WO2003065125A1 - Agent de developpement d'image electrostatique - Google Patents

Agent de developpement d'image electrostatique Download PDF

Info

Publication number
WO2003065125A1
WO2003065125A1 PCT/JP2003/000789 JP0300789W WO03065125A1 WO 2003065125 A1 WO2003065125 A1 WO 2003065125A1 JP 0300789 W JP0300789 W JP 0300789W WO 03065125 A1 WO03065125 A1 WO 03065125A1
Authority
WO
WIPO (PCT)
Prior art keywords
developer
developing
fine particles
hexahedral
inorganic fine
Prior art date
Application number
PCT/JP2003/000789
Other languages
English (en)
French (fr)
Inventor
Hiroshi Nakatani
Makoto Watanabe
Original Assignee
Zeon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zeon Corporation filed Critical Zeon Corporation
Priority to JP2003564655A priority Critical patent/JP4337548B2/ja
Publication of WO2003065125A1 publication Critical patent/WO2003065125A1/ja

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/097Plasticisers; Charge controlling agents
    • G03G9/09708Inorganic compounds

Definitions

  • the present invention relates to a developer for developing an electrostatic image formed on a photoconductor by an electrophotographic method, an electrostatic recording method, or the like.
  • the developer of the present invention is excellent in tallying property and transferability even when continuous printing is performed for a long time, has no toner filming phenomenon on the photoreceptor, and has no capri or fuzz. It is possible to form an image with excellent image quality.
  • an electrostatic image (also referred to as an “electrostatic latent image”) formed on a photoreceptor is developed with toner in an electrophotographic apparatus or an image forming apparatus such as an electrostatic recording apparatus.
  • the toner image formed on the photoreceptor is transferred onto a transfer material such as paper as necessary, and then fixed by various methods such as heating, pressing, and solvent vapor. After the transfer, the toner remaining on the photoconductor is removed by a cleaning means such as a cleaning blade.
  • the toner also referred to as “toner particles”
  • the developer for developing an electrostatic image uses colored particles as a functional component, and is substantially colored with a two-component developer composed of a mixture of the colored particles and a carrier (such as a ferrite powder, an iron powder, and a glass bead). It is roughly classified into a one-component developer consisting of only particles.
  • the one-component developer is roughly classified into a magnetic one-component developer containing magnetic powder in colored particles and a non-magnetic one-component developer not containing magnetic powder.
  • the surface of the toner is often adhered with hydrophobic fine particles as external additives. No.
  • Japanese Patent No. 3,175,902 discloses that a toner having a small volume average particle diameter of 3.5 to 8.S jum, a narrow particle diameter distribution, and a true spherical shape is used.
  • a non-magnetic one-component developing agent mixed with inorganic fine particles having a particle size of 0.2 ⁇ m or less as an external additive has been proposed. According to the document, this non-magnetic one-component developer forms a uniform toner layer on a developing roller, and despite having a small particle size, does not generate capri, scattering, etc., and has good developability. Is indicated.
  • toner having a small particle diameter tends to slip through the gap between the photoreceptor and the cleaning blade, resulting in poor cleaning. This tendency is particularly strong in the case of a spherical toner having a small particle diameter. If a cleaning failure occurs, the toner remaining on the photoreceptor will contaminate the image in the next printing process, deteriorating the image quality.
  • methods such as increasing the contact pressure of the cleaning blade with respect to the photoreceptor and changing the material of the tallying blade to increase the friction with the photoreceptor are being studied. In these methods, the cleaning blade is liable to be worn or damaged, and when the cleaning blade is arranged to face the photoconductor in the rotation direction, the cleaning blade is easily turned up.
  • the surface of the photoconductor is easily damaged by the cleaning blade.
  • the toner having a small particle diameter has a large adhesive force to a photoreceptor or the like, and a filming phenomenon easily occurs on the photoreceptor or the development blade.
  • defects such as white spots occur in the image.
  • a toner having a small particle diameter is liable to agglomerate and tends to have insufficient fluidity, and also tends to have a low transfer rate in a transfer step.
  • improving the fluidity and abrasiveness of the toner is important for improving the toner talling property, preventing the toner filming phenomenon on the photoreceptor, etc., and further improving the transferability. Is an important issue.
  • the above-mentioned external additives have been used to improve the fluidity and abrasiveness of the toner.
  • spherical or amorphous inorganic fine particles are used as an external additive.
  • External additives adhere to the surface of the toner and improve the fluidity and abrasiveness of the toner.
  • the transferability is improved, the load on the cleaning process is reduced, and the filming phenomenon of the toner is suppressed by the polishing action.
  • the use of conventional external additives does not provide sufficient fluidity and abrasiveness of the toner. In particular, as the particle size of the toner becomes smaller, further improvements in these properties are required. I have.
  • Japanese Patent Application Laid-Open No. 8-227171 discloses toner particles having a weight average particle diameter of 1 to 9 / zm, hydrophobicized inorganic fine particles having an average particle diameter of 10 to 9 O nm, and hydrophobic particles.
  • the hydrophobized silicon compound fine particles are a mixture of fine particles having a particle size of 5 to 30 nm and fine particles having a particle size of 30 to 60 nm.
  • Japanese Patent Application Laid-Open No. 8-190221 discloses that toner particles contain at least calcium carbonate, have a Mohs hardness of 3.5 or more, and have a volume average particle size of 0.1 to 10 ⁇ .
  • electrophotographic toner in which abrasive fine particles and a silica-based external additive are externally added.
  • Marble powder is used as abrasive fine particles.
  • the toners for developing electrostatic images disclosed in these documents are not yet sufficient in terms of satisfying both the clear-jung property and the transfer property of the toner.
  • the conventional electrostatic image developer containing an external additive is not sufficient to cope with high resolution of an image or high speed image formation in addition to cleaning property and transfer property. Disclosure of the invention
  • the present inventors have conducted intensive studies to achieve the above object, and as a result, have found that the above object can be achieved by using inorganic fine particles having a hexahedral shape as an external additive. Based on this, the present invention has been completed.
  • the external additive is hexahedral inorganic fine particles.
  • the developer for developing an electrostatic image of the present invention is a developer containing colored particles (toner) and inorganic fine particles having a hexahedral shape as an external additive.
  • the hexahedral inorganic fine particles mean those having a hexahedron such as a cube or a rectangular parallelepiped.
  • the hexahedral inorganic fine particles may be slightly deformed such that the apexes of the hexahedron are rounded as long as they have a substantially hexahedral three-dimensional shape.
  • the hexahedral inorganic fine particles preferably have a length ratio between the longest ridge line and the shortest ridge line of the ridge lines constituting the hexahedron within a range of 1 to 2, and a cube having a ratio of 1 to 1. Les, more preferred to be.
  • the chemical structure of the hexahedral inorganic fine particles used in the present invention is not particularly limited, but a typical example is calcium carbonate. Hexahedral calcium carbonate and a method for producing the same are disclosed, for example, in JP-A-7-196316 and JP-A-10-130020.
  • Japanese Patent Application Laid-Open No. 7-196316 discloses that the concentration of carbonate ions prepared by adding a reaction buffer of 0.001 to 2.
  • Omo 1 ZL to either or both of a carbonate solution and a calcium salt solution.
  • Omo 1 / L carbonate solution and calcium ion concentration 0.1 to 3.
  • Alkali gold as a reaction buffer Nitrate, sulfate, and salt of the genus or ammonium are used.
  • the mixing of the two solutions is performed by dropping and mixing the other solution into one of the solutions within 70 to 1200 seconds, and maintaining the temperature in the mixing system at 5 to 40 ° C for carbonation. Perform the reaction.
  • cubic calcium carbonate having a particle size of 0.1 to 20 m can be obtained.
  • JP-A-10-130020 discloses that a carbonate solution having a carbonate ion concentration of 0.1 to 3. Omo 1ZL and a calcium salt solution having a calcium ion concentration of 0.1 to 3. Omo 1ZL are mixed.
  • a method for producing cubic calcium carbonate is disclosed. The mixing of both solutions is performed by a method in which the other solution is added dropwise to one of the solutions over a period of 30 seconds or longer, and carbonation is performed while maintaining the temperature in the mixing system at 3 to 30 ° C.
  • a calcium carbonate aqueous suspension having a pH of 10 or less is prepared and then washed with water to produce cubic calcium carbonate having a particle size of 0.05 to 5.0 O / zm.
  • Add a reaction buffer such as ammonium hydroxide, nitrate, sulfate, or chloride, to either solution or either solution.
  • a reaction buffer is contained in at least one of the solutions, and at a low temperature of about room temperature for a certain period of time.
  • a method of obtaining cubic calcium carbonate by mixing and carrying out a carbonation reaction is known.
  • Cubic calcium carbonate mainly has a calcite crystal form.
  • the volume average particle diameter of the hexahedral inorganic fine particles is not particularly limited, but is preferably in the range of 0.05 to 1 ⁇ , more preferably 0.1 to 8 jum, and particularly preferably 0.3 to 7 / zm. is there.
  • a one-component developer particularly a non-magnetic one-component developer, good cleaning properties and high image quality can be achieved even if the volume average particle diameter of the hexahedral inorganic fine particles exceeds 0.6 ⁇ m or less.
  • volume average particle diameter of the hexahedral inorganic fine particles is too small, the cleaning properties of the toner cannot be sufficiently improved when used as an external additive, and if too large, the effect of improving the fluidity of the toner can be obtained. Is small and may cause blurring in the image or cause image loss.
  • Hexahedral inorganic The volume average particle diameter of the fine particles can be determined, for example, by dispersing hexahedral inorganic fine particles in water, and using a dispersion method of the dispersion with a laser particle size distribution analyzer (trade name “Microtrac FRA” manufactured by Kikkiso Co., Ltd.). Can be measured.
  • the hexahedral inorganic fine particles have a particle size DV i in which the cumulative value of the volume particle size calculated from the smaller particle size side is 10% in the volume particle size distribution.
  • the particle size DV 9 is 90%.
  • the value calculated by the equation (D v 9 0 ZD v 1 0) / D v 5 0 between the 5 particle size D v 5 0 0 percent preferably from 0.5 to 6, more preferably Is preferably in the range of 1-3. If this value is too small, it may be difficult to produce hexahedral inorganic fine particles. If this value is too large, white streaks may occur in an image when printing is performed using a developer containing the hexahedral inorganic fine particles as outer J.
  • the hexahedral inorganic fine particles have been subjected to a hydrophobic treatment.
  • a hydrophobic treatment commercially available products may be used, but the untreated hexahedral inorganic fine particles are obtained by a surface treatment with a silane coupling agent, silicone oil, fatty acid, fatty acid metal stone, or the like. be able to.
  • the hydrophobic treatment may be performed by dropping or spraying a hydrophobic agent such as silicone oil while stirring the hexahedral inorganic fine particles at a high speed, or by dissolving the hydrophobic agent in an organic solvent and stirring. And a method of adding hexahedral inorganic fine particles to the mixture.
  • the hydrophobizing agent may be diluted with an organic solvent or the like.
  • the mixing ratio of the hexahedral inorganic fine particles to the colored particles is not particularly limited, but is usually 0.05 to 5 parts by weight, preferably 0.1 to 3 parts by weight, and more preferably 100 to 100 parts by weight of the colored particles. Is 0.5 to 2 parts by weight. If the blending ratio of the hexahedral inorganic fine particles is too small, it is difficult to sufficiently improve the cleaning property of the toner. Conversely, if the blending ratio is too large, the effect of improving the fluidity of the toner is small, and image blurring may occur. is there.
  • a one-component developer particularly a non-magnetic one-component developer
  • the developer of the present invention has a spherical shape in addition to the colored particles and the hexahedral inorganic fine particles. Further, it preferably contains amorphous fine particles.
  • amorphous fine particles As the spherical or amorphous fine particles, inorganic fine particles, organic fine particles, and mixtures thereof, which are generally used as external additives for toner, can be used, but they control the fluidity and chargeability of the toner. Inorganic fine particles are preferable in that they are easy. These fine particles can be used alone or in combination of two or more.
  • the spherical or amorphous inorganic fine particles include, for example, silica, oxidized titanium, anorenium oxide, oxidized mouth, tin oxide, barium titanate, and strontium titanate. This is preferable since capri during printing is reduced.
  • the volume average particle diameter of the spherical or amorphous inorganic fine particles is not particularly limited.
  • the force is usually 5 to 500 nm, preferably 5 to 100 nm, more preferably 7 to 50 nm. If the volume average particle diameter of the spherical or amorphous inorganic fine particles is too small, the toner is charged up at low temperature and low humidity, and the print density is reduced.
  • the volume average particle size of the spherical or amorphous inorganic fine particles can be determined, for example, by taking an electron micrograph of the inorganic fine particles and using an image processing / analyzing device [Nireco Co., Ltd., trade name “Luzettas IID”]. It can be measured using:
  • the spherical or amorphous inorganic fine particles preferably have a hydrophobicity of 30 to 90% as measured by a methanol method.
  • the mixing ratio of the spherical or amorphous inorganic fine particles is not particularly limited, but is usually 0.1 to 5 parts by weight, preferably 0.3 to 3 parts by weight, per 100 parts by weight of the colored particles. If the blending ratio is too small, the fluidity becomes insufficient and rash may occur. Conversely, if the blending ratio is too large, the fluidity becomes too good and capri may occur.
  • the spherical or amorphous organic fine particles are not particularly limited.However, from the viewpoint of suppressing blocking between particles, the glass transition temperature or melting point of the compound constituting the organic fine particles is usually 80 to 250 ° C. The temperature is preferably 90 to 200 ° C. Examples of the compound constituting the organic fine particles include polymers such as a methyl methacrylate polymer and a styrene-methyl methacrylate copolymer.
  • the volume average particle size of the organic fine particles is not particularly limited, but is usually 0.1 to: L / zm, preferably 0.1 to 0.8 ⁇ .
  • the sphericity of the organic fine particles is not particularly limited, but is usually 1.0 to 1.3, preferably 1.0 to 1.2. If the volume average particle diameter of the organic fine particles is too small, it becomes difficult to prevent the occurrence of filming, while if it is too large, the fluidity of the toner may not be sufficiently improved. If the sphericity of the organic fine particles is too large, the transferability of the toner may decrease.
  • the sphericity is a value (Sc / Sr) obtained by dividing an area (Sc) of a circle whose diameter is the absolute maximum length of a particle by a substantial projected area (Sr) of the particle. As this value approaches 1, the particle becomes closer to a true sphere.
  • the mixing ratio of the organic fine particles is not particularly limited, but is usually 0.05 to 1 part by weight, preferably 0.1 to 0.5 part by weight, per 100 parts by weight of the colored particles. If the ratio is too small, the prevention of filming tends to be insufficient, while if it is too large, the fluidity of the toner deteriorates and the image tends to be blurred.
  • the colored particles (toner) used in the present invention are colored particles containing at least a binder resin and a colorant, and often contain a charge control agent.
  • the colored particles may contain a release agent, a magnetic material, and the like, if necessary.
  • binder resin examples include resins conventionally used widely as binder resins for toner, such as polystyrene, styrene-butyrate acrylate copolymer, polyester resin, and epoxy resin.
  • various pigments and / or dyes can be used in addition to carbon black, titanium black, magnetic powder, oil black, and titanium white.
  • black carbon black those having a primary particle diameter of 20 to 40 nm are preferably used. If the primary particle size is less than 20 nm, the car pump racks will not aggregate and disperse evenly in the toner, resulting in a toner with a large amount of capri. On the other hand, if the primary particle size is larger than 40 nm, polyvalent aromatics such as benzopyrene generated during carbon black production If the content of hydrocarbon compounds increases and these compounds remain in the toner in large amounts, environmental safety problems may occur.
  • a yellow colorant, a magenta colorant, and a cyan colorant are usually used as colorants.
  • yellow colorant compounds such as azo pigments and condensed polycyclic pigments are used. Specific examples include CI Pigment Yellow 3, 12, 13, 14, 15, 17, 62, 65, 73, 83, 90, 93, 97, 120, 138, 155, 180, 181, 185, 186, etc. .
  • magenta colorant compounds such as azo pigments and condensed polycyclic pigments are used. Specifically, CI Pigment Red 48, 57, 58, 60, 63, 64, 68, 81, 83, 87, 88, 89, 90, 112, 114, 122, 123, 144, 146, 149, 163, 170, 184, 185, 187, 202, 206, 207, 209, 251 and CI Pigment Violet 19.
  • cyan colorant a copper phthalocyanine compound and its derivatives, an anthraquinone compound, and the like can be used. Specific examples include C.I. Pigment Blue 2, 3, 6, 15, 15: 1, 15: 2, 15: 3, 15: 4, 16, 17, 60 and the like.
  • the content of the colorant is usually 0.1 to 20 parts by weight, preferably 1 to 10 parts by weight, based on 100 parts by weight of the binder resin.
  • charge control agent various charge control agents conventionally known for toners can be used. Specific examples thereof include, for example, Pontron NO 1 (manufactured by Orient Chemical Co., Ltd.), Nigguchi Shinbase EX (manufactured by Orient Chemical Co., Ltd.), Spiron Black TRH (Hodogaya Chemical Industry: h ⁇ ), T-77 (Made by Hodogaya Chemical Co., Ltd.), Pontrone S-34 (made by Orient Chemical Industries), Pontrone E-81 (made by Orient Chemical Industries), Pontron E-84 (made by Orient Chemical Industries), COPY CHARGE NX (Clariantone) Earthen), COPY CHARGE And a charge control agent such as NEG (Clariantone ⁇ 3 ⁇ 4).
  • Pontron NO 1 manufactured by Orient Chemical Co., Ltd.
  • Nigguchi Shinbase EX manufactured by Orient Chemical Co., Ltd.
  • Spiron Black TRH Hodogaya Chemical Industry: h ⁇
  • T-77
  • Examples of the charge control agent include JP-A-63-60458, JP-A-3-175456, JP-A-3-2243954, and JP-A-Hei.
  • Copolymers containing a quaternary ammonium (salt) group such as those described in JP-A-11-15292; JP-A 1-217464; JP-A 3-158
  • a charge control resin such as a sulfonic acid (salt) group-containing copolymer described in JP-A-58-58 can be used.
  • the charge control resin has high compatibility with the binder resin, is colorless, and can provide a toner having stable chargeability even in continuous color printing at high speed.
  • the glass transition temperature of the charge control resin is usually 40 to 80 ° C, preferably 45 to 75 ° C, and more preferably 45 to 70 ° C. If the glass transition temperature of the charge control resin is too low, the storability of the toner deteriorates, and if it is too high, the fixability may decrease.
  • the content of the charge control agent is usually from 0.01 to 20 parts by weight, preferably from 0.1 to 10 parts by weight, based on 100 parts by weight of the binder resin.
  • release agent examples include polyolefin waxes such as low-molecular-weight polyethylene, low-molecular-weight polypropylene, and low-molecular-weight polybutylene; plant-based natural pettas such as candelilla, carnauba, rice, wood wax, jojoba; Petroleum-based pettas such as crystallin and petrolatum, and their properties; synthetic waxes such as Fischer's mouth push wax; polyfunctional ester compounds such as pentaerythritol tetramyristate, pentaerythritol tetrapalmitate, dipentaerythritol hexamilystate; Is mentioned. These release agents can be used alone or in combination of two or more.
  • the release agents synthetic waxes, terminal-modified polyolefin waxes, petroleum waxes, and polyfunctional ester compounds are preferred.
  • polyfunctional ester compounds in the DSC curve measured by the differential scanning calorimeter (DSC), the endothermic peak temperature at the time of temperature rise is in the range of 30 to 200 ° C, preferably 40 to 160 ° (more preferably 50 to 120 ° C).
  • a polyvalent ester compound such as a certain pentaerythritol ester or a dipentaerythritol ester having an endothermic peak temperature in the range of 50 to 80 ° C. is particularly preferable in terms of the balance between the fixing and the releasability of the toner.
  • multivalent ester compounds those having a molecular weight of 1000 or more, a melting angle of 5 parts by weight or more at 25 ° C with respect to 100 parts by weight of a styrene monomer, and an acid value of 1 Omg / KOH or less are referred to as toners.
  • the endothermic peak temperature is a value measured according to ASTM D 3418-82.
  • the content of the release agent is usually 0.5 to 50 parts by weight, preferably 1 to 20 parts by weight, based on 100 parts by weight of the binder resin.
  • the colored particles used in the present invention may contain a magnetic material.
  • the magnetic material include iron oxides such as magnetite, ⁇ -oxidized iron, ferrite, and iron-rich ferrite; metals such as iron, cobalt, and nickel; or these metals and aluminum, cobalt, copper, lead, and magnesium. And alloys with metals such as tin, zinc, antimony, beryllium, bismuth, cadmium, canoledium, manganese, selenium, titanium, tungsten, vanadium, and mixtures thereof.
  • the colored particles preferably have a sphericity (Sc / Sr) in the range of 1.0 to 1.3, more preferably 1.0 to 1.2. If the sphericity of the colored particles is too large, the fluidity is reduced and the image tends to be blurred.
  • the volume average particle size (dv) of the colored particles is not particularly limited, but is usually 1 to 12 / zm, preferably 2 to 10 m, and more preferably 3 to 8 ⁇ . In order to form a high definition and high resolution image, it is preferable to reduce the volume average particle size of the colored particles.
  • the ratio (dv / dp) of the volume average particle diameter (dv) to the number average particle diameter (dp) of the colored particles is usually 1.7 or less, preferably 1.5 or less, more preferably 1.3 or less.
  • the ratio (dvZdp) is small and the particles are nearly spherical, and specifically, it is preferably 1.0 to 1.3, more preferably It is preferably in the range of 1.0 to 1.25, particularly preferably 1.0 to 1.2.
  • the colored particles have a core-shell structure obtained by arranging resin materials having different physical properties in a core part (core particles) and an outer layer (shell layer) (“core” shell type toner J or “capsule type”). (Also referred to as "toner”).
  • core particles core part
  • shell layer shell layer
  • toner outer layer
  • the core particles made of a resin material with a low softening point are coated with a resin material layer with a higher softening point to lower the fixing temperature (low-temperature fixing property) and improve storage stability. It is preferable because it can balance with aggregation prevention (preservation).
  • the volume average particle diameter of the core particles is not particularly limited.
  • the force is usually 1 to 12 A / m, preferably 2 to: L0 ⁇ m, and more preferably 3 to 8 / zm.
  • the volume average particle diameter (dv) and the Z number average particle diameter (dp) of the core particles are not particularly limited, but are usually 1.7 or less, preferably 1.5 or less, and more preferably 1.3 or less.
  • the weight ratio between the core particles and the shell layer of the core / shell structure particles is not particularly limited, but is usually used in the range of 80Z20 to 99.9 / 0.1. If the proportion of the shell layer is too small, the effect of improving the preservability becomes insufficient, while if it is too large, the effect of improving the low-temperature fixability becomes insufficient.
  • the average thickness of the shell layer of the core-shell structured particles is usually from 0.001 to 1, preferably from 0.003 to 0.5 jum, more preferably from 0.005 to 0.2 jum. If the thickness of the shell layer is too large, the low-temperature fixability decreases, and if it is too small, the storage stability tends to decrease.
  • the core-shell colored particles need not cover the entire surface of the core particle with the shell layer, but it is sufficient if at least a part of the surface of the core particle is covered with the shell layer.
  • the core particle diameter of the core-shell structure particles and the thickness of the shell layer can be obtained by directly measuring the size and shell thickness of the randomly selected core particles from the observed photograph, if observable with an electron microscope. it can. When it is difficult to observe the core particles and the shell layer with an electron microscope, it can be calculated from the particle size of the core particles and the amount of the monomer forming the shell used in the production of the toner.
  • the colored particles that can be used in the present invention are not particularly limited by the manufacturing method. For example, (1) a colorant, a charge controlling agent, a release agent, and the like are melt-mixed and uniformly dispersed in a thermoplastic resin which is a binding resin component to form a composition.
  • Colored particles obtained by pulverization and classification (referred to as “pulverized toner”).
  • Coloring agent, charge control agent, release agent, etc. are dissolved or dispersed in the polymerizable monomer that is the raw material of the binder resin. Suspended in an aqueous dispersion medium containing a dispersion stabilizer, heated to a predetermined temperature in the presence of a polymerization initiator to start suspension polymerization, and after the polymerization is completed, filtered, washed, dehydrated and dried.
  • Primary particles of a binder resin containing a polar group obtained by emulsification polymerization are aggregated by adding a colorant and a charge control agent.
  • the substantially spherical colored particles (colored particles) obtained by the suspension polymerization method are used.
  • Polymer particles; polymerized toner Polymerization by a suspension polymerization method involves suspending and polymerizing a polymerizable monomer composition containing at least a polymerizable monomer and a coloring agent in an aqueous dispersion medium containing a dispersion stabilizer. As a result, it can be obtained as a colored polymer particle.
  • Examples of the polymerizable monomer for obtaining the binder resin include a monovinyl monomer, a crosslinkable monomer, and a macromonomer.
  • a polymerizable monomer such as a monobutyl monomer is polymerized, it becomes a binder resin component of the colored particles.
  • Examples of the monobutyl monomer include aromatic butyl monomers such as styrene, butyltoluene, and a-methylstyrene; (meth) acrylic acid; (meth) methyl acrylate; (meth) ethyl acrylate; ) Propyl acrylate, (meth) ac (Meth) such as butyl acrylate, 2-ethylhexyl (meth) acrylate, hexyl (meth) acrylate, isoponyl (meth) acrylate, dimethylaminoethyl (meth) acrylate, and (meth) acrylamide Derivatives of acrylic acid; monoolefin monomers such as ethylene, propylene and butylene;
  • the monovinyl monomers can be used alone or in combination of two or more.
  • an aromatic vinyl monomer or a combination of an aromatic vinyl monomer and a (meth) acrylic acid derivative is preferable.
  • the crosslinkable monomer is a monomer having two or more butyl groups, and examples thereof include aromatic dibutyl compounds such as dibutylbenzene, divinylnaphthalene, and derivatives thereof; ethylene glycol / resin; Diethylenically unsaturated carboxylic acid esters such as methacrylate and diethylene glycol dimetharylate; compounds having two butyl groups such as N, N-dibulaniline and dibutyl ether; Examples of the compound include three or more groups.
  • the crosslinkable polymer is a polymer having two or more vinyl groups in the polymer, and specifically, a polyethylene, polypropylene, polyester, polyethylene glycol, etc. having two or more hydroxyl groups in the molecule. Esters obtained by subjecting the polymer to a condensation reaction of an unsaturated carboxylic acid monomer such as acrylic acid / methacrylic acid can be mentioned. These crosslinkable monomers and crosslinkable polymers can be used alone or in combination of two or more.
  • the content of the crosslinkable monomer and Z or the crosslinkable polymer is usually 10 parts by weight or less, preferably 0.1 to 2 parts by weight, based on 100 parts by weight of the monobutyl monomer. .
  • the macromonomer is an oligomer or polymer having a polymerizable carbon-carbon unsaturated double bond at the terminal of the molecular chain and having a number average molecular weight of usually from 1,000 to 300,000. Number average of macromonomer If the particle size is too small, the surface of the colored particles (polymerized toner particles) becomes soft and the preservability decreases. Conversely, if the particle size is too large, the meltability of the macromonomer deteriorates and the fixability and the preservability deteriorate. I do.
  • Examples of the polymerizable carbon-carbon unsaturated double bond at the end of the macromonomer molecular chain include an acryloyl group and a methacryloyl group, and from the viewpoint of easy copolymerization with a monobiel monomer. Methacryloyl groups are preferred.
  • the macromonomer is preferably one that gives a polymer having a glass transition temperature higher than the glass transition temperature of a polymer obtained by polymerizing a monobutyl monomer.
  • the macromonomer examples include a polymer obtained by polymerizing styrene, a styrene derivative, a methacrylate ester, an acrylate ester, acrylonitrile, methacrylonitrile, etc., alone or in combination of two or more, and a polysiloxane skeleton Macromonomer and the like can be mentioned.
  • those having hydrophilicity are preferable, and polymers obtained by polymerizing methacrylic acid ester or acrylic acid ester alone or in combination thereof are particularly preferable.
  • a macromonomer When a macromonomer is used, its content is usually 0.01 to 10 parts by weight, preferably 0.03 to 5 parts by weight, more preferably 0.03 to 5 parts by weight, based on 100 parts by weight of the monobutyl monomer. 0.05 to 1 part by weight. If the content of the macromonomer is too small, the effect of improving the storage stability is reduced, and if it is too large, the fixability is reduced.
  • the suspension polymerization is performed in an aqueous dispersion medium containing a dispersion stabilizer.
  • the dispersion stabilizer include sulfates such as barium sulfate and calcium sulfate; carbonates such as parium carbonate, calcium carbonate and magnesium carbonate; phosphates such as calcium phosphate; metal oxides such as aluminum oxide and titanium oxide.
  • Metal hydroxides such as aluminum hydroxide, magnesium hydroxide, and ferric hydroxide; water-soluble molecules such as polyvinyl alcohol, methyl cellulose, and gelatin; aionic surfactants and nonionic interfaces; Surfactants and amphoteric surfactants.
  • These dispersion stabilizers can be used alone or in combination of two or more.
  • the use of a metal compound, in particular, a colloid of a poorly water-soluble metal hydroxide can narrow the particle size distribution of the colored polymer particles to be produced, It is preferable because a residual amount is small and a polymerized toner capable of clearly reproducing an image is easily obtained.
  • the colloid of the hardly water-soluble metal hydroxide in its number particle size distribution, the particle size D p 5 0 cumulative value of number particle diameter as calculated from smaller particle size side is 50% is 0. 5 ju m or less And the particle size D p 9 is 90%. Is preferably 1 ⁇ or less. If the particle size of the colloid is too large, the stability of the polymerization reaction system tends to be lost, and the storage stability of the obtained polymerization toner is reduced.
  • the dispersion stabilizer is generally used in a proportion of 0.1 to 20 parts by weight based on 100 parts by weight of the polymerizable monomer. If this ratio is too small, it is difficult to obtain sufficient polymerization stability, and aggregates are easily formed. Conversely, if this ratio is too large, the volume average particle size of the resulting polymerized toner will be too small.
  • polymerization initiator examples include persulfates such as potassium persulfate and ammonium persulfate; 4,4′-azobis (4-cyanovaleric acid), 2, 2′-azobis (2-methyl-1- (2-hydroxy) Ethyl) propionamide, 2,2'-azobis (2-amidinopropane) dihydrochloride, 2,2'-azobis (2,4-dimethy / revalonitrile), 2,2'-azobisisobutyronitrile, etc.
  • persulfates such as potassium persulfate and ammonium persulfate
  • 4,4′-azobis (4-cyanovaleric acid) 2, 2′-azobis (2-methyl-1- (2-hydroxy) Ethyl) propionamide
  • 2,2'-azobis (2-amidinopropane) dihydrochloride 2,2'-azobis (2,4-dimethy / revalonitrile
  • 2,2'-azobisisobutyronitrile etc.
  • an oil-soluble polymerization initiator which is soluble in the polymerizable monomer to be used, and if necessary, a water-soluble polymerization initiator may be used in combination therewith. it can.
  • the polymerization initiator is used in an amount of 0.1 to 20 parts by weight, preferably 0.3 to 15 parts by weight, more preferably 0.5 to 10 parts by weight, based on 100 parts by weight of the polymerizable monomer. Used in parts by weight.
  • the polymerization initiator can be added in advance to the polymerizable monomer composition, but in the case of suspension polymerization, the suspension after the granulation step for forming droplets of the polymerizable monomer composition is completed. In the case of a suspension or emulsion polymerization, it can be added directly to the emulsion after the emulsification step.
  • a molecular weight modifier In the polymerization, it is preferable to use a molecular weight modifier.
  • the molecular weight regulator include mercaptans such as t-dodecylmercaptan, n-dodecylmercaptan, n-octylmercaptan, 2,2,4,6,6-pentamethylheptane-14-thiol; carbon tetrachloride, Halogenated hydrocarbons such as carbon tetrabromide; and the like.
  • the molecular weight modifier can be added before or during the polymerization.
  • the molecular weight modifier is used in an amount of usually 0.01 to 10 parts by weight, preferably 0.1 to 5 parts by weight, based on 100 parts by weight of the polymerizable monomer.
  • Methods for producing colored particles having a core / shell structure include methods such as spray drying, interfacial reaction, in situ polymerization, and phase separation.
  • the particles obtained by a pulverization method, a polymerization method, an association method, or a phase inversion emulsification method are used as core particles, and the surface of the core particles is coated with a shell layer, whereby colored particles having a core-shell structure can be obtained.
  • an in situ polymerization method and a phase separation method are preferable from the viewpoint of production efficiency.
  • a method for producing a core-shell type toner (core-shell type polymerization toner) by an in situ polymerization method will be described below.
  • the polymerizable monomer for forming the shell (polymerizable monomer for shell) and the polymerization initiator are added to the aqueous dispersion medium in which the core particles are dispersed, and polymerized to form the core.
  • a core / shell type toner having a structure in which particles are coated with a polymer layer can be obtained.
  • Specific methods for forming the shell include a method in which a polymerizable monomer for shell is added to the polymerization reaction reaction system performed to obtain the core particles and continuous polymerization is performed, and a method in which the reaction is performed in another reaction system.
  • the core particles are charged into an aqueous dispersion medium, and a polymerizable monomer for shell is added.
  • a method of polymerizing stepwise can be exemplified. Among them, a polymerizable monomer composition containing at least a polymerizable monomer and a colorant is suspension-polymerized in an aqueous dispersion medium containing a dispersion stabilizer to form colored polymer particles.
  • a method is used in which the polymerizable monomer for shell is polymerized in the presence of the colored polymer particles, the colored polymer particles are used as core particles, and a shell layer made of a polymer is formed on the surface of the core particles.
  • the polymerizable monomer for the shell may be added to the reaction system all at once, or may be added continuously or intermittently using a pump such as a plunger pump.
  • the polymerizable monomer for shell monomers such as styrene, acrylonitrile, and methyl methacrylate that can form a polymer having a glass transition temperature of more than 80 ° C are used alone or in combination of two or more. It is preferable to use them in combination from the viewpoint of conservation.
  • the polymerizable monomer for the core one that can form a polymer having a glass transition temperature of usually 60 ° C. or lower, preferably 40 to 60 ° C. is preferably selected at a low temperature. It is desirable from the viewpoint of sex.
  • a water-soluble radical initiator When adding the polymerizable monomer for shell, it is preferable to add a water-soluble radical initiator since a core-shell type polymerized toner is easily obtained.
  • a water-soluble radical initiator When a water-soluble radical initiator is added at the time of addition of the polymerizable monomer for shell, the water-soluble radical initiator enters near the outer surface of the core particle to which the polymerizable monomer for shell has migrated, and the surface of the core particle It is considered that a polymer (shell) is easily formed at the same time.
  • water-soluble radical initiator examples include persulfates such as potassium persulfate and ammonium persulfate; 2,2'-azobis [2-methyl-N- (2-hydroxyxethyl) propionamide], 2,2'- And azo-based initiators such as azobis- [2-methyl-N- [1,1-bis (hydroxymethyl) ethyl] propionamide].
  • the amount of the water-soluble radical initiator to be added is generally 1 to 50% by weight, preferably 2 to 20% by weight, based on 100 parts by weight of the monomer for shell.
  • the colored particles and the hexahedral inorganic fine particles are mixed, and the hexahedral inorganic fine particles usually adhere to the surface of the colored particles, but even if a part of the hexahedral inorganic fine particles is embedded in the colored particles.
  • the toner of the present invention can be obtained by mixing the colored particles and the hexahedral inorganic fine particles together with other fine particles, if necessary, with a high-speed stirrer such as a Henschel mixer.
  • the colored particles are preferably a polymerized toner, and more preferably a core-shell type polymerized toner from the viewpoint of balancing low-temperature fixability and storage stability.
  • Examples of the electrostatic image developer include a two-component developer, a magnetic one-component developer, and a non-magnetic one-component developer. Among them, a non-magnetic one-component developer is preferable because the effect of the present invention is remarkable. .
  • a non-magnetic one-component developer is preferable because the effect of the present invention is remarkable.
  • the shape of calcium carbonate was observed with a scanning electron micrograph.
  • the volume average particle size of calcium carbonate was measured using a laser type particle size distribution analyzer (Nikkiso Co., Ltd., Necro, trade name "Microtrack FRA") for a dispersion of calcium carbonate dispersed in water.
  • styrene 17 parts of n-butyl / reacrylate, 6 parts of carbon black (trade name “# 25B”, manufactured by Mitsubishi Chemical Corporation; primary particle size 40 nm), 6 parts of styrene / polystyrene as charge control resin —Ethylhexyl Z 2—Acryloylamine 2-methyl-1-propanesulfonic acid copolymer (trade name “FCA-1001-NS”, manufactured by Fujikura Kasei) 1 part, 0.6 parts of dibutylbenzene, One part of t-dodecyl mercaptan and 10 parts of dipentaerythritol hexamyristate were dispersed in a bead mill at room temperature to obtain a polymerizable monomer composition for a core.
  • the cored polymerizable monomer composition is added to the magnesium hydroxide colloidal dispersion (colloidal amount: 4.0 parts) obtained as described above, and the mixture is stirred until the droplets are stabilized, and t-butylperoxy-monoisobutylate is added thereto. (Nippon Yushine: h ⁇ , trade name "Partyl IB") 6 parts were added. After that, the mixture was passed through a high-speed shearing and stirring device (Epara Milder, product name: MDN303V, manufactured by EBARA CORPORATION) rotating at 15,000 rpm for a total residence time of 3 seconds.
  • Epara Milder product name: MDN303V, manufactured by EBARA CORPORATION
  • the liquid was returned and circulated into the tank at an ejection speed of 0.5 m / s to form droplets of the monomer composition.
  • the tip of the inner nozzle was adjusted to be located 50 mm below the surface of the dispersion in the stirring tank, and granulation was performed 10 times.
  • a cooling jacket was attached around Ebara Milda 1 to allow cooling water at about 15 ° C to flow. The mixture was supplied to form droplets of the core monomer composition.
  • a non-magnetic one-component developer was obtained in the same manner as in Example 1, except that 0.5 part of cubic calcium carbonate having a volume average particle diameter of 5 ⁇ m was changed to 1 part. Table 1 shows the results.
  • Example 1 cubic calcium carbonate having a volume average particle diameter of 0.3 / m was used instead of cubic calcium carbonate having a volume average particle diameter of 5 ⁇ (Maruo Calcium Co., trade name “CUBE-03BHS”)
  • CUBE-03BHS Maruo Calcium Co., trade name “CUBE-03BHS”
  • a non-magnetic one-component developer was obtained in the same manner as in Example 1, except that cubic calcium carbonate having a volume average particle size of 5 ⁇ m was not used. Table 1 shows the results.
  • Example 1 in place of the cubic calcium carbonate having a volume average particle size of 5 ⁇ m, an irregularly shaped calcium carbonate having a volume average particle size of 1.5 jum (trade name, manufactured by Sankyo Flour Milling Co., Ltd.)
  • a non-magnetic one-component developer was obtained in the same manner as in Example 1 except that "Escalon # 2000" was used. Table 1 shows the results.
  • the present invention provides a developer for electrostatic image development capable of forming an image with improved image quality.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Developing Agents For Electrophotography (AREA)

Description

静電荷像現像用現像剤 技術分野
本発明は、 電子写真法、 静電記録法などによって感光体上に形成される静電荷 像を現像するための現像剤に関する。 本発明の現像剤は、 長時間にわたって連続 印字を行つても、 タリ一ユング性や転写性が良好であり、 感光体上にトナーフィ ルミング現象が生じることがなく、 かつ、 カプリやカスレのない優れた画質の画 像を形成することができる。 背景技術
電子写真装置ゃ静電記録装置等の画像形成装置にぉレヽて、 感光体上に形成され る静電荷像 ( 「静電潜像」 ともいう) は、 先ず、 トナーによって現像される。 次 いで、 感光体上に形成されたトナー像は、 必要に応じて紙等の転写材上に転写さ れた後、 加熱、 加圧、 溶剤蒸気など種々の方式により定着される。 転写後、 感光 体上に残存するトナーは、 クリ一ユングブレードなどのクリ一ユング手段により 除去される。
トナー ( 「トナー粒子」 ともいう) としては、 一般に、 結着樹脂と着色剤とを 含有する着色粒子が使用されている。 静電荷像現像用現像剤は、 着色粒子を機能 成分とするものであり、 着色粒子とキャリア (フェライト粉、 鉄粉、 ガラスビー ズなど) との混合物からなる二成分現像剤と、 実質的に着色粒子のみからなる一 成分現像剤とに大別される。 一成分現像剤は、 着色粒子内に磁性粉を含有する磁 性一成分現像剤と、 磁性粉を含有しない非磁性一成分現像剤とに大別される。 ト ナー (着色粒子) の表面には、 流動性や研磨性を向上させるために、 一般に、 疎 水性シリ力微粒子などを外添剤 (external additives)として付着させることが多 い。
近年、 高精細で高解像度の画像を形成するために、 トナーを小粒径化する傾向 が強くなっている。 例えば、 日本国特許第 3 1 7 5 9 0 2号公報には、 体積平均 粒径 3 . 5〜8 . S ju mという小粒径で、 粒径分布が狭く、 かつ真球状のトナー に、 外添剤として粒子径 0 . 2 μ m以下の無機微粒子を混合した非磁性一成分現 像剤が提案されている。 該文献には、 この非磁性一成分現像剤が現像ローラ上で 均一なトナー層を形成し、 小粒子径であるにもかかわらず、 カプリ、 飛散等の発 生がなく、 良好な現像性を示すことが記載されている。
し力 し、 小粒径のトナーは、 感光体とクリーニングブレードとの間をトナーが すり抜けやすく、 クリーニング不良が生じ易い。 小粒径で球状のトナーの場合に は、 この傾向が特に強くなる。 クリーニング不良が生じると、 感光体上に残存す るトナーが次の印字工程で画像を汚染し、 画質を低下させる。 クリーニング性を 向上させるために、 感光体に対するクリーニングブレードの接触圧力を大きくし たり、 タリ一ユングブレードの材質を変更して感光体との摩擦を大きくするなど の方法が検討されている。 し力、し、 これらの方法では、 クリーニングブレードに 磨耗や破損が生じ易く、 クリ一ユングブレードが感光体の回転方向に対向して配 置されている場合には、 クリーニングプレードが捲れ易くなる。 しかも、 これら の方法では、 クリ一ユングブレードにより感光体表面に傷が生じ易くなる。 また、 小粒径のトナーは、 感光体等への付着力が大きく、 感光体や現像ブレー ドへのフィルミング現象が発生し易い。 感光体上にトナーのフィルムが形成され ると、 画像に白抜け等の欠陥が生じる。 さらに、 小粒径のトナーは、 凝集が起り 易く、 流動性が不十分になり易いことに加えて、 転写工程における転写率が低下 傾向を示す。
したがって、 トナーの流動性と研磨性を向上させることが、 トナーのタリー- ング性を向上させ、 感光体等へのトナーフィルミング現象の発生を防止し、 さら には転写性を高める上で重要な課題となっている。
従来より、 トナーの流動性と研磨性を向上させるために、 前述の外添剤が使用 されている。 外添剤としては、 一般に球状または不定形の無機微粒子が使用され ている。 外添剤は、 トナーの表面に付着して、 トナーの流動性や研磨性を向上さ せる。 外添剤により トナーの流動性と研磨性が向上すると、 転写性が改善され、 クリーニング工程への負荷が軽減され、 さらには、 研磨作用によりトナーのフィ ルミング現象が抑制される。 し力 し、 従来の外添剤を用いたのでは、 トナーの流 動性及ぴ研磨性が十分ではなく、 特にトナーが小粒径化するにつれて、 これらの 特性の更なる改善が求められている。
そこで、 クリーニング性、 流動性、 小粒径化、 転写性などをパランスさせるた めに、 外^ ¾について、 幾つかの改良提案がなされている。 例えば、 特開平 8— 2 2 7 1 7 1号公報には、 重量平均粒径 1〜 9 /z mのトナー粒子、 平均粒径 1 0 〜9 O n mの疎水化された無機微粒子、 及ぴ疎水化されたケィ素化合物微粉末を 有する静電荷像現像用トナーが提案されている。 疎水化されたケィ素化合物微粒 子は、 粒径 5〜 3 0 n mの微粒子と粒径 3 0〜 6 0 n mの微粒子との混合物であ る。
また、 特開平 8—1 9 0 2 2 1号公報には、 トナー粒子に対し、 少なくとも炭 酸カルシウムを含む、 モース硬さ 3 . 5以上、 体積平均粒径 0 . 1〜1 0 μ πιの 研磨剤微粒子と、 シリカ系外添剤とを外添した電子写真用トナーが提案されてい る。 研磨剤微粒子としては、 大理石粉が用いられている。
し力 し、 これらの文献に開示されている静電荷像現像用トナーは、 トナーのク リーユング性と転写性とを両立させる点で未だ十分ではない。 また、 従来の外添 剤を含有する静電荷像現像剤は、 クリーニング性や転写性などに加えて、 画像の 高解像度化や画像形成の高速ィ匕に対応する上でも十分ではなかった。 発明の開示
本発明の目的は、 長時間にわたって連続印字を行っても、 クリーニング性や転 写性が良好であり、 感光体上にトナーフィルミング現象が生じることがなく、 か つ、 カプリやカスレのない優れた画質の画像を形成することができる静電荷像現 像用現像剤を提供することにある。
本発明者らは、 前記目的を達成すべく鋭意研究を行った結果、 六面体の形状を 有する無機微粒子を外添剤として使用することにより、 上記目的を達成すること ができることを見出し、 この知見に基づいて本発明を完成するに至った。
カゝくして、 本発明によれば、 少なくとも着色剤と結着樹脂とを含有する着色粒 子及び外添剤を含有する静電荷像現像用現像剤において、 外添剤が六面体無機微 粒子であることを特徴とする静電荷像現像用現像剤が提供される。 発明を実施するための最良の形態
本発明の静電荷像現像用現像剤は、 着色粒子 (トナー) と、 外添剤として六面 体の形状を有する無機微粒子とを含有する現像剤である。
六面体無機微粒子とは、 その形状が立方体や直方体などの六面体を有するもの であることを意味する。 六面体無機微粒子は、 実質的に六面体の立体形状を有す るものであれば、 六面体の頂点が丸みを帯ぴるなど多少変形したものでもよい。 六面体無機微粒子は、 六面体を構成する稜線のうち、 最も長い稜線と最も短い稜 線との長さの比が、 1〜2の範囲内であることが好ましく、 その比が 1である立 方体であることがより好ましレ、。
本発明で使用する六面体無機微粒子は、 その化学構造について特に限定されな いが、 代表的なものとしては、 炭酸カルシウムが挙げられる。 六面体炭酸カルシ ゥムとその製造方法については、 例えば、 特開平 7— 196316号公報及ぴ特 開平 10— 130020号公報に開示されている。
特開平 7— 196316号公報には、 炭酸塩溶液及ぴカルシウム塩溶液の何れ か一方またはその両方に、 0. 001〜2. Omo 1 ZLの反応緩衝剤を添加し て調製した炭酸イオン濃度が 0. 1〜3. Omo 1/Lの炭酸塩溶液と、 カルシ ゥムイオン濃度が 0. 1〜3. Omo 1 /L力つ炭酸イオンに対するカルシウム イオン濃度比が 0. 5〜2. 0のカルシウム塩溶液を?昆合して、 立方体状の炭酸 カルシウムを製造する方法が開示されている。 反応緩衝剤としては、 アルカリ金 属、 あるいはアンモニゥムの硝酸塩、 硫酸塩、 塩ィ匕物などが用いられている。 前 記両溶液の混合は、 何れ力一方の溶液に他の溶液を 70〜1 200秒の時間内で 滴下混合する方法により行い、 混合系内温度を 5〜40°Cに維持して炭酸化反応 を行う。 この方法により、 粒子径が 0. 1〜20 mの立方体状の炭酸カルシゥ ムが得られる。
特開平 1 0— 1 30020号公報には、 炭酸イオン濃度が 0. 1〜3. Omo 1ZLの炭酸塩溶液と、 カルシウムイオン濃度が 0. 1〜3. Omo lZLの力 ルシゥム塩溶液とを混合して立方体炭酸カルシゥムを製造する方法が開示されて いる。 両溶液の混合は、 何れか一方の溶液に他の溶液を 30秒以上の時間で滴下 混合する方法により行い、 そして、 混合系内温度を 3〜30°Cの維持して炭酸化 を行って、 pHl 0以下の炭酸カルシウム水懸濁液を調製し、 次いで、 水洗する ことにより、 粒子径が 0. 05〜5. O /zmの立方体炭酸カルシウムを製造する。 両溶液または何れ力、一方の溶液には、 アンモニゥムの水酸化物、 硝酸塩、 硫酸塩、 塩化物などの反応緩衝剤を添加する。
このように、 立方体炭酸カルシウムの製造方法として、 特定濃度の炭酸塩溶液 とカルシウム塩溶液とを用いて、 两溶液のすくなくとも何れか一方に反応緩衝剤 を含有させ、 室温程度の低温で、 一定時間内で混合して炭酸化反応を行うことに より、 立方体炭酸カルシウムを得る方法が知られている。 立方体炭酸カルシウム は、 主としてカルサイト結晶型を有している。
六面体無機微粒子の体積平均粒径は、 特に限定されないが、 好ましくは 0. 0 5〜1 Ο μπι、 より好ましくは 0. 1〜8 jum、 特に好ましくは 0. 3〜7 /zm の範囲内である。 一成分現像剤、 特に非磁性一成分現像剤の場合、 六面体無機微 粒子の体積平均粒径は、 0. 6 μ m超過、 以下でも、 良好なクリーニング 性と高画質を達成することができる。 六面体無機微粒子の体積平均粒径が小さす ぎると、 外添剤として使用した場合に、 トナーのクリーニング性を十分に改善す ることができず、 逆に大きすぎると、 トナーの流動性の改善効果が小さく、 画像 にカスレが発生したり、 画像欠損を引き起こしたりすることがある。 六面体無機 微粒子の体積平均粒径は、 例えば、 六面体無機微粒子を水に分散させ、 その分散 液をレーザー式粒度分布測定機 (0機装株式会社製、 商品名 「マイクロトラック F RA」 ) などを用いて測定することができる。
六面体無機微粒子は、 その体積粒径分布において、 小粒径側から起算した体積 粒径の累積値が 1 0 %である粒径 D V i。と 9 0 %である粒径 D V 9。と 5 0 %で ある粒径 D v 5 0との間の関係式 (D v 9 0ZD v 1 0) /D v 5 0により算出される 値が、 好ましくは 0 . 5〜6、 より好ましくは 1〜3の範囲内にあるものである ことが望ましい。 この値が小さすぎると、 六面体無機微粒子の製造が困難になる ことがある。 この値が大きすぎると、 該六面体無機微粒子を外 »Jとして含有す る現像剤を用いて印字した場合に、 画像に白筋が発生することがある。
六面体無機微粒子は、 疎水化処理されているものが好ましい。 疎水化処理され た六面体無機微粒子としては、 市販品を用いてもよいが、 未処理の六面体無機微 粒子をシランカップリング剤、 シリコーンオイル、 脂肪酸、 脂肪酸金属石鹼など で表面処理する方法により得ることができる。
疎水化処理の方法としては、 六面体無機微粒子を高速で攪拌しながら、 疎水化 処理剤であるシリコーンオイル等を滴下または噴霧する方法、 疎水化処理剤を溶 解して攪拌している有機溶媒中に六面体無機微粒子を添加する方法等が挙げられ る。 前者の場合、 疎水化処理剤は、 有機溶媒等で希釈してもよい。
着色粒子に対する六面体無機微粒子の配合割合は、 特に限定されないが、 着色 粒子 1 0 0重量部に対して、 通常 0 . 0 5〜5重量部、 好ましくは 0 . 1〜3重 量部、 より好ましくは 0. 5〜2重量部である。 六面体無機微粒子の配合割合が 小さすぎると、 トナーのクリーニング性を十分に改善することが困難になり、 逆 に大きすぎると、 トナ の流動性の改善効果が小さく、 画像にカスレが発生する ことがある。 一成分現像剤、 特に非磁性一成分現像剤の場合、 六面体無機微粒子 の配合割合が 0 . 5重量部超過であっても、 良好な流動性と研磨性の改善効果を 得ることができる。
本発明の現像剤は、 着色粒子及ぴ六面体無機微粒子以外に、 その形状が球状ま たは不定形の微粒子を含有することが好ましい。 球状または不定形の微粒子とし ては、 一般にトナー用の外添剤として使用されている無機微粒子、 有機微粒子、 これらの混合物などを使用することができるが、 トナーの流動性や帯電性を制御 し易い点で無機微粒子が好ましい。 これらの微粒子は、 1種あるいは 2種以上を 組み合わせて使用することができる。
球状または不定形の無機微粒子としては、 例えば、 シリカ、 酸ィ匕チタン、 酸化 ァノレミニゥム、 酸ィ匕亜口、、 酸化錫、 チタン酸バリウム、 チタン酸ストロンチウム などが挙げられるが、 これらの中でもシリカが印字時のカプリが少なくなるので 好ましい。 球状または不定形の無機微粒子の体積平均粒径は、 特に限定されない 力 通常 5〜5 0 0 n m、 好ましくは 5〜 1 0 0 n m、 より好ましくは 7〜5 0 n mである。 球状または不定形の無機微粒子の体積平均粒径が小さすぎると、 ト ナ一が低温低湿時にチャージアップして、 印字濃度が低下し、 逆に大きすぎると、 トナーの流動性が低下して、 カスレ易くなることがある。 球状または不定形の無 機微粒子の体積平均粒径は、 例えば、 該無機微粒子の電子顕微鏡写真を撮影し、 その写真を画像処理解析装置 〔 (株) ニレコ製、 商品名 「ルーゼッタス I I D」 〕 を用いて測定することができる。
球状または不定形の無機微粒子は、 メタノール法で測定される疎水化度が 3 0 〜9 0 %であるものが好ましい。
球状または無定形の無機微粒子の配合割合は、 特に限定されないが、 着色粒子 1 0 0重量部に対して、 通常 0 . 1〜5重量部、 好ましくは 0 . 3〜3重量部で ある。 この配合割合が小さすぎると、 流動性が不十分となり、 カスレが発生する ことがあり、 逆に大きすぎると、 流動性が良くなり過ぎて、 カプリが発生するこ とがある。
球状または不定形の有機微粒子は、 特に限定されないが、 粒子同士のブロッキ ングを抑制するという観点から、 有機微粒子を構成する化合物のガラス転移温度 若しくは融点が、 通常 8 0〜2 5 0 °C、 好ましくは 9 0〜2 0 0 °Cであることが 好ましい。 有機微粒子を構成する化合物としては、 メタクリル酸メチル重合体、 スチレン —メタタリル酸メチル共重合体等のポリマーが挙げられる。
有機微粒子の体積平均粒径は、 特に限定されないが、 通常 0. 1〜: L /zm、 好 ましくは 0. 1〜0. 8 μπιである。 有機微粒子の球形度も特に限定されなレ、が、 通常 1. 0〜1. 3、 好ましくは 1. 0〜1. 2である。 有機微粒子の体積平均 粒径が小さすぎると、 フィルミングの発生を防止することが困難になり、 逆に大 きすぎると、 トナーの流動性が十分に改善されないことがある。 有機微粒子の球 形度が大きすぎると、 トナーの転写性が低下することがある。
本発明において、 球形度とは、 粒子の絶対最大長を直径とした円の面積 (S c) を粒子の実質投影面積 (S r) で割った値 (S c/S r) である。 この値が 1に近づくほど、 粒子は、 真球に近くなる。
有機微粒子の配合割合は、 特に限定されないが、 着色粒子 100重量部に対し て、 通常 0. 05〜1重量部、 好ましくは 0. 1〜0. 5重量部である。 この配 合割合が小さすぎると、 フィルミングの防止が不十分となりやすく、 逆に大きく なり過ぎると、 トナーの流動性が悪くなり、 画像にカスレが生じ易くなる。
本発明で使用する着色粒子 (トナー) は、 少なくとも結着樹脂と着色剤とを含 有する着色粒子であり、 多くの場合、 帯電制御剤を含有している。 着色粒子は、 必要に応じて、 離型剤、 磁性材料等を含有していてもよい。
結着樹脂の具体例としては、 ポリスチレン、 スチレン一アタリル酸プチル共重 合体、 ポリエステル樹脂、 エポキシ樹脂等の従来からトナー用結着樹脂として汎 用されている樹脂を挙げることができる。
着色剤としては、 カーボンブラック、 チタンブラック、 磁' 14粉、 オイルブラッ ク、 チタンホワイトの他、 各種顔料及び/または染料を用いることができる。 黒 色のカーボンブラックは、 一次粒径が 20〜40 nmであるものが好適に用いら れる。 一次粒径が 20 nmより小さいと、 カーポンプラックが凝集してトナー中 に均一に分散せず、 カプリの多いトナーになり易い。 一方、 一次粒径が 40 nm より大きいと、 カーボンブラック製造時に生成するべンズピレン等の多価芳香族 炭化水素化合物の含有量が多くなり、 これらの化合物がトナー中に多く残留する と、 環境安全上の問題が起こることがある。
フルカラートナーを得る場合、 着色剤としては、 通常、 イェロー着色剤、 マゼ ンタ着色剤、 及ぴシアン着色剤を使用する。
イェロー着色剤としては、 ァゾ系顔料、 縮合多環系顔料等の化合物が用いられ る。 具体的には C. I. ピグメントイエロー 3、 12、 13、 14、 15、 17、 62、 65、 73、 83、 90、 93、 97、 120、 138、 155、 180、 181、 185、 186等が挙げられる。
マゼンタ着色剤としては、 ァゾ系顔料、 縮合多環系顔料等の化合物が用いられ る。 具体的には C. I. ビグメントレッド 48、 57、 58、 60、 63、 64、 68、 81、 83、 87、 88、 89、 90、 112、 114、 122、 123、 144、 146、 149、 163、 170、 184、 185、 187、 202、 206、 207、 209、 251、 C. I. ビグメントバイオレット 19等が挙 げられる。
シアン着色剤としては、 銅フタロシアニン化合物及ぴその誘導体、 アントラキ ノン化合物等が利用できる。 具体的には C. I. ビグメントブルー 2、 3、 6、 15、 15 : 1、 15 : 2、 15 : 3、 15 : 4、 16、 17、 60等が挙げら れる。
着色剤の含有量は、 結着樹脂 100重量部に対して、 通常 0. 1〜20重量部、 好ましくは 1〜10重量部である。
帯電制御剤としては、 従来からトナー用として知られている各種帯電制御剤を 用いることができる。 その具体例としては、 例えば、 ポントロン NO 1 (オリエ ント化学工業社製) 、 ニグ口シンベース EX (オリエント化学工業社製) 、 スピ ロンブラック TRH (保土ケ谷化学工業ネ: h^) 、 T— 77 (保土ケ谷化学工業社 製) 、 ポントロン S— 34 (オリエント化学工業社製) 、 ポントロン E— 81 (オリエント化学工業社製) 、 ポントロン E— 84 (オリエント化学工業社製) 、 COPY CHARGE NX (クラリアントネ土製) 、 COPY CHARGE N E G (クラリアントネ ±¾) 等の帯電制御剤が挙げられる。 また、 帯電制御剤 としては、 特開昭 6 3— 6 0 4 5 8号公報、 特開平 3— 1 7 5 4 5 6号公報、 特 開平 3— 2 4 3 9 5 4号公報、 特開平 1 1— 1 5 1 9 2号公報などに記載されて いるような 4級アンモニゥム (塩) 基含有共重合体;特開平 1—2 1 7 4 6 4号 公報、 特開平 3— 1 5 8 5 8号公報などに記載されているようなスルホン酸 (塩) 基含有共重合体などの帯電制御樹脂を用いることができる。
これらの中でも、 帯電制御樹脂を使用することが好ましい。 帯電制御樹脂は、 結着樹脂との相溶性が高く、 無色であり、 高速でのカラー連続印字おいても帯電 性が安定したトナーを得ることができる。
帯電制御樹脂のガラス転移温度は、 通常 4 0〜8 0 °C、 好ましくは 4 5〜7 5 °C, さらに好ましくは 4 5〜 7 0 °Cである。 帯電制御樹脂のガラス転移温度が 低すぎると、 トナーの保存性が悪くなり、 逆に高すぎると、 定着性が低下するこ とがある。
帯電制御剤の含有量は、 結着樹脂 1 0 0重量部に対して、 通常 0 . 0 1〜2 0 重量部、 好ましくは 0. 1〜1 0重量部である。
離型剤としては、 例えば、 低分子量ポリエチレン、 低分子量ポリプロ ピレン、 低分子量ポリプチレンなどのポリォレフィンワックス類; キヤ ンデリラ、 カルナゥバ、 ライス、 木ロウ、 ホホバなどの植物系天然ヮッ タス ; パラフィン、 マイクロクリスタリン、 ペトロラタタムなどの石油 系ヮッタス及ぴその変'性ヮックス ; フィッシャート口プシュワックスな どの合成ヮックス ;ペンタエリスリ トールテトラミ リステート、 ペンタ エリスリ トールテトラパルミテート、 ジペンタエリスリ トールへキサミ リステートなどの多官能エステル化合物; などが挙げられる。 これらの 離型剤は、 それぞれ単独で、 あるいは 2種以上を組み合わせて使用する ことができる。
離型剤の中でも、 合成ワックス、 末端変性ポリオレフインワックス類、 石油系 ワックス、 多官能エステル化合物などが好ましい。 多官能エステル化合物の中で も、 示差走査熱量計 (DSC) により測定される DSC曲線において、 昇温時の 吸熱ピーク温度が 30〜200°C、 好ましくは 40〜160° (、 より好ましくは 50〜120°Cの範囲にあるペンタエリスリ トールエステルや、 同吸熱ピーク温 度が 50〜80°Cの範囲にあるジペンタエリスリ トールエステルなどの多価エス テル化合物が、 トナーの定着一離型性バランスの面で特に好ましい。 さらに、 多 価エステノレ化合物の中でも、 分子量が 1000以上であり、 スチレン単量体 10 0重量部に対し、 25 °Cで 5重量部以上溶角早し、 酸価が 1 Omg/KOH以下の ものは、 トナーの定着温度の低下に顕著な効果を示すので特に好ましレ、。 吸熱ピ ーク温度は、 ASTM D 3418— 82によって測定された値である。
離型剤の含有量は、 結着樹脂 100重量部に対して、 通常 0. 5〜50重量部、 好ましくは 1〜20重量部である。
本発明で使用する着色粒子は、 磁性材料を含有してもよい。 磁性材料としては、 例えば、 マグネタイト、 γ—酸ィ匕鉄、 フェライト、 鉄過剰型フェライト等の酸化 鉄;鉄、 コバルト、 ニッケルのような金属あるいはこれらの金属とアルミニウム、 コバルト、 銅、 鉛、 マグネシウム、 錫、 亜鉛、 アンチモン、 ベリリウム、 ビスマ ス、 カドミウム、 カノレシゥム、 マンガン、 セレン、 チタン、 タングステン、 バナ ジゥムのような金属との合金及びその混合物等が挙げられる。
着色粒子は、 その球形度 (S c/S r) が 1. 0〜1. 3の範囲内であるもの が好ましく、 1. 0〜1. 2であるものがより好ましい。 着色粒子の球形度が大 きくなりすぎると、 流動性が低下して、 画像にカスレが生じ易くなる。
着色粒子の体積平均粒径 (dv) は、 特に限定されないが、 通常 l〜12/zm、 好ましくは 2〜10 m、 より好ましくは 3〜8 μπιである。 高精細で高解像度 の画像を形成するには、 着色粒子の体積平均粒径を小さくすることが好ましい。 着色粒子の体積平均粒径 (dv) と個数平均粒径 (dp) の比 (dv/dp) は、 通常 1. 7以下、 好ましくは 1. 5以下、 より好ましくは 1. 3以下である。 高 精細で高解像度の画像を形成するには、 比 (dvZdp) が小さく、 球状に近い 着色粒子であることが好ましく、 具体的には、 好ましくは 1. 0〜1. 3、 より 好ましくは 1. 0〜1. 25、 特に好ましくは 1. 0〜1. 2の範囲内であるこ とが望ましい。
着色粒子は、 芯部 (コア粒子) と外層 (シェル層) とに物性が異なる樹脂材料 を配置して得られるコア ·シェル構造の着色粒子 ( 「コア ' シェル型トナー J ま たは 「カプセル型トナー」 ともいう) とすることができる。 コア 'シェル構造粒 子では、 低軟化点の樹脂材料からなるコア粒子を、 それより高い軟化点を有する 樹脂材料層で被覆することにより、 定着温度の低温化 (低温定着性) と保存時の 凝集防止 (保存性) とのパランスを取ることができるので好ましい。
コア ·シェル構造粒子の場合、 コア粒子の体積平均粒径は、 特に限定されない 力 通常 1〜 12 A/ m、 好ましくは 2〜: L 0〃 m、 より好ましくは 3〜 8 /z mで ある。 また、 コア粒子の体積平均粒径 (d v) Z個数平均粒径 (d p) も特に限 定されないが、 通常 1. 7以下、 好ましくは 1. 5以下、 より好ましくは 1. 3 以下である。
コァ ·シェル構造粒子のコァ粒子とシェル層との重量比率は、 特に限定されな いが、 通常 80Z20〜99. 9/0. 1の範囲内で使用される。 シェル層の割 合が小さすぎると、 保存性の改善効果が不十分となり、 逆に大きすぎると、 低温 定着性の改善効果が不十分となる。 コア ·シェル構造粒子のシェル層の平均厚み は、 通常 0. 001〜1. 、 好ましくは 0. 003〜0. 5jum、 より好 ましくは 0. 005〜0. 2 jumである。 シェル層の厚みが大きくなりすぎると、 低温定着性が低下し、 小さくなりすぎると、 保存性が低下し易くなる。 コア · シェル構造の着色粒子は、 コァ粒子の全表面がシェル層で覆われている必要はな く、 コア粒子の表面の少なくとも一部がシェル層で覆われていればよい。
コア ·シェル構造粒子のコア粒子径及ぴシェル層の厚みは、 電子顕微鏡により 観察できる場合は、 その観察写真から無作為に選択したコァ粒子の大きさとシェ ル厚みを直接測ることにより得ることができる。 電子顕微鏡でコア粒子とシェル 層とを観察することが困難な場合は、 コア粒子の粒径と、 トナー製造時に用いた シェルを形成する単量体の量から算定することができる。 本発明に使用することのできる着色粒子は、 その製法によって特に限定されな い。 例えば、 (1 ) 結着樹月旨成分となる熱可塑性樹脂中に、 着色剤、 帯電制御剤、 離型剤等を溶融混合して均一に分散させて組成物とした後、 該組成物を粉碎、 分 級することにより得られる着色粒子 ( 「粉砕トナー」 という) 、 (2 ) 結着樹脂 原料である重合性単量体中に着色剤、 帯電制御剤、 離型剤等を溶解若しくは分散 させ、 分散安定剤を含有する水系分散媒体中に懸濁させ、 重合開始剤の存在下、 所定温度にまで加温して懸濁重合を開始し、 重合終了後に濾過、 洗浄、 脱水及び 乾燥することにより得られる着色粒子 ( 「重合トナー」 という) 、 (3 ) 乳化重 合により得られた極性基を含有する結着樹脂の一次粒子を、 着色剤及び帯電制御 剤を添加することにより凝集させて二次粒子とし、 さらに結着樹脂のガラス転移 温度より高い温度で攪拌して会合させた粒子を、 濾過、 乾燥することにより得ら れる着色粒子 (例えば、 特開昭 6 3— 1 8 6 2 5 3号公報) 、 (4 ) 親水性基含 有樹脂を結着樹脂とし、 それに着色剤等を添加して有機溶媒に溶解させた後、 該 樹脂を中和して転相し、 その後、 乾燥することにより得られる着色粒子等が挙げ られる。
これらの中でも、 高精細で高解像度の画質が得られやすく、 力、つ、 印字の高速 化に対応できるという観点からは、 懸濁重合法により得られた実質的に球状の着 色粒子 (着色重合体粒子;重合トナー) が好ましい。 懸濁重合法による重合ト ナ一は、 分散安定剤を含有する水系分散媒体中で、 少なくとも重合性単量体と着 色剤とを含有する重合性単量体組成物を懸濁重合することにより、 着色重合体粒 子として得ることができる。
結着樹脂を得るための重合性単量体として、 モノビニル単量体、 架橋性単量 体、 マクロモノマー等を挙げることができる。 モノビュル単量体などの重合性単 量体が重合すると、 着色粒子の結着樹脂成分となる。
モノビュル単量体としては、 例えば、 スチレン、 ビュルトルエン、 a—メチル スチレン等の芳香族ビュル単量体; (メタ) アクリル酸; (メタ) アクリル酸メ チル、 (メタ) アクリル酸ェチル、 (メタ) アクリル酸プロピル、 (メタ) ァク リル酸ブチル、 (メタ) アクリル酸 2—ェチルへキシル、 (メタ) アクリル酸シ ク口へキシル、 (メタ) アタリル酸ィソポニル、 (メタ) アタリル酸ジメチルァ ミノェチル、 (メタ) アクリルアミド等の (メタ) アクリル酸の誘導体;ェチレ ン、 プロピレン、 ブチレン等のモノォレフィン単量体;等が挙げられる。
モノビニル単量体は、 それぞれ単独で、 あるいは 2種以上の単量体を組み合わ せて用いることができる。 これらの中でも、 芳香族ビュル単量体、 または芳香族 ビエル単量体と (メタ) アクリル酸誘導体との組み合わせが好ましい。
モノビニル単量体と共に、 架橋性単量体及び架橋性重合体を用いると、 ホット オフセット性が効果的に改善される。 架橋性単量体は、 2個以上のビュル基を有 する単量体であり、 例えば、 ジビュルベンゼン、 ジビュルナフタレン、 及ぴこれ らの誘導体等の芳香族ジビュル化合物;エチレングリコ一/レジメタクリレート、 ジエチレングリコールジメタタリレート等のジエチレン性不飽和カルボン酸エス テル; N, N—ジビュルァニリン、 ジビュルエーテル等のビュル基を 2個有する 化合物、 ペンタエリスリ トールトリアリルエーテルやトリメチロールプロパント リアタリレート等のビュル基を 3個以上有する化合物等を挙げることができる。 架橋性重合体は、 重合体中に 2個以上のビニル基を有する重合体のことであり、 具体的には、 分子内に 2個以上の水酸基を有するポリエチレン、 ポリプロピレン、 ポリエステル、 ポリエチレングリコール等の重合体と、 アクリル酸ゃメタクリル 酸等の不飽和カルボン酸単量体を縮合反応することにより得られるエステルを挙 げることができる。 これらの架橋性単量体及び架橋性重合体は、 それぞれ単独で、 あるいは 2種以上を組み合わせて用いることができる。 架橋性単量体及び Zまた は架橋性重合体の含有量は、 モノビュル単量体 1 0 0重量部に対して、 通常 1 0 重量部以下、 好ましくは、 0 . 1〜 2重量部である。
モノビュル単量体と共にマクロモノマーを用いると、 高温での保存性と低温定 着性とのバランスが良好になるので好ましい。 マクロモノマーは、 分子鎖の末端 に重合可能な炭素一炭素不飽和二重結合を有し、 数平均分子量が通常 1, 0 0 0 〜3 0, 0 0 0のオリゴマーまたはポリマーである。 マクロモノマーの数平均分 子量が小さすぎると、 着色粒子 (重合トナー粒子) の表面部分が柔らかくなり、 保存性が低下し、 逆に大きすぎると、 マクロモノマーの溶融性が悪くなり、 定着 性及ぴ保存性が低下する。
マクロモノマー分子鎖の末端にある重合可能な炭素一炭素不飽和二重結合とし ては、 ァクリロイル基、 メタクリロイル基などを挙げることができ、 モノビエル 単量体との共重合のし易さの観点からメタクリロイル基が好ましい。
マクロモノマーは、 モノビュル単量体を重合して得られる重合体のガラス転移 温度よりも高いガラス転移温度を有する重合体を与えるものが好ましい。
マクロモノマーの具体例としては、 スチレン、 スチレン誘導体、 メタクリル酸 エステル、 アクリル酸エステル、 アクリロニトリル、 メタタリロニトリル等を単 独でまたは 2種以上を重合して得られる重合体、 ポリシロキサン骨格を有するマ クロモノマーなどを挙げることができる。 これらの中でも、 親水性を有するもの が好ましく、 メタタリル酸エステルまたはァクリル酸エステルをそれぞれ単独で、 あるいはこれらを組み合わせて重合して得られる重合体が特に好ましい。
マクロモノマーを使用する場合、 その含有量は、 モノビュル単量体 1 0 0重量 部に対して、 通常 0 . 0 1〜1 0重量部、 好ましくは 0. 0 3〜5重量部、 より 好ましくは 0. 0 5〜1重量部の範囲内である。 マクロモノマーの含有量が少な すぎると保存性の向上効果が小さくなり、 多すぎると定着性が低下する。
懸濁重合は、 分散安定剤を含有する水系分散媒体中で行われる。 分散安定剤と しては、 例えば、 硫酸バリゥム、 硫酸カルシウムなどの硫酸塩;炭酸パリゥム、 炭酸カルシウム、 炭酸マグネシウムなどの炭酸塩; リン酸カルシウムなどのリン 酸塩;酸化アルミニウム、 酸化チタン等の金属酸化物;などの金属化合物や、 水 酸化アルミニウム、 水酸化マグネシウム、 水酸化第二鉄等の金属水酸化物;ポリ ビュルアルコール、 メチルセルロース、 ゼラチン等水溶性髙分子;ァユオン性界 面活性剤、 ノニオン性界面活性剤、 両性界面活性剤等を挙げることができる。 こ れちの分散安定剤は、 それぞれ単独で、 あるいは 2種類を以上を組み合わせて用 いることができる。 分散安定剤の中でも、 金属化合物、 特に難水溶性の金属水酸化物のコロイドを 使用すると、 生成する着色重合体粒子の粒径分布を狭くすることができ、 また、 分散安定剤の洗浄後の残存量が少なく、 画像を鮮明に再現できる重合トナーが得 られ易いので好ましい。 難水溶性金属水酸化物のコロイドは、 その個数粒径分布 において、 小粒径側から起算した個数粒径の累積値が 5 0 %である粒径 D p 5 0 が 0 . 5 ju m以下で、 9 0 %である粒径 D p 9。が 1 μ πι以下であることが好ま しい。 コロイドの粒径が大きくなりすぎると、 重合反応系の安定性が崩れ易くな り、 また、 得られる重合トナーの保存性が低下する。
分散安定剤は、 重合性単量体 1 0 0重量部に対して、 通常 0 . 1〜2 0重量部 の割合で使用する。 この割合が小さすぎるると、 十分な重合安定性を得ることが 困難であり、 凝集物が生成し易くなる。 逆に、 この割合が大きすぎると、 生成す る重合トナーの体積平均粒径が細かくなり過ぎる。
重合開始剤としては、 過硫酸カリウム、 過硫酸アンモニゥム等の過硫酸塩; 4, 4 ' —ァゾビス (4—シァノ吉草酸) 、 2, 2 ' —ァゾビス (2—メチル一 Ν— ( 2—ヒドロキシェチル) プロピオンアミド、 2, 2 ' —ァゾビス (2—アミジ ノプロパン) ジヒドロクロライド、 2 , 2 ' —ァゾビス ( 2 , 4一ジメチ /レバレ ロニトリル) 、 2 , 2 ' ーァゾビスイソプチロニトリル等のァゾ化合物;ジー t —ブチルパーォキシド、 ジクミノレパーォキシド、 ラウロイルパーォキシド、 ベン ゾィルパーォキシド、 t—ブチノレパーォキシ一 2—ェチルへキサノエート、 t一 へキシノレパーォキシ一 2—ェチノレへキサノエート、 t—プチ^レパーォキシピバ レート、 ジーィソプロピノレパーォキシジカーボネート、 ジー t一プチノレパーォキ シイソフタレート、 1, 1 , 3, 3—テトラメチルブチルパーォキシ一 2—ェチ ノレへキサノエ一ト、 t—プチルパーォキシィソブチレ一ト等の過酸化物類などを 例示することができる。 これら重合開始剤と還元剤とを組み合わせたレドックス 開始剤を使用することもできる。
これらの中でも、 使用する重合性単量体に可溶な油溶性の重合開始剤を選択す ることが好ましく、 必要に応じて、 水溶性の重合開始剤をこれと併用することも できる。 重合開台剤は、 重合性単量体 1 0 0重量部に対して、 0 . 1〜2 0重量 部、 好ましくは 0 . 3〜1 5重量部、 より好ましくは 0 . 5〜1 0重量部の割合 で用いられる。
重合開始剤は、 重合性単量体組成物中に予め添加することができるが、 懸濁重 合の場合は、 重合性単量体組成物の液滴を形成する造粒工程終了後の懸濁液、 乳 化重合の場合は、 乳化工程終了後の乳化液に、 直接添加することもできる。
重合に際して、 分子量調整剤を使用することが好ましい。 分子量調整剤として は、 例えば、 t—ドデシルメルカプタン、 n—ドデシルメルカプタン、 n—オタ チルメルカプタン、 2 , 2, 4 , 6, 6—ペンタメチルヘプタン一 4—チオール 等のメルカブタン類;四塩化炭素、 四臭化炭素等のハロゲン化炭化水素類;など を挙げることができる。 分子量調整剤は、 重合開始前または重合途中に添加する ことができる。 分子量調整剤は、 重合性単量体 1 0 0重量部に対して、 通常 0 . 0 1〜1 0重量部、 好ましくは 0 . 1〜 5重量部の割合で用いられる。
コア ·シェル構造の着色粒子 (コア ·シェル型トナー) を製造する方法として は、 スプレイドライ法、 界面反応法、 in situ重合法、 相分離法などの方法が挙 げられる。 粉砕法、 重合法、 会合法または転相乳化法により得られた粒子をコア 粒子とし、 該コア粒子の表面にシェル層を被覆することにより、 コア 'シェル構 造の着色粒子が得られる。 前記方法の中でも、 in situ重合法や相分離法が、 製 造効率の点から好ましい。
in situ重合法によるコア .シェル型トナー (コア 'シェル型重合トナー) の 製造方法について、 以下に説明する。 コア粒子が分散している水系分散媒体中に、 シェルを形成するための重合性単量体 (シェル用重合性単量体) と重合開始剤と を添力 tlし、 重合することにより、 コア粒子を重合体層で被覆した構造のコア · シェル型トナーを得ることができる。
シェルを形成する具体的な方法としては、 コア粒子を得るために行った重合反 応の反応系にシェル用重合性単量体を添加して継続的に重合する方法、 別の反応 系で得たコァ粒子を水系分散媒体中に仕込み、 シェル用重合性単量体を添カ卩して 段階的に重合する方法などを挙げることができる。 これらの中でも、 分散安定剤 を含有する水系分散媒体中で、 少なくとも重合性単量体と着色剤とを含有する重 合性単量体組成物を懸濁重合して着色重合体粒子を形成し、 該着色重合体粒子の 存在下に、 シェル用重合性単 体を重合させて、 該着色重合体粒子をコア粒子と し、 その表面に重合体からなるシェル層を形成する方法が好ましい。
シェル用重合性単量体は、 反応系中に一括して添カ卩しても、 またはプランジャ ポンプなどのポンプを使用して連続的若しくは断続的に添加してもよい。
シェル用重合性単量体としては、 スチレン、 アクリロニトリル、 メチルメタク リレートなどのガラス転移温度が 8 0 °Cを超える重合体を形成することができる 単量体を、 それぞれ単独で、 あるいは 2種以上を組み合わせて使用することが保 存性の観点から好ましい。 他方、 コア用重合性単量体としては、 ガラス転移温度 が通常 6 0 °C以下、 好ましくは 4 0〜 6 0 °Cの重合体を形成することができるも のを選択することが低温定着性の観点から望ましい。 コァ粒子のガラス転移温度 を低くし、 シェル層のガラス転移温度を高くすることにより、 印字の高速化、 フ ルカラー化、 OH P (オーバーヘッドプロジェクタ) 透過性などに優れたトナー を得ることができる。
シェル用重合性単量体を添加する際に、 水溶性のラジカル開始剤を添加するこ とが、 コア . シェル型重合トナーが得られ易くなるため好ましい。 シェル用重合 性単量体の添加の際に水溶性ラジカル開始剤を添加すると、 シェル用重合性単量 体が移行したコア粒子の外表面近傍に水溶性ラジカル開始剤が進入し、 コア粒子 表面に重合体 (シェル) を形成しやすくなると考えられる。
水溶性ラジカル開始剤としては、 過硫酸カリウム、 過硫酸アンモニゥム等の過 硫酸塩; 2 , 2 ' —ァゾビス 〔2—メチル一N— (2—ヒ ドロキシェチル) プロ ピオンアミ ド〕 、 2 , 2 ' —ァゾビス一 [ 2—メチルー N— 〔1, 1—ビス (ヒ ドロキシメチル) ェチル〕 プロピオンアミド] 等のァゾ系開始剤などを挙げるこ とができる。 水溶性ラジカル開始剤の添加量は、 シェル用単量体 1 0 0重量部に 対して、 通常 1〜5 0重量%、 好ましくは 2〜2 0重量%である。 本発明のトナーは、 着色粒子と六面体無機微粒子が混在しており、 六面体無機 微粒子は、 通常、 着色粒子の表面に付着しているが、 その一部が着色粒子中に埋 設されていてもよい。 本発明のトナーは、 着色粒子と六面体無機微粒子を、 必要 に応じて、 その他の微粒子と共に、 ヘンシェルミキサー等の高速攪拌機で混合す ることにより得ることができる。 着色粒子としては、 重合トナーが好ましく、 低 温定着性と保存性とをパランスさせる観点からコア ·シェル型重合トナーである ことがより好ましい。 静電荷像現像剤としては、 二成分現像剤、 磁性一成分現像 剤、 非磁性一成分現像剤などがあるが、 これらの中でも、 本発明の効果が著しい 点で非磁性一成分現像剤が好ましい。 実施例
以下に、 実施例及ぴ比較例を挙げて、 本発明を更に具体的に説明するが、 本発 明は、 これらの実施例のみに限定されるものではない。 以下の実施例及ぴ比較例 において、 「部」 及ぴ 「%」 は、 特に断りのない限り重量基準である。 本実施例 では、 以下の測定法と評価法を採用した。
(1) トナーの平均粒径と粒径分布:
着色粒子の体積平均粒径 (d v) 及ぴ粒径分布、 すなわち体積平均粒径と個 数平均粒径 (d p) との比 (d vZd p) は、 マルチサイザ一 (ベックマン ' コールター社製) により測定した。 マルチサイザ一による測定は、 アパーチャ一 径 = 100 μ m、 媒体 =ィソトン II、 濃度 = 10 %、 測定粒子個数 = 1000 00個の条件で行った。
(2) 炭酸カルシウムの形状及び体積平均粒径:
炭酸カルシウムの形状は、 走査型電子顕微鏡写真で観察した。 炭酸カルシウム の体積平均粒径は、 炭酸カルシウムを水に分散させた分散液について、 レーザー 式粒度分布測定機 (日機装株式会ネ環、 商品名 「マイクロトラック FRA」 ) を 用いて測定した。
(3) クリーニング性: 市販の非磁' 14一成分現像方式プリンター (沖データネ ± 、 商品名 「マイクロラ イン 3010 c」 ) の現像装置に現像剤 (トナー) を入れ、 初期から 20, 00 0枚まで連続印字を行い、 クリーユング不良が発生する枚数でタリーユング性を 評価した。 クリーニング不良枚数が 20, 000以上となっているものは、 20, 000枚の時点でクリ一ユング不良が起こらなかったことを示す。
(4) 画質評価: ' 市販の非磁性一成分現像方式プリンターの現像装置に現像剤 (トナー) を入れ、 印字を行い、 得られた画像を目視により、 以下の基準で評価した。
A:画質が優れている、
B:画質が悪い、
C:画質が著しく悪い。
[実施例 1]
スチレン 83部、 n—プチ/レアクリレート 17部、 カーボンブラック (商品名 「# 25B」 、 三菱化学社製;一次粒径 40n m) 6部、 帯電制御樹脂としてス チレン/了ク Vル酸 2—ェチルへキシル Z 2—ァクリロイルァミノー 2—メチル —1一プロパンスルホン酸共重合体 (商品名 「FCA—1001—NS」 、 藤倉 化成製) 1部、 ジビュルベンゼン 0. 6部、 t—ドデシルメルカプタン 1部、 及 ぴジペンタエリスリトールへキサミリステート 10部を室温下、 ビーズミルで分 散させ、 コア用重合性単量体組成物を得た。
他方、 イオン交換水 250部に塩ィ匕マグネシウム 10. 2部を溶解した水溶液 に、 イオン交換水 50部に水酸化ナトリウム 6. 2部を溶解した水溶液を攪拌下 で徐々に添加して、 水酸ィ匕マグネシウムコロイドの分散液を調製した。 生成した 上記コロイ ドの粒径分布を SALD粒径分布測定器 (島津製作所社製) で測定し たところ、 粒径は、 Dp5。 (個数粒径分布の 50%累積値) が 0. 35 μπι で、 D ρ 9。 (個数粒径分布の 90 %累積値) が 0. 62 μ mであった。
一方、 メチルメタタリレート 2部と水 65部を超音波乳化機にて微分散化処理 して、 シェル用重合性単量体の水分散液を得た。 シェル用重合性単量体の液滴の 粒径は、 Dp 9。 (個数粒径分布の 90 %累積値) 力 6 μπιであった。
上記により得られた水酸化マグネシウムコロイド分散液 (コロイド量 4. 0 部) に、 コア用重合性単量体組成物を投入し、 液滴が安定するまで攪拌し、 そこ に t—ブチルパーォキシ一イソプチレート (日本油脂ネ: h^、 商品名 「パープチル I B」 ) 6部を添加した。 その後、 1 5, 000 r p mで回転する高速剪断撹拌 装置ェパラマイルダー (荏原製作所社製:商品名 MDN303V) を総滞留時間 3秒で通過させ、 通過させた分散液を、 インナーノズルを経て、 元の撹拌槽内に 噴出速度 0. 5m/sで戻し循環させ、 単量体組成物の液滴を形成した。 この 際、 インナーノズル先端が撹拌槽中の分散液面下 50 mmに位置するように調整 し、 循環回数 10回で造粒した。 エバラマィルダ一の周囲には冷却用ジャケット が取り付けてあり、 約 1 5°Cの冷却水を流通させた。 前記混合液を供給し、 コア 用単量体組成物の液滴を形成した。
造粒されたコァ用単量体組成物が分散された水酸化マグネシゥムコロイド分散 液に四ホウ酸ナトリゥム十水和物を 1部添加し、 攪拌翼を装着した反応器に入 れ、 8 5°Cで重合反応を開始させた。 重合転化率がほぼ 1 00%に達した後、 前 記シェル用重合性単量体の水分散液に水溶性開始剤 Π光純薬社製、 商品名 「V A-086J =2, 2' —ァゾビス 〔2—メチル一 N (2—ヒ ドロキシェチル) —プロピオンアミド〕 ] 0. 3部を溶解し、 それを反応器に添加した。 4時間重 合を継続した後、 反応を停止し、 コア ·シェル構造の着色粒子の水分散液を得 た。
上記により得た着色粒子の水分散液を攪拌しながら、 硫酸を添加し p Hを 4以 下にして酸洗浄を行い、 濾過により水を分離した後、 新たにイオン交換水 500 部を加えて再スラリー化し水洗浄を行った。 その後、 再度、 脱水と水洗浄を数回 繰り返し行って、 固形分を濾過分離した後、 乾燥機にて 45 °Cで 2昼夜乾燥を行 い、 体積平均粒径 (d v) カ 7. 2 jum、 粒径分布 (d v/d p) が 1. 1 8の 着色粒子 (コア 'シェル型重合トナー) を得た。 着色粒子 100部に、 疎水化処 理されている体積平均粒径 5 μΐηの立方体状の炭酸カルシウム (丸尾カルシウム 社製、 商品名 rcUBE— 50BHS」 ) 0. 5部、 疎水化度 65%で体積平均 粒径 7 nmのシリカ (日本ァエロジル社製、 商品名 「RX—300」 ) 0. 5部 及ぴ疎水化度 64 %で体積平均粒径 40nmのシリカ (日本ァエロジル社製、 商 品名 「RX— 50」 ) 2部を添カ卩し、 ヘンシェルミキサーを用いて 10分間、 回 転数 1400 r pmで混合し、 非磁性一成分現像剤を得た。 得られた現像剤につ いて、 クリーニング性と画質の評価を行った。 結果を表 1に示す。
[実施例 2 ]
実施例 1において、 体積平均粒径 5 μ mの立方体状の炭酸カルシウム 0. 5部 を 1部に変えたこと以外は、 実施例 1と同様にして非磁性一成分現像剤を得た。 結果を表 1に示す。
[実施例 3 ]
実施例 1において、 体積平均粒径 5 μπιの立方体状の炭酸カルシウムに代えて、 体積平均粒径 0. 3 / mの立方体状の炭酸カルシウム (丸尾カルシウム社製、 商 品名 「CUBE— 03BHS」 ) を用いたこと以外は、 実施例 1と同様にして非 磁性一成分現像剤を得た。 結果を表 1に示す。
[比較例 1 ]
実施例 1において、 体積平均粒径 5 μ mの立方体状の炭酸カルシウムを用いな かったこと以外は、 実施例 1と同様にして非磁性一成分現像剤を得た。 結果を表 1に示す。
[比較例 2]
実施例 1において、 体積平均粒径 5 μ mの立方体状の炭酸カルシウムに代えて、 体積平均粒径 1. 5 jumの不定形状の炭酸カルシウム (三共製粉社製、 商品名
「エスカロン # 2000」 ) を用いたこと以外は、 実施例 1と同様にして非磁性 一成分現像剤を得た。 結果を表 1に示す。
Figure imgf000024_0001
表 1の結果から、 以下のことがわかる。 外添剤として六面体無機微粒子を含有 しない比較例 1〜 2の現像剤は、 耐久印字試験を行うと、 印字途中でクリーニン グ不良が発生し、 得られた画質も悪い。
これに対して、 外添剤として六面体無機微粒子を用いた本発明の実施例 1〜3 の現像剤は、 連続印字枚数が 2 0 , 0 0 0枚までタリ一二ング不良が発生せずに、 得られた画質も優れている。 産業上の利用可能性
本発明によれば、 長時間にわたって連続印字を行っても、 クリーニング性や転 写性が良好であり、 感光体上にトナーフィルミング現象が生じることがなく、 か つ、 カプリやカスレのない優れた画質の画像を形成することができる静電荷像現 像用現像剤が提供される。

Claims

請求の範囲
1. 少なくとも着色剤と結着樹脂とを含有する着色粒子及び外添剤を含有する 静電荷像現像用現像剤において、 外添剤が六面体無機微粒子であることを特徴と する静電荷像現像用現像剤。
2. 六面体無機微粒子が、 体積平均粒径 0. 05〜 10 mを有するものであ る請求項 1記載の静電荷像現像用現像剤。
3. 六面体無機微粒子が、 六面体炭酸カルシウムである請求項 1記載の静電荷 像現像用現像剤。
4. 六面体炭酸カルシウムが、 立方体炭酸カルシウムである請求項 3記載の静 電荷像現像用現像剤。
5. 六面体無機微粒子が、 その体積粒径分布において、 小粒径側から起算した 体積粒径の累積値が 10 %である粒径 D V i。と 90 %である粒径 D V 90と 5 0%である粒径 D v50との間の関係式 (Dv90ZDv10) /Dv50により算出 される値が 0. 5〜 6の範囲内にある請求項 1記載の静電荷像現像用現像剤。
6. 六面体無機微粒子が、 疎水化処理されたものである請求項 1記載の静電荷 像現像用現像剤 o
7. 六面体無機微粒子が、 シランカップリング剤、 シリコーンオイル、 脂肪酸、 または脂肪酸金属石鹼により疎水化処理されたものである請求項 6記載の静電荷 像現像用現像剤。
8. 六面体無機微粒子を、 着色粒子 100重量部に対して、 0. 01〜5重量 部の割合で含有する請求項 1記載の静電荷像現像用現像剤。
9. 外添剤として、 六面体無機微粒子に加えて、 球状または不定形の無機微粒 子をさらに含有する請求項 1記載の静電荷像現像用現像剤。
10. 球状または不定形の無機微粒子を、 着色粒子 100重量部に対して、. 0. :!〜 5重量部の割合で含有する請求項 9記載の静電荷像現像用現像剤。
11. 着色粒子が、 重合トナーである請求項 1記載の静電荷像現像用現像剤。
12. 重合トナーが、 粒子の絶対最大長を直径とした円の面積 (S c) を粒子 の実質投影面積 (S r) で割った値 (S cZS r) で表わされる球形度が 1. 0 〜: 1. 3の範囲内のものである請求項 1 1記載の静電荷像現像用現像剤。
13. 重合トナーが、 体積平均粒径 (d v) が 3〜8 μπιの範囲内で、 体積平 均粒径 (d v) と個数平均粒径 (dp) の比 (d vZd p) が 1. 0〜1. 3の 範囲内のものである請求項 11記載の静電荷像現像用現像剤。
14. 重合トナーが、 分散安定剤を含有する水系分散媒体中で、 少なくとも重 合性単量体と着色剤とを含有する重合性単量体組成物を重合して得られる着色重 合体粒子である請求項 1 1記載の静電荷像現像用現像剤。
15. 重合トナーが、 コア ·シェル型重合トナーである請求項, 11記載の静電 荷像現像用現像剤。
16. コア 'シェル型重合トナーが、 分散安定剤を含有する水系分散媒体中で、 少なくとも重合性単量体と着色剤とを含有する重合性単量体組成物を重合して得 られる着色重合体粒子の存在下に、 シェル用重合性単量体を重合して、 着色重合 体粒子を芯粒子とし、 その表面に重合体からなるシェル層を形成したものである 請求項 1 5記載の静電荷像現像用現像剤。
1 7 . コア粒子を形成する重合体のガラス転移温度が 6 0 °C以下で、 シェル層 を形成する重合体のガラス転移温度が 8 0 °C以上のコア · シェル型トナーである 請求項 1 5記載の静電荷像現像用現像剤。
1 8 . 現像剤が、 非磁性一成分現像剤である請求項 1記載の静電荷像現像用現 像剤。
PCT/JP2003/000789 2002-01-28 2003-01-28 Agent de developpement d'image electrostatique WO2003065125A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003564655A JP4337548B2 (ja) 2002-01-28 2003-01-28 静電荷像現像用現像剤

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-018549 2002-01-28
JP2002018549 2002-01-28

Publications (1)

Publication Number Publication Date
WO2003065125A1 true WO2003065125A1 (fr) 2003-08-07

Family

ID=27653861

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/000789 WO2003065125A1 (fr) 2002-01-28 2003-01-28 Agent de developpement d'image electrostatique

Country Status (2)

Country Link
JP (1) JP4337548B2 (ja)
WO (1) WO2003065125A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006065001A (ja) * 2004-08-26 2006-03-09 Ricoh Co Ltd カプセルトナー及びその製造方法、並びに現像剤、トナー入り容器、プロセスカートリッジ、画像形成装置及び画像形成方法
CN100371828C (zh) * 2003-09-12 2008-02-27 佳能株式会社 调色剂
JP2010049245A (ja) * 2008-07-25 2010-03-04 Canon Inc トナー及び画像形成方法
JP2010160367A (ja) * 2009-01-09 2010-07-22 Canon Inc トナーカートリッジ
JP2012093554A (ja) * 2010-10-27 2012-05-17 Canon Inc 画像形成方法
JP2012155216A (ja) * 2011-01-27 2012-08-16 Canon Inc 画像形成方法、画像形成装置、及びトナー
US9235153B2 (en) 2011-05-20 2016-01-12 Zeon Corporation Electrostatic image developer
WO2024085855A1 (en) * 2022-10-17 2024-04-25 Hewlett-Packard Development Company, L.P. Calcium carbonate toner surface additives

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01105263A (ja) * 1987-07-09 1989-04-21 Hitachi Metals Ltd 静電荷像現像用トナー
JPH04338977A (ja) * 1991-01-28 1992-11-26 Tomoegawa Paper Co Ltd 非磁性一成分現像方法
JPH08190221A (ja) * 1995-01-12 1996-07-23 Mita Ind Co Ltd 電子写真用トナー
JPH08286421A (ja) * 1995-04-13 1996-11-01 Tomoegawa Paper Co Ltd 電子写真用トナー
JPH09325513A (ja) * 1996-06-07 1997-12-16 Toshiba Chem Corp 静電像現像トナーおよび静電像現像法
JP2000250251A (ja) * 1999-02-25 2000-09-14 Sumitomo Chem Co Ltd アルミナ粉末およびそれを含有する現像剤
JP2001209207A (ja) * 2000-01-26 2001-08-03 Canon Inc トナーおよび画像形成方法
JP2001281928A (ja) * 2000-03-30 2001-10-10 Nippon Zeon Co Ltd 重合トナーの製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01105263A (ja) * 1987-07-09 1989-04-21 Hitachi Metals Ltd 静電荷像現像用トナー
JPH04338977A (ja) * 1991-01-28 1992-11-26 Tomoegawa Paper Co Ltd 非磁性一成分現像方法
JPH08190221A (ja) * 1995-01-12 1996-07-23 Mita Ind Co Ltd 電子写真用トナー
JPH08286421A (ja) * 1995-04-13 1996-11-01 Tomoegawa Paper Co Ltd 電子写真用トナー
JPH09325513A (ja) * 1996-06-07 1997-12-16 Toshiba Chem Corp 静電像現像トナーおよび静電像現像法
JP2000250251A (ja) * 1999-02-25 2000-09-14 Sumitomo Chem Co Ltd アルミナ粉末およびそれを含有する現像剤
JP2001209207A (ja) * 2000-01-26 2001-08-03 Canon Inc トナーおよび画像形成方法
JP2001281928A (ja) * 2000-03-30 2001-10-10 Nippon Zeon Co Ltd 重合トナーの製造方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100371828C (zh) * 2003-09-12 2008-02-27 佳能株式会社 调色剂
JP2006065001A (ja) * 2004-08-26 2006-03-09 Ricoh Co Ltd カプセルトナー及びその製造方法、並びに現像剤、トナー入り容器、プロセスカートリッジ、画像形成装置及び画像形成方法
JP4490766B2 (ja) * 2004-08-26 2010-06-30 株式会社リコー カプセルトナー及びその製造方法、並びに現像剤、トナー入り容器、プロセスカートリッジ、画像形成装置及び画像形成方法
JP2010049245A (ja) * 2008-07-25 2010-03-04 Canon Inc トナー及び画像形成方法
JP2010160367A (ja) * 2009-01-09 2010-07-22 Canon Inc トナーカートリッジ
JP2012093554A (ja) * 2010-10-27 2012-05-17 Canon Inc 画像形成方法
JP2012155216A (ja) * 2011-01-27 2012-08-16 Canon Inc 画像形成方法、画像形成装置、及びトナー
US9235153B2 (en) 2011-05-20 2016-01-12 Zeon Corporation Electrostatic image developer
WO2024085855A1 (en) * 2022-10-17 2024-04-25 Hewlett-Packard Development Company, L.P. Calcium carbonate toner surface additives

Also Published As

Publication number Publication date
JPWO2003065125A1 (ja) 2005-05-26
JP4337548B2 (ja) 2009-09-30

Similar Documents

Publication Publication Date Title
JP7031718B2 (ja) 静電荷像現像用トナー
JP4998596B2 (ja) トナーの製造方法
JP2007121946A (ja) 静電荷像現像用トナー
JP2003322997A (ja) 静電荷像現像用トナー
WO1999052019A1 (fr) Toner destine au developpement d'une image electrostatique, et procede de production associe
JP2007171272A (ja) 静電荷像現像用トナー及びその製造方法
WO2003065125A1 (fr) Agent de developpement d'image electrostatique
JP2014524054A (ja) 重合トナーおよびその製造方法
JP2006113616A (ja) トナー
JP2003177571A (ja) トナー及びトナーの製造方法
JP4867499B2 (ja) 静電荷像現像用トナーの製造方法
JP2007127729A (ja) 静電荷像現像用トナーの製造方法
JP2006235527A (ja) 電子写真用トナー及びその製造方法
JP3979216B2 (ja) トナー
JP2003287928A (ja) 重合トナーの製造方法
JP5018174B2 (ja) イエロートナーとその製造方法
JP2007322687A (ja) 静電荷像現像用トナーの製造方法
JP2005215033A (ja) 正帯電性トナー
JP5760331B2 (ja) 静電荷像現像用トナー
JP7044103B2 (ja) 静電荷像現像用正帯電性トナー及びその製造方法
JP2007187988A (ja) トナー
JP6696260B2 (ja) 静電荷像現像用トナー
JP2015506490A (ja) 重合トナーおよびその製造方法
JP2022072847A (ja) トナーの製造方法
JP4572897B2 (ja) トナー粒子を含有する静電荷像現像用現像剤、該トナー粒子の製造方法及び該現像剤を用いた画像形成方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003564655

Country of ref document: JP

122 Ep: pct application non-entry in european phase