行った。 反応結果は、 TB Aの反応率 1 00%、 メタクロレインの選択率 88. 1 %、 メタクリル酸の選択率 2. 5%であった。 産業上の利用可能性
本発明の不飽和アルデヒ ドおよび不飽和カルボン酸製造用触媒は、 触媒活性、 不飽和アルデヒ ドおよび不飽和カルボン酸選択性に優れており、 この触媒を用い ることで、 収率よく不飽和アルデヒ ドおよび不飽和カルボン酸を製造することが できる。

Claims

請 求 の 範 囲
1. プロピレン、 イソブチレン、 tert-ブチルアルコールまたはメチル -tert- ブチルエーテルの少なく とも 1種を分子状酸素を用いて気相接触酸化し、 不飽和 アルデヒ ドおよび不飽和カルボン酸を製造する際に用いられる、 少なく ともモリ ブデン、 ビスマスおよび鉄を含む押出成形触媒の製造方法において、
モリブデン、 ビスマスおよび鉄を含有する水性スラリーを噴霧乾燥して乾燥粒 子とするか、 または該乾燥粒子をさらに熱処理して焼成粒子として触媒成分粒子 を製造する工程と、
前記触媒成分粒子を少なく とも液体と混合して混練する工程と、
混練り品を 1次成形する 1次成形工程と、
1次成形品をビストン成形機で最終形状に成形する 2次成形工程と
を有することを特徴とする不飽和アルデヒ ドおよび不飽和カルボン酸製造用触媒 の製造方法。
2. 前記 1次成形品が、 2次成形工程において使用されるピス トン成形機のシ リンダ一径の 0. 5倍以上 1倍未満の径をもつ円柱状であることを特徴とする請 求項 1記載の製造方法。
3. 前記 1次成形品の比重が、 1. 1〜2. 7 k g/Lであることを特徴とす る請求項 1または 2に記載の製造方法。
4. 前記触媒成分粒子の平均粒子直径が 1 0〜 1 5 0 mであることを特徴と する請求項 1〜 3のいずれかに記載の製造方法。
5. 前記触媒成分粒子の平均粒子圧壊強度が、 9. 8 X 1 0_4〜9. 8 X 1 0一2 Nであることを特徴とする請求項 1〜4のいずれかに記載の製造方法。
6. 前記触媒成分粒子の嵩比重が、 0. 5〜1. 8 k g/Lであることを特徴 とする請求項 1〜5のいずれかに記載の製造方法。
7. 2次成形のピス トン成形機で 1次成形品を最終形状に成形する際に、 真空 脱気を行わないことを特徴とする請求項 1〜 6のいずれかに記載の製造方法。
8. 1次成形する際に、 スク リュー押出機を用いて成形することを特徴とする 請求項 1〜 7のいずれかに記載の製造方法。
9. 前記触媒成分粒子と混合する前記液体の量が、 触媒成分粒子 1 0 0質量部 に対して 3 5〜 5 5質量部であることを特徴とする請求項 1〜8のいずれかに記 載の製造方法。
1 0. 前記触媒成分粒子が、 焼成粒子であることを特徴とする請求項 1〜9の いずれかに記載の製造方法。
1 1. 請求項 1〜 1 0記載のいずれかの製造方法により製造された不飽和アル デヒ ドおよび不飽和カルボン酸製造用触媒。
1 2. 触媒の形状がリング状であり、 その外径が 3〜 1 5mmであることを特 徴とする請求項 1 1記載の触媒。
1 3. 請求項 1 1または 1 2に記載の不飽和アルデヒ ドおよび不飽和カルボン 酸製造用触媒を用いて、 プロピレン、 イソブチレン、 tert-ブチルアルコールま たはメチル -tert -ブチルエーテルの少なく とも 1種を分子状酸素により気相酸 化することを特徴とする不飽和アルデヒ ドおよび不飽和カルボン酸の製造方法。
PCT/JP2003/001769 2002-02-19 2003-02-19 Catalyseur servant a preparer aldehyde et acide carboxylique insatures et son procede de fabrication WO2003070369A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/504,143 US20050159619A1 (en) 2002-02-19 2003-02-19 Catalyst for production of unsaturated aldehyde and unsaturated carboxylic acid and process for producing the same
KR1020047012835A KR100826760B1 (ko) 2002-02-19 2003-02-19 불포화 알데히드 및 불포화 카르복실산 제조용 촉매의 제조 방법
JP2003569321A JP4515769B2 (ja) 2002-02-19 2003-02-19 不飽和アルデヒドおよび不飽和カルボン酸製造用触媒、およびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-42215 2002-02-19
JP2002042215 2002-02-19

Publications (1)

Publication Number Publication Date
WO2003070369A1 true WO2003070369A1 (fr) 2003-08-28

Family

ID=27750489

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/001769 WO2003070369A1 (fr) 2002-02-19 2003-02-19 Catalyseur servant a preparer aldehyde et acide carboxylique insatures et son procede de fabrication

Country Status (5)

Country Link
US (1) US20050159619A1 (ja)
JP (1) JP4515769B2 (ja)
KR (2) KR100826760B1 (ja)
CN (1) CN100592932C (ja)
WO (1) WO2003070369A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008285416A (ja) * 2007-05-15 2008-11-27 Mitsubishi Rayon Co Ltd メタクロレインの製造方法
JP2020157294A (ja) * 2019-03-25 2020-10-01 日本化薬株式会社 触媒前駆体、それを用いた触媒、及びその製造方法
WO2020203606A1 (ja) * 2019-03-29 2020-10-08 日本化薬株式会社 触媒製造用乾燥顆粒、触媒、及び化合物の製造方法
JP2023101553A (ja) * 2019-04-23 2023-07-21 日本化薬株式会社 触媒及びその製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003070369A1 (fr) * 2002-02-19 2003-08-28 Mitsubishi Rayon Co., Ltd. Catalyseur servant a preparer aldehyde et acide carboxylique insatures et son procede de fabrication
CN100448539C (zh) 2003-12-18 2009-01-07 三菱丽阳株式会社 不饱和醛和不饱和羧酸制造用催化剂及其制造方法、以及不饱和醛和不饱和羧酸的制造方法
JP5081450B2 (ja) * 2005-07-05 2012-11-28 三菱レイヨン株式会社 触媒の製造方法
SG187497A1 (en) 2008-02-04 2013-02-28 Mitsubishi Rayon Co Catalyst for producing methacrylic acid, method for producing the same, and method for producing methacrylic acid

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09225309A (ja) * 1996-02-26 1997-09-02 Mitsubishi Rayon Co Ltd 不飽和アルデヒド及び不飽和カルボン酸合成用触媒の製造法
JP2001205090A (ja) * 2000-01-25 2001-07-31 Mitsubishi Rayon Co Ltd メタクロレインおよびメタクリル酸合成用触媒、ならびにメタクロレインおよびメタクリル酸の製造方法
JP2003093882A (ja) * 2001-09-26 2003-04-02 Mitsubishi Rayon Co Ltd 不飽和カルボン酸合成用触媒、その製造方法、およびその触媒を用いた不飽和カルボン酸の合成方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003070369A1 (fr) * 2002-02-19 2003-08-28 Mitsubishi Rayon Co., Ltd. Catalyseur servant a preparer aldehyde et acide carboxylique insatures et son procede de fabrication

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09225309A (ja) * 1996-02-26 1997-09-02 Mitsubishi Rayon Co Ltd 不飽和アルデヒド及び不飽和カルボン酸合成用触媒の製造法
JP2001205090A (ja) * 2000-01-25 2001-07-31 Mitsubishi Rayon Co Ltd メタクロレインおよびメタクリル酸合成用触媒、ならびにメタクロレインおよびメタクリル酸の製造方法
JP2003093882A (ja) * 2001-09-26 2003-04-02 Mitsubishi Rayon Co Ltd 不飽和カルボン酸合成用触媒、その製造方法、およびその触媒を用いた不飽和カルボン酸の合成方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008285416A (ja) * 2007-05-15 2008-11-27 Mitsubishi Rayon Co Ltd メタクロレインの製造方法
JP2020157294A (ja) * 2019-03-25 2020-10-01 日本化薬株式会社 触媒前駆体、それを用いた触媒、及びその製造方法
JP7418252B2 (ja) 2019-03-25 2024-01-19 日本化薬株式会社 触媒前駆体、それを用いた触媒、及びその製造方法
WO2020203606A1 (ja) * 2019-03-29 2020-10-08 日本化薬株式会社 触媒製造用乾燥顆粒、触媒、及び化合物の製造方法
JP6792744B1 (ja) * 2019-03-29 2020-11-25 日本化薬株式会社 触媒製造用乾燥顆粒、触媒、及び化合物の製造方法
JP2023101553A (ja) * 2019-04-23 2023-07-21 日本化薬株式会社 触媒及びその製造方法
JP7455256B2 (ja) 2019-04-23 2024-03-25 日本化薬株式会社 触媒及びその製造方法

Also Published As

Publication number Publication date
JPWO2003070369A1 (ja) 2005-06-09
KR100845384B1 (ko) 2008-07-09
US20050159619A1 (en) 2005-07-21
JP4515769B2 (ja) 2010-08-04
KR20080034034A (ko) 2008-04-17
KR20040082438A (ko) 2004-09-24
KR100826760B1 (ko) 2008-04-30
CN100592932C (zh) 2010-03-03
CN1633336A (zh) 2005-06-29

Similar Documents

Publication Publication Date Title
JP2016539936A (ja) 不飽和アルデヒド及び/又は不飽和カルボン酸の製造法
JP4295521B2 (ja) アクリル酸製造用触媒およびアクリル酸の製造方法
JP2008155126A (ja) 金属成分含有触媒の製造方法
JP4933709B2 (ja) 不飽和カルボン酸合成用触媒の製造方法
JP5888233B2 (ja) メタクリル酸製造用触媒の製造方法
JP4179780B2 (ja) 不飽和アルデヒドおよび不飽和カルボン酸合成用触媒の製造方法、この方法により製造される触媒、ならびに、この触媒を用いた不飽和アルデヒドおよび不飽和カルボン酸の合成方法
WO2003070369A1 (fr) Catalyseur servant a preparer aldehyde et acide carboxylique insatures et son procede de fabrication
KR100783994B1 (ko) 불포화 알데하이드 및 불포화 카복실산 제조용 촉매 및그의 제조방법, 및 불포화 알데하이드 및 불포화카복실산의 제조방법
JP5828260B2 (ja) 触媒の製造方法
JP4634633B2 (ja) 不飽和カルボン酸合成用触媒、その調製方法、およびその触媒を用いた不飽和カルボン酸の合成方法
JP3936055B2 (ja) 不飽和アルデヒドおよび/または不飽和カルボン酸合成用触媒の製造法および不飽和アルデヒドおよび/または不飽和カルボン酸の製造法
JP4253176B2 (ja) アクリル酸製造用触媒およびアクリル酸の製造方法
JP2002282695A (ja) 不飽和アルデヒドおよび不飽和カルボン酸合成用触媒、その製造方法、および、その触媒を用いた不飽和アルデヒドおよび不飽和カルボン酸の合成方法
JP2007130519A (ja) 押出成形触媒の製造方法、ならびに不飽和アルデヒドおよび不飽和カルボン酸の製造方法
CN113710362A (zh) 催化剂成型体、甲基丙烯醛和/或甲基丙烯酸制造用的催化剂成型体、以及甲基丙烯醛和/或甲基丙烯酸的制造方法
JP4947756B2 (ja) 不飽和アルデヒドおよび不飽和カルボン酸合成用触媒の製造方法、並びに不飽和アルデヒドおよび不飽和カルボン酸の製造方法
JP2000070719A (ja) 不飽和アルデヒドおよび不飽和カルボン酸合成用触媒、その製造方法、およびその触媒を用いた不飽和アルデヒドおよび不飽和カルボン酸の合成方法
JP7383202B2 (ja) 触媒、及びそれを用いた化合物の製造方法
JP7105395B1 (ja) 触媒前駆体、それを用いた触媒、化合物の製造方法及び触媒の製造方法
JP2004130261A (ja) 不飽和アルデヒドおよび不飽和カルボン酸の合成用触媒の製造方法
JP2010264358A (ja) 触媒、ならびに不飽和アルデヒド及び/又は不飽和カルボン酸の製造方法
JP2010207803A (ja) 複合酸化物触媒
JP4846117B2 (ja) 不飽和アルデヒドおよび不飽和カルボン酸合成用触媒の調製方法、および該調製方法により調製した触媒を用いる不飽和アルデヒドおよび不飽和カルボン酸の合成方法
JP2009090200A (ja) 不飽和アルデヒド及び不飽和カルボン酸合成用触媒の製造方法
JP2009183817A (ja) 不飽和アルデヒド及び不飽和カルボン酸合成用触媒、その製造方法、並びに不飽和アルデヒド及び不飽和カルボン酸の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2003569321

Country of ref document: JP

AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR SG US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 20038040751

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020047012835

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10504143

Country of ref document: US