WO2003061994A1 - Pneumatique pour motocyclette - Google Patents

Pneumatique pour motocyclette Download PDF

Info

Publication number
WO2003061994A1
WO2003061994A1 PCT/JP2003/000336 JP0300336W WO03061994A1 WO 2003061994 A1 WO2003061994 A1 WO 2003061994A1 JP 0300336 W JP0300336 W JP 0300336W WO 03061994 A1 WO03061994 A1 WO 03061994A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
groove
tread
width
circumferential
Prior art date
Application number
PCT/JP2003/000336
Other languages
English (en)
French (fr)
Inventor
Atsushi Miyasaka
Hajime Nakamura
Original Assignee
Bridgestone Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corporation filed Critical Bridgestone Corporation
Priority to EP03701757A priority Critical patent/EP1473176B1/en
Priority to DE60330117T priority patent/DE60330117D1/de
Priority to US10/501,324 priority patent/US7270161B2/en
Publication of WO2003061994A1 publication Critical patent/WO2003061994A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/13Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0302Tread patterns directional pattern, i.e. with main rolling direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0327Tread patterns characterised by special properties of the tread pattern
    • B60C11/033Tread patterns characterised by special properties of the tread pattern by the void or net-to-gross ratios of the patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0327Tread patterns characterised by special properties of the tread pattern
    • B60C11/0332Tread patterns characterised by special properties of the tread pattern by the footprint-ground contacting area of the tyre tread
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/13Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping
    • B60C11/1307Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping with special features of the groove walls
    • B60C11/1323Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping with special features of the groove walls asymmetric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0341Circumferential grooves
    • B60C2011/0346Circumferential grooves with zigzag shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0374Slant grooves, i.e. having an angle of about 5 to 35 degrees to the equatorial plane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0386Continuous ribs
    • B60C2011/0388Continuous ribs provided at the equatorial plane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C2200/00Tyres specially adapted for particular applications
    • B60C2200/10Tyres specially adapted for particular applications for motorcycles, scooters or the like

Definitions

  • the present invention relates to a pneumatic tire for a motorcycle, and more particularly to a pneumatic tire for a motorcycle that can achieve both wear resistance and wet steering stability.
  • Pneumatic tires for motorcycles are provided with grooves on the tread in order to ensure drainage when driving on an et road.
  • the tire 100 with a tread pattern shown in Fig. 5 is a combination of a small block pattern with emphasis on drainage and high elastic rubber, but does not provide effective block rigidity and is resistant to machines with high power. It was not suitable in terms of abrasion. That is, when used in a machine having a large power, the edge portions on the stepping side and the kicking side of the blocks 102 to 114 are liable to be unevenly worn, resulting in a decrease in steering stability.
  • the tire 200 having a tread pattern shown in FIG. 6 and the tire 300 having a tread pattern shown in FIG. 7 each have the conventional idea of obtaining a grip at the edge of a conventional block (land portion). It is designed based on the idea of obtaining a drip on the surface, and there is no lug groove extending substantially in the tire width direction near the center, so it has high circumferential rigidity, and has excellent traction and wear resistance
  • poor drainage due to a small negative ratio and lack of drip due to insufficient edge components are considered.
  • the angle of the inclined groove 206 with respect to the tire circumferential direction at the tire equatorial plane CL is constant at approximately 28 degrees, and near the tread edge, the angle with respect to the tire circumferential direction increases gradually toward the tread edge. It has become.
  • the inclined grooves 206 are arranged at a substantially equal pitch in the tire circumferential direction, and are terminated near the circumferential linear groove 204, and outside the circumferential linear groove 204 in the tire width direction, 2
  • a substantially trapezoidal land portion 210 having a relatively narrow width on the tire rotation direction side (arrow A direction side) as indicated by a dot-dash line and a relatively large width in the direction opposite to the sunset rotation direction is formed by the tire circumference. It is formed continuously in the direction.
  • the arrows described in the tread 202 in FIG. 6 indicate the direction of the input acting on the tread 202 of the running tire 200.
  • the vicinity of the tire equatorial plane CL mainly touches the ground.
  • the input direction is in the tire circumferential direction, but during cornering, the input direction is inclined with respect to the tire circumferential direction, and as the camber angle increases, the input direction tends to approach the tire width direction.
  • the tire 300 shown in FIG. 7 is provided with three circumferential linear grooves 304 extending linearly in the tire circumferential direction on both sides of the tire equatorial plane CL of the tread 302. Near the center, five ribs 305 are formed linearly extending along the tire circumferential direction over a relatively wide range in the tire width direction.
  • the inclined grooves 303 of the tire 300 are inclined at a constant angle with respect to the tire width direction, and are arranged at a substantially equal pitch in the tire circumferential direction.
  • the arrow described in the tread 302 of FIG. 7 indicates the direction of the input acting on the tread 302 of the running tire 300.
  • An object of the present invention is to provide a pneumatic tire for a two-wheeled vehicle that can solve the above-mentioned drawbacks in consideration of the above facts and achieve both wear resistance and wet steering stability.
  • the invention according to claim 1 is a tread having a relatively large outer surface curvature of a tread tread portion, and is provided at a central portion of the tread in the tire axial direction and continuously extends in a tire circumferential direction in a zigzag manner.
  • a pair of inclined grooves that are inclined with respect to the tire width direction so as to be located on the tire rotation direction side, the pneumatic tire for a motorcycle comprising: A steeply inclined groove disposed on the equatorial plane side and having an angle with respect to the tire circumferential direction within the range of 0 to 20 degrees, and an angle with respect to the tire circumferential direction disposed outside the steeply inclined groove in the tire width direction.
  • a pair of zigzag circumferential grooves extending substantially parallel to each other along the tire circumferential direction are provided in the vicinity of the tire equatorial plane, so that drainage when running on a wet road surface (from straight running to a small camber corner) is achieved. Is secured.
  • the inclined groove is inclined with respect to the tire width direction so that the end on the tire equatorial plane side is located closer to the tire rotation direction than the end on the tread end side to form a so-called directional pattern.
  • the zigzag-shaped central continuous circumferential rib defined by the pair of zigzag circumferential grooves has an edge component in the tire width direction differently from the rib extending linearly in the circumferential direction. Higher braking / driving force can be obtained than when ribs are provided.
  • the reason for arranging the main part on the tire equatorial plane side of the steeply inclined groove part facing the side forming the zigzag shape of the zigzag circumferential groove is that the rigidity of the land part is kept uniform by keeping the groove interval constant. Because you can.
  • the reason for making the steeply inclined groove partly overlap with the steeply inclined groove part of the other inclined groove adjacent in the tire circumferential direction in the width direction of the tire is that the rigidity of the cross section is made uniform by keeping the groove interval constant. Because you can do it.
  • the invention according to claim 2 is the motorcycle pneumatic tire according to claim 1, wherein a tread crown radius of a tire equatorial plane portion when viewed in a cross section along the tire rotation axis is 250 mm or less. , It is characterized.
  • the zigzag amplitude of the zigzag circumferential groove is set on a standard rim and filled with a standard air pressure.
  • the half wavelength of the zigzag shape of the zigzag circumferential groove is set to the standard rim. It is within the range of 50% to 150% of the contact length when a standard load is applied in a state of being fitted, filled with standard air pressure, and having a camber angle of 0 degree.
  • the operation and effect of the pneumatic tire for a motorcycle according to claim 3 will be described. If the zigzag amplitude of the zigzag circumferential groove is less than 50% of the contact width, the camber angle increases during cornering, and when the zigzag circumferential groove separates from the contact surface, a certain camber angle is removed. At the boundary, the edge of the central continuous circumferential rib tends to easily come off the ground at once, and there is a possibility that the jet steering stability may be insufficient.
  • the amplitude of the zigzag circumferential groove exceeds 100% of the contact width, the zigzag bending degree of the zigzag circumferential groove becomes too large, and drainage in the circumferential direction deteriorates. There is a possibility that drainage may become insufficient. Further, the degree of the zigzag circumferential groove protruding outside the ground contact surface increases, and the drainage effect in the circumferential direction fluctuates in an unstable manner, which may deteriorate wet steering stability.
  • the invention according to claim 4 is the pneumatic tire for a motorcycle according to any one of claims 1 to 3, wherein the steeply inclined groove portion forming the first vertically long land portion includes the zigzag.
  • the steeply inclined groove portion inclined in the same direction as the facing side of the circumferential groove and forming the second vertically long land portion is inclined in the opposite direction to the facing side of the zigzag circumferential groove,
  • the second vertically long land portion is shorter in length in the tire circumferential direction than the first vertically long land portion.
  • the steeply sloping groove that forms the first vertically long land part is located on the side facing the zigzag circumferential groove.
  • the width in the tire axial direction can be made substantially uniform in the tire circumferential direction, but the steeply inclined groove forming the second vertically long land portion
  • the width of the second vertically long land portion in the tire axial direction increases in the direction opposite to the tire rotation direction.
  • the circumferential length of the second vertically long land portion in the tire circumferential direction is shorter than the circumferential length of the first vertically long land portion in the tire circumferential direction.
  • the circumferential variation in the axial width of the long land portion is reduced (ie, the maximum width of the second vertical land portion is reduced), and as a result, the land rigidity between the land portions adjacent in the tire axial direction is reduced. Fluctuations are controlled and steering stability is ensured.
  • the invention according to claim 5 is the pneumatic tire for a motorcycle according to any one of claims 1 to 4, wherein the pair of inclined grooves is a tire having one inclined groove across a tire equatorial plane.
  • the end on the equatorial plane side and the end on the tire equatorial plane side of the other inclined groove are arranged with a phase difference in the tire circumferential direction, and the other pair of inclined grooves adjacent in the tire circumferential direction are as described above.
  • the phase difference is set in the opposite direction.
  • the invention according to claim 6 is the pneumatic tire for a motorcycle according to any one of claims 1 to 5, wherein between the inclined grooves in the tire circumferential direction, from the tread end to the tire equatorial plane side. Extending and terminating near the boundary between the tread central region and the tread side region, and one or two auxiliary inclined grooves substantially parallel to the inclined groove adjacent in the tire circumferential direction are provided.
  • the operation and effect of the pneumatic tire for a motorcycle according to claim 6 will be described.
  • the drainage when a large chamber corner is provided can be secured by the auxiliary inclined groove.
  • the auxiliary in the pneumatic tire for a motorcycle according to the sixth aspect, is provided so that a groove interval in the tire circumferential direction is constant between inclined grooves in the tire circumferential direction. It is characterized in that an inclined groove is arranged.
  • the operation and effect of the pneumatic tire for a motorcycle according to claim 7 will be described.
  • the auxiliary inclined groove is arranged between the inclined grooves in the tire circumferential direction so that the groove interval in the tire circumferential direction is constant, the land portion rigidity can be made uniform. it can.
  • the invention according to claim 8 is the pneumatic tire for a motorcycle according to any one of claims 1 to 7, wherein the width of the central continuous circumferential rib is attached to a standard rim, and the standard air pressure is reduced. It is characterized by being within the range of 20 to 50% of the contact width when a standard load is applied at the time of filling and a camber angle of 0 degree.
  • the width of the central continuous circumferential rib exceeds 50% of the ground contact width, the groove volume in the contact surface at a camber angle of 0 degree and a small camber angle decreases, and the drainage in the circumferential direction especially when traveling straight at high speed is reduced.
  • the tire may not be able to be secured, and there is a possibility that the steering stability of the jet is inferior.
  • the groove direction runs counter to the drainage direction at the time of the large camber angle where the tread side area touches the ground. There is a possibility that the stability is inferior.
  • the minimum width of each land portion partitioned by the groove is substantially equal. It is characterized by:
  • the operation and effect of the pneumatic tire for a motorcycle according to claim 10 will be described.
  • the rigidity of the land portion can be made uniform.
  • the invention according to claim 11 is the pneumatic tire for a motorcycle according to any one of claims 1 to 10, wherein the steeply inclined portion and the gentlely inclined groove portion are smoothly connected. It is characterized by that.
  • the invention according to claim 13 is the pneumatic tire for a motorcycle according to any one of claims 1 to 12, wherein the groove other than the zigzag circumferential groove has a substantially groove width. And the groove width is in the range of 60 to 80% of the groove width of the zigzag circumferential groove.
  • the groove width of the groove other than the zigzag circumferential groove is less than 60% of the groove width of the zigzag circumferential groove, the groove width is too narrow, and there is a possibility that the drainage property particularly during high-speed running may be poor.
  • the groove width of the grooves other than the zigzag circumferential groove exceeds 80% of the groove width of the zigzag circumferential groove, the negative rate becomes too large, and the tread rigidity decreases, resulting in wear resistance. May decrease.
  • the invention according to claim 14 is the motorcycle pneumatic tire according to any one of claims 1 to 13, wherein a circumferential pitch length of a groove at a tread end is equal to that of a standard rim. It is within the range of 20% to 50% of the contact length when a standard load is applied at the time of mounting, filling with standard air pressure, and a camber angle of 0 degree.
  • a circumferential pitch length of a groove at a tread end is equal to that of a standard rim. It is within the range of 20% to 50% of the contact length when a standard load is applied at the time of mounting, filling with standard air pressure, and a camber angle of 0 degree.
  • the invention according to claim 15 is the pneumatic tire for a motorcycle according to any one of claims 1 to 14, wherein the first longitudinal land portion has a tire rotation direction end portion.
  • the width, and the width of the end portion of the second vertically long land portion in the tire rotation direction are within a range of 50% to 120% of the width of the central continuous circumferential rib.
  • the width of the end in the tire rotation direction of the first longitudinal land and the width of the end in the evening rotation of the second longitudinal land are 120% of the width of the central continuous circumferential rib. If it exceeds, the rigidity step with the central continuous circumferential rib increases rapidly, and the steering stability becomes unstable when the angle of the kyamba changes, which is not preferable.
  • the invention according to claim 16 is the pneumatic tire for a motorcycle according to any one of claims 1 to 15, wherein the amplitude of the zigzag shape of the zigzag circumferential groove is a central continuous circumference.
  • the width and width of the rib are within a range of 30% to 150%, respectively.
  • the zigzag amplitude of the zigzag circumferential groove is less than 30% of the width of the central continuous circumferential rib
  • the zigzag amplitude of the zigzag circumferential groove exceeds 150% of the width of the central continuous circumferential rib, the degree of bending of the zigzag circumferential groove becomes too large, and drainage in the circumferential direction. There is a possibility that the drainage performance will be deteriorated and the drainage performance will be insufficient. Furthermore, the degree of the zigzag circumferential groove protruding outside the ground contact surface increases, and the drainage effect in the circumferential direction fluctuates unstablely, which may deteriorate wet steering stability.
  • the invention according to claim 17 is the motorcycle pneumatic tire according to any one of claims 1 to 16, wherein a tire radial direction from a trad maximum diameter portion to a tire maximum width portion is provided.
  • TH is the fall height measured at the time of tire and SW is the maximum width of the tire
  • THZSW is in the range of 0.25 to 0.45.It is mounted on the standard rim, filled with the standard air pressure, and the camber angle.
  • the ground contact length when a standard load is applied at 0 degree is within the range of 200% to 250% of the ground contact, and the ground contact shape is a substantially elliptical shape whose major axis is oriented in the tire circumferential direction. It is characterized by.
  • TH / SW is less than 0.25, drainage may be deteriorated due to a decrease in the contact pressure, and steering stability may be reduced due to excessive weight in handling.
  • the contact pressure may be too high and the wear resistance may decrease.
  • grounding length is less than 200% of the grounding width, the grounding surface pressure may be too low and the heat resistance may be poor.
  • the contact length exceeds 250% of the contact width, the contact pressure may become too high and the wear resistance may be poor.
  • the invention according to claim 18 is the pneumatic tire for a motorcycle according to any one of claims 1 to 17, wherein the width of the tread periphery of the tread is set at about 50% with respect to a tire equatorial plane of the tread.
  • the negative rate in the area within the range of 30% is in the range of 30 to 40%.
  • the negative rate in a region outside the tire width direction with respect to a region within a range of 50% of the width of the tread periphery around the tire equatorial plane of the tread is within a range of 20 to 30%, It is characterized by:
  • the negative rate in the area outside the tire width direction is less than 20% from the area within 50% of the width of the tread periphery centered on the equatorial plane of the tread tire, the negative area will be negative. If the rate is too low, the drainage performance may be reduced.
  • the negative rate in the area outside the tire width direction with respect to the area within 50% of the tread peripheral width around the tire equatorial plane of the tread exceeds 30%, the negative rate in that area increases. If it is too large, the abrasion resistance when a lateral force is applied may decrease.
  • the invention according to claim 19 is the motorcycle pneumatic tire according to any one of claims 1 to 18, wherein the tread crown radius / the tire maximum width is defined as an outer contour flatness, and the tread.
  • the tread central area When the area within 30 to 50% of the tread perimeter width around the tire equatorial plane is defined as the tread central area, the area outside the tread central area in the tire width direction is defined as the tread side area.
  • the outer contour flatness in the tread central region is in the range of 0.4 to 0.7, and the outer contour flatness in the tread side region is in the range of 0.2 to 0.7. It is characterized by:
  • the invention according to claim 20 is the pneumatic tire for a motorcycle according to any one of claims 1 to 19, wherein the inclined groove is a step on a normal to a tread surface.
  • the angle of the groove wall on the entry side is within the range of 0 to 45 °
  • the angle of the groove wall on the side where the groove is kicked out with respect to the normal set on the tread surface is within the range of 0 to 45 °
  • the step on the groove side The angle of the groove wall is smaller than the angle of the groove wall on the side where the groove is kicked out.
  • the angle of the groove wall on the side where the inclined groove is kicked out is within 0 °, the rigidity of the land portion with respect to the input at the time of driving becomes too low, and the abrasion resistance may be poor.
  • the standard rim is a rim specified by the JATMA (Japan Automobile Tire Association) Year Book 2000 version and the standard air pressure is the JATMA Year Book 2000 It is the air pressure corresponding to the maximum load capacity of the plate, and the standard load is the load corresponding to the maximum load capacity of the JATMA Year Book 2000 version.
  • FIG. 2 is a cross-sectional view of the pneumatic tire for a motorcycle according to one embodiment of the present invention, taken along a tire rotation axis.
  • FIG. 3 is a partially enlarged view of the tread shown in FIG.
  • FIG. 4 is an enlarged sectional view of the tread.
  • FIG. 5 is a development view of a tread of a pneumatic tire for a motorcycle according to Conventional Example 1.
  • FIG. 6 is a development view of a tread of a pneumatic tire for a motorcycle according to a conventional example (conventional example 2 in a test example).
  • FIG. 7 is an expanded view of a tread of a pneumatic tire for a motorcycle according to a conventional example.
  • FIG. 8 is a developed view of a tread of the pneumatic tire for a motorcycle according to Comparative Example 1.
  • FIG. 9 is a development view of a tread of a pneumatic tire for a motorcycle according to Comparative Example 2.
  • the pneumatic tire 10 for a motorcycle has a tire size of 180/55 ZR 17 and extends in a direction intersecting the tire equatorial plane CL as shown in FIG.
  • the carcass 16 includes a first carcass ply 12 and a second force-cass ply 14 having embedded cords.
  • the first force cascade ply 12 and the second carcass ply 14 are wound from the inside to the outside of the tire around a bead core 20 having both ends buried in a bead portion 18. I have.
  • a circumferential belt layer 22 is provided on the outer side of the carcass 16 in the tire radial direction.
  • a tread 24 is disposed on the outer side of the circumferential belt layer 22 in the tire radial direction.
  • the ridge crown radius R is in the range of 70 to 20 O mm.
  • the contact length L 26 of the ground plane 2 6 of the pneumatic tire for a motorcycle 1 0 is preferably in the range of 2 0 0-2 5 0% of the ground contact width W 26, contact
  • the ground 26 preferably has a substantially elliptical shape whose major axis is oriented in the tire circumferential direction.
  • the “tread crown radius R Z tire maximum width SW” is defined as the outer contour flatness.
  • the area within the range of 30 to 50% of the tread peripheral width TW centered on the tire equatorial plane CL is the tread center area 24C, and the area outside the tread center area 24C in the tire width direction is the tread side.
  • the area is 24S.
  • the outer contour flatness in the tread central region 24C is preferably in the range of 0.4 to 0.7, and the outer contour flatness in the tread side region 24S is 0.2 to 0.2. It is preferably within the range of 7.
  • the tread 24 of the pneumatic tire 10 for a motorcycle according to the present embodiment has a pair of zigzag circumferential grooves 28 extending in a zigzag shape along the tire circumferential direction at a central portion in the tire axial direction and parallel to each other. Is provided.
  • the zigzag circumferential groove 28 has a zigzag shape in which linear sides inclined in opposite directions are alternately connected in the tire circumferential direction.
  • the amplitude A of the zigzag shape of the zigzag circumferential groove 28 is the width W 3 of the central continuous circumferential rib 30 . Is preferably in the range of 30 to 150%.
  • the half-wavelength ⁇ Z 2 of the zigzag shape of the zigzag circumferential groove 28 be within a range of 50% to 150% of the ground length L26 of the ground surface 26 .
  • a portion of the inclined groove 32 that is arranged in the tread central region 24 C and has a relatively small angle with respect to the tire circumferential direction is defined as a steeply inclined groove portion 32 A and a tread side region 24 S
  • the portion that is disposed at an angle with respect to the tire circumferential direction that is greater than the angle of the steeply inclined groove portion 32A is referred to as a gentlely inclined groove portion 32B.
  • an angle 0 A with respect to the tire circumferential direction of the sharp inclining groove portion 3 2 A is preferably in the range of 0 to 2 0 °.
  • the steeply inclined groove portion 32A and the gentlely inclined groove portion 32B are connected smoothly while gradually changing the inclination as shown in FIG.
  • the main part of the tire equatorial plane CL of the steeply inclined groove part 32 A (in this embodiment, the tire equatorial plane CL side) so as to face the linear side forming the zigzag circumferential groove 28. At least 20% of the entire length of the steeply grooved portion 32A is arranged from the end to the tread end.
  • each of the inclined grooves 32 is arranged such that the steeply inclined groove portions 32 A adjacent to each other in the tire circumferential direction partially overlap each other in the tire width direction, and the zigzag circumferential grooves 28 are arranged in the tire width direction.
  • a first longitudinal land portion 3 formed between a linear side forming the zigzag shape of the zigzag circumferential groove 28 and the steeply inclined groove portion 32A and having a substantially uniform width in the tire axial direction 3 4 and the zigzag circumferential groove 28 formed between the linear side forming the zigzag shape of 8 and the steeply inclined groove portion 32A, and the width in the axial direction of the tire gradually increases in the direction opposite to the tire rotation direction.
  • the second vertically long land portion 36 which is wider than the other, is alternately connected in the circumferential direction of the tire.
  • the inclined groove 32 is formed by a groove wall 3 2a (the outer side in the tire width direction) on the groove stepping side with respect to the normal line HL standing on the tread surface (in terms of land, the land kicking side).
  • Groove wall) Angle 0 IN is in the range of 0 to 45 °
  • the groove wall on the side where the groove kicks out from the normal HL standing on the tread surface (in terms of land, the step on the land) 3 2 b tire
  • the angle ⁇ ⁇ of the inner groove wall in the width direction is preferably in the range of 0 to 45 °
  • the angle 0 ° of the groove wall 32 a on the stepping-in side is the groove on the groove kicking-out side.
  • auxiliary inclined grooves 38 are provided between the inclined grooves 32 in the tire circumferential direction, extending from the tread edge 24 ⁇ to the tire equatorial plane CL side, near the boundary between the tread central area 24C and the tread side area 24S. It is preferable that one or two auxiliary inclined grooves 38 substantially parallel to the adjacent inclined groove 32 be provided. In the present embodiment, two auxiliary inclined grooves 38 are provided at equal intervals between the inclined grooves 32 in the tire circumferential direction.
  • each groove depth is substantially the same (difference in groove depth is within ⁇ 5%). Is preferred.
  • the inclined groove 32 and the auxiliary inclined groove 38 are inclined with respect to the tire width direction so that the end on the tire equatorial plane CL side is located closer to the tire rotation direction than the end on the tread end side. As a result, a so-called directional pattern is formed on the tread 24, so that water in the ground can be smoothly taken in and discharged outward in the tire axial direction.
  • the center continuous circumferential rib 30 of the tread central region 24C is provided.
  • the first vertical land portion 34 and the second vertical land portion 36 have high circumferential rigidity. Therefore, the abrasion resistance of the tread central region 24C is increased, and the traction property when traveling with the tread central region 24C grounded is enhanced.
  • the zigzag central continuous circumferential rib 30 has an edge component in the tire width direction, a higher braking / driving force can be obtained than when a rib extending linearly in the circumferential direction is provided.
  • the steeply inclined groove portion 32 of the tire equator surface side of the steeply inclined groove portion 3 2 A is arranged so as to face the respective sides forming the zigzag shape of the zigzag circumferential groove 28.
  • the groove spacing between the main part of A and the zigzag circumferential groove 28 is constant, and the rigidity of the land part between the main part of the steeply inclined groove 32 and the zigzag circumferential groove 28 is uniform.
  • the steeply inclined groove 32A and the steeply inclined groove 32A of another inclined groove 32 adjacent in the tire circumferential direction partially overlap in the tire width direction, so that the zigzag circumferential groove 28 is sharp.
  • the minimum groove interval between the inclined groove portion 32A and the steeply inclined groove portion 32A and the adjacent steeply inclined groove portion 32A can be made equal, and the rigidity step can be reduced.
  • a gentle slope groove 32B and an auxiliary slope groove 38 whose angle with respect to the tire circumferential direction is set to be larger than the steep slope groove 32A are arranged.
  • the rigidity of the land portion 40 defined by the gently inclined groove portion 32B and the auxiliary inclined groove 38 with respect to the input at the time of cornering is secured, and the wear resistance of the tread side region 24S is improved.
  • the length L 36 in the tire circumferential direction of the second vertical land portion 36 is changed to the length L 34 in the tire circumferential direction of the first vertical land portion 34.
  • the circumferential length of the second longitudinal land portion 36 in the tire axial direction W36 is reduced, and as a result, the land portion rigidity between the land portions adjacent in the tire axial direction is reduced. Movement is suppressed, and steering stability is ensured.
  • One inclined groove 3 2 and the other inclined groove 32 are placed around the tire equatorial plane CL.
  • the pair of inclined grooves 32 is arranged so as to provide a phase difference in the direction, and the other pair of adjacent inclined grooves 32 in the tire circumferential direction is set in a direction in which the phase difference is opposite, so that the same phase is used. Compared to the case in which they are arranged side by side, fluctuations in the negative rate due to rolling in the contact area can be suppressed.
  • auxiliary inclined grooves 38 are provided at equal intervals between the inclined grooves 32 in the tire circumferential direction, the groove interval between the inclined grooves 32 and the auxiliary inclined grooves 38, and the auxiliary inclined grooves 38 and the auxiliary inclined grooves are provided.
  • the gap between the groove 38 and the groove becomes substantially constant, and the rigidity step at the land can be reduced.
  • the rigidity of the first longitudinal land portion 34 and the rigidity of the second longitudinal land portion 36 can be made substantially equal.
  • the zigzag amplitude A of the zigzag circumferential groove 28 exceeds 100% of the contact width W26, the degree of bending of the zigzag circumferential groove 28 becomes too large, and the zigzag shape of the zigzag circumferential groove 28 becomes too large in the circumferential direction. There is a risk that the drainage of the water will deteriorate and the drainage will become insufficient. Further, the degree of the zigzag circumferential groove 28 protruding outside the ground contact surface 26 increases, and the drainage effect in the circumferential direction fluctuates in an unstable manner, which may deteriorate the jet steering stability.
  • the width of the central continuous circumferential rib 30 is less than 20% of the contact width, the rigidity of the central continuous circumferential rib 30 on the land is insufficient, and the straight running stability, steering stability when cornering at a small camber angle, In addition, the abrasion resistance and the like may be inferior.
  • the width of the central continuous circumferential rib 30 exceeds 50% of the ground contact width, the groove volume in the contact surface at the camber angle of 0 degree and the small camber angle decreases, and especially, the drainage in the circumferential direction during high-speed straight traveling. May not be able to be ensured, and there is a risk that the jet steering stability may be poor.
  • the angle of the gentle slope groove portion 32B with respect to the tire circumferential direction measured from the tire rotation direction side is less than 90 degrees, at the time of a large camber angle where the tread side region 24S comes into contact with the ground, the groove direction is opposite to the drain direction. Therefore, the wet steering stability may be deteriorated.
  • the angle of the gentle slope groove portion 32B with respect to the tire circumferential direction measured from the tire rotation direction side exceeds 150 degrees, the gentle slope at the time of the large camber angle where the tread side region 24S comes into contact with the ground.
  • the length of the edge portion facing the input direction of the land portion between the groove portions 32B increases, and the rigidity of the resilient portion appears, and there is a possibility that the wet steering stability may deteriorate.
  • the groove width of the grooves other than the zigzag circumferential grooves 28 is less than 60% of the groove width of the zigzag circumferential grooves 28 in the tread central area 24C, the groove width is too narrow. In particular, there is a possibility that the drainage property at the time of high-speed running is poor.
  • the negative rate is reduced. May become too large, leading to a decrease in trad stiffness and a decrease in wear resistance.
  • the camber angle increases during cornering, and the zigzag circumferential groove 28 becomes the ground surface.
  • the edge of the center continuous circumferential rib 30 tends to easily come off from the ground contact surface at a certain camber angle, and the operational stability of the jet may become insufficient.
  • the amplitude A of the zigzag circumferential groove 28 exceeds 350% of the width of the central continuous circumferential rib 30, the zigzag bending degree of the zigzag circumferential groove 28 becomes too large. There is a possibility that drainage in the circumferential direction will worsen and drainage becomes insufficient.
  • the angle 0 IN of the groove wall 32 a on the stepping side of the inclined groove 32 is within 0 °, the rigidity of the groove wall 32 a when it comes into contact with the road surface becomes too low, and premature uneven wear easily occurs.
  • the angle 0 IN groove wall 3 2 a of the inclined grooves 3 2 leading side exceeds 4 5 °, not obtained a valid edge effects when in contact with the road surface, is a fear that poor Uetsuto steering stability is there.
  • the groove wall 3 of out kicking groove walls 3 2 a corner of 0 IN the leading side end 2 b angles 0. Since it is smaller than ⁇ , the edge portion 32 a ⁇ on the stepping side becomes sharp and the water film is easily broken, and a large traction force can be obtained when traveling on a wet road surface.
  • the pneumatic tire 10 for a motorcycle By making the pneumatic tire 10 for a motorcycle have a radial structure, it is effective for abrasion resistance on asphalt roads.
  • Comparative Example 1 tire A pneumatic tire for a motorcycle having the pattern shown in FIG. As shown in FIG. 8, the tread 402 of the tire 400 of Comparative Example 1 has a first inclined groove extending from the tread end toward the tire equatorial plane CL and terminating near the tire equatorial plane CL. 404 and second inclined grooves 406 shorter than the first inclined grooves 404 are alternately arranged in the tire circumferential direction. In addition, one of the first inclined grooves 404 and the second inclined groove 406 sandwiching the tire equatorial plane CL are connected to the other of the first inclined groove 404 and the second inclined groove 406, respectively. With a phase difference. Comparative Example 2 tire: A pneumatic tire for a motorcycle having the pattern shown in FIG. As shown in FIG.
  • test was conducted by assembling test tires with a tire size of 180/5/5 ZR17 on a 17-inch rim, filling it with an internal pressure of 230 KPa, and mounting it on the rear wheel of a real vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Description

明細書 二輪車用空気入りタイヤ 技術分野 本発明は、 二輪車用空気入りタイヤに係り、 特に、 耐摩耗性とウエット操縦安 定性の両立を図ることのできる二輪車用空気入りタイヤに関する。 背景技術 二輪車用空気入りタイヤには、 ゥエツ卜路面走行時の排水性を確保するために トレツドに溝を配置している。
従来の二輪車用空気入りタイヤのトレッドパターンとして、 例えば、 図 5乃至 図 7に示す卜レツドパターンがある。
図 5に示すトレッドパターンを有するタイヤ 1 0 0は、 排水性重視の小ブロッ クパターンと高弾性ゴムとの組み合わせであるが、 有効なブロック剛性を得られ ず、 大パワーを有するマシンには耐摩耗性の点で適さなかった。 即ち、 大パヮ一 を有するマシンに用いると、 ブロック 1 0 2〜1 1 4の踏み込み側及び蹴り出し 側のエッジ部分が偏摩耗し易く、 操縦安定性の低下を招いていた。
図 6に示すトレッドパターンを有するタイヤ 2 0 0、 及び図 7に示す卜レツド パターンを有するタイヤ 3 0 0は、 各々従来のブロック (陸部) のエッジでグリ ップを得るという考えに対して、 面でダリップを得るという考えに基づいて設計 されており、 セン夕一付近に実質上タイヤ幅方向に延びるラグ溝が無いため、 周 方向剛性が高く、 トラクシヨン性、 耐摩耗性に優れているが、 ブロックパターン のタイヤ対比で考えると、 ネガティブ率が小さい事による排水性の悪さ、 エッジ 成分不足によるダリップ感の無さが考えられる。
図 6に示すタイヤ 2 0 0は、 トレツド 2 0 2のタイヤ赤道面 C L両側にタイヤ 周方向に直線状に延びる周方向直線溝 2 0 4が各々 1本づっ設けられており、 夕 ィャ赤道面 C L上には、 タイヤ周方向に沿って直線状に延びるリブ 2 0 5が区画 されている。
一対の周方向直線溝 2 0 4のタイヤ幅方向両側には、 タイヤ赤道面 C L側の端 部が卜レツド端よりもタイヤ回転方向側となるように傾斜した傾斜溝 2 0 6が夕 ィャ周方向に複数形成されていると共に、 トレツド端付近には傾斜溝 2 0 6と傾 斜溝 2 0 6との間に、 傾斜副溝 2 0 8が形成されている。
傾斜溝 2 0 6は、 タイヤ赤道面 C L側においては、 タイヤ周方向に対する角度 が略 2 8度で一定あり、 そのトレッド端付近ではタイヤ周方向に対する角度がト レツド端に向うにしたがって徐々に大となっている。
傾斜溝 2 0 6は、 タイヤ周方向に略等ピッチで配置され、 かつ周方向直線溝 2 0 4の近傍で終端しており、 周方向直線溝 2 0 4のタイヤ幅方向外側には、 2点 鎖線で示されるようなタイヤ回転方向側 (矢印 A方向側) の幅が比較的狭く、 夕 ィャ回転方向とは反対方向の幅が比較的広い略台形の陸部 2 1 0がタイヤ周方向 に連続して形成されている。
図 6のトレッド 2 0 2内に記載した矢印は、 走行中のタイヤ 2 0 0のトレッド 2 0 2に作用する入力の方向を示しており、 直進時は主にタイヤ赤道面 C L付近 が接地して入力の方向はタイヤ周方向に向いているが、 コーナリング時は入力の 方向がタイヤ周方向に対して傾斜し、 キャンバー角が大きくなるにつれて入力の 方向はタイヤ幅方向に近づく傾向にある。
ところで、 図 6に示すタイヤ 2 0 0の陸部 2 1 0は、 タイヤ回転方向側の剛性 とタイヤ回転側とは反対側の剛性とに大きな差があるため、 タイヤ周方向に向い た入力により偏摩耗を生じ易く、 偏摩耗の発生により操縦安定性が低下してしま う問題がある。
また、 図 7に示すタイヤ 3 0 0は、 トレッド 3 0 2のタイヤ赤道面 C L両側に タイヤ周方向に直線状に延びる周方向直線溝 3 0 4が各々 3本づっ設けられてお り、 タイヤセンター付近にはタイヤ幅方向の比較的広い範囲に渡ってタイヤ周方 向に沿って直線状に延びるリブ 3 0 5が 5本形成されている。
また、 周方向直線溝 3 0 4のタイヤ幅方向外側には、 タイヤ赤道面 C L側の端 部がトレッド端よりもタイヤ回転方向側となるように傾斜した傾斜溝 3 0 6が夕 ィャ周方向に複数形成されている。
このタイヤ 3 0 0の傾斜溝 3 0 6は、 タイヤ幅方向に対して一定角度で傾斜し ており、 かつタイヤ周方向に略等ピッチで配置されている。
したがって、 周方向直線溝 3 0 4のタイヤ幅方向外側には、 平行四辺形の陸部 3 0 8がタイヤ周方向に複数形成されている。
図 7のトレッド 3 0 2内に記載した矢印は、 走行中のタイヤ 3 0 0のトレッド 3 0 2に作用する入力の方向を示している。
ところで、 図 7に示すタイヤ 3 0 0では、 タイヤ周方向に沿って直線状に延び るリブ 3 0 5が、 タイヤセンター付近のタイヤ幅方向の比較的広い範囲に渡って 設けられているため、 タイヤ周方向の入力に対しては陸部剛性が全体的に高いた め偏摩耗を生じる虞は無い。 しかしながら、 傾斜溝 3 0 6の角度が一定であるの で、 大キャンバー角でのコーナリング時においては、 入力に対して陸部 3 0 8の 剛性が不足することとなり、 トレッド端側で偏摩耗を生じ易く、 偏摩耗の発生に より操縦安定性が低下してしまう問題がある。
本発明は上記事実を考慮し、 上記欠点を解消し、 耐摩耗性とウエット操縦安定 性の両立を図ることのできる二輪車用空気入りタイヤを提供することが目的であ る。 発明の開示 請求項 1に記載の発明は、 比較的大きなトレツド踏面部外面曲率を有したトレ ッドと、 前記トレッドのタイヤ軸方向中央部分に設けられタイヤ周方向に連続し てジグザグ状に延びる中央連続周リブを区画するタイヤ周方向に沿ってジグザグ 状に延びる一対のジグザグ周方向溝と、 前記一対のジグザグ周方向溝のタイヤ幅 方向両側においてタイヤ周方向に間隔をあけて複数設けられ、 トレッド端から夕 ィャ赤道面に向って延びると共に前記ジグザグ周方向溝に接続することなく前記 ジグザグ周方向溝の近傍で終端し、 かつタイヤ赤道面側の端部がトレッド端側の 端部よりもタイヤ回転方向側に位置するようにタイヤ幅方向に対して傾斜する一 対の傾斜溝と、 を備えた二輪車用空気入りタイヤであって、 前記傾斜溝は、 タイ ャ赤道面側に配置されタイヤ周方向に対する角度が 0〜 2 0度の範囲内にある急 傾斜溝部と、 前記急傾斜溝部のタイヤ幅方向外側に配置されタイヤ周方向に対す る角度が前記急傾斜溝部の前記角度よりも大きく設定された緩傾斜溝部とを有し 、 前記ジグザグ周方向溝のジグザグ形状を形成する辺と相面して前記急傾斜溝部 のタイヤ赤道面側の主用部を配置すると共に、 タイヤ周方向に隣接する他の傾斜 溝の急傾斜溝部に対して一部分をタイヤ幅方向にオーバ一ラップさせることによ つて、 前記ジグザグ周方向溝のジグザグ形状を形成する辺との間に、 幅が略均一 な第 1の縦長陸部と、 タイヤ回転方向とは反対方向に向うにしたがって幅が徐々 に広くなる第 2の縦長陸部とをタイヤ周方向に交互に連結配置した、 ことを特徴 としている。
次に、 請求項 1に記載の二輪車用空気入りタイヤの作用、 効果を説明する。 二輪車がゥエツト路面を走行する際は、 横転に注意するためキャンバー角は比 較的小さくなり、 路面に対しては主にタイヤ赤道面付近が接地する。
タイヤ赤道面近傍にはタイヤ周方向に沿って互いに略平行にジグザグ状に延び る一対のジグザグ周方向溝が設けられているので、 ウエット路面走行時 (直進時 〜小キャンバ一角時) の排水性が確保される。
仮に、 タイヤ赤道面近傍に周方向に直線状に延びる周方向ストレート溝を設け た場合には、 あるキャンバー角を境にして、 接地面から周方向ストレート溝が一 気に離脱してしまうため、 排水性が一気に低下し、 ウエット操縦安定性が低下し てしまうが、 タイヤ赤道面近傍に一対のジグザグ周方向溝を設けると、 ジグザグ 形状に振幅があるため、 あるキャンバー角を境にして接地面からジグザグ周方向 溝が一気に離脱することは無く、 ゥエツト操縦安定性の低下が抑えられる。 ゥエツト路面を走行する際に、 更にキャンバ一角が大きくなるような場合には 、 左右何れかの傾斜溝の急傾斜溝部が接地面内に入るので、 接地面内の水は傾斜 溝を介して排水される。 しかも、 この傾斜溝は、 タイヤ赤道面側の端部がトレッ ド端側の端部よりもタイヤ回転方向側に位置するようにタイヤ幅方向に対して傾 斜して所謂方向性パターンを形成しているので、 接地面内の水をスムーズに取り 入れて排出することができる。
また、 トレッドのタイヤ赤道面付近には、 ジグザグ周方向溝と、 このジグザグ 周方向溝とは連結していないタイヤ周方向に対する角度が 0〜 2 0度の範囲内に ある急傾斜溝部のみが配置されており、 実質上タイヤ軸方向に延びるラグ溝成分 が無いので、 トレッド中央側の陸部、 即ち、 中央連続周リブ、 第 1の縦長陸部、 及び第 2の縦長陸部は周方向剛性が高くなる。 このため、 トレッドのタイヤ赤道 面付近の耐摩耗性が高くなると共に、 トレツドのタイヤ赤道面付近を接地させて 走行する際のトラクシヨン性が高くなる。
さらに、 一対のジグザグ周方向溝で区画されたジグザグ状の中央連続周リブは 、 周方向に直線状に延びるリブとは異なってタイヤ幅方向のエッジ成分を有して いるため、 周方向に直線状に延びるのリブを設けた場合よりも高い制駆動力が得 られる。
なお、 ジグザグ周方向溝のジグザグ形状を形成する辺と相面して急傾斜溝部の タイヤ赤道面側の主用部を配置する理由は、 溝間隔を一定に保って陸部剛性を均 一にすることができるからである。
本発明では、 主用部とはタイヤ赤道面側の端部からトレツド端側へ急傾斜溝部 の全長の少なくとも 3 0 %の部分をいう。
急傾斜溝部を、 タイヤ周方向に隣接する他の傾斜溝の急傾斜溝部の一部分と夕 ィャ幅方向にォ一パーラップさせる理由は、 溝間隔を一定に保つことにより睦部 剛性を均一にすることができるからである。
また、 トレッド側領域には、 タイヤ周方向に対する角度を急傾斜溝部の角度よ りも大きく設定した緩傾斜溝部を配置したので、 大キャンバ一角でのコーナリン グ時の入力に対して緩傾斜溝部に隣接する陸部の剛性が確保され、 トレツド側領 域の耐摩耗性が向上する。
請求項 2に記載の発明は、 請求項 1に記載の二輪車用空気入りタイヤにおいて 、 タイヤ回転軸に沿つた断面で見たときのタイヤ赤道面部分のトレッドクラウン 半径が 2 5 0 mm以下である、 ことを特徴としている。
次に、 請求項 2に記載の二輪車用空気入りタイヤの作用、 効果を説明する。 タイヤ赤道面部分のトレッドクラウン半径を 2 5 0 mm以下とすることにより 、 二輪車用として最適な曲率となる。
上記クラウン半径が 2 5 O mmを越えると、 二輪車の場合、 キャンバー角を与 えたとき (コーナリング時) のキャンバースラストがとれなくなる虞がある。 なお、 上記クラウン半径は、 小さ過ぎるとタイヤに必要なセクション幅が確保 できなくなるため 3 O mm以上が好ましい。
請求項 3に記載の発明は、 請求項 1または請求項 2に記載の二輪車用空気入り タイヤにおいて、 前記ジグザグ周方向溝のジグザグ形状の振幅は、 標準リムに装 着し、 標準空気圧を充填し、 かつキャンバー角 0度の状態で標準荷重を掛けたと きの接地幅の 5 0〜1 0 0 %の範囲内にあり、 前記ジグザグ周方向溝のジグザグ 形状の 1 / 2波長は、 標準リムに装着し、 標準空気圧を充填し、 かつキャンバー 角 0度の状態で標準荷重を掛けたときの接地長の 5 0〜 1 5 0 %の範囲内にある 、 ことを特徴としている。
次に、 請求項 3に記載の二輪車用空気入りタイヤの作用、 効果を説明する。 ジグザグ周方向溝のジグザグ形状の振幅が接地幅の 5 0 %未満になると、 コ一 ナリングに際し、 キャンバー角度が増加して該ジグザグ周方向溝が接地面から離 脱してゆく時、 あるキャンバ一角を境にして中央連続周リブのエッジが一気に接 地面から離脱し易くなる傾向となり、 ゥエツト操縦安定性が不十分となる虞があ る。
一方、 ジグザグ周方向溝のジグザグ形状の振幅が接地幅の 1 0 0 %を越えると 、 ジグザグ周方向溝のジグザグ形状の屈曲度が大きくなり過ぎて周方向に向けて の排水性が悪化し、 排水性が不十分となる虞がある。 さらに、 ジグザグ周方向溝 が接地面の外側にはみ出す度合いが増えて、 周方向にかけての排水効果が不安定 に変動してウエット操縦安定性が悪化する虞がある。
請求項 4に記載の発明は、 請求項 1乃至請求項 3の何れか 1項に記載の二輪車 用空気入りタイヤにおいて、 前記第 1の縦長陸部を形成している急傾斜溝部は、 前記ジグザグ周方向溝の相面する辺と同方向に傾斜し、 前記第 2の縦長陸部を形 成している急傾斜溝部は、 前記ジグザグ周方向溝の相面する辺と逆方向に傾斜し 、 前記第 2の縦長陸部は、 前記第 1の縦長陸部よりもタイヤ周方向の長さが短い 、 ことを特徴としている。
次に、 請求項 4に記載の二輪車用空気入りタイヤの作用、 効果を説明する。 第 1の縦長陸部を形成している急傾斜溝部を、 ジグザグ周方向溝の相面する辺 と同方向に傾斜させることにより、 第 1の縦長睦部はタイヤ軸方向の幅をタイヤ 周方向に略一様にすることができるが、 第 2の縦長陸部を形成している急傾斜溝 部を、 ジグザグ周方向溝の相面する辺と逆方向に傾斜させることにより、 第 2の 縦長陸部はタイヤ軸方向の幅は、 タイヤ回転方向と反対方向へ向うにしたがって 広くなる。
請求項 4に記載の二輪車用空気入りタイヤでは、 第 2の縦長陸部のタイヤ周方 向の長さを第 1の縦長陸部のタイヤ周方向の長さよりも短くしたので、 第 2の縦 長陸部のタイヤ軸方向の幅の周方向変動が小さくなり (即ち、 第 2の縦長陸部の 最大幅が抑えられる)、 その結果、 タイヤ軸方向に隣り合う陸部相互間の陸部剛 性の変動が抑制され、 操縦安定性が確保される。
請求項 5に記載の発明は、 請求項 1乃至請求項 4の何れか 1項に記載の二輪車 用空気入りタイヤにおいて、 前記一対の傾斜溝は、 タイヤ赤道面を挟んで一方の 傾斜溝のタイヤ赤道面側の端部と他方の傾斜溝のタイヤ赤道面側の端部とがタイ ャ周方向に位相差を設けて配置され、 タイヤ周方向に隣接する他の一対の傾斜溝 とは、 前記位相差が相反する方向に設定されている、 ことを特徴としている。 次に、 請求項 5に記載の二輪車用空気入りタイヤの作用、 効果を説明する。 請求項 5に記載の二輪車用空気入りタイヤでは、 タイヤ赤道面側の端部が同位 相で並んでいる場合と比較して、 接地領域内の転動によるネガティブ率の変動を 抑えることができる。
請求項 6に記載の発明は、 請求項 1乃至請求項 5の何れか 1項に記載の二輪車 用空気入りタイヤにおいて、 タイヤ周方向の傾斜溝間には、 トレッド端からタイ ャ赤道面側へ延びて前記卜レツド中央領域と前記トレッド側領域との境界付近に て終端すると共に、 タイヤ周方向に隣接する前記傾斜溝と略平行な補助傾斜溝が 1または 2本設けられている、 ことを特徴としている。
次に、 請求項 6に記載の二輪車用空気入りタイヤの作用、 効果を説明する。 請求項 6に記載の二輪車用空気入りタイヤでは、 補助傾斜溝により、 大キヤ ンバ一角を与えた際の排水性を確保することができる。
請求項 7に記載の発明は、 請求項 6に記載の二輪車用空気入りタイヤにおいて 、 タイヤ周方向の傾斜溝間にタイヤ周方向の溝間隔が一定となるように前記補助 傾斜溝を配置したことを特徴としている。
次に、 請求項 7に記載の二輪車用空気入りタイヤの作用、 効果を説明する。 請求項 7に記載の二輪車用空気入りタイヤでは、 タイヤ周方向の傾斜溝間に タイヤ周方向の溝間隔が一定となるように補助傾斜溝を配置したので、 陸部剛性 を均一化することができる。
請求項 8に記載の発明は、 請求項 1乃至請求項 7の何れか 1項に記載の二輪車 用空気入りタイヤにおいて、 前記中央連続周リブの幅は、 標準リムに装着し、 標 準空気圧を充填し、 かつキャンバー角 0度の状態で標準荷重を掛けたときの接地 幅の 2 0〜 5 0 %の範囲内である、 ことを特徴としている。
次に、 請求項 8に記載の二輪車用空気入りタイヤの作用、 効果を説明する。 中央連続周リブの幅が接地幅の 2 0 %未満になると、 中央連続周リブの陸部剛 性が不足し、 直進走行安定性、 小キャンバ一角度でのコーナリング時の操縦安定 性、 及び耐摩耗性等が劣る虞がある。
一方、 中央連続周リブの幅が接地幅の 5 0 %を越えると、 キャンバ一角 0度及 び小キャンバー角度における接地面内の溝容積が減少し、 特に高速直進走行時の 周方向排水性が確保出来なくなる虞があり、 ゥエツト操縦安定性が劣る虞がある 請求項 9に記載の発明は、 請求項 1乃至請求項 8の何れか 1項に記載の二輪車 用空気入りタイヤにおいて、 前記緩傾斜溝部は、 タイヤ回転方向側から計測する タイヤ周方向に対する角度が 9 0〜1 5 0度の範囲内である、 ことを特徴として いる。
次に、 請求項 9に記載の二輪車用空気入りタイヤの作用、 効果を説明する。 緩傾斜溝部の、 タイヤ回転方向側から計測するタイヤ周方向に対する角度が 9 0度未満になると、 卜レッド側領域が接地する大キャンバー角時に、 溝方向が排 水方向と逆行するため、 ゥエツト操縦安定性が劣る虞がある。
一方、 緩傾斜溝部の、 タイヤ回転方向側から計測するタイヤ周方向に対する角 度が 1 5 0度を越えると、 トレツド側領域が接地する大キャンバー角時に、 緩傾 斜溝部間の陸部分の入力方向に面するエッジ部の長さが増え、 該陸部分の剛性の 弱さが表れ、 ゥエツト操縦安定性が劣る虞がある。 請求項 1 0に記載の発明は、 請求項 1乃至請求項 9の何れか 1項に記載の二輪 車用空気入りタイヤにおいて、 溝で区画された各陸部分の最小幅は略同等である 、 ことを特徴としている。
次に、 請求項 1 0に記載の二輪車用空気入りタイヤの作用、 効果を説明する。 請求項 1 0に記載の二輪車用空気入りタイヤでは、 溝で区画された各陸部分の 最小幅を略同等とすることにより、 陸部剛性を均一化することができる。
請求項 1 1に記載の発明は、 請求項 1乃至請求項 1 0の何れか 1項に記載の二 輪車用空気入りタイヤにおいて、 前記急傾斜部と前記緩傾斜溝部とは、 滑らかに 連結されている、 ことを特徴としている。
次に、 請求項 1 1に記載の二輪車用空気入りタイヤの作用、 効果を説明する。 急傾斜部と緩傾斜溝部とを滑らかに連結したので、 トレツド端へ向けてスムー ズに水を流すことができる。
請求項 1 2に記載の発明は、 請求項 1乃至請求項 1 1の何れか 1項に記載の二 輪車用空気入りタイヤにおいて、 前記第 1の縦長陸部を形成している傾斜溝の全 長は、 前記第 2の縦長陸部を形成している傾斜溝の全長より 5〜 2 0 %長い、 こ とを特徴としている。
次に、 請求項 1 2に記載の二輪車用空気入りタイヤの作用、 効果を説明する。 第 1の縦長陸部を形成している傾斜溝の全長を、 第 2の縦長陸部を形成してい る傾斜溝の全長より 5〜2 0 %長くすることにより、 第 1の縦長陸部及び第 2の 縦長陸部の剛性を略同等とすることができる。
請求項 1 3に記載の発明は、 請求項 1乃至請求項 1 2の何れか 1項に記載の二 輪車用空気入りタイヤにおいて、 前記ジグザグ周方向溝以外の溝は、 溝幅が実質 状同一であり、 かつ前記ジグザグ周方向溝の溝幅の 6 0〜8 0 %の範囲内の溝幅 を有している、 ことを特徴としている。
次に、 請求項 1 3に記載の二輪車用空気入りタイヤの作用、 効果を説明する。 ジグザグ周方向溝以外の溝の溝幅が、 ジグザグ周方向溝の溝幅の 6 0 %未満で あると、 溝幅が狭過ぎて特に高速走行時の排水性に劣る虞がある。
一方、 ジグザグ周方向溝以外の溝の溝幅が、 ジグザグ周方向溝の溝幅の 8 0 % を越えると、 ネガティブ率が大きくなり過ぎてトレッド剛性が低下し、 耐摩耗性 が低下する虞がある。
請求項 1 4に記載の発明は、 請求項 1乃至請求項 1 3の何れか 1項に記載の二 輪車用空気入りタイヤにおいて、 トレッド端における溝の周方向ピッチ長は、 標 準リムに装着し、 標準空気圧を充填し、 かつキャンバー角 0度の状態で標準荷重 を掛けたときの接地長の 2 0〜5 0 %の範囲内である、 ことを特徴としている。 次に、 請求項 1 4に記載の二輪車用空気入りタイヤの作用、 効果を説明する。 トレツド端における溝の周方向ピッチ長が接地長の 2 0 %未満では、 トレッド 端に開口する溝により区画される陸部分の周方向寸法が狭過ぎて剛性が低下し、 耐摩耗性に劣る虞がある。
一方、 トレツド端における溝の周方向ピッチ長が接地長の 5 0 %を越えると、 接地面内に配置される溝の容積率が低下して耐排水性に劣る虞がある。
請求項 1 5に記載の発明は、 請求項 1乃至請求項 1 4の何れか 1項に記載の二 輪車用空気入りタイヤにおいて、 前記第 1の縦長陸部のタイヤ回転方向側端部の 幅、 及び前記第 2の縦長陸部のタイヤ回転方向側端部の幅は、 前記中央連続周リ ブの幅の 5 0〜 1 2 0 %の範囲内にある、 ことを特徴としている。
次に、 請求項 1 5に記載の二輪車用空気入りタイヤの作用、 効果を説明する。 第 1の縦長陸部のタイヤ回転方向側端部の幅、 及び第 2の縦長陸部のタイヤ回 転方向側端部の幅が、 中央連続周リブの幅の 5 0 %未満になると、 陸部剛性が低 くなり過ぎて耐摩耗性、 操縦安定性が劣る虞がある。
一方、 第 1の縦長陸部のタイヤ回転方向側端部の幅、 及び第 2の縦長陸部の夕 ィャ回転方向側端部の幅が、 中央連続周リブの幅の 1 2 0 %を越えると、 中央連 続周リブとの剛性段差が急増し、 キヤンバ一角の変化時に操縦安定性が不安定に なって好ましくない。
請求項 1 6に記載の発明は、 請求項 1乃至請求項 1 5の何れか 1項に記載の二 輪車用空気入りタイヤにおいて、 前記ジグザグ周方向溝のジグザグ形状の振幅は 、 中央連続周リブの幅の 3 0〜 1 5 0 %の範囲内である、 ことを特徴としている 次に、 請求項 1 6に記載の二輪車用空気入りタイヤの作用、 効果を説明する。 ジグザグ周方向溝のジグザグ形状の振幅が、 中央連続周リブの幅の 3 0 %未満 になると、 コーナリングに際し、 キャンバー角度が増加して該ジグザグ周方向溝 が接地面から離脱してゆく時、 あるキャンバー角を境にして中央連続周リブのェ ッジがー気に接地面から離脱し易くなる傾向となり、 ゥエツト操縦安定性が不十 分となる虞がある。
一方、 ジグザグ周方向溝のジグザグ形状の振幅が、 中央連続周リブの幅の 1 5 0 %を越えると、 ジグザグ周方向溝のジグザグ形状の屈曲度が大きくなり過ぎて 周方向に向けての排水性が悪化し、 排水性が不十分となる虞がある。 さらに、 ジ グザグ周方向溝が接地面の外側にはみ出す度合いが増えて、' 周方向にかけての排 水効果が不安定に変動してウエット操縦安定性が悪化する虞がある。
請求項 1 7に記載の発明は、 請求項 1乃至請求項 1 6の何れか 1項に記載の二 輪車用空気入りタイヤにおいて、 卜レツド最大径部分からタイヤ最大幅部までの タイヤ径方向に計測した落ち高を T H、 タイヤ最大幅を S Wとしたときに、 T H Z S Wが 0 . 2 5〜0 . 4 5の範囲内であり、 標準リムに装着し、 標準空気圧を 充填し、 かつキャンバー角 0度の状態で標準荷重を掛けたときの接地長は接地 の 2 0 0〜 2 5 0 %の範囲内であり、 かつ接地形状は長軸がタイヤ周方向に向く 略楕円形状である、 ことを特徴としている。
次に、 請求項 1 7に記載の二輪車用空気入りタイヤの作用、 効果を説明する。 T H/ S Wが 0 . 2 5未満になると、 接地面圧減少により排水性が悪化する虞 があり、 また、 ハンドリングに重さが出過ぎることにより操縦安定性が低下する 虞がある。
一方、 T HZ S ^V^^ O . 4 5を越えると、 接地面圧が上がり過ぎて耐摩耗性が 低下する虞がある。
また、 接地長が接地幅の 2 0 0 %未満になると、 接地面圧が低くなり過ぎて耐 ゥエツト性に劣る虞がある。
一方、 接地長が接地幅の 2 5 0 %を越えると、 接地面圧が高くなり過ぎて耐摩 耗性に劣る虞がある。
請求項 1 8に記載の発明は、 請求項 1乃至請求項 1 7の何れか 1項に記載の二 輪車用空気入りタイヤにおいて、 前記トレッドのタイャ赤道面を中心としてトレ ッドペリフェリ幅の 5 0 %の範囲内の領域でのネガティブ率が 3 0〜4 0 %の範 囲内、 前記トレッドのタイヤ赤道面を中心としてトレツドペリフェリ幅の 5 0 % の範囲内の領域よりもタイヤ幅方向外側の領域でのネガティブ率が 2 0〜3 0 % の範囲内である、 ことを特徴としている。
次に、 請求項 1 8に記載の二輪車用空気入りタイヤの作用、 効果を説明する。 トレツドのタイヤ赤道面を中心としてトレッドペリフェリ幅の 5 0 %の範囲内 の領域でのネガティプ率が 3 0 %未満になると、 該領域のネガティブ率が低過ぎ て耐排水性に劣り、 特に高速直進時の耐ゥエツト性に劣る虞がある。
一方、 トレツドのタイヤ赤道面を中心としてトレツドペリフェリ幅の 5 0 %の 範囲内の領域でのネガティブ率が 4 0 %を越えると、 該領域のネガティブ率が高 すぎて耐摩耗性に劣る虞がある。
また、 トレッドのタイヤ赤道面を中心としてトレツドペリフェリ幅の 5 0 %の 範囲内の領域よりもタイヤ幅方向外側の領域でのネガティブ率が 2 0 %未満にな ると、 該領域のネガティブ率が低過ぎて排水性が低下する虞がある。
一方、 トレッドのタイヤ赤道面を中心としてトレッドペリフェリ幅の 5 0 %の 範囲内の領域よりもタイヤ幅方向外側の領域でのネガティブ率が 3 0 %を越える と、 該領域のネガティブ率が高すぎて大キャンバ一角時、 横力がかかった時の耐 摩耗性が低下する虞がある。
請求項 1 9に記載の発明は、 請求項 1乃至請求項 1 8の何れか 1項に記載の二 輪車用空気入りタイヤにおいて、 トレッドクラウン半径/タイヤ最大幅を外輪郭 フラットネス、 前記トレッドの内、 タイヤ赤道面を中心としてトレッドペリフエ リ幅の 3 0〜5 0 %の範囲内をトレッド中央領域、 前記トレッド中央領域のタイ ャ幅方向外側の領域をトレツド側領域と定義したときに、 前記トレッド中央領域 での外輪郭フラットネスが 0 . 4〜0 . 7の範囲内にあり、 前記トレッド側領域 での外輪郭フラットネスが 0 . 2〜0 . 7の範囲内にある、 ことを特徴としてい る。
次に、 請求項 1 9に記載の二輪車用空気入りタイヤの作用、 効果を説明する。 トレッド中央領域での外輪郭フラットネスが 0 . 4未満になると、 接地面圧が 高くなり過ぎて耐摩耗性に劣る虞がある。
一方、 トレッド中央領域での外輪郭フラットネスが 0 . 7を越えると、 接地面 圧が低くなり過ぎて耐ウエット性に劣る虞がある。
また、 トレッド側領域での外輪郭フラットネスが 0 . 2未満になると、 コーナ リング時の接地面積が減少し過ぎて操縦安定性に劣る虞がある。
一方、 トレッド側領域での外輪郭フラットネスが 0 . 7を越えると、 コーナリ ング時の接地面圧が低くなり過ぎて特に耐ゥエツト操縦安定性に劣る虞がある。 請求項 2 0に記載の発明は、 請求項 1乃至請求項 1 9の何れか 1項に記載の二 輪車用空気入りタイヤにおいて、 前記傾斜溝は、 踏面に立てた法線に対する溝踏 み込み側の溝壁の角度が 0〜 4 5 ° の範囲内、 踏面に立てた法線に対する溝蹴り 出し側の溝壁の角度が 0〜 4 5 ° の範囲内であり、 かつ、 溝踏み込み側の溝壁の 角度は溝蹴り出し側の溝壁の角度よりも小さい、 ことを特徴としている。
次に、 請求項 2 0に記載の二輪車用空気入りタイヤの作用、 効果を説明する。 傾斜溝の溝踏み込み側の溝壁の角度が 0 ° 以内になると、 路面に接触する時の 溝壁の剛性が低くなり過ぎて早期偏摩耗を生じ易くなる。
一方、 傾斜溝の溝踏み込み側の溝壁の角度が 4 5 ° を越えると、 路面に接触す る時の有効なエッジ作用を得られず、 ウエット操縦安定性に劣る虞がある。 さら に、 排水に必要な溝ポリユームを確保するのが困難になる。
また、 傾斜溝の溝蹴り出し側の溝壁の角度が 0 ° 以内になると、 駆動時の入力 に対する陸部剛性が低くなり過ぎ、 耐摩耗性に劣る虞がある。
一方、 傾斜溝の溝蹴り出し側の溝壁の角度が 4 5 ° を越えると、 摩耗時の陸部 の剛性変化が大きくなり、 ウエット操縦安定性に劣る虞がある。 さらに、 排水に 必要な溝ポリユームを確保するのが困難になる。
また、 トラクシヨン力は、 溝踏み込み側 (入力が入る側) の溝壁のエッジがし つかりと路面の水膜を破り、 必要十分な陸部剛性により効果的に路面に伝達され るので、 溝踏み込み側のエッジ部分を鋭くする必要がある。
請求項 2 0に記載の二輪車用空気入りタイヤでは、 溝踏み込み側の溝壁の角度 を溝蹴り出し側の溝壁の角度よりも小さくしたので、 溝踏み込み側のエッジ部分 が鋭くなつて水膜を破り易くなり、 ゥエツ卜路面走行時に大きなトラクシヨン力 を得ることができる。
請求項 2 1に記載の発明は、 請求項 1乃至請求項 2 0の何れか 1項に記載の二 輪車用空気入りタイヤにおいて、 前記卜レツドのタイヤ赤道面を中心としてトレ ッドペリフェリ幅の 5 0 %の範囲内の領域では、 各溝深さが実質上同一である、 ことを特徴としている。
次に、 請求項 2 1に記載の二輪車用空気入りタイヤの作用、 効果を説明する。 トレッドのタイヤ赤道面を中心としてトレツドペリフェリ幅の 5 0 %の範囲内 の領域において、 各溝深さを実質上同一とすることで、 該領域内の陸部剛性のレ ベルを同等とし、 また、 溝深さ変化による排水性低下を避けることができる。 請求項 2 2に記載の発明は、 請求項 1乃至請求項 2 1の何れか 1項に記載の二 輪車用空気入りタイヤにおいて、 ラジアル構造である、 ことを特徴としている。 次に、 請求項 2 2に記載の二輪車用空気入りタイヤの作用、 効果を説明する。 二輪車用空気入りタイヤをラジアル構造とすることにより、 アスファルト路に おける耐摩耗性に効果的となる。
なお、 本発明において、 標準リムとは J A T MA (日本自動車タイヤ協会) の Y e a r B o o k 2 0 0 2年度版規定のリムであり、 標準空気圧とは J A T M Aの Y e a r B o o k 2 0 0 2年度版の最大負荷能力に対応する空気圧であり 、 標準荷重とは J A T MAの Y e a r B o o k 2 0 0 2年度版の最大負荷能力 に相当する荷重である。
日本以外では、 荷重とは下記規格に記載されている適用サイズにおける最大荷 重 (最大負荷能力) のことであり、 空気圧とは下記規格に記載されている単輪の 最大荷重 (最大負荷能力) に対応する空気圧のことであり、 リムとは下記規格に 記載されている適用サイズにおける標準リム (または、" Approved Rim" /' ecomniended Rirn") のしとである。
規格は、 タイヤが生産又は使用される地域に有効な産業規格によって決められ ている。 例えば、 アメリカ合衆国では、" The Tire and Rim Association Inc. の Year Book " であり、 欧州では " The European Tire and Rim Technical Organizationの Standards Manual" であ 。
なお、 使用地又は製造地において、 T R A規格、 E T R T O規格が適用される 場合は各々の規格に従う。
本発明において 「接地面」 とは、 タイヤを標準リムに装着し、 標準空気圧とし 、 静止した状態で平板に対し垂直に置き、 標準荷重を加えたときのタイヤ接触面 をい 。
本発明において 「接地長」 とは上記 「接地面」 のタイヤ周方向長さであり、 「 接地幅」 とは上記 「接地面」 のタイヤ軸方向長さである。
また、 本発明において 「トレッドペリフェリ幅」 とは、 タイヤを回転軸に沿つ た断面で見たときの、 タイヤ最大幅部の一端から他端までの踏面に沿って計測し たトレツドの幅寸法である。 図面の簡単な説明 図 1は、 本発明の一実施形態に係る二輪車用空気入りタイヤのトレツドの展開 図である。
図 2は、 本発明の一実施形態に係る二輪車用空気入りタイヤのタイヤ回転軸に 沿った断面図である。
図 3は、 図 1に示すトレッドの部分拡大図である。
図 4は、 トレッドの拡大断面図である。
図 5は、 従来例 1に係る二輪車用空気入りタイヤのトレツドの展開図である。 図 6は、 従来例 (試験例では従来例 2 ) に係る二輪車用空気入りタイヤのトレ ッドの展開図である。
図 7は、 従来例に係る二輪車用空気入りタイヤのトレツドの展開図である。 図 8は、 比較例 1に係る二輪車用空気入りタイヤのトレツドの展開図である。 図 9は、 比較例 2に係る二輪車用空気入りタイヤのトレッドの展開図である。 発明を実施するための最良の形態 本発明の二輪車用空気入りタイヤの一実施形態を図 1乃至図 4にしたがって説 明する。
本実施形態の二輪車用空気入りタイヤ 1 0は、 タイヤサイズが 1 8 0 / 5 5 Z R 1 7であり、 図 2に示すように、 タイヤ赤道面 C Lに対して交差する方向に延 びるコードが埋設された第 1のカーカスプライ 1 2及び第 2の力一カスプライ 1 4からなるカーカス 1 6を備えている。
第 1の力一カスプライ 1 2及び第 2のカーカスプライ 1 4は、 各々両端部分が ビード部 1 8に埋設されているビ一ドコア 2 0の周りに、 タイヤ内側から外側へ 向かって巻き上げられている。
カーカス 1 6のタイヤ半径方向外側には周方向ベルト層 2 2が設けられている 周方向ベルト層 2 2のタイヤ径方向外側には、 トレッド 2 4が配置されている タイヤ赤道面 C L部分のトレツドクラウン半径 Rは 7 0〜2 0 O mmの範囲内 である。
トレッド 2 4の最大径部分からトレッド端 2 4 E (タイヤ最大幅部) までの夕 ィャ径方向に計測した落ち高を T H、 トレッド 2 4のタイヤ最大幅を S Wとした ときに、 T H/ S Wが 0 . 2 5〜0 . 4 5の範囲内であることが好ましい。 図 1に示すように、 この二輪車用空気入りタイヤ 1 0の接地面 2 6の接地長 L 26は、 接地幅 W26の 2 0 0〜2 5 0 %の範囲内とすることが好ましく、 接地面 2 6は長軸がタイヤ周方向に向く略楕円形状であることが好ましい。
ここで、 本実施形態では、 「トレッドクラウン半径 R Zタイヤ最大幅 S W」 を 外輪郭フラットネスとしている。 また、 タイヤ赤道面 C Lを中心としてトレッド ペリフェリ幅 TWの 3 0〜5 0 %の範囲内の領域をトレツド中央領域 2 4 C、 ト レツド中央領域 2 4 Cのタイヤ幅方向外側の領域をトレツド側領域 2 4 Sとして いる。
なお、 トレッド中央領域 2 4 Cでの外輪郭フラットネスは 0 . 4〜0 . 7の範 囲内にあることが好ましく、 トレッド側領域 2 4 Sでの外輪郭フラットネスは 0 . 2〜0 . 7の範囲内にあることが好ましい。
本実施形態の二輪車用空気入りタイヤ 1 0のトレッド 2 4には、 タイヤ軸方向 中央部分にタイヤ周方向に沿ってジグザグ状に延び、 かつ互いに平行とされた一 対のジグザグ周方向溝 2 8が設けられている。
このため、 トレッド 2 4のタイヤ赤道面 C L上には、 一対のジグザグ周方向溝 2 8によりタイヤ周方向に連続してジグザグ状に延びる中央連続周リブ 3 0が区 画されている。
図 3に示すように、 中央連続周リブ 3 0の幅 W3。は、 二輪車用空気入りタイヤ 1 0を標準リムに装着し、 標準空気圧を充填し、 かつキャンバー角 0度の状態で 標準荷重を掛けたときの接地面 2 6の接地幅 W26の 2 0〜5 0 %の範囲内である ことが好ましい。
ジグザグ周方向溝 2 8は、 互いに逆方向に傾斜する直線状の辺をタイヤ周方向 に交互に連結したジグザグ形状である。
ジグザグ周方向溝 2 8のジグザグ形状の振幅 Aは、 上記接地面 2 6の接地幅 W 26の 5 0〜 1 0 0 %の範囲内にあることが好ましい。
また、 ジグザグ周方向溝 2 8のジグザグ形状の振幅 Aは、 中央連続周リブ 3 0 の幅 W3。の 3 0〜 1 5 0 %の範囲内であることが好ましい。
ジグザグ周方向溝 2 8のジグザグ形状の 1 / 2波長 λ Z 2は、 上記接地面 2 6 の接地長 L 26の 5 0〜 1 5 0 %の範囲内にあることが好ましい。
図 1に示すように、 ジグザグ周方向溝 2 8のタイヤ幅方向両側には、 トレッド 端 2 4 Eからタイヤ赤道面 C Lに向って延びると共にジグザグ周方向溝 2 8に接 続することなくジグザグ周方向溝 2 8の近傍で終端し、 かつタイヤ赤道面 C L側 の端部が卜レッド端 2 4 E側の端部よりもタイヤ回転方向側 (矢印 A方向側) に 位置するようにタイヤ幅方向に対して傾斜する一対の傾斜溝 3 2が、 タイヤ周方 向に間隔をあけて複数設けられている。
以後、 本実施形態では、 傾斜溝 3 2のうち、 トレッド中央領域 2 4 Cに配置さ れてタイヤ周方向に対する角度が比較的小さい部分を急傾斜溝部 3 2 A、 トレツ ド側領域 2 4 Sに配置されてタイヤ周方向に対する角度が急傾斜溝部 3 2 Aの角 度よりも大きい部分を緩傾斜溝部 3 2 Bとする。
ここで、 急傾斜溝部 3 2 Aのタイヤ周方向に対する角度 0 Aは、 0〜2 0度の 範囲内が好ましい。
一方、 緩傾斜溝部 3 2 Bは、 タイヤ周方向を基準としてタイヤ回転方向側から タイヤ軸方向外側へ計測する角度 0 Bは 9 0〜1 5 0度の範囲内であることが好 ましい。 本実施形態では、 急傾斜溝部 3 2 Aは略直線形状であり、 緩傾斜溝部 3 2 Bは 略円弧形状である。
急傾斜溝部 3 2 Aと緩傾斜溝部 3 2 Bとは、 図 1に示すように徐々に傾斜を変 化させながら滑らかに接続することが好ましい。
ジグザグ周方向溝 2 8のジグザグ形状を形成する直線状の辺と相面するように 、 急傾斜溝部 3 2 Aのタイヤ赤道面 C Lの主用部 (本実施形態において、 タイヤ 赤道面 C L側の端部からトレツド端側へ急傾斜溝部 3 2 Aの全長の少なくとも 2 0 %の部分) が配置されている。
さらに、 各傾斜溝 3 2は、 タイヤ周方向に隣接する急傾斜溝部 3 2 A同士が夕 ィャ幅方向に一部分オーバーラップするように配置されており、 ジグザグ周方向 溝 2 8のタイヤ幅方向外側には、 ジグザグ周方向溝 2 8のジグザグ形状を形成す る直線状の辺と急傾斜溝部 3 2 Aとの間に形成されタイヤ軸方向の幅が略均一な 第 1の縦長陸部 3 4と、 ジグザグ周方向溝 2 8のジグザグ形状を形成する直線状 の辺と急傾斜溝部 3 2 Aとの間に形成されタイヤ軸方向の幅がタイヤ回転方向と は反対方向に向うにしたがって徐々に幅広となる第 2の縦長陸部 3 6とが、 タイ ャ周方向に交互に連結配置されている。
第 1の縦長陸部 3 4を形成している急傾斜溝部 3 2 Aは、 ジグザグ周方向溝 2 8の相面する辺と同方向に傾斜させ、 第 2の縦長陸部 3 6を形成している急傾斜 溝部 3 2 Aは、 ジグザグ周方向溝 2 8の相面する辺と逆方向に傾斜させ、 さらに 第 2の縦長陸部 3 6のタイヤ周方向の長さを第 1の縦長陸部 3 4よりも短く設定 することが好ましい。
なお、 図中の二点鎖線 3 7は、 第 1の縦長陸部 3 4と第 2の縦長陸部 3 6との 境界線である。
第 1の縦長陸部 3 4を形成している傾斜溝 3 2の全長 (溝に沿って計測した長 さ) は、 第 2の縦長陸部 3 6を形成している傾斜溝 3 2の全長 (溝に沿って計測 した長さ) より 5〜 2 0 %長いことが好ましい。
また、 図 3に示すように、 少なくとも 2つの溝で挟まれる各陸部の最小幅 W minは略同等 (幅の差が ± 2 0 %以内) であることが好ましい。
第 1の縦長陸部 3 4のタイヤ回転方向側の端部の幅 (本実施形態では最小幅) 及び第 2の縦長陸部 3 6のタイヤ回転方向側の端部の幅 (本実施形態では最小幅 ) は、 中央連続周リブ 3 0の幅 W3。の 5 0〜1 2 0 %の範囲内にあることが好ま しい。
図 1に示すように、 一対の傾斜溝 3 2は、 タイヤ赤道面 C Lを挟んで一方の傾 斜溝 3 2のタイヤ赤道面 C L側の端部 (終端部) と、 他方の傾斜溝 3 2のタイヤ 赤道面 C L側の端部 (終端部) とをタイヤ周方向に位相差を設けて配置し、 タイ ャ周方向に隣接する他の一対の傾斜溝 3 2とは、 位相差が相反する方向に設定す ることが好ましい。 なお、 一対の傾斜溝 3 2は、 タイヤ赤道面 C Lを挟んで一方 の傾斜溝 3 2の卜レツド端 2 4 E側の端部と、 他方の傾斜溝 3 2の卜レツド端 2 4 E側の端部とは、 タイヤ周方向に対して実質上位相差は付けられていない。 一方の傾斜溝 3 2と他方の傾斜溝 3 2との位相差としては、 1ピッチを 3 6 0 度としたときに 1 3 5〜2 2 5度程度が好ましい。
図 4に示すように、 傾斜溝 3 2は、 踏面に立てた法線 H Lに対する溝踏み込み 側 (陸部で考えると、 陸部蹴り出し側。) の溝壁 3 2 a (タイヤ幅方向外側の溝 壁) の角度 0 INが 0〜4 5 ° の範囲内、 踏面に立てた法線 H Lに対する溝蹴り出 し側 (陸部で考えると、 陸部踏み込み側) の溝壁 3 2 b (タイヤ幅方向内側の溝 壁) の角度 θ ουτが 0〜4 5 ° の範囲内であることが好ましく、 かつ、 溝踏み込 み側の溝壁 3 2 aの角度 0 ΙΝが溝蹴り出し側の溝壁 3 2 bの角度 0。υτよりも小 さいことが好ましい。
図 1に示すように、 タイヤ周方向の傾斜溝 3 2間には、 トレッド端 2 4 Εから タイヤ赤道面 C L側へ延びてトレッド中央領域 2 4 Cとトレツド側領域 2 4 Sと の境界付近にて終端すると共に、 隣接する傾斜溝 3 2と略平行な補助傾斜溝 3 8 を 1または 2本設けることが好ましい。 本実施形態では、 タイヤ周方向の傾斜溝 3 2間に補助傾斜溝 3 8が等間隔で 2本設けられている。
なお、 ジグザグ周方向溝 2 8以外の溝、 本実施形態では、 傾斜溝 3 2、 及び補 助傾斜溝 3 8は、 溝幅が実質状同一 (溝幅の差が ± 2 0 %以内) であり、 かつジ グザグ周方向溝 2 8の溝幅の 6 0〜8 0 %の範囲内の溝幅を有していることが好 ましい。
トレツド端 2 4 Εにおける溝の周方向ピッチ長 Ρは、 上記接地長 L 26の 2 0〜 5 0 %の範囲内であることが好ましい。
トレツド 2 4のタイヤ赤道面 C Lを中心としてトレツドペリフェリ幅 TWの 5 0 %の範囲内の領域では、 各溝深さが実質上同一 (溝深さの差が ± 5 %以内) で あることが好ましい。
トレッド 2 4のタイヤ赤道面 C Lを中心としてトレツドペリフェリ幅 TWの 5 0 %の範囲内の領域でのネガティブ率は 3 0〜4 0 %の範囲内、 該領域のタイヤ 幅方向外側の領域でのネガティブ率は 2 0〜3 0 %の範囲内であることが好まし い。
(作用)
次に、 本実施形態の二輪車用空気入りタイヤ 1 0の作用を説明する。
本実施形態の二輪車用空気入りタイヤ 1 0では、 トレッド中央領域 2 4 Cに一 対のジグザグ周方向溝 2 8を設けたので、 ウエット路面走行時 (直進時〜小キヤ ンバ一角時) の排水性が確保される。
また、 ジグザグ周方向溝 2 8には振幅があるため、 あるキャンバー角を境にし て接地面からジグザグ周方向溝 2 8がー気に離脱することは無く、 ゥエツ卜操縦 安定性の低下が抑えられる。
ウエット路面走行時、 更にキャンバー角が大きくなるような場合には、 左右何 れかの傾斜溝 3 2の急傾斜溝部 3 2 Aが接地面内に入り、 接地面内の水は傾斜溝 3 2を介して排水されゥエツト性能が確保される。
なお、 傾斜溝 3 2、 及び補助傾斜溝 3 8は、 タイヤ赤道面 C L側の端部がトレ ッド端側の端部よりもタイヤ回転方向側に位置するようにタイヤ幅方向に対して 傾斜しており、 これによりトレッド 2 4には所謂方向性パターンが形成されてい るので、 地面内の水をスムーズに取り入れてタイヤ軸方向外側へ排出することが できる。
トレッド中央領域 2 4 Cには、 ジグザグ周方向溝 2 8と急傾斜溝部 3 2 Aのみ が配置されており、 所謂ラグ溝成分が無いので、 トレッド中央領域 2 4 Cの中央 連続周リブ 3 0、 第 1の縦長陸部 3 4、 及び第 2の縦長陸部 3 6は周方向剛性が 高くなる。 このため、 トレッド中央領域 2 4 Cの耐摩耗性が高くなると共に、 ト レツド中央領域 2 4 Cを接地させて走行する際のトラクシヨン性が高くなる。 さらに、 ジグザグ状の中央連続周リブ 3 0は、 タイヤ幅方向のエッジ成分を有 しているため、 周方向に直線状に延びるリブを設けた場合よりも高い制駆動力が 得られる。
傾斜溝 3 2の急傾斜溝部 3 2 Aのタイヤ赤道面側の主用部を、 ジグザグ周方向 溝 2 8のジグザグ形状を形成する各辺と相面して配置したので、 急傾斜溝部 3 2 Aの主用部とジグザグ周方向溝 2 8との溝間隔が一定となり、 急傾斜溝部 3 2 A の主用部とジグザグ周方向溝 2 8との間の陸部の剛性を均一にすることができる 急傾斜溝部 3 2 Aと、 タイヤ周方向に隣接する他の傾斜溝 3 2の急傾斜溝部 3 2 Aとをタイヤ幅方向に一部分オーバーラップさせたので、 ジグザグ周方向溝 2 8と急傾斜溝部 3 2 A、 及び急傾斜溝部 3 2 Aと隣接する急傾斜溝部 3 2 Aとの 最小溝間隔を同等とし、 剛性段差を少なくすることができる。
トレツド側領域 2 4 Sには、 タイヤ周方向に対する角度が急傾斜溝部 3 2 Aよ りも大きく設定された緩傾斜溝部 3 2 B、 及び補助傾斜溝 3 8を配置したので、 大キヤンバ一角でのコーナリング時の入力に対して緩傾斜溝部 3 2 B及び補助傾 斜溝 3 8によって区画される陸部 4 0の剛性が確保され、 トレッド側領域 2 4 S の耐摩耗性が向上する。
第 1の縦長陸部 3 4を形成している急傾斜溝部 3 2 Aを、 ジグザグ周方向溝 2 8の相面する辺と同方向に傾斜させることにより、 第 1の縦長陸部 3 4はタイヤ 軸方向の幅をタイヤ周方向に略一様にすることができるが、 第 2の縦長陸部 3 6 を形成している急傾斜溝部 3 2 Aを、 ジグザグ周方向溝の相面する辺と逆方向に 傾斜させることにより、 第 2の縦長陸部 3 6のタイヤ軸方向の幅は、 タイヤ回転 方向と反対方向へ向うにしたがって広くなる。
しかしながら、 本実施形態の二輪車用空気入りタイヤ 1 0では、 第 2の縦長陸 部 3 6のタイヤ周方向の長さ L 36を第 1の縦長陸部 3 4のタイヤ周方向の長さ L 34よりも短くしたので、 第 2の縦長陸部 3 6のタイヤ軸方向の幅 W36の周方向変 動が小さくなり、 その結果、 タイヤ軸方向に隣り合う陸部相互間の陸部剛性の変 動が抑制され、 操縦安定性が確保される。
タイヤ赤道面 C Lを挟んで一方の傾斜溝 3 2と他方の傾斜溝 3 2とをタイヤ周 方向に位相差を設けるように一対の傾斜溝 3 2を配置し、 かつタイヤ周方向に隣 接する他の一対の傾斜溝 3 2とは、 位相差を相反する方向に設定したので、 同位 相で並んでいる場合と比較して、 接地領域内の転動によるネガティブ率の変動を 抑えることができる。
タイヤ周方向の傾斜溝 3 2間に、 補助傾斜溝 3 8を 2本設けたので、 大キャン バー角を与えた際の排水性を確保することができる。
タイヤ周方向の傾斜溝 3 2間に 2本の補助傾斜溝 3 8を等間隔で設けたので、 傾斜溝 3 2と補助傾斜溝 3 8との溝間隔、 及び補助傾斜溝 3 8と補助傾斜溝 3 8 との溝間隔が略一定となり、 陸部の剛性段差を小さくすることが出来る。
各陸部の最小幅を略同等としたので、 局部的な剛性の弱いところが無くなり、 陸部剛性段差を小さくすることができる。
急傾斜溝部 3 2 Aと緩傾斜溝部 3 2 Bとを滑らかに接続したので、 トレツド端 2 4 Eへ向けてスムーズに水を流すことができる。
第 1の縦長陸部 3 4を形成している傾斜溝 3 2の全長を、 第 2の縦長陸部 3 6 を形成している傾斜溝 3 2の全長より 5〜2 0 %長くすることにより、 第 1の縦 長陸部 3 4と第 2の縦長陸部 3 6の剛性を略同等にすることができる。
なお、 ジグザグ周方向溝 2 8のジグザグ形状の振幅 Aが接地幅 W26の 5 0 %未 満になると、 コーナリングに際し、 キャンバー角度が増加してジグザグ周方向溝 2 8が接地面から離脱してゆく時、 あるキャンバー角を境にして中央連続周リブ 3 0のエッジが一気に接地面から離脱し易くなる傾向となり、 ゥエツト操縦安定 性が不十分となる虞がある。
一方、 ジグザグ周方向溝 2 8のジグザグ形状の振幅 Aが接地幅 W26の 1 0 0 % を越えると、 ジグザグ周方向溝 2 8のジグザグ形状の屈曲度が大きくなり過ぎて 周方向に向けての排水性が悪化し、 排水性が不十分となる虞がある。 さらに、 ジ グザグ周方向溝 2 8が接地面 2 6の外側にはみ出す度合いが増えて、 周方向にか けての排水効果が不安定に変動してゥエツト操縦安定性が悪化する虞がある。 中央連続周リブ 3 0の幅が接地幅の 2 0 %未満になると、 中央連続周リブ 3 0 の陸部剛性が不足し、 直進走行安定性、 小キャンバー角度でのコーナリング時の 操縦安定性、 及び耐摩耗性等が劣る虞がある。 一方、 中央連続周リブ 3 0の幅が接地幅の 5 0 %を越えると、 キャンバー角 0 度及び小キャンバー角度における接地面内の溝容積が減少し、 特に高速直進走行 時の周方向排水性が確保出来なくなる虞があり、 ゥエツト操縦安定性が劣る虞が ある。
緩傾斜溝部 3 2 Bの、 タイヤ回転方向側から計測するタイヤ周方向に対する角 度が 9 0度未満になると、 トレッド側領域 2 4 Sが接地する大キャンバー角時に 、 溝方向が排水方向と逆行するため、 ウエット操縦安定性が劣る虞がある。 一方、 緩傾斜溝部 3 2 Bの、 タイヤ回転方向側から計測するタイヤ周方向に対 する角度が 1 5 0度を越えると、 卜レツド側領域 2 4 Sが接地する大キャンバー 角時に、 緩傾斜溝部 3 2 B間の陸部分の入力方向に面するエッジ部の長さが増え 、 該睦部分の剛性の弱さが表れ、 ウエット操縦安定性が劣る虞がある。
トレッド中央領域 2 4 Cにおいて、 ジグザグ周方向溝 2 8以外の溝 (傾斜溝 3 2 ) の溝幅がジグザグ周方向溝 2 8の溝幅の 6 0 %未満であると、 溝幅が狭過ぎ て特に高速走行時の排水性に劣る虞がある。
一方、 トレッド中央領域 2 4 Cにおいて、 ジグザグ周方向溝 2 8以外の溝 (傾 斜溝 3 2 ) の溝幅がジグザグ周方向溝 2 8の溝幅の 8 0 %を越えると、 ネガティ ブ率が大きくなり過ぎて卜レツド剛性が低下し、 耐摩耗性が低下する虞がある。
卜レツド端 2 4 Eにおける溝の周方向ピッチ長 Pが接地長 L 26の 2 0 %未満で は、 トレッド端 2 4 Eに開口する溝 (傾斜溝 3 2、 補助傾斜溝 3 8 ) により区画 される陸部 4 0の周方向寸法が狭過ぎて剛性が低下し、 耐摩耗性に劣る虞がある 一方、 トレッド端 2 4 Eにおける溝 (傾斜溝 3 2、 補助傾斜溝 3 8 ) の周方向 ピッチ長 Pが接地長 L 26の 5 0 %を越えると、 接地面内に配置される溝の容積率 が低下して耐排水性に劣る虞がある。
第 1の縦長陸部 3 4のタイヤ回転方向側の端部の幅 (本実施形態では、 最小幅 )、 及び第 2の縦長陸部 3 6のタイヤ回転方向側の端部の幅 (本実施形態では、 最小幅) が、 中央連続周リブ 3 0の幅 W3。の 5 0 %未満になると、 陸部剛性が低 くなり過ぎて耐摩耗性、 操縦安定性が劣る虞がある。
一方、 第 1の縦長陸部 3 4のタイヤ回転方向側端部の幅、 及び第 2の縦長陸部 3 6のタイヤ回転方向側端部の幅が、 中央連続周リブ 3 0の幅 W3Qの 1 2 0 %を 越えると、 中央連続周リブ 3 0との剛性段差が急増し、 キャンバー角の変化時に 操縦安定性が不安定になって好ましくない。
また、 急傾斜溝部 3 2 Aの終端部におけるタイヤ周方向に対する角度 0 Aが 2 0度を越えると、 ジグザグ周方向溝 2 8との間隔が広くなりすぎる部分が生じ、 剛性段差が発生する虞がある。
ジグザグ周方向溝 2 8のジグザグ形状の振幅 Aが、 中央連続周リブ 3 0の幅の 2 5 0 %未満になると、 コーナリングに際し、 キャンバー角度が増加してジグザ グ周方向溝 2 8が接地面から離脱してゆく時、 あるキャンバー角を境にして中央 連続周リブ 3 0のエツジが一気に接地面から離脱し易くなる傾向となり、 ゥエツ 卜操縦安定性が不十分となる虞がある。
一方、 ジグザグ周方向溝 2 8のジグザグ形状の振幅 Aが、 中央連続周リブ 3 0 の幅の 3 5 0 %を越えると、 ジグザグ周方向溝 2 8のジグザグ形状の屈曲度が大 きくなり過ぎて周方向に向けての排水性が悪化し、 排水性が不十分となる虞があ る。
さらに、 ジグザグ周方向溝 2 8が接地面の外側にはみ出す度合いが増えて、 周 方向にかけての排水効果が不安定に変動してゥエツト操縦安定性が悪化する虞が ある。
T HZ S Wが 0 . 2 5未満になると、 接地面圧減少により排水性が悪化する虞 があり、 また、 ハンドリングに重さが出過ぎることにより操縦安定性が低下する 虞がある。
—方、 T H/ S Wが 0 . 4 5を越えると、 接地面圧が上がり過ぎて耐摩耗性が 低下する虞がある。
また、 接地長 L 26が接地幅 W26の 2 0 0 %未満になると、 接地面圧が低くなり 過ぎて耐ゥエツト性に劣る虞がある。
一方、 接地長 L 26が接地幅 W26の 2 5 0 %を越えると、 接地面圧が高くなり過 ぎて耐摩耗性に劣る虞がある。
トレツド 2 4のタイヤ赤道面 C Lを中心としてトレッドペリフェリ幅 TWの 5 0 %の範囲内の領域でのネガティブ率が 3 0 %未満になると、 ネガティブ率が 低過ぎて耐排水性に劣り、 特に高速直進時の耐ゥエツト性に劣る虞がある。 一方、 トレッド 2 4のタイヤ赤道面 C Lを中心としてトレツドペリフェリ幅 T Wの 5 0 %の範囲内の領域でのネガティブ率が 4 0 %を越えると、 ネガティブ率 が高すぎて耐摩耗性に劣る虞がある。
また、 トレツド 2 4のタイヤ赤道面 C Lを中心としてトレツドペリフェリ幅 T Wの 5 0 %の範囲内の領域よりもタイヤ幅方向外側の領域でのネガティブ率が 2 0 %未満になると、 ネガティブ率が低過ぎて排水性が低下する虞がある。
一方、 トレツド 2 4のタイヤ赤道面 C Lを中心としてトレツドペリフェリ幅 T Wの 5 0 %の範囲内の領域よりもタイヤ幅方向外側の領域でのネガティブ率が 3 0 %を越えると、 ネガティブ率が高すぎて大キャンバー角時、 横力がかかった時 の耐摩耗性が低下する虞がある。
トレッド中央領域 2 4 Cでの外輪郭フラットネスが 0 . 4未満になると、 接地 面圧が高くなり過ぎて耐摩耗性に劣る虞がある。
一方、 トレッド中央領域 2 4 Cでの外輪郭フラットネスが 0 . 7を越えると、 接地面圧が低くなり過ぎて耐ゥェッ卜性に劣る虞がある。
また、 トレッド側領域 2 4 Sでの外輪郭フラットネスが 0 . 2未満になると、 コーナリング時の接地面積が減少し過ぎて操縦安定性に劣る虞がある。
一方、 トレッド側領域 2 4 Sでの外輪郭フラットネスが 0 . 7を越えると、 コ —ナリング時の接地面圧が低くなり過ぎて特に耐ゥエツト操縦安定性に劣る虞が ある。
傾斜溝 3 2の踏み込み側の溝壁 3 2 aの角度 0 INが 0 ° 以内になると、 路面に 接触する時の溝壁 3 2 aの剛性が低くなり過ぎて早期偏摩耗を生じ易くなる。 一方、 傾斜溝 3 2の踏み込み側の溝壁 3 2 aの角度 0 INが 4 5 ° を越えると、 路面に接触する時の有効なエッジ作用を得られず、 ゥエツト操縦安定性に劣る虞 がある。
また、 傾斜溝 3 2の蹴り出し側の溝壁 3 2 bの角度 S。UTが 0 ° 以内になると 、 駆動時の入力に対する陸部剛性が低くなり過ぎ、 耐摩耗性に劣る虞がある。 一方、 傾斜溝 3 2の蹴り出し側の溝壁 3 2 bの角度 0 ουτが 4 5 ° を越えると 、 摩耗時の陸部の剛性変化が大きくなり、 ウエット操縦安定性に劣る虞がある。 また、 トラクシヨン力は、 踏み込み側の溝壁 3 2 aのエッジがしっかりと路面 の水膜を破り、 必要十分な陸部剛性により効果的に路面に伝達されるので、 踏み 込み側のエッジ部分 3 2 a Eを鋭くする必要がある。
本実施形態の二輪車用空気入りタイヤ 1 0では、 踏み込み側の溝壁 3 2 aの角 度 0 INを蹴り出し側の溝壁 3 2 bの角度 0。υτよりも小さくしたので、 踏み込み 側のエツジ部分 3 2 a Εが鋭くなつて水膜を破り易くなり、 ウエット路面走行時 に大きなトラクシヨン力を得ることができる。
トレツド 2 4のタイヤ赤道面 C Lを中心としてトレツドペリフェリ幅 TWの 5 0 %の範囲内の領域において、 各溝深さを実質上同一としたので、 該領域内の陸 部剛性のレベルを同等とし、 また、 溝深さ変化による排水性低下を避けることが できる。
二輪車用空気入りタイヤ 1 0をラジアル構造とすることにより、 アスファルト 路における耐摩耗性に効果的となる。
(試験例)
本発明の効果を確かめるために、 本発明の適用さた実施例のタイヤ、 従来例の タイヤ 2種、 及び比較例のタイヤ 2種を用意し、 プレ一キング時、 コーナリング 時、 トラクシヨン時のフィーリング評価の比較を行うと共に、 耐久性の比較を行 つた。
以下に試験タイヤを説明する。
実施例のタイヤ:実施形態で説明した二輪車用空気入りタイヤである。
従来例 1のタイヤ:図 5に示すパターンを有する二輪車用空気入りタイヤであ る。
比較例 1のタイヤ:図 8に示すパターンを有する二輪車用空気入りタイヤであ る。 図 8に示すように、 この比較例 1のタイヤ 4 0 0のトレッド 4 0 2には、 ト レツド端からタイヤ赤道面 C Lに向けて延び、 タイヤ赤道面 C L付近で終端する 第 1の傾斜溝 4 0 4と、 第 1の傾斜溝 4 0 4よりも短い第 2の傾斜溝 4 0 6とが タイヤ周方向に交互に配置されている。 また、 タイヤ赤道面 C Lを挟んで一方の 第 1の傾斜溝 4 0 4及び第 2の傾斜溝 4 0 6は、 各々他方の第 1の傾斜溝 4 0 4 及び第 2の傾斜溝 4 0 6に対して位相差を付けられている。 比較例 2のタイヤ:図 9に示すパターンを有する二輪車用空気入りタイヤであ る。 図 9に示すように、 この比較例 2のタイヤ 500のトレッド 50 2には、 夕 ィャ幅方向中央にタイヤ周方向に沿って直線状に延びる一対の直線状周方向溝 5 04が設けられている。 さらに、 直線状周方向溝 504のタイヤ幅方向外側には 、 卜レッド端からタイヤ赤道面 CLに向けて延び、 直線状周方向溝 504付近で 終端する第 1の傾斜溝 50 6が設けられており、 タイヤ周方向の第 1の傾斜溝 5 06間には第 1の傾斜溝 506よりも短い第 2の傾斜溝 5 0 8力 S 2本配置されて いる。 また、 タイヤ赤道面 CLを挟んで一方の第 1の傾斜溝 50 6及び第 2の傾 斜溝 50 8は、 各々他方の第 1の傾斜溝 5 06及び第 2の傾斜溝 50 8に対して 位相差を付けられている。
従来例 2のタイヤ:図 6に示すパターンを有する二輪車用空気入りタイヤであ る。
なお、 これら試験タイヤの各部の比較は以下の表 1内に記載した通りである。 次に、 試験方法を説明する。
試験は、 タイヤサイズ 1 80 /5 5 ZR 1 7の試験タイヤを 1 7インチのリム に組み付け、 内圧 230 KP a を充填し、 実車の後輪に装着して行った。
ブレーキング試験、 コーナリング試験、 及びトラクシヨン試験は、 サーキット におけるパネラー nフィ一リング試験とした。
耐久性試験は、 サーキットにおけるロングラン試験 (R a c e L a p Ru n) であり、 R a c e L a p = 3 0 (周回)、 R a c e D i s t a n c e ^ 1 20 kmとした。
なお、 各テストの評価結果は、 下記の表 1に記載した通りである。 また、 評価 の説明は表 2に記載した通りである。 【表 1】
偷例 Iクリ ¾x. リ Vt木 Ίグ ϋ
1 1 2 2 請 P R ίfeil lの様 Ίί¾* Η ί · · 1 レ 1 " 4 - -^Ι fcl? Q 1丄 o 丄 リ 9 Q での傾斜溝の角度 (度)
請 ェ百 ^ の德 Γ# · 八 v 八 A ノ Ψ I≡Et -4=· πί
J刀 1 μ」 i-R- ν ίίΚ ψ田 / ^, 田 、 /oノ 8 0 田 U ¾Φ田 u ΪΚΦ田 U l
周方向溝の 1/2波長 Ζ接地長 (%) 9 0 苒 し fix. 00 /ix. ¾ 00 請求項 4の構成:第 1の縦長陸部、 〇 X X X X 第 2の縦長陸部の幅、 長さ等
請求項 5の構成:一対の傾斜溝の位 〇 X X X X 相差他
請求項 6の構成:捕助傾斜溝 〇 X o o o 請求項 7の構成:補助傾斜溝の位相 〇 X X X X 請求項 8の構成:中央連続周リブの 2 7 X X 2 9 2 9 幅 (%)
請求項 9の構成:緩傾斜溝の角度 1 1 0 X 1 2 5 1 1 5 1 1 0 請求項 1 0の構成:縦長陸部の最小 〇 X 〇 〇 〇 幅
請求項 1 1の構成 ο X 〇 o 〇 請求項 1 2の構成 (%) 1 3 X 0 0 0 請求項 1 3の構成 (%) 7 0 X X 7 3 X 請求項 1 4の構成 (%) 3 0 X 2 5 2 4 1 1 請求項 1 5の構成 (%) 9 5 X X 8 8 8 8 請求項 1 6の構成 X X X X ジグザグ周方向溝 振幅 (%) 2 9 5 振幅 0 周方向 振幅 0 振幅 0 波長∞ 溝無し 波長∞ 波長∞ 請求項 1 7の構成: T HZ S W 0.314 0.314 0.314 0.314 0.314 接地長 Ζ接地幅 (%) 215 215 215 215 215 請求項 1 8の構成:
トレツ ド中央領域のネガティプ率 3 5 4 5 3 5 3 5 3 3 トレツ ド側領域のネガティブ率 2 5 4 0 2 9 2 5 3 0 請求項 1 9の構成:
トレツ ド中央領域のフラットネス 0.64 0.64 0.64 0.64 0.64 トレツ ド側領域のフラッ トネス 0.36 0.36 0.36 0.36 0.36 請求項 2 0の構成:
踏み込み側の溝壁の角度 (度) 1 0 1 0 1 0 1 0 1 0 蹴り出し側の溝壁の角度 (度) 2 0 2 0 2 0 2 0 2 0 請求項 2 1の構成:溝深さ 〇 X 〇 〇 〇 請求項 2 2の構成: ラジアル構造 〇 〇 〇 〇 〇 ブレーキング評価 〇 X Δ ◎ コーナリング評価 ◎◎ 〇 Δ X 〇 トラクション評価 〇 ◎◎◎ X ◎◎ 耐久性評価 (摩耗肌による確認) X 評価無 評価無 評価無 【表 2】
Figure imgf000031_0001
試験の結果から、 本発明の適用された実施例の二輪車用空気入りタイヤは、 ブ レーキ、 コーナリング、 トラクシヨン、 摩耗耐久性の全てを高次元で両立させて いることが分かる。 産業上の利用可能性 以上のように、 本発明にかかる二輪車用空気入りタイヤは、 二輪車に用いて好 適であり、 例えば、 耐摩耗性とウエット操縦安定性の両立を図りたい場合に適し ている。

Claims

請求の範囲
1 . 比較的大きなトレツド踏面部外面曲率を有したトレツドと、
前記トレッドのタイヤ軸方向中央部分に設けられタイヤ周方向に連続; ザグ状に延びる中央連続周リブを区画するタイヤ周方向に沿ってジグザグ状に延 びる一対のジグザグ周方向溝と、
前記一対のジグザグ周方向溝のタイヤ幅方向両側においてタイヤ周方向に間隔 をあけて複数設けられ、 トレツド端からタイヤ赤道面に向って延びると共に前記 ジグザグ周方向溝に接続することなく前記ジグザグ周方向溝の近傍で終端し、 か つタイヤ赤道面側の端部がトレッド端側の端部よりもタイヤ回転方向側に位置す るようにタイヤ幅方向に対して傾斜する一対の傾斜溝と、
を備えた二輪車用空気入りタイヤであって、
前記傾斜溝は、 タイヤ赤道面側に配置されタイヤ周方向に対する角度が 0〜 2 0度の範囲内にある急傾斜溝部と、 前記急傾斜溝部のタイヤ幅方向外側に配置さ れタイヤ周方向に対する角度が前記急傾斜溝部の前記角度よりも大きく設定され た緩傾斜溝部とを有し、
前記ジグザグ周方向溝のジグザグ形状を形成する辺と相面して前記急傾斜溝部 のタイヤ赤道面側の主用部を配置すると共に、 タイヤ周方向に隣接する他の傾斜 溝の急傾斜溝部に対して一部分をタイヤ幅方向にオーバ一ラップさせることによ つて、 前記ジグザグ周方向溝のジグザグ形状を形成する辺との間に、 幅が略均一 な第 1の縦長陸部と、 タイヤ回転方向とは反対方向に向うにしたがって幅が徐々 に広くなる第 2の縦長陸部とをタイヤ周方向に交互に連結配置した、 ことを特徴 とする二輪車用空気入りタイヤ。
2 . タイヤ回転軸に沿った断面で見たときのタイヤ赤道面部分のトレッドクラ ゥン半径が 2 5 0 mm以下である、 ことを特徴とする請求項 1に記載の二輪車用
3 . 前記ジグザグ周方向溝のジグザグ形状の振幅は、 標準リムに装着し、 標準 空気圧を充填し、 かつキャンバー角 0度の状態で標準荷重を掛けたときの接地幅 の 5 0〜 1 0 0 %の範囲内にあり、 ' 前記ジグザグ周方向溝のジグザグ形状の 1 Z 2波長は、 標準リムに装着し、 標 準空気圧を充填し、 かつキャンバー角ひ度の状態で標準荷重を掛けたときの接地 長の 5 0〜1 5 0 %の範囲内にある、 ことを特徴とする請求項 1または請求項 2 に記載の二輪車用空気入りタイヤ。
4 . 前記第 1の縦長陸部を形成している急傾斜溝部は、 前記ジグザグ周方向溝 の相面する辺と同方向に傾斜し、
前記第 2の縦長陸部を形成している急傾斜溝部は、 前記ジグザグ周方向溝の相 面する辺と逆方向に傾斜し、
前記第 2の縦長陸部は、 前記第 1の縦長陸部よりもタイヤ周方向の長さが短い 、 ことを特徴とする請求項 1乃至請求項 3の何れか 1項に記載の二輪車用空気入 りタイヤ。
5 . 前記一対の傾斜溝は、 タイヤ赤道面を挟んで一方の傾斜溝のタイヤ赤道面 側の端部と他方の傾斜溝のタイヤ赤道面側の端部とがタイヤ周方向に位相差を設 けて配置され、 タイヤ周方向に隣接する他の一対の傾斜溝とは、 前記位相差が相 反する方向に設定されている、 ことを特徴とする請求項 1乃至請求項 4の何れか 1項に記載の二輪車用空気入りタイヤ。
6 . タイヤ周方向の傾斜溝間には、 トレッド端からタイヤ赤道面側へ延びて前 記卜レツド中央領域と前記卜レツド側領域との境界付近にて終端すると共に、 夕 ィャ周方向に隣接する前記傾斜溝と略平行な補助傾斜溝が 1または 2本設けられ ている、 ことを特徴とする請求項 1乃至請求項 5の何れか 1項に記載の二輪車用 空気入りタイヤ。
7 . タイヤ周方向の傾斜溝間にタイヤ周方向の溝間隔が一定となるように前記 補助傾斜溝を配置したことを特徴とする請求項 6に記載の二輪車用空気入りタイ ャ。
8 . 前記中央連続周リブの幅は、 標準リムに装着し、 標準空気圧を充填し、 か つキャンバ一角 0度の状態で標準荷重を掛けたときの接地幅の 2 0〜 5 0 %の範 囲内である、 ことを特徴とする請求項 1乃至請求項 7の何れか 1項に記載の二輪 車用空気入りタイヤ。
9 . 前記緩傾斜溝部は、 タイヤ周方向を基準としてタイヤ回転方向側からタイ ャ軸方向外側へ計測する角度が 9 0〜1 5 0度の範囲内である、 ことを特徴とす る請求項 1乃至請求項 8の何れか 1項に記載の二輪車用空気入りタイヤ。
10. 溝で区画された各陸部分の最小幅は略同等である、 ことを特徴とする請 求項 1乃至請求項 9の何れか 1項に記載の二輪車用空気入りタイヤ。
11. 前記急傾斜部と前記緩傾斜溝部とは、 滑らかに連結されている、 ことを 特徴とする請求項 1乃至請求項 10の何れか 1項に記載の二輪車用空気入りタイ ャ。
12. 前記第 1の縦長陸部を形成している傾斜溝の全長は、 前記第 2の縦長陸 部を形成している傾斜溝の全長より 5~20 %長い、 ことを特徴とする請求項 1 乃至請求項 11の何れか 1項に記載の二輪車用空気入りタイヤ。
13. 前記ジグザグ周方向溝以外の溝は、 溝幅が実質状同一であり、 かつ前記 ジグザグ周方向溝の溝幅の 60〜80 %の範囲内の溝幅を有している、 ことを特 徵とする請求項 1乃至請求項 12の何れか 1項に記載の二輪車用空気入りタイヤ
14. トレッド端における溝の周方向ピッチ長は、 標準リムに装着し、 標準空 気圧を充填し、 かつキャンバー角 0度の状態で標準荷重を掛けたときの接地長の
20〜50%の範囲内である、 ことを特徴とする請求項 1乃至請求項 13の何れ か 1項に記載の二輪車用空気入りタイヤ。
15. 前記第 1の縦長陸部のタイヤ回転方向側端部の幅、 及び前記第 2の縦長 陸部のタイヤ回転方向側端部の幅は、 前記中央連続周リブの幅の 50〜120% の範囲内にある、 ことを特徴とする請求項 1乃至請求項 14の何れか 1項に記載 の二輪車用空気入りタイヤ。
16. 前記ジグザグ周方向溝のジグザグ形状の振幅は、 中央連続周リブの幅の
30〜150%の範囲内である、 ことを特徴とする請求項 1乃至請求項 15の何 れか 1項に記載の二輪車用空気入りタイヤ。
17. トレッド最大径部分からタイヤ最大幅部までのタイヤ径方向に計測した 落ち高を TH、 タイヤ最大幅を SWとしたときに、 THZSWが 0. 25〜0.
45の範囲内であり、
標準リムに装着し、 標準空気圧を充填し、 かつキャンバー角 0度の状態で標準 荷重を掛けたときの接地長は接地幅の 200〜250 %の範囲内であり、 かつ接 地形状は長軸がタイヤ周方向に向く略楕円形状である、 ことを特徴とする請求項
1乃至請求項 1 6の何れか 1項に記載の二輪車用空気入りタイヤ。
1 8 . 前記トレッドのタイヤ赤道面を中心として卜レツドペリフェリ幅の 5 0
%の範囲内の領域でのネガティブ率が 3 0〜4 0 %の範囲内、
前記トレッドのタイヤ赤道面を中心としてトレツドペリフェリ幅の 5 0 %の範 囲内の領域よりもタイヤ幅方向外側の領域でのネガティブ率が 2 0〜3 0 %の範 囲内である、
ことを特徴とする請求項 1乃至請求項 1 7の何れか 1項に記載の二輪車用空気 入りタイヤ。
1 9 . トレッドクラウン半径/タイヤ最大幅を外輪郭フラットネス、 前記トレ ッドの内、 タイヤ赤道面を中心としてトレツドペリフェリ幅の 3 0〜 5 0 %の範 囲内をトレツド中央領域、 前記トレッド中央領域のタイヤ幅方向外側の領域を卜 レツド側領域と定義したときに、
前記トレッド中央領域での外輪郭フラットネスが 0 . 4〜0 . 7の範囲内にあ り、
前記トレッド側領域での外輪郭フラットネスが 0 . 2〜0 . 7の範囲内にある ことを特徴とする請求項 1乃至請求項 1 8の何れか 1項に記載の二輪車用空気 入りタイヤ。
2 0 . 前記傾斜溝は、 踏面に立てた法線に対する溝踏み込み側の溝壁の角度が 0〜4 5 ° の範囲内、 踏面に立てた法線に対する溝蹴り出し側の溝壁の角度が 0 〜4 5 ° の範囲内であり、 かつ、 溝踏み込み側の溝壁の角度は溝蹴り出し側の溝 壁の角度よりも小さい、 ことを特徴とする請求項 1乃至請求項 1 9の何れか 1項 に記載の二輪車用空気入りタイヤ。
2 1 . 前記トレッドのタイヤ赤道面を中心としてトレツドペリフェリ幅の 5 0 %の範囲内の領域では、 各溝深さが実質上同一である、 ことを特徴とする請求項 1乃至請求項 2 0の何れか 1項に記載の二輪車用空気入りタイヤ。
2 2 . ラジアル構造である、 ことを特徴とする請求項 1乃至請求項 2 1の何れ か 1項に記載の二輪車用空気入りタイヤ。
PCT/JP2003/000336 2002-01-18 2003-01-17 Pneumatique pour motocyclette WO2003061994A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP03701757A EP1473176B1 (en) 2002-01-18 2003-01-17 Pneumatic tire for motorcycle
DE60330117T DE60330117D1 (de) 2002-01-18 2003-01-17 Luftreifen für motorrad
US10/501,324 US7270161B2 (en) 2002-01-18 2003-01-17 Pneumatic tire for motorcycle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002/10896 2002-01-18
JP2002010896A JP2003211917A (ja) 2002-01-18 2002-01-18 二輪車用空気入りタイヤ

Publications (1)

Publication Number Publication Date
WO2003061994A1 true WO2003061994A1 (fr) 2003-07-31

Family

ID=27606002

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/000336 WO2003061994A1 (fr) 2002-01-18 2003-01-17 Pneumatique pour motocyclette

Country Status (6)

Country Link
US (1) US7270161B2 (ja)
EP (1) EP1473176B1 (ja)
JP (1) JP2003211917A (ja)
DE (1) DE60330117D1 (ja)
ES (1) ES2333212T3 (ja)
WO (1) WO2003061994A1 (ja)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4557884B2 (ja) * 2003-07-04 2010-10-06 ピレリ・タイヤ・ソチエタ・ペル・アツィオーニ 二輪車用の一対のフロント及びリヤ空気圧タイヤと前記一対のタイヤを装着した二輪車のウエット及びドライの両路面上での性能を改良する方法
JP4294408B2 (ja) * 2003-08-21 2009-07-15 住友ゴム工業株式会社 自動二輪車用タイヤ
JP4553678B2 (ja) * 2004-10-25 2010-09-29 株式会社ブリヂストン 自動二輪車用空気入りタイヤ
JP4649215B2 (ja) * 2005-01-19 2011-03-09 株式会社ブリヂストン 自動二輪車用空気入りタイヤ
JP4616047B2 (ja) * 2005-03-30 2011-01-19 株式会社ブリヂストン 二輪車用空気入りタイヤ
JP4800709B2 (ja) 2005-08-25 2011-10-26 株式会社ブリヂストン 二輪車用空気入りタイヤ
JP4814582B2 (ja) * 2005-08-25 2011-11-16 株式会社ブリヂストン 二輪車用空気入りタイヤ
JP4580312B2 (ja) * 2005-08-26 2010-11-10 株式会社ブリヂストン 二輪車用空気入りタイヤ
JP4814603B2 (ja) * 2005-10-03 2011-11-16 株式会社ブリヂストン 二輪車の前輪用空気入りタイヤ、及び二輪車の後輪用空気入りタイヤ
JP4841215B2 (ja) * 2005-10-03 2011-12-21 株式会社ブリヂストン 二輪車用空気入りタイヤ
JP5013759B2 (ja) * 2006-06-15 2012-08-29 株式会社ブリヂストン 自動二輪車用タイヤ
US8480829B2 (en) * 2006-08-03 2013-07-09 Bridgestone Corporation Pneumatic tire, and manufacturing method of the same
JP5048345B2 (ja) * 2007-01-10 2012-10-17 株式会社ブリヂストン 二輪車用空気入りタイヤ
WO2008124899A1 (en) * 2007-04-13 2008-10-23 Pirelli Tyre S.P.A Motorcycle tires and method to improve performance and wear resistance of motorcycle tires
JP4328371B2 (ja) 2007-07-24 2009-09-09 株式会社ブリヂストン 自動二輪車用空気入りタイヤ
JP4580437B2 (ja) * 2008-06-17 2010-11-10 住友ゴム工業株式会社 自動二輪車用タイヤ
USD608724S1 (en) 2009-03-16 2010-01-26 Trek Bicycle Corporation Bicycle tire tread
EP2485904B1 (en) * 2009-10-07 2017-05-03 Pirelli Tyre S.p.A. Motorcycle tyres
EP2554403A1 (en) * 2010-03-26 2013-02-06 Bridgestone Corporation Pneumatic tire for motorcycle
JP4989753B2 (ja) * 2010-06-09 2012-08-01 住友ゴム工業株式会社 自動二輪車用タイヤ
JP5250021B2 (ja) * 2010-12-27 2013-07-31 住友ゴム工業株式会社 自動二輪車用タイヤ
JP5741152B2 (ja) * 2011-04-05 2015-07-01 横浜ゴム株式会社 空気入りタイヤ
JP5765025B2 (ja) * 2011-04-06 2015-08-19 横浜ゴム株式会社 空気入りタイヤ
JP5788217B2 (ja) * 2011-05-20 2015-09-30 株式会社ブリヂストン 自動二輪車用空気入りタイヤ
JP5297503B2 (ja) * 2011-06-13 2013-09-25 住友ゴム工業株式会社 自動二輪車用タイヤ
JP5714998B2 (ja) * 2011-07-14 2015-05-07 株式会社ブリヂストン 自動二輪車用タイヤ対
EP2762332B1 (en) * 2011-09-28 2017-03-08 Bridgestone Corporation Pneumatic tire for an auto motorcycle
JP5616878B2 (ja) * 2011-12-05 2014-10-29 住友ゴム工業株式会社 自動二輪車用タイヤ
JP5890790B2 (ja) * 2013-02-25 2016-03-22 住友ゴム工業株式会社 空気入りタイヤ
JP5870062B2 (ja) * 2013-04-11 2016-02-24 住友ゴム工業株式会社 自動二輪車用タイヤ
US10071599B2 (en) 2013-09-24 2018-09-11 Sumitomo Rubber Industries, Ltd. Motorcycle tire
JP6364783B2 (ja) * 2014-01-21 2018-08-01 横浜ゴム株式会社 空気入りタイヤ
JP6085286B2 (ja) * 2014-12-06 2017-02-22 住友ゴム工業株式会社 自動二輪車用タイヤ
JP6438344B2 (ja) * 2015-05-01 2018-12-12 住友ゴム工業株式会社 自動二輪車用空気入りタイヤ
JP2017088146A (ja) * 2015-11-17 2017-05-25 株式会社ブリヂストン 自動二輪車用空気入りタイヤ
CN113165443B (zh) * 2018-11-30 2023-03-28 倍耐力轮胎股份公司 摩托车轮胎
BR112021008408A2 (pt) * 2018-11-30 2021-09-14 Pirelli Tyre S.P.A. Pneu de motocicleta
JP7230549B2 (ja) * 2019-02-06 2023-03-01 住友ゴム工業株式会社 自動二輪車用タイヤ
EP4058305B1 (en) * 2019-11-15 2024-05-15 Pirelli Tyre S.p.A. Motorcycle wheel tyre

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4289182A (en) * 1978-12-29 1981-09-15 Bridgestone Tire Company Limited Pneumatic tires for large size and high speed motorcycles
JPH06143931A (ja) * 1992-11-05 1994-05-24 Sumitomo Rubber Ind Ltd 二輪車用タイヤ
JPH10244811A (ja) * 1997-03-07 1998-09-14 Sumitomo Rubber Ind Ltd 自動二輪車用タイヤ
JPH11291715A (ja) * 1998-04-07 1999-10-26 Sumitomo Rubber Ind Ltd 自動二輪車用タイヤ
JP2000043509A (ja) * 1998-07-28 2000-02-15 Bridgestone Corp 二輪自動車用空気入りタイヤ

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD288196S (en) * 1984-10-17 1987-02-10 Sumitomo Rubber Industries, Ltd. Motorcycle tire
JPH07115570B2 (ja) * 1987-03-11 1995-12-13 株式会社ブリヂストン 空気入りタイヤ
JPH0714683B2 (ja) * 1988-11-09 1995-02-22 住友ゴム工業株式会社 自動二輪車用タイヤ
DE9002986U1 (de) * 1990-03-12 1991-04-04 Uniroyal Englebert Reifen GmbH, 5100 Aachen Fahrzeugluftreifen
JPH0655909A (ja) * 1992-08-06 1994-03-01 Sumitomo Rubber Ind Ltd 自動二輪車用タイヤ
AU124841S (en) * 1994-08-23 1995-10-16 Pirelli Reifenwerke Motorcycle tyre
DE69823715T2 (de) * 1997-02-27 2005-05-12 Bridgestone Corp. Luftreifen für Zweiräder
JP2987134B2 (ja) * 1998-04-17 1999-12-06 住友ゴム工業株式会社 空気入りタイヤ
DE19851594A1 (de) * 1998-11-09 2000-05-18 Dunlop Gmbh Profilgestaltungsprinzip
USD449023S1 (en) * 1999-11-25 2001-10-09 Sumitomo Rubber Industries, Ltd. Tire for motorcycle
JP2005138807A (ja) * 2003-11-10 2005-06-02 Sumitomo Rubber Ind Ltd 自動二輪車の後輪用タイヤ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4289182A (en) * 1978-12-29 1981-09-15 Bridgestone Tire Company Limited Pneumatic tires for large size and high speed motorcycles
JPH06143931A (ja) * 1992-11-05 1994-05-24 Sumitomo Rubber Ind Ltd 二輪車用タイヤ
JPH10244811A (ja) * 1997-03-07 1998-09-14 Sumitomo Rubber Ind Ltd 自動二輪車用タイヤ
JPH11291715A (ja) * 1998-04-07 1999-10-26 Sumitomo Rubber Ind Ltd 自動二輪車用タイヤ
JP2000043509A (ja) * 1998-07-28 2000-02-15 Bridgestone Corp 二輪自動車用空気入りタイヤ

Also Published As

Publication number Publication date
JP2003211917A (ja) 2003-07-30
US20050115653A1 (en) 2005-06-02
EP1473176A4 (en) 2007-11-21
EP1473176A1 (en) 2004-11-03
ES2333212T3 (es) 2010-02-18
US7270161B2 (en) 2007-09-18
EP1473176B1 (en) 2009-11-18
DE60330117D1 (de) 2009-12-31

Similar Documents

Publication Publication Date Title
WO2003061994A1 (fr) Pneumatique pour motocyclette
EP1614549B1 (en) Pneumatic tire
JP3177466B2 (ja) 空気入りタイヤ
EP2371584B1 (en) Heavy duty tire
JP3380605B2 (ja) 空気入りタイヤ
JP4973708B2 (ja) 空気入りタイヤ
JP6125142B2 (ja) 空気入りタイヤ
JP3851382B2 (ja) 自動車用タイヤ
JPS62214004A (ja) 高速用空気入りラジアルタイヤ
JP2009101846A (ja) 空気入りタイヤ
WO2005005170A1 (ja) 空気入りタイヤ
JP5048345B2 (ja) 二輪車用空気入りタイヤ
JP2004352049A (ja) 空気入りタイヤ
US20130126061A1 (en) Tire for Two-Wheeled Vehicles, Comprising a Tread Having Sipes
JP2000255217A (ja) 空気入りタイヤ
JP3569387B2 (ja) 非対称プロフィルに非対称トレッドパターンを具えた偏平ラジアルタイヤ
JP3396020B2 (ja) 空気入りタイヤ
JP3547186B2 (ja) 空気入りラジアルタイヤ
JP2003127616A (ja) タイヤ
JP4118391B2 (ja) 二輪車用空気入りラジアルタイヤ
WO2021054261A1 (ja) タイヤ
JP2009132178A (ja) 空気入りタイヤ
WO2021124969A1 (ja) タイヤ
WO2021111665A1 (ja) 空気入りタイヤ
JPH10264612A (ja) 空気入りラジアルタイヤ

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10501324

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2003701757

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003701757

Country of ref document: EP