WO2003064103A1 - Fil d'acier pour soudage a l'arc avec protection au dioxyde de carbone et processus de soudage utilisant ce fil d'acier - Google Patents

Fil d'acier pour soudage a l'arc avec protection au dioxyde de carbone et processus de soudage utilisant ce fil d'acier Download PDF

Info

Publication number
WO2003064103A1
WO2003064103A1 PCT/JP2003/000528 JP0300528W WO03064103A1 WO 2003064103 A1 WO2003064103 A1 WO 2003064103A1 JP 0300528 W JP0300528 W JP 0300528W WO 03064103 A1 WO03064103 A1 WO 03064103A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
less
wire
carbon dioxide
welding
Prior art date
Application number
PCT/JP2003/000528
Other languages
English (en)
French (fr)
Inventor
Tokihiko Kataoka
Rinsei Ikeda
Koichi Yasuda
Mikio Sakasita
Kenji Tokinori
Original Assignee
Jfe Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2002023739A external-priority patent/JP3941528B2/ja
Priority claimed from JP2002356315A external-priority patent/JP3945396B2/ja
Application filed by Jfe Steel Corporation filed Critical Jfe Steel Corporation
Priority to KR1020037013942A priority Critical patent/KR100553380B1/ko
Priority to US10/474,827 priority patent/US20040140303A1/en
Publication of WO2003064103A1 publication Critical patent/WO2003064103A1/ja
Priority to SE0302581A priority patent/SE527388C2/sv

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0255Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0255Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
    • B23K35/0261Rods, electrodes, wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • B23K35/3073Fe as the principal constituent with Mn as next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas

Definitions

  • the present invention relates to a welding wire used for positive carbon dioxide gas shielded arc welding, and in particular, to a spray transfer in which the welding wire is used on the positive electrode (that is, the negative electrode) side, which is the most stable droplet transfer mode.
  • the present invention relates to a carbon dioxide gas shielded arc welding wire (hereinafter referred to as a welding wire), which is capable of obtaining a small amount of spatter and having an excellent bead shape.
  • a welding wire carbon dioxide gas shielded arc welding wire
  • co 2 gas as a shielding gas
  • a mixed gas of a welding method with shielding gas (so-called mixed gas arc welding) is droplet is small fine fine spray than the diameter of the welding wire Migration is possible. It is known that the spray transfer of the droplet is the best among the droplet transfer modes, is excellent in a weld bead shape with less generation of spatter, and is also suitable for high-speed welding. Therefore, mixed gas arc welding is used in fields that require high quality welding.
  • Japanese Patent Application Laid-Open No. 6-218574 discloses a method of reducing the amount of spatter generated by adding K. And to force, in this technique, necessarily stable effect of reduction and bead shape of's path jitter generation amount obtained in the case of ⁇ C0 2 to 50% by volume or more in the case and the shield gas to increase the welding speed I could't.
  • Japanese Patent Application Laid-Open Nos. 7-47473 and 7-290241 propose a CO2 pulse arc welding method in which one pulse is generated within the transition time of one droplet to reduce spatter.
  • MAG welding which uses a mixed gas with Ar— (5 to 25% by volume) ⁇ 0 2 force as a shielding gas, one droplet and one pulse welding technology has been established.
  • Ar- (5 to 25 vol%) C0 2 droplet in the welding of fine, powerful downward plasma airflow, allows droplet transfer is good efficiency in droplet growth and the base period in the peak period .
  • the time required for forming one droplet is as short as 1 to 2 ms.Even if one droplet does not move in one pulse, a large droplet does not hang on the wire tip if it moves in the next pulse.
  • the pulse has an effect of reducing spatter.
  • Japanese Patent Application Laid-Open No. 63-281796 discloses an arc stabilizing effect of charcoal shielded arc by adding REM, but the most significant feature of this patent is to make the welding wire positive. Disclosure No. Normally, when the welding wire is positive polarity, the welding wire forms a coarser droplet than the droplet in the reverse polarity carbon dioxide gas shielded arc welding, and a large short circuit causes coarse spatter to be attempted. It is recognized that the bead shape is uneven due to the roughness, and the heat generation on the steel plate side is small and the penetration is shallow, so that welding defects due to overlap are likely to occur.
  • the present application is characterized in that P and S of additional elements necessary for arc stabilization and spraying of transfer in positive polarity and 0 which reduces the arc stabilizing effect. No important technology is disclosed, and a sufficient arc stabilizing effect and an excellent bead shape cannot be obtained in a carbon dioxide gas shielded arc.
  • mixing ratio 2-40% by volume of C0 2 coarse Droplet hangs at the tip of the welding wire and swings by the arc force.
  • the present invention has been developed in view of the above problems, C0 (in this application, in particular, the effect is large mixing ratio 60% or more by volume of C0 2) 2 composed mainly of gas carbon dioxide Ru using the shielding gas and
  • C0 in this application, in particular, the effect is large mixing ratio 60% or more by volume of C0 2
  • C0 2 composed mainly of gas carbon dioxide Ru using the shielding gas
  • the carbon dioxide gas shielded arc welding according to the present invention as compared with Ar gas and C0 2 (mixing ratio 2-40 body product% of C0 2) shielding gas that is a mixture of gas used in so-called mixed gas arc welding, C 0 2 gas gas (C0 2 mixing ratio 60% or more by volume) composed mainly of points welding method with shielding gas.
  • C 0 2 gas gas C0 2 mixing ratio 60% or more by volume
  • the carbon dioxide gas shielded arc welding in the present invention mainly refers to a welding method using CO 2 gas (so-called carbon dioxide gas arc welding). Disclosure of the invention
  • the present invention is a welding wire used in the positive carbon dioxide shielded arc welding, 0.003 to C ⁇ 0.20 weight 0 /. , Si 0.05-2.5 mass 0 /.
  • the steel wire for carbon dioxide shielded arc welding described above, has a composition of 0: 0.0100 mass in addition to the composition described above. /.
  • Ca 0.0008 wt% or less
  • Ti 0.02 to 0.50 mass 0/0
  • Zr 0.02 to 0.50 mass 0/0
  • Al .02 to 3.00 Quality It is preferable to contain one or more of the amount%.
  • the present invention further provides that the composition of the wire further comprises Cr: 3.0% by mass or less, 1 ⁇ : 3.0% by mass or less, Mo: 1.5% by mass or less, Cu: 3.0% by mass or less, B: 0.015% by mass or less, Mg: 0.20% by mass or less, Nb: 0.5% by mass or less,: 0.5% by mass or less, 0.020% by mass or less.
  • the present invention uses carbon dioxide gas shielded arc welding steel wire mentioned above, Ar gas and C 0 2 gas mixture gas mixing ratio 60% or more by volume or 100% by volume ⁇ 0 2 gas in the arc point 0 'is a carbon dioxide gas shielded arc welding method that shields
  • the welding wire made of a steel wire refers to a wire (so-called solid wire) mainly containing a steel wire as a material without a welding flux.
  • the present invention can be applied to a solid wire in which the surface of a steel wire is plated or a lubricant is applied.
  • C is an important element for ensuring the strength of the weld metal, and has the effect of lowering the viscosity of molten steel and improving fluidity. To obtain this effect, 0.003% by mass or more is required.
  • the C content exceeds 0.20% by mass, not only the behavior of the droplet and the molten pool becomes unstable, but also the toughness of the weld metal is reduced. Therefore, the C content was limited to 0.20% by mass or less. Therefore, C must satisfy the range of 0.003 to 0.20% by mass. More preferably, it is 0.01 to 0.10 mass%.
  • Si has a deoxidizing effect and is an indispensable element for deoxidizing weld metal. If the Si content is less than 0.05% by mass, deoxidation of the molten metal will be insufficient, and a weld metal will be formed with a pro-hole. Further, in order to suppress the spread of the arc in the positive polarity welding and increase the number of times of transfer of the droplet, 0.25% by mass or more is desirable. On the other hand, if it exceeds 2.5% by mass, the toughness of the weld metal is significantly reduced. Therefore, Si is 0.05-2.5 mass. /. Range of It is necessary to satisfy the enclosure. More preferably, the content is 0.25 to 2.5% by mass.
  • Mn has a deoxidizing effect and is an essential element for deoxidizing molten metal. If the Mn content is less than 0.25% by mass, deoxidation of the molten metal is insufficient, and blow holes are generated in the weld metal. Preferably, the content is 0.45% by mass or more. On the other hand, if it exceeds 3.5% by mass, the toughness of the weld metal decreases. Therefore, Mn needs to satisfy the range of 0.25 to 3.5% by mass. More preferably, the content is 0.45 to 3.5% by mass.
  • Rare earth elements that is, REM are useful elements for miniaturizing inclusions and improving toughness during steelmaking and production.
  • carbon dioxide gas shielded arc welding of the opposite polarity ie, positive welding wire
  • low spatter effect cannot be obtained due to arc concentration.
  • carbon dioxide gas shielded arc welding of positive polarity that is, the welding wire is a negative electrode
  • Rare earth elements are a general term for elements belonging to Group 3 of the periodic table.
  • a mixture containing these elements is preferably a mixture containing Ce: 45 to 80% and La: 10 to 45%.
  • P is an element that lowers the melting point of steel, improves electrical resistivity, and improves melting efficiency. In addition, it has the effect of miniaturizing droplets and stabilizing the arc in positive carbon dioxide gas shielded arc welding. If the P content is less than 0.001% by mass, such effects cannot be obtained. If the P content exceeds 0.050% by mass, the viscosity of the molten metal in positive carbon dioxide gas shielded arc welding will be too low to make the arc unstable, and not only will a large amount of small spatters be generated, but also The risk of hot cracking increases. Therefore, P was set to 0.050% by mass or less. More preferably, it is 0.002% by mass or more and 0.030% by mass or less.
  • the s reduces the viscosity of the molten metal, helps withdrawing from the wire tip, Stable arc welding in shielded arc welding.
  • S has the function of spreading the arc in the welding of positive polarity, lowering the viscosity of the molten metal, and smoothing the bead. If the S content is less than 0.001% by mass, such effects cannot be obtained. If the S content exceeds 0.050% by mass, not only small-sized spatter is generated but also the toughness of the weld metal is reduced. Therefore, S is set to 0.050% or less. More preferably, it is 0.002 or more and 0.030% by mass or less. Still more preferably, it is 0.015 to 0.03% by mass.
  • O must satisfy 0.0100% by mass or less. More preferably, it is adjusted to 0.0030% by mass or less.
  • Ca is an impurity that is mixed into molten steel during steelmaking and manufacturing or mixed into a steel wire during wire drawing.
  • positive carbon dioxide gas shielded arc welding has the effect of inhibiting the stability of spray transfer in high current welding.
  • the Ca content exceeds 0.0008% by mass, it has a function of inhibiting stable spray transfer by REM addition. Therefore, the Ca content is preferably 0.0008% by mass or less.
  • is an element that spreads the arc by positive carbon dioxide gas shielded arc welding and enables the spray transfer of droplets even at low current, and has the effect of making the droplets themselves finer. Therefore, if necessary, add ⁇ to the steel strand.
  • ⁇ content is less than 0.0001% by mass, these effects cannot be obtained.
  • exceeds 0.0150% by mass, the arc length increases during welding, droplets suspended at the tip of the welding wire become unstable, and a large amount of spatter is generated. Therefore, when ⁇ is added, it is preferable that satisfies the range of 0.0001 to 0.0150 mass%. Note that the content is more preferably 0.0003 to 0.0030% by mass.
  • components of the steel element wires in addition to the above-described composition, Ti: 0.02 to 0.50 mass 0 I ⁇ : 0 ⁇ 02 ⁇ 0 ⁇ 50 wt% and [alpha] 1: 0.02 to 3 ⁇ 00 wt% It is preferable to contain one or more of these. The reason will be described.
  • Ti, Zr, and A1 are all elements that act as strong deoxidizers and further increase the strength of the weld metal. Further, it also has the effect of stabilizing the bead shape (ie, suppressing humming beads) by improving the viscosity by deoxidizing the molten metal.
  • An effective element in 300A or more high current welding because having such an effect, c Ti content is less than 0.02% by weight to be added as needed, Zr content is less than 0.02 mass%, A1 content Is less than 0.02% by mass, this effect cannot be obtained.
  • Ti when adding Zr, A1 is, Ti: 0.02 to 0.50 wt%, Zr: 0.02 to 0.50 mass 0/0, Al: preferably satisfies the 0.02 to 3.00 within the range of weight percent.
  • Cr, Ni, Mo, Cu, B, and Mg are all elements that increase the strength of the weld metal and improve the weather resistance. When the content of these elements is very small, such effects cannot be obtained. On the other hand, if it is contained excessively, the toughness of the weld metal is reduced. If the is to be contained connexion Cr, Ni, Mo, Cu, B, and Mg, respectively Cr: 0.02 ⁇ 3.0 mass 0 I Ni: 0.05 to 3.0 mass 0/0, Mo: 0.05 to 1.5 mass 0 /. , Cu: 0.05 to 3.0 % by mass B: 0.0005 to 0.015% by mass, Mg: 0.001 to 0.20% by mass.
  • Nb and V are elements that increase the strength and toughness of the weld metal and improve the stability of the arc. When the content of these elements is very small, such effects cannot be obtained. On the other hand, if it is contained excessively, the toughness of the weld metal is reduced. According to When Nb and V are contained, Nb: 0.005 to 0.5% by mass, V: 0.005 to 0.5 mass, respectively. /. Is preferably satisfied.
  • the balance other than the components of the above-mentioned steel wires is Fe and inevitable impurities.
  • it is a typical inevitable impurity and is inevitably mixed in the steps of melting steel and manufacturing steel wires.
  • N is preferably reduced to 0.020% by mass or less.
  • molten steel having the above composition is produced. Melting method of this soluble steel, not limited to a specific technology, c then using techniques known from the prior art, the resultant molten steel, steel by continuous ⁇ method or an ingot-making method, or the like (e.g. billets Etc.) to manufacture. After the steel material is heated, it is subjected to hot rolling, and further to dry cold rolling (ie, wire drawing) to produce a steel strand.
  • the operating conditions of hot rolling and cold rolling are not limited to specific conditions, but may be any conditions as long as a steel wire having a desired size and shape is manufactured.
  • the steel wire is subjected to the steps of annealing, pickling, copper plating, wire drawing, and lubricant application as required to obtain a predetermined product, that is, a welding wire.
  • the arc is more likely to become unstable due to poor power supply than in reverse polarity.
  • poor power supply can be prevented by plating the surface of the steel wire with a Cu plating with a thickness of 0.6 / xm or more. It is more preferable that the thickness of the Cu plating be 0.8 m or more, because the effect of preventing power supply failure becomes remarkable. By making the Cu plating thicker, the effect of reducing the wear of the power supply chip can also be obtained.
  • the Cu content of the steel wire and the Cu content of the plating layer on the surface thereof exceed a total of 3.0% by mass, the toughness of the weld metal is significantly reduced. Therefore, it is preferable that the Cu content of the welding wire (that is, the sum of Cu in the steel wire and Cu in the plating layer) be 3.0% by mass or less.
  • the flatness of the welding wire surface (ie, the actual surface area Z theoretical surface area) be less than 1.01 in order to enhance the stability of the power supply and promote the spray transfer of droplets.
  • the flatness of the welding wire surface can be kept below 1.01 by strictly controlling the dies in wire drawing of steel composition.
  • Cu plating of welding wire or copper wire surface with lubricating oil applied to steel wire surface The use of a welding wire having a layer coated with lubricating oil can improve the feedability of the welding wire. It is preferable that the amount of the lubricant applied is in the range of 0.35 to 1.7 g per 10 kg of the welding wire.
  • suitable welding conditions for the positive polarity carbon dioxide gas shielded arc welding method using the welding wire of the present invention are as follows: shielding force: 100% by volume of C 0 2 or 40% by volume or less of Ar.
  • the mixing power of C 0 2 60% by volume or more other suitable conditions are welding current 250-450A, welding voltage 27-38V (increase with current), welding speed 20-250cm / min, wire protrusion length 15 It is desirable to carry out under the conditions of ⁇ 30mm, wire diameter 0.8 ⁇ 1.6mm, welding heat input 5 ⁇ 40kJ / cm. If the thickness is 10mm or more, multi-layer welding can be applied.
  • the steel material to be welded is not particularly limited, but rolled steel material for welded structure (SM material) specified in JIS G3106 of Si-Mn system and steel material for building structure (SN material) specified in JIS G3136 are particularly preferable. .
  • SM material welded structure
  • SN material steel material for building structure
  • the billet produced by the continuous forming was hot-rolled into a wire having a diameter of 5.5 to 7.0 mm.
  • a steel wire having a diameter of 2.0 to 2.8 mm was formed by cold rolling (that is, wire drawing), and a 30 to 50 g aqueous solution of 2 to 30% by volume of potassium potassium citrate was applied per kg of the steel wire.
  • the steel wire was then annealed in a nitrogen atmosphere with a dew point of 12 ° C or less, an oxygen concentration of 200 vol ppm or less, and a carbon dioxide concentration of 0.1 vol% or less.
  • the K content and O content due to internal oxidation of the steel wire were adjusted by adjusting the diameter of the steel wire, the concentration of the potassium citrate aqueous solution, the annealing temperature, and the annealing time.
  • the steel wire was pickled, and then, if necessary, the surface of the steel wire was plated with Cu. Further, cold drawing was performed (wet drawing) to produce a welding wire with a diameter of 0.8 to 1.6 mm. Lubricating oil was applied to the surface of this welding wire (0.4 to 0.8 g per 10 kg of welding wire). Wire drawing ensures sufficient feeding Adjusted so that it can be maintained.
  • the components of the steel wire of the obtained welding wire are as shown in Tables 1, 2 and 3.
  • Bead-on welding was performed using a 19 mm thick, 70 mm wide, 500 mm long steel plate (JIS G3106: SM490B equivalent) with a protrusion of 20 mm, a welding speed of 40 cm / min, an arc voltage of 30 V, and a welding current of 300 A. After the welding was completed, unevenness of 10 cm in the longitudinal direction of the center of the weld bead was measured. Unevenness of 0.5 mrn or more appeared 5 times or more, and was evaluated as bad (X), and others were evaluated as good ( ⁇ ).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding In General (AREA)
  • Nonmetallic Welding Materials (AREA)

Description

明 細 書
炭酸ガスシールドアーク溶接用鋼ワイヤおょぴそれを用いた溶接方法 技術分野
本発明は、正極性炭酸ガスシールドアーク溶接に使用する溶接用ワイヤに係り, 特に溶接用ワイヤを正極(すなわちマイナス極)側で使用して最も安定な溶滴の移 行形態とされるスプレー移行が得られ、スパックの発生が少なく、しかも優れたビー ド形状が得られる炭酸ガスシールドアーク溶接用ワイヤ(以下、溶接用ワイヤという) に関する。 ' 背景技術 - シールドガスとして co2ガスを用いるガスシールドアーク溶接は、炭酸ガスが安 価であるとともに、能率の良い溶接法であるので、鉄鋼材料の溶接に広く利用され ている。特に自動溶接の急速な普及により、造船,建築,橋梁, 自動車,建設機 械等の種々の分野で使用されている。造船,建築,橋梁の分野では、厚板の高電 流多層溶接に使用され、 自動車,建設機械の分野では、薄板の隅肉溶接に使用 されることが多い。
Arガスと C02ガス(混合比率 2~ 40体積0 /0 )との混合ガスをシールドガスとする 溶接法(いわゆる混合ガスアーク溶接)は、溶滴が溶接ワイヤの直径よりも小さい微 細なスプレー移行が可能となる。この溶滴のスプレー移行は、溶滴移行形態の中 で最も優れており、スパッタの発生が少なぐ溶接ビード形状に優れ、高速溶接にも 適していることが知られている。そのため混合ガスアーク溶接は、高品質な溶接を必 要とする分野で利用されている。
しかしながら Arガスのコストは、 C02ガスの 5倍と高価であるから、実際の溶接施 ェにおいては Arガスの使用量を削減して、 C02ガスの混合比率を 50体積%以 上とした混合ガスをシールドガスとして使用する場合が多い。このような co2ガスの 混合比率が 50体積%以上のシールドガスを用いると、 Ar _ CO 2 (混合比率 2〜 40体積0 /0 )からなるシールドガスを用いる溶接法(いわゆる混合ガスアーク溶接)に 比べて 10〜20倍の粗大な溶滴が溶接ワイヤ先端に懸垂し、アーク力によって摇 れ動きながら移行(いわゆるグロビュール移行)する。このようなグロビュール移行が 生じると、母材(すなわち鋼板)との短絡や再アークによるスパックが多量に発生し、 ビ一ド形状が安定しない。特に高速溶接においては、ビ一ド形状が凹凸 (いわゆる ハンビングビード)になりやすいという問題があった。
この問題点に対して、 Kの添加によってスパッタ発生量を低減する方法が特開平 6-218574号公報に開示されている。し力し、この技術では、溶接速度を増加する 場合やシールドガス中の C02を 50体積%以上に增加する場合には必ずしもズパ ッタ発生量の低減やビード形状の安定の効果は得られなかった。
また特開平 7-47473号公報,特開平 7-290241号公報には、 1溶滴の移行時間内に 1パルス を発生させて、スパッタを低減する炭酸ガスパルスアーク溶接方法が提案されている。 Ar— (5 〜25体積%)〇02力もなる混合ガスをシールドガスとして用いる MAG溶接では、 1溶滴 1パル ス溶接技術が確立されている。これは、 Ar— (5〜25体積%) C02溶接における溶滴が微細、 強力な下向きのプラズマ気流により、ピーク期間での溶滴成長とベース期間での溶滴移行が効 率良く行なえる。また、 1溶滴の形成に要する時間も l~2msと短ぐ 1 パルスで 1溶滴が移行し なかったとしても、次のパルスで移行すれば大きな溶滴がワイヤ先端に懸垂することはなく、パ ルスによってスパッタの低減効果が発揮される。しかし、特開平 7-47473 号公報,特開平 7- 290241 号公報の C02を主成分とするシールドガス(C02 ガスの混合比率が 50体積%以 上)を用いる炭酸ガスシールドアーク溶接での溶滴は粗大で、下向きのプラズマ気流は弱 溶 滴の移行はパルスピーク期間の前半で生じる。炭酸ガスシールドアークパルス溶接では、ピーク 期間中盤力 後半にカ て溶滴が成長し、ベース期間では常に溶滴がワイヤ先端に懸垂した 状態となり次のピーク期間前半で溶滴が鋼板側へ移行するのが理想と考えられている。 1溶滴 を形成する時間は 10~20msと長く、 1パルスで 1溶滴が移行しな力 た場合、次のパルスで移 行するがその間粗大な溶滴がワイヤ先端に懸垂することになり、短絡等により粗大なスパッタを 多量に発生させる。炭酸ガスパルスアーク溶接法では、溶滴の移行間隔が不安定であり、 1溶 滴の移行時間に合わせて 1パルスを安定に発生させるのは困難である。
また、発明者らは、本発明よりも先に U.S.Serial No. 10/107,623 (出願日: 2002年 3月 27日)
「MAG溶接用鋼ワイヤおょぴそれを用いた MAG溶接法 Jを開発している力 S、溶接部にギャップ 力 Sある薄鋼槔の低電流 (250A以下)溶接を対象としており、炭酸ガスシールドアークにおける高電 流溶接 (250A超え)におレ、ては十分なアーク安定の効果が得られなレ、。
また、特開昭 63 - 281796号公報には、 REM添加による炭 スシールドアーク,のアーク安 定化効果が開示されてレ、るが、本特許の最も大きな特徴である溶接ワイヤを正極性する開示がな い。通常、溶接ワイヤが正極性の溶接は、溶接ワイヤが逆極性の炭酸ガスシールドアーク溶接に おける溶滴よりも更に粗大な溶滴を形成し大きな短絡により粗大なスパッタを努生させる、溶滴 移行が粗いためにビード形状が不揃い、鋼板側の発熱が少なく溶け込みが浅いためにオーバ 一ラップによる溶接欠陥を発生しやすいと認識されている。よって、溶接技術者であれば、溶接 用ワイヤを正極 (すなわちマイナス極)側で使用するという発想はなぐ常に逆極性 (すなわちヮ ィャをプラス極側)とするのが常識である。しかし、特開昭 63-281796号公報には、極性に関する 開示がない。この:^の溶接ワイヤは、逆極性あるいは、正極 のいずれかであると思われる。炭 スシールドアーク溶接方法で通常使用される逆極性の^^は、 REM添加によってアークの緊 縮と反発により大粒のスパッタを増すことが知られており、 REM添加によってアーク安定化効果を 得ることはなレ、。また、正極性の場合に、本願が特徴としてレ、るアークの安定ィ匕に必要な添加元素 の P, Sおよぴ正極性における 移行のスプレー化とアーク安定化効果を低下させる 0に関す る重要な技術の開示がなく、炭酸ガスシールドアークにおいて十分なアーク安定化効果と優れた ビード形状は得られない。
上記のように、 Arガスへの C02 ガスの混合比率が 40体積%超えのシ一ルドガス を用いると、通常の混合ガスアーク溶接(C02の混合比率 2〜40体積%)に比べ て、粗大な溶滴が溶接ワイヤ先端に懸垂し、アーク力によって揺れ動く。その結果、 -高速溶接では母材(すなわち鋼板)との不規則な短絡や再アークによるスパックが 増加し、ビード形状が不安定となるという問題があった。
C02 ガスを主成分(C02 の混合比率 40体積.%超え)とするシールドガスを用い る場合、このような問題点を解決するためには、溶滴のスプレー移行を達成する必 要がある。
ところが、溶滴のスプレー移行は通常の混合ガスアーク溶接(C02の混合比率 2 〜40体積%)では可能であるが、 C02 ガスの混合比率が 40体積%超えのシール ドガスを用いて溶接を行なう場合にスプレー移行を達成することは極めて困難であ つた。
本発明は上記の問題点に鑑み開発されたもので、 C02 ガスを主成分(本願では、 特に、 C02の混合比率 60体積%以上で効果が大きい)とするシールドガスを用い る炭酸ガスシールドアーク溶接において、溶滴のスプレー移行を可能とし、高速溶 接を行なってもスパッタ発生の低減のみならず、優れたビード形状が得られる溶接 ワイヤ、およびその溶接ワイヤを用いた溶接方法を提案することを目的とするもので ある。
本発明における炭酸ガスシールドアーク溶接とは、いわゆる混合ガスアーク溶接 で用いる Arガスと C02ガスとを混合したシールドガス(C02の混合比率 2〜40体 積%)に比べて、 C 02ガスを主体とするガス(C02の混合比率 60体積%以上)を シールドガスとする溶接法を指す。なお本発明における炭酸ガスシールドアーク溶 接は、主に C 02ガスを用いる溶接法(いわゆる炭酸ガスアーク溶接)を指す。 発明の開示
本発明者らは、 C02 を主成分(すなわ C 02 : 60 体積%以上)とするシール ドガスを用いる炭酸ガスシールドアーク溶接において、スパッタの低減とビード形状 の改善について鋭意検討した。その結果、 以下に述べる知見を得た。
(1) 溶接用ワイヤをマイナス極とする正極性の溶接を行なうことによって、溶滴は粗 大ではあるが、安定した移行が可能となる。
(2) 溶接用ワイヤに希土類元素(以下、 REM という)を添加することによって、低 電圧領域でのアーク切れを防止し、溶滴の安定した移行が可能となる。
(3) 溶接用ワイヤに REMを添加することによって、溶け込みを確保してビ一ドの平 滑化が可能となる。
(4) REM を溶接ワイヤに添加し、さらに、 P, S, 0 , Ca, K含有量を規定することに よって、陰極におけるアーク発生点を集中かつ安定させることが可能である。
(5 )強脱酸元素である Ti, Zr, A1を溶接ワイヤに添加することによって、更に安定 した溶接性が得られる
ことを見出した。本発明は、これらの知見に基づいてなされたものである。 ' すなわち本発明は、正極性炭酸ガスシールドアーク溶接に使用する溶接用ワイヤ であって、 Cを 0.003 ~0.20 質量0/。, Si を 0.05〜2.5 質量0/。, Mn を 0.25〜3.5 質量%, REM を 0.015〜0. 100 質量%, Pを 0.001〜0.05 質量0ん Sを 0.001 - 0.05質量%含有し、残部 Feおよび不可避的不純物である炭酸ガスシールドア ーク溶接用ワイヤである。
前記した炭酸ガスシールドアーク溶接用鋼ワイヤにおいては、好適態様として、鋼 素線が、前記した組成に加えて、 0 : 0.0100 質量。/。以下、 Ca: 0.0008 質量%以下、 更に Ti : 0.02〜0.50質量0 /0, Zr : 0.02〜0.50質量0 /0および Al : 0.02〜3.00質 量%のうちの 1種または 2種以上を含有することが好ましい。
また、本発明は、前記ワイヤの組成が、さらに、 Cr : 3.0 質量%以下, 1^: 3.0 質量%以下, Mo : 1.5 質量%以下, Cu : 3.0 質量%以下, B: 0.015 質量% 以下, Mg : 0.20質量%以下、 Nb : 0.5質量%以下, : 0.5質量%以下、 0.020質量%以下である。
また本発明は、上記した炭酸ガスシールドアーク溶接用鋼ワイヤを用いて、 Arガ スと C 02ガスの混合比率 60体積%以上の混合ガスあるいは、 100体積%< 02ガ スでアーク点をシールドし、正極性で溶接する炭酸ガスシールドアーク溶接方法で ある 0 '
なお、ここで鋼素線からなる溶接ワイヤとは、溶接用フラックスを内装せず、素材と なる鋼素線を主体とするワイヤ(いわゆるソリッドワイヤ)を指す。 また本発明は、鋼 素線の表面にめっきを施したり、あるいは潤滑剤を塗布したソリッドワイヤにも支障 なく適用できる。 発明を実施するための最良の形態
まず、本発明の溶接ワイヤの素材となる鋼素線の成分を限定した理由について 説明する。
C : 0.003 ~ 0.20質量%
Cは、溶接金属の強度を確保するために重要な元素であり、さらに溶鋼の粘性を 低下させて流動性を向上する効果がある。この効果を得るためには、 0.003質量% 以上が必要である。また、 C含有量が 0.20 質量%を超えると、溶滴および溶融プ ールの挙動が不安定となるのみならず、溶接金属の靭性低下を招く。したがって、 C含有量が 0.20 質量%以下に限定した。したがって、 C は、 0.003〜0.20 質量% の範囲を満足する必要がある。さらに、好適には、 0.01〜0. 10質量%である。
Si : 0.05〜2.5 質量0 /0
Siは、脱酸作用を有し、 溶接金属の脱酸のためには不可欠な元素である。 Si含 有量が 0.05質量%未満では、溶融メタルの脱酸が不足し、溶接金属にプロ一ホ ールが発生する。さらに正極性溶接におけるアークの広がりを抑え、溶滴の移行回 数を増大させるためには、 0.25質量%以上が望ましい。一方、 2.5質量%を超え ると、溶接金属の靭性が著しく低下する。したがって、 Siは 0.05〜2.5 質量。 /。の範 囲内を満足する必要がある。さらに、好適には、 0.25〜2.5 質量%が望ましい。
Mn : 0.25〜3.5 質量0 /0
Mnは、 Siと同様に、脱酸作用を有し、 溶融メタルの脱酸のためには不可欠な元 素である。 Mn含有量が 0.25質量%未満では、溶融メタルの脱酸が不足し、溶接 金属にブローホールが発生する。好適には、 0.45質量%以上がのぞましい。一方、 3.5質量%を超えると、溶接金属の靭性が低下する。したがって、 Mnは 0.25 ~ 3.5 質量%の範囲内を満足する必要がある。さらに、好適には、 0.45〜3.5質量%が望 ましい。
REM:0.015~0.100%
希土類元素 (すなわち REM)は、製鋼および鎳造時の介在物微細化、靭性改善に有用な元素 である。ただし、通常の逆極性 (すなわち溶接ワイヤをプラス極)の炭酸ガスシールドアーク溶接に おいては、アーク集中により低スパッタ効果が得られない。しかし、正極性 (すなわち溶接ワイヤを マイナス極)の炭酸ガスシールドアーク溶接においては、溶滴移行を安定化するために不可欠な 元素である。 REM含有量が 0.015%未満ではこの効果がなく 0.100%を超えて添 するとワイヤ製 造工程中の割れ、 金属の靭性低下を招く。よって、 REM量は 0.015〜0.100%の範囲を満足す る必要がある。なお好ましくは 0.025〜0.050%である。
希土類元素 (すなわち REM)は、周期表の 3族に属する元素の総称である。本発明では、原子 番号 57〜71の元素を使用するのが好ましぐ特に Ce , Laが好適である。これらの元素を混合し て使用する ¾ ^は、 Ce:45〜80%、 La: 10〜45%含有する混合物が好ましい。
(REM:原子番号 57〜71、主成分 CeZ45〜80mass%、 La/I0〜45mass%)
P:0.001〜0.050質量%以下
Pは、鋼の融点を低下させるとともに電気抵抗率を向上させ、溶融効率を向上させる元素である。 さらに正極性の炭酸ガスシールドアーク溶接において溶滴を微細化しアークを安定化させる作用 も有する。 P含有量が 0.001質量%未満では、このような効果は得られない。 P含有量が 0.050 質量%を超えると、正極性の炭酸ガスシールドアーク溶接における溶融金属の粘性が低下しすぎ てアークが不安定となり、小粒のスパッタが多量に発生するのみならず、溶接金属に高温割れを生 じる危険性が向上する。したがって、 Pは 0.050質量%以下とした。より好ましくは 0.002質量%以 上、 0.030質量%以下である。
S:0.001~0.050質量0 /0以下
sは、溶融金属の粘性を低下させ、ワイヤ先端に懸垂した嫌の離脱を助け、正極性の炭^ f スシールドアーク溶接においてアークを安定ィ匕する。また、 Sは、正極性の溶接においてアークを 広げ溶融金属の粘性を低下させてビードを平滑にする働きを有する。 S含有量が 0.001質量 %未満では、このような効果は得られない。 S含有量が 0.050質量%を超えると、小粒のス パッタが発生するのみならず、溶接金属の靭性が低下する。したがって、 Sは 0.050%以下とした。よ り好ましくは 0.002以上、 0.030質量%以下である。さらにより好ましくは 0.015〜0.03質量 %である。
0: 0.0100質量%以下
0 は、正極性 (溶接ワイヤ:マイナス極)の炭 スシールドアーク溶接において溶接ワイヤ先端 に懸垂した辯商に発生するアーク点を不安定にし、激商の揺動を増大させてスパッタを多発させる。 また、 REM の正極性における激商 のスプレー化とアーク安定化効果を低下させる働きを有す る。 .
0量が、 0.0100質量0 /0超えでは、正極性の炭^スシールドアーク溶接においてアーク点を不安 定にし、不用な辯商の揺動を発生させスパッタを増大させる。したがって、 Oは、 0.0100質量%以 下を満足する必要がある。より好ましくは 0.0030質量%以下に調整するのが好ましい。
Ca : 0.0008質量%以下
Caは、製鋼およぴ鎳造時に溶鋼に混入したり、あるいは伸線加工時に鋼素線に 混入する不純物である。しかし正極性の炭酸ガスシールドアーク溶接では、高電流 溶接においてスプレー移行の安定性を阻害する作用を有する。 Ca含有量が 0.0008質量%を超えると、 REM 添加による安定なスプレー移行を阻害する働きを 有している。したがって Ca含有量は、 0.0008質量%以下が好ましい。
K : 0.0001 ~ 0.0150質量0 /0
Κは、正極性の炭酸ガスシールドアーク溶接でアークを広げ、低電流でも溶滴の スプレー移行を可能とする元素であり、溶滴そのものを微細化する作用を有する。 そこで必要に応じて鋼素線に Κを添加する。ただし Κを添加する場合に、 Κ含有量 が 0.0001質量%未満では、これらの効果が得られない。 一方、 0.0150質量%を 超えると、溶接を行なう際にアーク長が増加し、溶接ワイヤの先端に懸垂した溶滴 が不安定となり、スパッタが多量に発生する。したがって Κを添加する場合は、 が 0.0001〜0.0150質量%の範囲内を満足するのが好ましい。なお、より好ましくは 0.0003 ~0.0030質量%である。なお、 Κは沸点が約 760°Cと低いので、鋼材を溶 製する段階で Kを添加すると、歩留りが著しく低い。そこで鋼素線を製造する段階 で、鋼素線の表面にカリウム塩溶液を塗布して焼鈍を施すことによって、 Kを鋼素 線に安定して含有させることができる。
さらに本発明では、鋼素線の成分は、上記した組成に加えて、 Ti:0.02〜0.50質 量0ん ΖΓ:0·02〜0·50質量%および Α1:0.02~3·00質量%のうちの 1種または 2種 以上を含有することが好ましい。 その理由について説明する。
Ti, Zr, A1は、いずれも強脱酸剤として作用し、さらに溶接金属の強度を増加す る元素である。さらに溶融メタルの脱酸による粘性向上によってビード形状を安定 ィ匕(すなわちハンビングビードを抑制)する作用も有する。このような効果を有する故 に 300A以上の高電流溶接においては有効な元素であり、必要に応じて添加する c Ti含有量が 0.02質量%未満, Zr含有量が 0.02質量%未満, A1含有量が 0.02質量%未満では、この効果が得られない。一方、 Ti含有量が 0.50質量%を 超える場合, Zr含有量が 0.50質量%を超える場合, A1含有量が 3.00質量%を 超える場合は、溶滴が粗大化して大粒のスパッタが多量に発生する。したがって、 Ti, Zr, A1を添加する場合は、 Ti:0.02〜0.50質量%, Zr: 0.02〜0.50質量0 /0, Al:0.02〜3.00質量%の範囲内を満足するのが好ましい。
さらに必要に応じて以下の元素を含有させても、本発明の効果を減じるものでは ない。
Cr: 3.0 質量%以下, Ni: 3.0 質量%以下, Mo:1.5 質量%以下, Cu:3.0 質量%以下, B:0.015 質量%以下, Mg: 0.20質量%以下、 Nb: 0.5質量%以 下, V: 0.5質量%以下、 Ν:0.020質量%以下
Cr, Ni, Mo, Cu, B, Mgは、いずれも溶接金属の強度を増加させ、かつ耐候性を 向上させる元素である。これらの元素の含有量が微少である場合は、このような効 果が得られない。一方、過剰に含有させると、溶接金属の靭性低下を招く。したが つて Cr, Ni, Mo, Cu, B, Mgを含有させる場合は、それぞれ Cr:0.02~3.0 質 量0ん Ni:0.05〜3.0 質量0 /0, Mo:0.05〜1.5 質量0 /。, Cu: 0.05〜3.0 質量0ん B:0.0005〜0.015 質量%, Mg: 0.001〜0·20質量%の範囲内を満足するのが 好ましい。
Nb, Vは、いずれも溶接金属の強度,靭性を増加させ、かつアークの安定性を向 上させる元素である。これらの元素の含有量が微少である場合は、このような効果 が得られない。一方、過剰に含有させると、溶接金属の靭性低下を招く。したがつ て Nb , Vを含有させる場合は、それぞれ Nb : 0.005〜0 · 5質量%, V: 0.005〜 0.5質量。 /。の範囲内を満足するのが好ましい。
上記した鋼素線の成分以外の残部は、 Feおよび不可避的不純物である。たとえ ば、代表的な不可避的不純物であり、鋼材を溶製する段階や鋼素線を製造する 段階で不可避的に混入する。 Nは、 0.020質量%以下に低減するのが好ましい。 次に、本発明の溶接ワイヤの製造方法について説明する。
転炉または電気炉等を用いて、上記した組成を有する溶鋼を溶製する。この溶 鋼の溶製方法は、特定の技術に限定せず、従来から知られている技術を使用する c 次いで、得られた溶鋼を、連続錶造法や造塊法等によって鋼材(たとえばビレット 等)を製造する。 この鋼材を加熱した後、熱間圧延を施し、さらに乾式の冷間圧延. (すなわち伸線)を施して鋼素線を製造する。 熱間圧延や冷間圧延の操業条件 は、特定の条件に限定せず、所望の寸法形状の鋼素線を製造する条件であれば 良い。
さらに鋼素線は、焼鈍一酸洗一銅めつき一伸線加工一潤滑剤塗布の工程を必 要に応じて施して、所定の製品すなわち溶接ワイヤとなる。
正極性の炭酸ガスシールドアーク溶接では、逆極性に比べて、給電不良に起因 してアークが不安定になりやすい。しかし、鋼素線の表面に厚さ 0.6 /x m以上の Cu めっきを施すことによって、給電不良を防止できる。なお Cuめっきの厚さ 0.8 m 以上とすると、給電不良防止の効果が顕著になるので一層好ましい。このように Cu めっきを厚目付とすることによって、給電チップの損耗を低減するという効果も得ら れる。
しかし鋼素線の Cu含有量おょぴその表面のめっき層の Cu含有量が合計 3.0 質量%を超えると、溶接金属の靭性が著しく低下する。したがって溶接ワイヤの Cu 含有量(すなわち鋼素線中の Cuとめつき層中の Cuめ合計)を 3.0質量%以下 とするのが好ましい。
また給電の安定性を高めて、溶滴のスプレー移行を促進するために、溶接ワイヤ 表面の平坦度(すなわち実表面積 Z理論表面積)を 1.01未満とすることが肝要で ある。溶接ワイヤ表面の平坦度は、鋼組成の伸線加工におけるダイス管理を厳格 に行なうことによって、 1.01未満に維持することが可能である。
鋼素線の表面に潤滑油を塗布した溶接ワイヤあるいは銅素線表面の Cuめっき 層に潤滑油を塗布した溶接ワイヤを用いると、溶接ワイヤの送給性を向上できる。 潤滑剤の塗布量は、溶接ワイヤ 10kgあたり 0.35 ~ 1.7 gの範囲内を満足するの が好ましい。
このようにして溶接ワイヤを製造する過程で、溶接ワイヤの表面に種々の不純物 が付着する。特に固体の不純物の付着量を溶接ワイヤ 10kgあたり O. O l g以下に 抑制すると、給電の安定性が一層向上する。
次に、本発明の溶接用ワイヤを用いた場合の正極性炭酸ガスシールドアーク溶 接方法の好適な溶接条件は、シールド力 'ス: C 02 100体積%あるいは、 Ar 40体 積%以下、かつ C 02 60体積%以上の混合力'ス、その他の適性条件は、溶接電流 250〜450A、溶接電圧 27〜38V (電流とともに上昇)、溶接速度 20〜250cm/分、 ワイヤ突き出し長さ 15〜30mm、ワイヤ径 0.8〜1.6mm、溶接入熱 5〜40kJ/cmの 条件で行なうのが望ましい。板厚が 10mm以上の厚板の場合は、多層溶接も適用 可能である。
溶接される鋼材は、特に限定されないが、 Si— Mn系の JIS G3106に規定された 溶接構造用圧延鋼材(SM材)、や JIS G3136に規定された建築構造用鋼材(SN 材)が特に好ましい。 実施例 1
連続铸造によって製造されたビレットを熱間圧延して、直径 5.5 ~7.0mm の線 材とした。次いで冷間圧延(すなわち伸線)によって直径 2.0〜2.8mm の鋼素線と し、さらに 2~ 30体積%のクェン酸 3カリウム水溶液を鋼素線 l kgあたり 30~ 50g塗 布した。
その後、この鋼素線を、露点一 2°C以下,酸素濃度 200体積 ppm 以下,二酸 化炭素濃度 0. 1体積%以下の窒素雰囲気中で焼鈍した。このとき、鋼素線の直 径,クェン酸カリウム塩水溶液の濃度,焼鈍温度,焼鈍時間を調整して、鋼素線 の内部酸化による K含有量, O含有量を調整した。
このようにして焼鈍した後、 鋼素線に酸洗を施し、次いで必要に応じて鋼素線の 表面に Cuめっきを施した。さらに冷間で伸線加工(湿式伸線)を施して、直径 0.8〜1.6mm の溶接ワイヤを製造した。この溶接ワイヤの表面に潤滑油を塗布(溶 接ワイヤ 10kgあたり 0.4〜0.8 g)した。伸線することによって、十分な送給性を確 保できるように調整した。
得られた溶接ワイヤの鋼素線の成分は、表 1 , 2および 3に示す通りである。
これらの溶接ワイヤを用いて正極性の炭酸ガスシールドアーク溶接を行ない、溶 滴の移行形態およびビード形状を調査した。その結果は表 4に示す通りである。 なお、溶滴の移行形態およびビード形状は以下の要領で評価した。
(A) 溶滴の移行形態 ' 板厚 19mm,幅 70mm,長さ 500mm の鋼板(JIS G3106: SM490B相当)を用い て、突き出し 20mm,溶接速度 40cm/min ,アーク電圧 30Vでビードオン溶接を 行なった。溶接電流 230Aでスプレー移行が確認できたものを優(◎) ,溶接電流 250Aでスプレー移行が確認できたものを良(〇),溶接電流 270Aでスプレー移行 が確認できたものを可(Δ),溶接電流 300Αでもスプレー移行が確認できなかった ものを不可(X )として評価した。
(Β) ビード形状
板厚 19mm,幅 70mm,長さ 500mm の鋼板(JIS G3106: SM490B相当)を用レヽ て、突き出し 20mm,溶接速度 40cm/min ,アーク電圧 30V,溶接電流 300Aで ビードオン溶接を行なった。溶接が終了した後、溶接ビ一ド中央長手方向 10cm の凹凸を測定し、 0.5mrn以上の凹凸が 5回以上現われたものを不可( X ) ,その 他を良(〇)として評価した。
なお、これらの溶接試験で用いた共通の溶接条件は表 5の実施例 1の欄に示す 通りである。
表 4から明らかなように、発明例では安定なスプレー移行が可能であった。特に、 鋼素線中の REM含有量を 0.015質量 °/0 上、 0 : 0.0100質量%以下とするこ とによって、低電流でのスプレー移行が可能となった。また、 Kを 0.0001質量%以 上とすることによって、さらに低電流でのスプレー移行が可能となった。
鋼素線中の Ti, Zr, A1の内、少なくとも 1種以上の含有量を、 0.02質量%以上 とすることによって、良好なビード形状が得られた。 一方、 鋼素線の成分が本発 明の範囲を外れる比較例では、溶接電流 35 OAでもスプレー移行を確認できなか つた 0 実施例 2 実施例 1の表 1, 2および 3に示す鋼ワイヤを用いて正極性炭^ fスシールドアーク溶接試験を行 い、スパッタの発生量を測定した。その結果は表 4に示す通りである。なお、これらの溶接試験で 用いた共通の溶接条件は表 5の実施例 2の欄に示す通りである。
(1)スパッタ発生量の測定
鋼板 SM490B (JIS G3106)、板厚 19mm、幅 70mm、長さ 300mmに、突き出し 20mm、速度 20cm/min、溶接電流 300A、アーク flffi 30Vで正極性炭¾^'スシールドビードオンプレート溶接を 行い、スパッタ発生量を測定したスパッタ発生量 0.3g/min以下のものを良(〇)、 0.3g/min超え 0.6g/min以下のものを良(△)、 0.6g/min超えのものを不可 ( X )として評価した。その結果を表 3に 合わせて示す。 産業上の利用可能性
本発明によれば、炭^スシールドア一ク溶接にぉレ、て不可能とされてきた藤衡のスプレー 化と極低スパッタ化が達成でき、安定した厚鋼板継手溶接が可能となる。
Figure imgf000015_0001
ワイヤ No. 鋼素線の成分 (質量%) めっき厚 闬^ "
K し& N 0 Ti Zr Al REM R.Nb.V ( m)
1 く 0.0001 0.0003 0.0024 0.0024 0.18 0.003 0.005 0.024 なし
2 く 0.0001 0.0001 0.0035 0.0026 0.10 0.004 0.021 0.32
3 く 0.0001 0.0002 0.0041 0.0027 0.09 0.003 0.019 0.45
4 く 0.0001 く 0.0001 0.0031 0.0033 0.12 0.003 0.015 V-0.02 0.58 発明例
5 く 0.0001 0.0002 0.0033 0.0031 0.15 0.006 0.015 0.42
6 く 0.0001 0.0006 0.0030 0.0022 0.19 0.004 0.024 0.60
7 く 0.0001 0.0004 0.0026 0.0019 0.15 0.02 0.003 0.023 0.57
8 く 0.0001 0.0008 0.0023 0.0030 0.18 0.001 0.007 0.017 Nb=0.01 0.55
9 く 0.0001 く 0.0001 0.0027 0.0033 0.001 0.002 0.024 Nb=0.03 0.45
10 く 0.0001 0.0002 0.0040 0.0024 0.15 0.240 0.018 0.53
11 く 0.0001 0.0003 0.0025 0.0015 0.01 0.004 0.015 0.39
12 く 0.0001 0.0005 0.0054 0.0012 0.13 0.003 0.020 0.52
13 く 0.0001 0.0002 0.0052 0.0010 0.25 0.012 0.023 0.54
14 く 0.0001 0.0008 0.0059 0.0016 0.30 0.015 0.024 0.63
15 く 0.0001 0.0005 0.0030 0.0024 0.20 0.035 0.020 0.73
16 く 0.0001 0.0003 0.0038 0.0022 0.20 0.003 0.019 0.64
Figure imgf000016_0001
ワイヤ No. 鋼素線の成分 (質量%) めっき厚 備考
K Ca N 0 Ti Zr Al REM g.NbN ( μ πι)
17 0.0002 0.0003 0.0021 0.0063 0.13 0.005 0.036 V=0.05 0.81
18 0.0006 0.0001 0.0025 0.0073 0.15 0.005 0.042 0.80
19 0.0008 0.0002 0.0026 0.0066 0.14 0.003 0.033 0.86
20 0.0005 0.0003 0.0023 0.0050 0.02 0.012 0.045 0.91 発明例
21 0.0006 く 0.0001 0.0054 0.0085 0.05 0.003 0.031 0.75
22 0.0015 0.0002 0.0052 0.0025 0.09 0.012 0.033 0.87
23 0.0008 0.0005 0.0038 0.0067 0.16 0.005 0.065 0.91
24 0.0006 0.0001 0.0036 0.0026 0.16 0.042 0.052 0.84
25 0.0003 0.0003 0.0030 0.0090 0.17 0.035 0.026 0.92
26 0.0004 0.0003 0.0038 0.0022 0.07 0.003 0.028 0.64
27 0.0007 0.0004 0.0036 0.0070 0.17 0.024 0.040 0.85
28 0.0004 0.0005 0.0015 0.0043 0.12 0.006 0.066 0.65
29 0.0007 0.0005 0.0044 0.0021 0.15 0.500 0.078 0.62 .
30 0.0005 0.0006 0.0042 0.0063 0.17 0.008 0.100 0.68
Figure imgf000017_0001
ワイヤ No. 鋼素線の成分 (質量%) めっき厚 備考
K し & N 0 Ti Zr Al REM Mg.Nb.V ( At m)
31 く 0.0001 0.0002 0.0045 0.0168 0.04 0.003 0.003 0.44
32 く 0.0001 0.0001 0.0035 0.0142 0.08 0.005 0.003 0.41 比較例
33 く 0.0001 0.0010 0.0045 0.0124 0.18 0.004 0.014 0.35
34 く 0.0001 0.0024 0.0065 0.0156 0.05 0.007 0.017 0.24
35 く 0.0001 0.0032 0.0042 0.0166 0.18 0.004 0.019 0.35
36 く 0雇 1 0.0024 0.0048 0.0250 0.19 0.007 0.020 0.28
37 く 0.0001 0.0065 0.0024 0.0138 0.13 0.004 0.021 0.32
Figure imgf000018_0001
26 250 〇 〇 0.25 〇
27 230 ◎ 〇 0.20 〇
28 220 ® 〇 0.18 〇
Figure imgf000019_0001
观 リ丄 失施1タリ 鋼 種 . ' SM490B 相当 SM490B 相当 鋼
板 厚 19 mm 19 mm 板
板 幅 ίθ mm 70 mm 板 長 さ 500 mm 300 mm シールドガス 100%CO2 100%CO2 流 直 20 litter/min 20 litter/min アーク電圧 30 V 30 V 溶
溶接電流 220〜35O A 300 A 溶接速度 40 cm/ min 20 cm/min 突き出し長さ 20 mm 20 mm 溶接電源 インバーター電源 インバーター電源 正極性 (溶 正極 (溶 極 性 接ワイヤ:陰極) 接ワイヤ:陰極)

Claims

請求の範囲
1. Cを 0.003〜0.20質量0 /0、 Si を 0.05~2.5 質量0 /0、 Mnを 0.25〜3.5 質量%、 希土類元素を 0.015〜0.100 質量%、 Pを 0.001 ~0.05 質量%、 Sを 0.001〜0.05 質量%含有し、 残部 Fe および不可避的不純物であるこ とを特徴とする正極性炭酸ガスシールドアーク溶接用鋼ワイヤ。
2. クレーム 1において、前記ワイヤ力 S、さらに、 0:0.0100質量%以下であることを特徴とする 正極性炭酸ガスシールドアーク溶接用鋼ワイヤ。
3. クレーム 1または、 2において、前記ワイヤが、さらに Ca:0.0008質量0 /0以下 であることを特徴とする正極性炭酸ガスシールドアーク溶接用鋼ワイヤ。
4. クレーム' 1または、 2において、前記ワイヤが、さらに、 Ti:0.02~0.50質量0 /0、 ΖΓ:0·02〜0·50質量。/。および Al:0.02〜3.00質量。 /0のうちの 1種または 2種以上 を含有することを特徴とする正極性炭酸ガスシールドアーク溶接用鋼ワイヤ。
5. クレーム 1または、 2において、前記ワイヤが、さらに、 Κ:0.0001〜0.0150質量0 /0 を含有することを特徴とする正極性炭酸ガスシールドアーク溶接用鋼ワイヤ。
6. クレーム 1または、 2において、前記ワイヤが、さらに、 Cr: 3.0 質量0 /0以下, Ni: 3.0 質量%以下, Mo:1.5 質量%以下, Cu:3.0 質量%以下, B: 0.015 質 量%以下, Mg: 0.20質量%以下、 Nb: 0.5質量%以下, : 0.5質量%以下、 N: 0.020質量%以下であることを特徴とする正極性炭酸ガスシールドアーク溶接 用鋼ワイヤ。
7. クレーム 3において、前記ワイヤが、さらに、 Ti:0.02〜0.50質量0 /0、 Zr:0.02〜 0.50質量%および Α1:0.02〜3·00質量%のうちの 1種または 2種以上を含有する ことを特徴とする正極性炭酸ガスシールドアーク溶接用鋼ワイヤ。
8. クレーム 3において、前記ワイヤが、さらに、 Κ:0·0001~0.0150質量0 /0を含有 することを特徴とする正極性炭酸ガスシ一ルドアーク溶接用鋼ワイヤ。
9. クレーム 4において、前記ワイヤが、さらに、 K:0.0001〜0.0150質量0 /0を含有 することを特徴とする正極性炭酸ガスシールドアーク溶接用鋼ワイヤ。
10. クレーム 3において、前記ワイヤが、さらに、 Cr: 3.0 質量0 /0以下, Ni: 3.0 質量%以下, Mo:1.5 質量%以下, Cu:3.0 質量%以下, B:0.015 質量%以下: Mg: 0.20質量%以下、 Nb: 0.5質量%以下, : 0.5質量%以下、 N:0.020質 量%以下であることを特徴とする正極性炭酸ガスシールドアーク溶接用鋼ワイヤ。
11. クレーム 4において、前記ワイヤが、さらに、 Cr: 3.0 質量0 /0以下, Ni: 3.0 質量%以下, Mo:1.5 質量%以下, Cu:3.0 質量%以下, B:0.015 質量%以下, Mg: 0.20質量%以下、 Nb: 0.5質量%以下, : 0.5質量%以下、 N:0.020質 量%以下であることを特徴とする正極性炭酸ガスシールドアーク溶接用鋼ワイヤ。
12. クレーム 5において、前記ワイヤが、さらに、 Cr: 3.0 質量0 /0以下, Ni: 3.0 質量%以下, Mo:1.5 質量%以下, Cu:3.0 質量%以下, B:0.015 質量%以下, Mg: 0.20質量%以下、 Nb: 0.5質量%以下, : 0.5質量%以下、 N:0.020質 量%以下であることを特徴とする正極性炭酸ガスシールドアーク溶接用鋼ワイヤ。
13. Cを 0·003〜0.20質量%、 Siを 0.05〜2.5 質量%、 Mnを 0·25〜3.5 質量 %、希土類元素を 0.015〜0.100 質量%、 を 0.001〜0.05 質量0 /。、 Sを 0.00 1〜0.05 質量%含有し、残部 Fe および不可避的不純物である炭酸ガスシールド アーク溶接用鋼ワイヤを用いて、 Arガスと C02 ガスの混合比率 60体積%以上の 混合ガスあるいは、 100体積%co2 ガスでアーク点をシールドし、正極性で溶接 することを特徴とする炭酸ガスシールドアーク溶接方法。
14. クレーム 13において、前記溶接ワイヤの組成力 さらに、
0: 0,0100質量%以下であることを特徴とする炭酸ガスシールドアーク溶接方法。
15. クレーム 13または、 14において、前記溶接ワイヤの組成力 さらに
Ca: 0.0008質量%以下であることを特徵とする炭酸ガスシ一ルドアーク溶接方法。
16. クレーム 13または、 14において、前記溶接ワイヤの組成力 さらに
Ti:0.02~0.50質量0ん Zr: 0.02~0.50質量%および Al: 0.02〜3.00質量0 /0のうちの 1種または 2種以上を含有することを特徴とする炭酸ガスシールドアーク溶接方法。
17. クレーム 13または、 14におレ、て、前記溶接ワイヤの組成力 さらに
K: 0.0001〜0.0150質量%を含有することを特徴とする炭酸ガスシールドアーク溶接方法。
18. クレーム 13または、 14において、前記溶接ワイヤの組成力、さらに、 Cr: 3.0 質量0 /0 以下, Ni: 3.0 質量%以下, Mo: 1.5 質量。 /。以下, Cu:3.0 質量%以下, B:0.015 質量%以 下, Mg: 0.20質量%以下、 Nb: 0.5質量%以下, V: 0.5質量%以下、 N: 0.020質量%以下 であることを特徴とする炭酸ガスシールドアーク溶接方法。
19- クレーム 15において、前記溶接ワイヤの組成が、さらに
Ti : 0.02~0.50質量0 /0、 Zr : 0.02〜0.50質量0 /0および Al : 0.02〜3.00質量0 /0のう ちの 1種または 2種以上を含有することを特徴とする炭酸ガスシールドアーク溶接方 法。
20. クレーム 15において、廳己溶接ワイヤの組成力 さらに
K: 0.0001〜0.0150質量%を含有することを特徴とする炭酸ガスシールドアーク溶接方法。
21. クレーム 16において、前記溶接ワイヤの組成力 さらに
K:0.0001〜0.0150質量%を含有することを特徴とする炭酸ガスシールドアーク溶接方法。
22. クレーム 15において、前記溶接ワイヤの組成力、さらに、 Cr: 3.0 質量0 /0以下, Ni: 3.0 質量%以下, o : 1.5 質量%以下, Cu : 3.0 質量%以下, B : 0.015 質量%以下, Mg: 0.20質量%以下、 Nb: 0.5質量%以下, V: 0.5質量%以下、 N: 0.020質量%以下であること を特徴とする炭酸ガスシールドアーク溶接方法。
23. クレーム 16において、前記溶接ワイヤの組成力 さらに、 Cr: 3.0 質量0 /0以下, M : 3.0 質量%以下, Mo : 1.5 質量%以下, Cu: 3.0 質量%以下, B : 0.015 質量%以下, Mg:
0.20質量%以下、 Nb: 0.5質量%以下, V: 0.5質量%以下、 N: 0.020質量%以下であること を特徴とする炭酸ガスシールドアーク溶接方法。
24. クレーム 17において、前記溶接ワイヤの組成力、さらに、 Cr: 3.0 質量%以下, Ni: 3.0 質量%以下, Mo :1.5 質量%以下, Cu:3.0 質量%以下, B: 0.015 質量%以下, Mg: 0.20質量%以下、 Nb: 0.5質量%以下, V: 0.5質量%以下、 N: 0.020質量%以下であること を特徴とする炭酸ガスシールドアーク溶接方法。
PCT/JP2003/000528 2002-01-31 2003-01-22 Fil d'acier pour soudage a l'arc avec protection au dioxyde de carbone et processus de soudage utilisant ce fil d'acier WO2003064103A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020037013942A KR100553380B1 (ko) 2002-01-31 2003-01-22 탄산가스 실드 아크용접용 강(鋼) 와이어 및 이를 이용한용접 방법
US10/474,827 US20040140303A1 (en) 2002-01-31 2003-01-22 Steel wire for carbon dioxide shielded arc welding and welding process using the same
SE0302581A SE527388C2 (sv) 2002-01-31 2003-09-30 Svetstråd samt förfarande för bågsvetsning med negativ likströmselektrod i koldioxid

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002023739A JP3941528B2 (ja) 2002-01-31 2002-01-31 炭酸ガスシールドアーク溶接用ワイヤ
JP2002-023739 2002-01-31
JP2002356315A JP3945396B2 (ja) 2002-12-09 2002-12-09 炭酸ガスシールドアーク溶接用鋼ワイヤおよびそれを用いた溶接方法
JP2002-356315 2002-12-09

Publications (1)

Publication Number Publication Date
WO2003064103A1 true WO2003064103A1 (fr) 2003-08-07

Family

ID=27667464

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/000528 WO2003064103A1 (fr) 2002-01-31 2003-01-22 Fil d'acier pour soudage a l'arc avec protection au dioxyde de carbone et processus de soudage utilisant ce fil d'acier

Country Status (5)

Country Link
US (1) US20040140303A1 (ja)
KR (1) KR100553380B1 (ja)
CN (1) CN1254348C (ja)
SE (1) SE527388C2 (ja)
WO (1) WO2003064103A1 (ja)

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7732733B2 (en) * 2005-01-26 2010-06-08 Nippon Welding Rod Co., Ltd. Ferritic stainless steel welding wire and manufacturing method thereof
KR100668169B1 (ko) * 2005-05-25 2007-01-11 고려용접봉 주식회사 용접시 아크안정성이 우수한 동도금 마그 용접용솔리드와이어
FR2891481A1 (fr) * 2005-10-05 2007-04-06 Air Liquide Fil de soudage a basse teneur en calcium
JP5021953B2 (ja) 2006-04-28 2012-09-12 株式会社神戸製鋼所 耐候性鋼用ガスシールドアーク溶接ソリッドワイヤおよびこれを用いたガスシールドアーク溶接方法
JP4909138B2 (ja) * 2006-12-29 2012-04-04 株式会社神戸製鋼所 ソリッドワイヤ
JP5137426B2 (ja) * 2007-03-08 2013-02-06 株式会社神戸製鋼所 炭酸ガスシールドアーク溶接用ソリッドワイヤ
CN101269447B (zh) * 2007-03-23 2013-01-09 中国科学院金属研究所 一种马氏体不锈钢的气体保护焊焊丝
CN101288924B (zh) * 2007-04-20 2010-04-21 宝山钢铁股份有限公司 一种耐海水腐蚀埋弧焊丝盘条、焊丝及其应用
US20090045172A1 (en) * 2007-08-13 2009-02-19 Lincoln Global, Inc. Method of open root welding
CN100491056C (zh) * 2007-08-28 2009-05-27 武汉钢铁(集团)公司 一种高强co2气体保护焊丝
CN100469513C (zh) * 2007-09-12 2009-03-18 钢铁研究总院 高强韧气保焊丝材料
RU2436664C1 (ru) * 2007-10-05 2011-12-20 Кабусики Кайся Кобе Сейко Се Сплошная сварочная проволока
CN101733580B (zh) * 2008-11-18 2013-08-28 山东索力得焊材有限公司 一种800MPa级高强度高韧性气体保护焊丝
CN101412160B (zh) * 2008-11-28 2011-03-09 中国电力科学研究院 Super304H不锈钢焊接用钨极氩弧焊丝
CN101913035B (zh) * 2010-08-23 2012-08-15 山东索力得焊材有限公司 一种低温钢焊接用高韧性气体保护焊丝及其使用方法
CN101984121A (zh) * 2010-12-09 2011-03-09 宣化钢铁集团有限责任公司 一种600MPa级高强度焊丝用钢盘条及其生产工艺
CN103260817B (zh) * 2010-12-22 2016-02-17 株式会社神户制钢所 实芯焊丝和焊接金属
CN102114580B (zh) * 2011-01-26 2012-09-05 浙江大学 一种焊缝强韧化mag焊丝
JP5977965B2 (ja) 2012-03-09 2016-08-24 株式会社神戸製鋼所 タンデムガスシールドアーク溶接方法
US9950394B2 (en) * 2012-03-12 2018-04-24 Hobart Brothers Company Systems and methods for welding electrodes
FR2990636B1 (fr) * 2012-05-21 2015-03-20 Air Liquide Fil fourre pour soudage des aciers a hautes limites elastiques
CN102773629B (zh) * 2012-07-09 2015-06-17 武汉钢铁(集团)公司 一种焊接性能优良的co2气体保护焊丝
CN102935560B (zh) * 2012-11-14 2015-01-14 四川大西洋焊接材料股份有限公司 一种硅青铜焊丝及其制备方法
MX2015010292A (es) * 2013-02-15 2015-10-26 Nippon Steel & Sumitomo Metal Corp Alambre solido para soldadura por arco con gas de proteccion, metales de soldadura mediante soldadura por arco con gas de proteccion, junta soldada, soldadura, metodo de soldadura y metodo de produccion de junta soldada.
CN103111772A (zh) * 2013-02-25 2013-05-22 江苏省沙钢钢铁研究院有限公司 一种低温韧性优异的耐候气保焊丝
CN103143857B (zh) * 2013-04-01 2014-12-17 武汉科技大学 一种含铜的高强高韧性埋弧焊焊丝及其焊接工艺
CN103331530B (zh) * 2013-06-14 2016-05-18 武汉钢铁(集团)公司 一种Rm≥1100MPa的高塑性纯氩气保焊丝及其使用方法
CN103600178B (zh) * 2013-11-27 2016-08-17 中车眉山车辆有限公司 一种高强度耐候钢气体保护实芯焊丝
CN105316581B (zh) * 2014-06-23 2017-08-11 鞍钢股份有限公司 一种90级超高强度胶管钢丝用盘条及其生产方法
CN104148832B (zh) * 2014-07-31 2016-04-27 南京力源轨道交通装备有限公司 锻造钩尾框机器人自动焊接方法
CN104551441A (zh) * 2014-11-27 2015-04-29 宝山钢铁股份有限公司 一种含v的超高强气体保护焊丝及其制造方法
CN104801892A (zh) * 2015-04-24 2015-07-29 柳州金茂机械有限公司 一种焊接工艺用焊丝的制作工艺
CN106271195A (zh) * 2015-05-26 2017-01-04 江苏立新焊接材料有限公司 X70、x80大应变海底管道焊接用气保护焊丝
CN105132621B (zh) * 2015-09-28 2017-05-24 南京钢铁股份有限公司 一种低硅不含铝焊丝用钢的冶炼工艺
DE102016104295A1 (de) * 2016-03-09 2017-09-14 Salzgitter Flachstahl Gmbh Hochfester lufthärtender Stahl zur Verwendung als Schweißzusatzwerkstoff
CN105772986A (zh) * 2016-04-30 2016-07-20 翁庚群 一种铸铁焊补用实芯焊丝
CN105798481B (zh) * 2016-05-30 2017-11-14 燕山大学 一种免涂装耐候钢桥用耐候气体保护焊丝
CN106001987B (zh) * 2016-05-30 2018-05-08 燕山大学 一种免涂装耐候钢桥用耐候埋弧焊丝
CN110023030B (zh) * 2016-11-08 2022-04-15 日本制铁株式会社 药芯焊丝、焊接接头的制造方法以及焊接接头
CN106378548A (zh) * 2016-11-25 2017-02-08 上海大西洋焊接材料有限责任公司 一种用于q370r球罐自动焊气体保护焊丝
KR102266643B1 (ko) * 2017-02-28 2021-06-17 제이에프이 스틸 가부시키가이샤 겹치기 필렛 아크 용접 이음매 및 그 제조 방법
WO2018159844A1 (ja) * 2017-03-02 2018-09-07 株式会社神戸製鋼所 アーク溶接方法
US20190375038A1 (en) * 2017-03-02 2019-12-12 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Arc welding method
CN107081538A (zh) * 2017-05-12 2017-08-22 天长市通联焊业有限公司 一种高强度耐腐蚀焊丝
JP6788550B2 (ja) * 2017-06-16 2020-11-25 株式会社神戸製鋼所 アーク溶接方法およびソリッドワイヤ
CN107971610B (zh) * 2017-11-16 2020-04-07 武汉钢铁有限公司 高Ti超高强钢专用气体保护焊接工艺
CN110773903A (zh) * 2018-07-30 2020-02-11 宝山钢铁股份有限公司 适合超低热输入自动焊接的co2气体保护焊丝及其制造方法
CN109604863B (zh) * 2019-01-14 2021-07-13 上海连山金属材料有限公司 一种高强韧气体保护焊丝
CN111618478B (zh) * 2019-02-28 2022-11-15 宝山钢铁股份有限公司 一种适合超低热输入自动焊接的低锰气体保护焊丝及其焊接方法
JP6771638B1 (ja) * 2019-11-07 2020-10-21 株式会社神戸製鋼所 ガスシールドアーク溶接用ワイヤ
CN114340828B (zh) * 2019-12-20 2023-07-11 杰富意钢铁株式会社 气体保护电弧焊用钢丝、气体保护电弧焊方法及气体保护电弧焊接头的制造方法
CN111975244B (zh) * 2020-09-02 2021-07-27 燕山大学 免涂装耐候钢桥用抗拉强度650MPa级CO2气体保护焊丝及盘条
CN113319469B (zh) * 2021-06-30 2022-09-02 桂林航天工业学院 高强度耐热钢气体保护焊丝及其制备方法
CN113943893A (zh) * 2021-09-22 2022-01-18 包头钢铁(集团)有限责任公司 一种含稀土700MPa级焊丝钢的生产方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59215297A (ja) * 1983-05-20 1984-12-05 Mitsubishi Heavy Ind Ltd 溶接棒

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2694763A (en) * 1952-05-17 1954-11-16 Air Reduction Electric arc welding
US2988627A (en) * 1954-09-13 1961-06-13 Union Carbide Corp Metal arc welding
NL298097A (ja) * 1962-09-21
US3838243A (en) * 1972-12-29 1974-09-24 Nat Res Inst Metals Method and apparatus for controlling arc in gas shield arc welding
JPS52128821A (en) * 1976-04-12 1977-10-28 Nippon Steel Corp Preparation of high tensile steel having superior low temperature toughness and yield point above 40 kg/pp2
US4152148A (en) * 1978-04-05 1979-05-01 General Dynamics Corporation High strength, high toughness steel welding compositions
JPS6012151B2 (ja) * 1979-02-23 1985-03-30 川崎製鉄株式会社 綱のミグ・ア−ク溶接方法
JP3641174B2 (ja) * 1999-11-24 2005-04-20 株式会社ダイヘン 交流パルスアーク溶接の制御方法及び溶接電源装置
US6331694B1 (en) * 1999-12-08 2001-12-18 Lincoln Global, Inc. Fuel cell operated welder
US6784402B2 (en) * 2002-03-27 2004-08-31 Jfe Steel Corporation Steel wire for MAG welding and MAG welding method using the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59215297A (ja) * 1983-05-20 1984-12-05 Mitsubishi Heavy Ind Ltd 溶接棒

Also Published As

Publication number Publication date
CN1254348C (zh) 2006-05-03
KR100553380B1 (ko) 2006-02-20
SE527388C2 (sv) 2006-02-21
US20040140303A1 (en) 2004-07-22
CN1533315A (zh) 2004-09-29
SE0302581L (sv) 2003-09-30
SE0302581D0 (sv) 2003-09-30
KR20030093330A (ko) 2003-12-06

Similar Documents

Publication Publication Date Title
WO2003064103A1 (fr) Fil d&#39;acier pour soudage a l&#39;arc avec protection au dioxyde de carbone et processus de soudage utilisant ce fil d&#39;acier
JP5472244B2 (ja) 厚鋼板の狭開先突合せ溶接方法
JP6800770B2 (ja) 薄鋼板のパルスmag溶接方法
JP2007118068A (ja) 厚鋼板の狭開先突合せ溶接方法
JP2002239725A (ja) 鋼板のガスシールドアーク溶接方法
JP4830308B2 (ja) 厚鋼板の多層炭酸ガスシールドアーク溶接方法
JP2008161899A (ja) 重ね隅肉溶接継手の継手疲労強度を向上するプラズマアークハイブリッド溶接方法
JP3941528B2 (ja) 炭酸ガスシールドアーク溶接用ワイヤ
JP3951593B2 (ja) Mag溶接用鋼ワイヤおよびそれを用いたmag溶接方法
JP3945396B2 (ja) 炭酸ガスシールドアーク溶接用鋼ワイヤおよびそれを用いた溶接方法
JP4725700B2 (ja) 炭酸ガスシールドアーク溶接用鋼ワイヤおよびそれを用いた溶接方法
JP4738824B2 (ja) 多電極ガスシールドアーク溶接方法
JP2007118069A (ja) ガスシールドアーク溶接方法
WO2022050014A1 (ja) アーク溶接方法
JP3941756B2 (ja) 炭酸ガスシールドアーク溶接用鋼ワイヤの鋼素線
JP3861979B2 (ja) 炭酸ガスシールドアーク溶接用鋼ワイヤ
JP3906827B2 (ja) 炭酸ガスシールドアーク溶接用鋼ワイヤおよびそれを用いた溶接方法
JP4529482B2 (ja) 隅肉溶接方法
JP2005219062A (ja) Yagレーザアークハイブリッド溶接方法
JP5051966B2 (ja) 横向き炭酸ガスシールドアーク溶接方法
JP3941755B2 (ja) 炭酸ガスシールドアーク溶接用鋼ワイヤおよびそれを用いた溶接方法
JP4606751B2 (ja) プラズマアークハイブリッド溶接方法
KR100501984B1 (ko) 정극성 mag 용접용 강 와이어 및 이것을 사용한 정극성 mag 용접 방법
JP4639599B2 (ja) 炭酸ガスシールドアーク溶接方法
JP2003236668A (ja) ガスシールドアーク溶接方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR SE US

WWE Wipo information: entry into national phase

Ref document number: 03025814

Country of ref document: SE

WWP Wipo information: published in national office

Ref document number: 03025814

Country of ref document: SE

WWE Wipo information: entry into national phase

Ref document number: 10474827

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020037013942

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 038002019

Country of ref document: CN