WO2003060902A1 - Dispositif d'enregistrement/de reproduction de disque optique - Google Patents

Dispositif d'enregistrement/de reproduction de disque optique Download PDF

Info

Publication number
WO2003060902A1
WO2003060902A1 PCT/JP2003/000033 JP0300033W WO03060902A1 WO 2003060902 A1 WO2003060902 A1 WO 2003060902A1 JP 0300033 W JP0300033 W JP 0300033W WO 03060902 A1 WO03060902 A1 WO 03060902A1
Authority
WO
WIPO (PCT)
Prior art keywords
objective lens
recording
magnetic field
magnetic head
optical disk
Prior art date
Application number
PCT/JP2003/000033
Other languages
English (en)
French (fr)
Inventor
Makoto Takasima
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to AU2003201904A priority Critical patent/AU2003201904A1/en
Priority to EP03700466A priority patent/EP1465177A4/en
Priority to JP2003560916A priority patent/JP4124738B2/ja
Priority to US10/487,981 priority patent/US7206262B2/en
Publication of WO2003060902A1 publication Critical patent/WO2003060902A1/ja

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10502Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing characterised by the transducing operation to be executed
    • G11B11/10504Recording
    • G11B11/10508Recording by modulating only the magnetic field at the transducer
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10532Heads
    • G11B11/10534Heads for recording by magnetising, demagnetising or transfer of magnetisation, by radiation, e.g. for thermomagnetic recording
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/1055Disposition or mounting of transducers relative to record carriers
    • G11B11/10556Disposition or mounting of transducers relative to record carriers with provision for moving or switching or masking the transducers in or out of their operative position
    • G11B11/10573Control of relative positioning of the magnetic and optical transducers, e.g. to move simultaneously
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/1055Disposition or mounting of transducers relative to record carriers
    • G11B11/10576Disposition or mounting of transducers relative to record carriers with provision for moving the transducers for maintaining alignment or spacing relative to the carrier
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10595Control of operating function

Definitions

  • the present invention relates to an optical disk recording / reproducing apparatus which is an apparatus for optically recording and reproducing information.
  • the modern age is said to be the information age, and technological development of high-density, large-capacity memory, which is the core of this age, is being actively pursued.
  • High performance and high capacity, high reliability, rewrite function, etc. are required for the memory, and optical disk memory such as magneto-optical disk is the most suitable recording medium to satisfy these requirements. Attention has been paid.
  • the present invention relates to an optical disk recording / reproducing apparatus that performs recording or reproduction on the apparatus.
  • Fig. 14A is a plan view showing a schematic appearance of an optical head and a magnetic head of an optical disk recording / reproducing apparatus for recording and reproducing a recording medium which is a magneto-optical disk such as a mini disk. Is a side view thereof. The configuration and operation will be described below using these.
  • reference numeral 1 denotes a semiconductor laser chip which is a light emitting unit for emitting laser light therein, and an optical device which receives reflected light of the laser light from a recording medium 8 and detects various signals.
  • a single device with a signal detector The configured light receiving and emitting element, 2 is a laser beam emitted from the light receiving and emitting element 1, 3 is a mirror for directing the laser beam from the light receiving and emitting element 1 to the recording medium 8, and 4 is an objective lens 5 for the recording medium.
  • the objective lens actuator 4a is moved in the tracking direction and the focus direction to follow the eccentricity and surface runout, 4a is a magnet constituting the movable part of the objective lens actuator 4 4 c is a fixing part of the objective lens actuator 4, 4 d is an actuator for fixing the objective lens actuator 4 to the optical base 6, and 5 is a mirror 3.
  • An objective lens that condenses the laser light beam 2 reflected on the recording medium 8 to form a minute light spot on the recording medium 8, and 6 is an optical base for fixing the light receiving / emitting element 1 and the objective lens actuator 4 .
  • Reference numeral 7 denotes a magnetic head that applies a modulating magnetic field when the recording medium 8 is a recording type to realize so-called magnetic field modulation recording, and includes a magnetic core 7 a made of a magnetic material, a coil 7 b, and a recording medium. It comprises a sliding portion 7 that slides on the magnetic core 7a to keep the magnetic core 7a at a fixed distance from the surface of the recording medium 8, and a support portion (not shown). 8 is a recording medium.
  • the arrow X indicates the tracking direction of the recording medium 8 (that is, the radial direction of the disc-shaped recording medium 8).
  • the optical disk recording / reproducing apparatus when performing reproduction, a laser beam 2 is emitted from the light emitting / receiving element 1, the objective lens actuator 4 is driven, and the objective lens 5 is connected to the recording medium 8. A minute light spot is formed at a predetermined position. The reflected light from the recording medium 8 returns to the light receiving / emitting element 1, and the focus error signal, the tracking error signal, and the RF signal are detected.
  • the light receiving and emitting element 1 emits light power of a constant intensity so that the temperature of the information recording film is raised to one or more points by the light spot focused on the recording medium 8.
  • a modulation current having the waveform shown in FIG. 16 is applied to the magnetic head 7 provided on the side opposite to the side where the light beam enters the recording medium 8.
  • the so-called magnetic field modulation recording is performed by perpendicularly magnetizing the recording film heated above the Curie point.
  • Figure 15 shows the distribution of the magnetic field strength at this time.
  • Fig. 15 shows the measured magnetic field strength near the light spot.
  • the horizontal axis is the radial distance D from the center of the magnetic core 7a, and the vertical axis is the magnetic field required for recording the magnetic field strength. It is dimensionlessly represented by strength.
  • the strength of the magnetic field is constant within a range of ⁇ 0.5 mm in the radial direction from the center position of the magnetic core 7a. This width substantially coincides with the width (1 mm) of the magnetic head 7 in the radial direction. In a region where the absolute value of the radial distance D from the center position of the magnetic core 7a exceeds 0.5 mm, the strength of the magnetic field decreases according to the distance.
  • the strength of the magnetic field required for recording varies depending on the distance between the light spot and the magnetic head (thickness of the protective layer on the recording medium, assembly error, attitude of the magnetic head, etc.) and the movement of the objective lens in the tracking direction.
  • the drive current of the magnetic head 7 is determined so that recording is possible under all assumed conditions. That is, the drive to flow through the coil 7b so that a recordable magnetic field strength can be obtained even considering the distance between the light spot and the tip of the magnetic core and the maximum distance in which the objective lens moves in the radial direction from the center of the magnetic core.
  • the current value was determined.
  • the maximum eccentricity of the recording medium 8 is set to 0.6 mm.
  • the objective lens 5 is moved in the radial direction within a range of ⁇ 0.6 mm with respect to the magnetic core 7. Therefore, it is necessary to obtain the magnetic field intensity required for recording within a range of ⁇ 0.6 mm in the radial direction from the center position of the magnetic core 7a (“effective magnetic field area” in FIG. 15). Therefore, as shown by the dotted line in FIG. 15, the magnetic field strength becomes 1 or more when the radial distance D is within ⁇ 0.6 mm. Thus, the value of the current applied to the coil 7b was increased.
  • the magnetic field strength is 1.25, and when the light spot position is in this range, it is more than necessary. This means that a current value is being applied. As a result, there was a problem that the power consumption increased, and the continuous operation time of portable devices became shorter.
  • an optical disk recording / reproducing apparatus comprises: a magnetic head for performing magnetic field modulation; an objective lens for condensing light on a recording medium; Objective lens actuating to follow the direction and tracking direction, moving amount detecting means for detecting the moving amount of the objective lens in the tracking direction, and corresponding to the position of the objective lens from an output signal from the moving amount detecting means. It is characterized by comprising a position signal generating means for generating a position signal, and a drive signal modulating means for modulating a drive current of the magnetic head according to the position signal.
  • FIG. 1 is a block diagram showing a schematic configuration of an optical disk recording / reproducing apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 is a diagram illustrating a relationship between an amount of movement of an objective lens in a tracking direction and an objective lens position signal in the optical disc recording and reproducing apparatus according to the first embodiment of the present invention.
  • FIG. 3 is a diagram showing the intensity distribution of the magnetic field by the magnetic head in the optical disc recording / reproducing device of the first embodiment of the present invention.
  • FIG. 4 is a diagram showing an example of a peak waveform of a drive current of a magnetic head in the optical disc recording / reproducing device according to the first embodiment of the present invention.
  • FIG. 5 is a diagram illustrating an example of a drive current pulse waveform of a magnetic head in the optical disc recording / reproducing apparatus according to the first embodiment of the present invention.
  • FIG. 6 is a diagram showing another example of the drive current pulse waveform of the magnetic head in the optical disc recording / reproducing device according to the first embodiment of the present invention.
  • FIG. 7 is a plan view of an optical head and a magnetic head in an optical disk recording / reproducing apparatus according to Embodiment 2 of the present invention.
  • FIG. 8 is a plan view of an optical head and a magnetic head in the optical disc recording / reproducing device according to the third embodiment of the present invention.
  • FIGS. 9A, 9B, and 9C are block diagrams each showing a configuration of a photodetector in the optical disc recording / reproducing apparatus according to Embodiment 3 of the present invention.
  • FIG. 10A is a side sectional view of a magnetic head in an optical disc recording / reproducing apparatus according to Embodiment 4 of the present invention
  • FIG. 10B is a front view thereof.
  • FIG. 11 is a diagram showing a magnetic field strength distribution by a magnetic head in the optical disc recording / reproducing apparatus according to the fourth embodiment of the present invention.
  • FIG. 12 is a diagram showing an example of a peak waveform of a drive current of a magnetic head in the optical disc recording / reproducing apparatus according to the fourth embodiment of the present invention.
  • FIG. 13 shows an optical disc recording / reproducing apparatus according to Embodiment 4 of the present invention.
  • FIG. 3 is a diagram illustrating an example of a drive current pulse waveform of a magnetic head.
  • FIG. 148 is a plan view showing a schematic appearance of an optical head and a magnetic head of a conventional optical disk recording / reproducing apparatus
  • FIG. 14B is a side view thereof
  • FIG. 15 is a diagram showing a magnetic field strength distribution by a magnetic head in a conventional optical disk recording / reproducing apparatus.
  • FIG. 16 is a diagram showing a drive current pulse waveform of a magnetic head in a conventional optical disk recording / reproducing apparatus.
  • the movement amount detection means detects the movement amount of the objective lens in the tracking direction, and based on this, generates a position signal corresponding to the position of the objective lens, and the drive signal modulation means The drive current of the magnetic head is modulated according to the position signal.
  • a small current is used when the amount of movement is small, and a large current according to the amount of movement is used only when the amount of movement is large.
  • the average drive current can be reduced, and overall power consumption can be reduced.
  • the drive signal modulating means modulates the drive current of the magnetic head in a stepwise manner.
  • the movement amount detection means detects the movement amount of the objective lens in the tracking direction by detecting the relative displacement between the movable part and the fixed part of the objective lens actuator. May be. This makes it possible to easily detect the relative movement amount between the magnetic head and the objective lens, and to control the magnetic head drive current.
  • the movement amount detection means may detect the movement amount of the objective lens in the tracking direction from the reflected light from the recording medium. This makes it possible to configure the movement amount detecting means without increasing the number of parts.
  • the dimension of the magnetic core of the magnetic head in the tracking direction is smaller than the amount of movement of the objective lens in the tracking direction.
  • the size of the magnetic core and the coil can be reduced, the inductance of the coil can be reduced, the high-frequency characteristics can be improved, and a higher transfer rate can be realized.
  • the upper limit value of the absolute value of the drive current of the magnetic head is set. This can prevent damage such as burnout of the magnetic head during abnormal operation.
  • FIG. 1 is a block diagram for explaining an optical disk recording / reproducing apparatus according to the present embodiment
  • FIG. FIG. 3 is a diagram illustrating a relationship with a position signal
  • FIG. 3 is a diagram illustrating a magnetic field intensity distribution in a radial direction
  • FIG. 4 is a diagram illustrating a drive current peak waveform in the optical disc recording / reproducing apparatus of the present embodiment
  • FIG. 5 is a diagram showing a drive current pulse waveform.
  • the objective lens of the optical head 10 moves the objective lens in the tracking direction so as to follow the eccentricity of the disk.
  • the moving amount detecting means 15 outputs a signal corresponding to the moving amount of the objective lens in the tracking direction
  • the position signal generating means 60 outputs the moving amount of the objective lens in the tracking direction as shown in FIG. Objective proportional to Generate a lens position signal.
  • the drive signal modulating means 40 of the next stage generates a modulation signal corresponding to the amount of movement of the objective lens using the objective lens position signal, and calculates the signal generated by the RF signal generating means 50.
  • a driving signal is output, and the driving means 30 in the final stage amplifies the driving signal and drives the magnetic head 20.
  • the drive signal modulating means 40 generates a modulation signal from the objective lens position signal and the magnetic field strength distribution of the magnetic head.
  • the horizontal axis is the radial distance D from the center of the magnetic core, and the vertical axis is the magnetic field strength, which is dimensionless with the magnetic field strength required for recording.
  • the dotted line shows the distribution of the magnetic field strength of the conventional magnetic head, which is the same as that shown in FIG.
  • the magnetic field strength is almost constant when the radial distance D from the center of the magnetic core is within ⁇ 0.5 mm, and decreases when the absolute value of the distance D exceeds 0.5 mm. I will do it.
  • the effective magnetic field region is set to a range of ⁇ 0.6 mm in the radial direction from the center position of the magnetic core in consideration of the disk eccentricity.
  • the coil In order to enable recording even if the position of the light spot fluctuates within this effective magnetic field area due to tracking control of the objective lens, the coil must be so designed that the magnetic field strength is always 1 or more within this effective magnetic field area. Current is being applied.
  • the magnetic field strength is 1.25, and when the light spot position is within this range, This means that an excessive current value is applied.
  • the drive current in order to reduce the drive current, the drive current is reduced by 20% compared to the conventional example.
  • the strength of the magnetic field is proportional to the drive current applied to the coil. Therefore, the current value is reduced by 20% compared to the conventional example shown by the dotted line.
  • the magnetic field strength distribution becomes as shown by the solid line, and when the radial distance D is within a range of ⁇ 0.5 mm, the magnetic field strength becomes 1, and the absolute value of the radial distance D becomes 0.5 mm. Above the field strength decreases.
  • the lower diagram of FIG. 3 shows the amount of movement of the objective lens in the radial direction with respect to the center position of the magnetic core when the objective lens follows an optical disk having an eccentricity of 0.6 mm. Only when the absolute value of the amount of movement of the objective lens in the radial direction with respect to the center position of the magnetic core exceeds 0.5 mm, recording cannot be performed due to insufficient magnetic field strength.
  • the amount of movement of the objective lens in the radial direction is detected, and when the amount of movement exceeds the range of ⁇ 0.5 mm with respect to the center position of the magnetic core, the position shown in FIG. From the magnetic field strength distribution indicated by the solid line, the decrease rate of the magnetic field strength corresponding to the movement amount is obtained. Then, the current is modulated (amplified) by the reciprocal of this decreasing rate and applied to the coil.
  • the magnetic field strength can always be set to 1, and the recording can be performed. Can be performed.
  • Fig. 4 shows the peak waveform of the drive current applied to the coil when recording on an optical disk whose disk eccentricity is 0.6 mm (0-peak).
  • the horizontal axis shows the rotation angle of the optical disk, and the vertical axis shows the current value.
  • the current value is “1”
  • a magnetic field whose magnetic field strength is “1” in FIG. 3 is applied.
  • the solid line AO is the peak waveform (peak to peak value) of the drive current in the present embodiment.
  • the current is 1 when the amount of movement of the objective lens that is displaced following the eccentricity of the optical disk is within ⁇ 0.5 mm, but increases when the absolute value of the amount of movement exceeds 0.5 mm.
  • the absolute value of the quantity reaches 0.6 mm, the current becomes 1.25, and when it exceeds 0.6 mm, the current decreases and the current value returns to 1.
  • Current peak occurs twice per rotation of optical disk You.
  • the two-dot chain line A1 shows the average value of the drive current modulation waveform AO, and the current value is 1.06, which is the current value 1 of the conventional drive current waveform shown by the dotted line C. This is 85% of 25, which means that the drive current is reduced by 15% according to the present embodiment.
  • the maximum current (see Fig. 4) is assumed to prevent burning of the coil of the magnetic head.
  • a limiting means (not shown) is provided to prevent the coil from being driven when the absolute value of the current value in 4 exceeds 1.25).
  • FIG. 6 is a diagram showing another example of the modulated drive current pulse waveform in the optical disc recording / reproducing apparatus of the present embodiment.
  • the solid line is the drive current pulse waveform of the present embodiment in which the 0-peak value is modulated with a waveform composed of three steps.
  • the dotted line in FIG. 6 is the driving current pulse waveform of the conventional example.
  • a current is applied to the coil so that the applied magnetic field has a strength close to the lower limit of the magnetic field required for recording.
  • the current applied to the coil is increased according to the movement of the objective lens 5 to increase the magnetic field. Keep strength constant. As a result, optical disk storage with reduced power consumption A recording / playback apparatus is obtained.
  • FIG. 7 is a plan view of the optical head and the magnetic head of the present embodiment. 7, members having the same functions and operations as those in FIG. 14 are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • Reference numeral 9 denotes a reflection-type photointegrator having a built-in light emitting diode and a phototransistor, which functions as a moving amount detecting means of the objective lens 5 in the tracking direction.
  • the photointerrupter 9 is installed on an actuating base 4 d, which is a member on the fixed side of the objective lens working unit 4, facing the movable member of the objective lens working unit holding the objective lens 5.
  • the position signal generating means 60 is shown in FIG. It generates a linear objective lens position signal proportional to the amount of movement of the objective lens in the tracking direction as shown.
  • the next-stage drive signal modulating means 40 uses the obtained objective lens position signal, similarly to the first embodiment, the next-stage drive signal modulating means 40 generates a modulation signal corresponding to the amount of movement of the objective lens, and the RF signal generating means 5 A drive signal is output by calculating the signal generated in step 0, and the drive means 30 in the final stage amplifies the drive signal to drive the magnetic head 20.
  • the present embodiment when the amount of movement of the objective lens 5 in the radial direction is small, a current is applied to the coil so that the applied magnetic field has a strength close to the lower limit of the magnetic field required for recording.
  • the magnitude of the applied magnetic field decreases so as to be unrecordable as the radial movement of the objective lens 5 increases, the current applied to the coil is increased according to the movement of the objective lens 5 to increase the magnetic field. Keep strength constant.
  • optical disk storage with reduced power consumption A recording / playback apparatus is obtained.
  • the means for detecting the amount of movement of the objective lens in the tracking direction can be made simple and compact. Can be configured.
  • FIGS. 8, 9A, 9B, and 9C are plan views of the optical head and the magnetic head of the present embodiment, and are schematic views of the photodetectors of FIGS. 9A, 9B, and 9C.
  • FIGS. 8, 9A, 9B, and 9C members having the same functions and operations as those in FIG. 14 are denoted by the same reference numerals, and a detailed description thereof will be omitted.
  • This embodiment is different from the second embodiment shown in FIG. 7 in that the photodetector 9 of the second embodiment is not used, and the light emitting / receiving element 1 is used to detect the movement amount of the objective lens in the tracking direction. (Not shown).
  • 1a is a photodetector housed in the light receiving and emitting element 1
  • A, B, C, and D are divided areas of the photodetector 1a, and lb is notation. This is the light spot of the far field of the light beam returned from the recording medium.
  • the divided area A is on both outer sides of the upper half of the photodetector 1a
  • the divided area B is on both outer sides of the lower half of the photodetector 1a
  • the divided area C is on the upper half of the photodetector 1a.
  • the divided area D receives the incident light at the central part of the lower half of the photodetector 1a, and outputs a signal corresponding to the received light intensity.
  • X corresponds to the radial direction of the recording medium
  • Y corresponds to the tangential direction of the recording track of the recording medium.
  • FIG. 9A, 9B, and 9C the light spot 1b of the far field returned from the recording medium is connected to the photodetector 1a.
  • FIG. 9B shows a case where the amount of movement of the objective lens 5 in the radial direction is zero.
  • the light spot 1b moves in the X direction as shown in FIGS. 9A and 9C. Since the areas A and B on the photodetector 1a are not affected by the diffraction due to the groove of the recording medium, the difference (A-B) between the two output signals is the same as in Fig. 2.
  • a linear objective lens position signal is obtained.
  • the tracking error signal is the difference between the objective lens position signal (A-B) and the push-pull signal (C-D) (K * (A-B)-(C-D), where K is a constant). It can be obtained by:
  • the next-stage drive signal modulating means 40 uses the obtained objective lens position signal, similarly to the first embodiment, the next-stage drive signal modulating means 40 generates a modulation signal corresponding to the amount of movement of the objective lens, and the RF signal generating means 50 A driving signal is output by calculating the generated signal, and the driving means 30 in the final stage amplifies the driving signal and drives the magnetic head 20.
  • a current is applied to the coil so that the applied magnetic field has a strength close to the lower limit of the magnetic field required for recording.
  • the current applied to the coil is increased according to the movement of the objective lens 5 to increase the magnetic field. Keep strength constant. As a result, an optical disk recording / reproducing apparatus with reduced power consumption can be obtained.
  • the objective lens position signal can be generated in the process of obtaining the servo signal of the optical head. Since it is not necessary to add a new device or circuit for detecting the moving amount of the device, the size and cost of the device are not increased.
  • the APP method has been described as a detection method.
  • other methods may be used as long as similar methods can be detected.
  • FIG. 10A is a side cross-sectional view of the magnetic head
  • FIG. 10B is a front view of the magnetic head, showing the dimensions of the magnetic core and the amount of movement of the objective lens.
  • FIG. 11 is a diagram showing the distribution of the magnetic field strength in the radial direction
  • FIG. 12 is a diagram showing the driving current peak waveform
  • FIG. 13 is a diagram showing the driving current pulse waveform.
  • 10A and 10B members having the same functions and operations as those in FIG. 14 are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • the dimension W of the magnetic core 7a in the radial direction X is larger than the assumed maximum movement amount L of the objective lens 5 in the tracking direction.
  • the position signal generating means 60 generates an objective lens position signal proportional to the radial position of the objective lens as shown in FIG.
  • the next-stage drive signal modulating means 40 generates a modulation signal corresponding to the amount of movement of the objective lens using the objective lens position signal, and calculates the modulation signal with the signal generated by the RF signal generating means 50.
  • a driving signal is output, and the driving means 30 in the final stage amplifies the driving signal to drive the magnetic head 20.
  • the operation of the drive signal modulating means 40 will be described below.
  • the drive signal modulating means 40 controls the intensity of the magnetic field of the magnetic head with the objective lens position signal.
  • a modulation signal is generated from the distribution of the amplitude.
  • the horizontal axis represents the radial distance D from the center of the magnetic core
  • the vertical axis represents the strength of the magnetic field, which is dimensionless with the magnetic field strength required for recording.
  • the dotted line shows the distribution of the magnetic field strength of the conventional magnetic head, which is the same as that shown in FIGS.
  • the magnetic field strength is 1.25 when the radial distance D is within ⁇ 0.5 mm, and the magnetic field strength decreases when the absolute value of the radial distance D exceeds 0.5 mm.
  • the range ( ⁇ 0.5 mm) where the magnetic field strength is 1.25 corresponds to the radial dimension W (1 mm) of the magnetic core 7a.
  • the effective magnetic field area is set to a range of ⁇ 0.6 mm in the radial direction from the center position of the magnetic core, and a current is applied to the coil so that the magnetic field strength becomes 1 or more in this range. I have.
  • the drive current value is reduced by 20% from the conventional example, that is, the drive current value is reduced from 1.25 of the conventional example to 1. Reduction. Furthermore, the inductance of the coil is reduced by reducing the magnetic core dimension W to 0.7 mm from 1 mm in the conventional example.
  • the magnetic field strength distribution in this case is as shown by the solid line in FIG. When the radial distance D is within ⁇ 0.35 mm, the magnetic field strength is 1, and when the absolute value of the radial distance D exceeds 0.35 mm, the magnetic field strength decreases.
  • Fig. 11 shows the amount of movement of the objective lens in the radial direction with respect to the center position of the magnetic core when the objective lens is made to follow an optical disk having an eccentricity of 0.6 mm. Only when the absolute value of the amount of movement of the objective lens in the radial direction with respect to the center position of the magnetic core exceeds 0.35 mm, recording cannot be performed due to insufficient magnetic field strength.
  • the amount of movement of the objective lens in the radial direction is detected.
  • the magnetic field strength corresponding to the amount of movement is determined from the magnetic field strength distribution indicated by the solid line in FIG. Find the rate of decrease.
  • the current is modulated (amplified) by the reciprocal of this decreasing rate and applied to the coil.
  • Fig. 12 shows the peak waveform of the drive current applied to the coil when recording on an optical disk whose disk eccentricity is 0.6 mm (0-peak).
  • the horizontal axis shows the rotation angle of the optical disk, and the vertical axis shows the current value.
  • the current value is “1”
  • a magnetic field whose magnetic field strength is “1” in FIG. 11 is applied.
  • the solid line B0 is the peak waveform (peak to peak value) of the drive current in the present embodiment.
  • the current is 1 when the amount of movement of the objective lens displaced following the eccentricity of the optical disk is within ⁇ 0.35 mm, but when the absolute value of the movement exceeds 0.35 mm, the current increases and moves.
  • the absolute value of the quantity reaches 0.6 mm, the current becomes 1.75, and when it exceeds 0.6 mm, the current value decreases back to 1.
  • the current peak occurs twice per rotation of the optical disk.
  • a two-dot chain line B1 shows the average value of the drive current modulation waveform B0, and the current value is 1.25, which is equivalent to the drive current value of the conventional example.
  • the current applied to the coil is increased according to the amount of movement of the objective lens 5 to keep the strength of the magnetic field constant.
  • the magnetic head can be driven with the same drive current as the conventional example. Therefore, since the magnetic core and the coil can be made smaller, an optical disk recording / reproducing apparatus having good high-frequency characteristics can be obtained.

Landscapes

  • Optical Recording Or Reproduction (AREA)
  • Recording Or Reproducing By Magnetic Means (AREA)

Description

光ディスク記録再生装置
技術分野
本発明は、 光学的に情報を記録再生する装置である光ディスク記録再 生装置に関する。
背景技術
現代は情報化時代と言われており、 その中核をなす高密度大容量メモ リーの技術開発が盛んに行われている。 メモリ一に要求される能力とし ては、 高密度、 大容量に加え、 高信頼性、 書換え機能等が挙げられ、 そ れらを満足する記録媒体として、 光磁気ディスク等の光ディスクメモリ 一が最も注目されている。 本発明はこれに対して記録又は再生を行う光 ディスク記録再生装置に関する。
従来、 光ディスク記録再生装置に関する技術としては、 数多くの報告 がなされている。 以下、 図面を参照しながら、 ここでは光ディスク記録 再生装置のうち、 書換え機能を持つ光ディスク記録再生装置としてミニ ディスク装置を例にして説明を行う。
図 1 4 Aはミニディスク等の光磁気ディスクである記録媒体を記録再 生する光ディスク記録再生装置の光へッドおよび磁気へッドの概略的な 外観を示した平面図、 図 1 4 Bはその側面図である。 これらを用いて、 以下に構成と動作についての説明を行う。
図 1 4 A、 図 1 4 Bにおいて、 1は内部にレーザ光を射出する発光部 である半導体レーザチップと、 このレーザ光の記録媒体 8からの反射光 を受光して各種信号を検出する光学信号検出部とを搭載して単一のデバ •構成されている受発光素子、 2は受発光素子 1から放射され たレーザ光束、 3は受発光素子 1からのレーザ光束を記録媒体 8に至ら しめるミラー、 4は対物レンズ 5を記録媒体の偏心及び面振れに追従さ せるためにトラッキング方向及びフォーカス方向に移動させる対物レン ズァクチユエ一夕、 4 aは対物レンズァクチユエ一夕 4の可動部を構成 するマグネット、 4 bはマグネット 4 aに駆動力を発生させるためのコ ィル、 4 cは対物レンズァクチユエ一タ 4の固定部、 4 dは対物レンズ ァクチユエ一タ 4を光学基台 6に固定するためのァクチユエ一夕べ一ス 、 5はミラ一 3で反射したレ一ザ光束 2を記録媒体 8上に集光し微小な 光スポットを形成する対物レンズ、 6は受発光素子 1や対物レンズァク チユエ一夕 4を固定するための光学基台である。 7は記録媒体 8が記録 型である場合に変調磁界を印加していわゆる磁界変調記録を実現する磁 気ヘッドで、 磁性材料で形成された磁気コア 7 aと、 コイル 7 bと、 記 録媒体上を摺動し磁気コア 7 aを記録媒体 8表面から一定距離に保つ摺 動部 7 じと、 支持部 (図示せず) とから構成されている。 8は記録媒体 である。 図 1 4 Aにおいて矢印 Xは記録媒体 8のトラッキング方向 (即 ち、 ディスク状記録媒体 8の半径方向) を示す。
以上のように構成された光ディスク記録再生装置において、 再生を行 う場合は、 受発光素子 1からレーザ光束 2が出射し、 対物レンズァクチ ユエ一夕 4が駆動されて対物レンズ 5は記録媒体 8の所定の位置に微小 な光スポットを形成する。 記録媒体 8からの反射光が受発光素子 1に戻 りフォーカス誤差信号、 トラッキング誤差信号および R F信号が検出さ れる。 記録を行う場合は、 受発光素子 1は、 記録媒体 8上に集光される 光スポットにより情報記録膜がキュリ一点以上に昇温するように、 一定 強度の光パワーを出射する。 また、 記録媒体 8への光束入射側と反対側 に配設されている磁気へッド 7に図 1 6に示す波形の変調電流を印加し 、 キュリー点以上に熱せられた記録膜を垂直磁化させて、 いわゆる磁界 変調記録を行う。
磁気へッド 7のコイル 7 bに図 1 6に示す電流を流すことにより、 磁 気コア 7 aの先端から磁束が出る。 この時の磁界の強さの分布を図 1 5 に示す。 図 1 5は、 光スポット近傍の磁界の強さを測定したものであり 、 横軸は磁気コア 7 aの中央位置からの半径方向距離 D、 縦軸は磁界の 強さを記録に必要な磁界強さで無次元化して表している。
図 1 5において、 磁気コア 7 aの中央位置から半径方向に ± 0 . 5 m mの範囲では磁界の強さは一定である。 この幅は磁気へッド 7の半径方 向の幅 (1 mm) とほぼ一致する。 磁気コア 7 aの中央位置からの半径 方向距離 Dの絶対値が 0 . 5 mmを超える領域では磁界の強さは距離に 応じて減少する。 記録に必要な磁界の強さは、 光スポットと磁気ヘッド との距離 (記録媒体上の保護層の厚み、 組立誤差、 磁気ヘッドの姿勢等 ) および対物レンズのトラッキング方向の移動によって変化する。 上記従来の構成では、 想定される全ての条件下で記録が可能となるよ うに磁気ヘッド 7の駆動電流を決定している。 即ち、 光スポットと磁気 コア先端との距離、 及び磁気コア中央位置から対物レンズが半径方向に 移動する最大距離を考慮しても記録可能な磁界強度が得られるように、 コイル 7 bに流す駆動電流値を決定していた。
本例では、 記録媒体 8の最大偏心量を 0 . 6 mmと設定している。 こ のような偏心を有する記録媒体 8の記録トラックに光スポットを追従さ せるために、 対物レンズ 5を磁気コア 7に対して半径方向に ± 0 . 6 m mの範囲で移動させる。 従って、 磁気コア 7 aの中央位置から半径方向 に ± 0 . 6 mmの範囲 (図 1 5の 「有効磁界領域」) 内で記録に必要な 磁界強度が得られる必要がある。 そのために、 図 1 5の点線で示すよう に、 半径方向距離 Dが ± 0 . 6 mmの範囲内で磁界強さが 1以上となる ように、 コイル 7 bに印加する電流値を増大させていた。 従って、 磁気 コアの中央位置からの半径方向距 Dが土 0 . 5 mmの範囲内では磁界の 強さが 1 . 2 5となり、 光スポット位置がこの範囲内にある場合には、 必要以上の電流値を印加していることになる。 この結果、 消費電力が増 犬し、 ポータブル機器においては連続運転時間が短くなるという課題を 有していた。
一方、 対物レンズ 5の半径方向移動量 (上記の例では ± 0 . 6 mm) に対応するように磁気コアの半径方向幅を大きくすると、 コイルのィン ダク夕ンスが大きくなる。 近年、 記録時の転送レートが上昇し記録周波 数が高くなる傾向があるが、 インダク夕ンスが大きくなると記録周波数 を上げられないという課題を有していた。 発明の開示
本発明は、 磁気ヘッドの平均駆動電流の低減化が可能であり、 さらに インダクタンスを下げて高周波特性が良好な磁気へッドを用いた光ディ スク記録再生装置を提供することを目的とする。
上記の目的を達成するために、 本発明の光ディスク記録再生装置は、 磁界変調を行う磁気へッドと、 記録媒体に光を集光するための対物レン ズと、 前記対物レンズをフォ一カス方向及びトラッキング方向に追従さ せる対物レンズァクチユエ一夕と、 前記対物レンズのトラッキング方向 の移動量を検出する移動量検出手段と、 前記移動量検出手段からの出力 信号から前記対物レンズの位置に対応する位置信号を発生させる位置信 号発生手段と、 前記位置信号に応じて前記磁気へッドの駆動電流を変調 する駆動信号変調手段とを有することを特徴とする。 図面の簡単な説明 図 1は、 本発明の実施の形態 1の光ディスク記録再生装置の概略構成 を示したブロック図である。
図 2は、 本発明の実施の形態 1の光ディスク記録再生装置において、 対物レンズのトラッキング方向の移動量と対物レンズ位置信号との関係 を表す図である。
図 3は、 本発明の実施の形態 1の光ディスク記録再生装置における磁 気へッドによる磁界の強さ分布を示した図である。
図 4は、 本発明の実施の形態 1の光ディスク記録再生装置における磁 気へッドの駆動電流のピーク波形の一例を示した図である。
図 5は、 本発明の実施の形態 1の光ディスク記録再生装置における磁 気へッドの駆動電流パルス波形の一例を示した図である。
図 6は、 本発明の実施の形態 1の光ディスク記録再生装置における磁 気へッドの駆動電流パルス波形の別の一例を示した図である。
図 7は、 本発明の実施の形態 2の光ディスク記録再生装置における光 ヘッド及ぴ磁気ヘッドの平面図である。
図 8は、 本発明の実施の形態 3の光ディスク記録再生装置における光 へッド及び磁気へッドの平面図である。
図 9 A、 図 9 B、 図 9 Cは、 いずれも本発明の実施の形態 3の光ディ スク記録再生装置における光検出器の構成を示したプロック図である。 図 1 O Aは本発明の実施の形態 4の光ディスク記録再生装置における 磁気へッドの側面断面図、 図 1 0 Bはその正面図である。
図 1 1は、 本発明の実施の形態 4の光ディスク記録再生装置における 磁気へッドによる磁界の強さ分布を示した図である。
図 1 2は、 本発明の実施の形態 4の光ディスク記録再生装置における 磁気へッドの駆動電流のピーク波形の一例を示した図である。
図 1 3は、 本発明の実施の形態 4の光ディスク記録再生装置における 磁気へッドの駆動電流パルス波形の一例を示した図である。
図 1 4八は、 従来の光ディスク記録再生装置の光へッド及び磁気へッ ドの概略的な外観を示した平面図、 図 1 4 Bはその側面図である。 図 1 5は、 従来の光ディスク記録再生装置における磁気ヘッドによる 磁界の強さ分布を示した図である。
図 1 6は、 従来の光ディスク記録再生装置における磁気へッドの駆動 電流パルス波形を示した図である。 発明を実施するための最良の形態
本発明の光ディスク記録再生装置では、 移動量検出手段が対物レンズ のトラッキング方向の移動量を検出し、 これに基づいて対物レンズの位 置に対応する位置信号を発生させ、 駆動信号変調手段はこの位置信号に 応じて磁気へッドの駆動電流を変調する。
これにより、 対物レンズの移動量に応じて駆動電流を制御することが 可能となり、 移動量が小さい時は小さな電流で、 移動量が大きい時のみ 、 その移動量に応じた大きな電流で磁気へッドを駆動できるようになる ので、 平均駆動電流の低減化を図ることができ、 全体として消費電力の 低減化を図ることができる。
前記駆動信号変調手段は前記磁気へッドの駆動電流の変調を段階的に 行うことが好ましい。 これにより、 変調回路を簡略化することができる 前記移動量検出手段は、 対物レンズァクチユエ一夕の可動部と固定部 との相対的変位を検出することにより対物レンズのトラッキング方向の 移動量を検出しても良い。 これにより、 磁気ヘッドと対物レンズの相対 的移動量を容易に検出することができ、 磁気ヘッド駆動電流の制御が可 能となる。 あるいは、 前記移動量検出手段は、 記録媒体からの反射光から前記対 物レンズのトラッキング方向の移動量を検出しても良い。 これにより、 部品点数を増加させることなく移動量検出手段を構成できる。
磁気へッドの磁気コアのトラッキング方向の寸法が、 対物レンズの卜 ラッキング方向の移動量より小さいことが好ましい。 これにより、 磁気 コアおよびコイルの大きさを小さくすることができ、 コイルの低ィンダ クタンス化を図ることができ、 高周波特性が良好となり、 高転送レート 化が実現できる。
磁気へッドの駆動電流の絶対値の上限値が設定されていることが好ま しい。 これにより、 異常動作時に磁気ヘッドの焼損等のダメージを防ぐ ことができる。
以下、 本発明を実施の形態を示して詳細に説明する。
(実施の形態 1 )
以下、 本発明の実施の形態 1の光ディスク記録再生装置について図 1 〜図 6を用いて説明する。 図 1は本実施の形態の光ディスク記録再生装 置を説明するためのブロック図、 図 2は本実施の形態の光ディスク記録 再生装置において、 対物レンズのトラッキング方向 (半径方向) の移動 量と対物レンズ位置信号との関係を示した図、 図 3は半径方向の磁界の 強さ分布を示した図、 図 4は本実施の形態の光ディスク記録再生装置に おいて駆動電流ピーク波形を示した図、 図 5は駆動電流パルス波形を示 した図である。
図 1に示すように、 光へッド 1 0の対物レンズァクチユエ一夕が対物 レンズをディスク偏心等に追従するようにトラッキング方向に移動させ る。 移動量検出手段 1 5は、 対物レンズのトラッキング方向の移動量に 対応した信号を出力し、 位置信号発生手段 6 0はこの信号に基づいて図 2に示すような対物レンズのトラッキング方向の移動量に比例した対物 レンズ位置信号を生成する。 次に、 次段の駆動信号変調手段 4 0は、 こ の対物レンズ位置信号を用いて対物レンズ移動量に応じた変調信号を生 成し、 R F信号発生手段 5 0で生成した信号と演算することにより駆動 信号を出力し、 最終段の駆動手段 3 0はこれを増幅して磁気へッド 2 0 を駆動する。
以下に駆動信号変調手段 4 0における動作について説明する。 駆動信 号変調手段 4 0は、 前記の対物レンズ位置信号と磁気へッドの磁界の強 さ分布とから変調信号を生成する。
その過程を図 3、 図 4を用いて説明する。 図 3において、 横軸は磁気 コアの中央位置からの半径方向距離 D、 縦軸は磁界の強さであり、 記録 に必要な磁界強さで無次元化している。
点線は、 従来例の磁気ヘッドの磁界の強さの分布を示しており、 これ は図 1 5に示したのと同じである。 磁気コアの中央位置からの半径方向 距 Dが ± 0 . 5 mmの範囲内では磁界の強さがほぼ一定であり、 距離 D の絶対値が 0 . 5 mmを超えると磁界の強さは減少していく。 本従来例 では、 ディスク偏心量を考慮して、 有効磁界領域を磁気コアの中央位置 から半径方向に ± 0 . 6 mmの範囲としている。 対物レンズがトラツキ ング制御されて光スポットの位置がこの有効磁界領域内で変動しても記 録が可能なように、 この有効磁界領域内で磁界強さが常に 1以上になる ようにコイルに電流を印加している。 その結果、 磁気コアの中央位置か らの半径方向距 Dが ± 0 . 5 mmの範囲内では磁界の強さが 1 . 2 5と なり、 光スポット位置がこの範囲内にある場合には、 必要以上の電流値 を印加していることになる。
本実施の形態では、 駆動電流の低減化を図るために、 従来例に対して 駆動電流を 2 0 %低下させる。 磁界の強さはコイルに印加する駆動電流 に比例する。 従って、 点線で示した従来例に対して電流値を 2 0 %下げ ると、 磁界強さ分布は実線で示したようになり、 半径方向距離 Dが ± 0 . 5 mmの範囲内では磁界の強さは 1となり、 半径方向距離 Dの絶対値 が 0 . 5 mmを超えると磁界強さは減少する。
図 3の下図は、 偏心量が 0 . 6 mmである光ディスクに対物レンズを 追従させた場合の、 磁気コアの中央位置に対する対物レンズの半径方向 の移動量を示している。 磁気コアの中央位置に対する対物レンズの半径 方向の移動量の絶対値が 0 . 5 mmを超える場合にのみ磁界強さが不足 して記録を行うことができない。
そこで、 本実施の形態では、 対物レンズの半径方向の移動量を検出し て、 その移動量が磁気コアの中央位置に対して ± 0 . 5 mmの範囲を超 えた場合には、 図 3の実線で示す磁界強さ分布からその移動量に対応す る磁界強さの減少割合を求める。 そして、 この減少割合の逆数分だけ電 流を変調 (増幅) してコイルに印加する。 その結果、 対物レンズが磁気 コアの中央位置からの半径方向に 0 . 5 mmを超え、 0 . 6 mm以下の 範囲に位置ずれしても、 磁界強さを常に 1にすることができ、 記録を行 うことが可能になる。
ディスク偏心量が 0 . 6 mm ( 0 - peak) の光ディスクに記録を行 う場合のコイルに印加する駆動電流のピーク波形を図 4に示す。 横軸は 光ディスクの回転角度、 縦軸は電流値を示す。 電流値が 「1」 のとき、 図 3における磁界の強さが 「1」 の磁界が印加される。 図 4において、 実線 A Oは、 本実施の形態における駆動電流のピーク波形 (peak to peak 値) である。 光ディスクの偏心に追従して変位する対物レンズの 移動量が ± 0 . 5 mmの範囲内では電流は 1であるが、 移動量の絶対値 が 0 . 5 mmを超えると電流が増加し、 移動量の絶対値が 0 . 6 mmに 達した時電流が 1 . 2 5となり、 さらに 0 . 6 mmをすぎると減少し電 流値が 1に戻る。 光ディスクの 1回転につき、 電流ピークは 2回発生す る。
この波形を R F信号発生手段 5 0から得られる信号にかけ算すること により、 図 5の実線で示す実際の駆動電流パルス波形が得られる。 なお 、 図 5の点線は従来例の駆動電流パルス波形である。
図 4において、 2点鎖線 A 1は駆動電流変調波形 A Oの平均値を示し ており、 その電流値は 1 . 0 6で、 これは点線 Cで示した従来例の駆動 電流波形の電流値 1 . 2 5の 8 5 %であり、 本実施の形態により駆動電 流が 1 5 %減少したことになる。
なお、 対物レンズァクチユエ一夕 4が所定の移動量 (本例では ± 0 . 6 mm) を超えて移動した時には、 磁気ヘッドのコイルの焼損等を防ぐ ために、 想定している最大の電流 (図 4における電流値の絶対値が 1 . 2 5 ) を超えてコイルが駆動されない制限手段 (図示せず) を設けてい る。
また、 上述の実施の形態では、 駆動電流の変調を行う波形として図 4 の実線 A Oのような連続的波形を用いているが段階的波形を用いても良 い。 図 6は本実施の形態の光ディスク記録再生装置において、 変調され た駆動電流パルス波形の別の一例を示す図である。 図 6において、 実線 は、 0— peak 値を 3段階のステップで構成した波形で変調された本実 施の形態の駆動電流パルス波形である。 なお、 図 6の点線は従来例の駆 動電流パルス波形である。
以上のように本実施の形態によれば、 対物レンズ 5の半径方向移動量 が小さい時には、 印加される磁界が記録に必要な磁界の下限に近い強さ となるようにコイルに電流を流し、 対物レンズ 5の半径方向移動量が大 きくなつて印加される磁界の強さが記録できないほどに減少する時には 、 対物レンズ 5の移動量に応じてコイルに印加する電流を増加させて磁 界の強さを一定に保つ。 その結果、 消費電力が低減された光ディスク記 録再生装置が得られる。
(実施の形態 2 )
本発明の実施の形態 2の構成と動作について図 7を用いて説明する。 図 7は、 本実施の形態の光ヘッド及び磁気ヘッドの平面図である。 図 7 において、 図 1 4と機能及び動作が同一である部材には同一の符号を付 してあり、 それらについての詳しい説明は省略する。
9は、 発光ダイオードとフォトトランジスタが内蔵された反射型のフ ォトイン夕ラプタであり、 対物レンズ 5のトラッキング方向の移動量検 出手段として機能する。 フォトインタラプタ 9は、 対物レンズ 5を保持 する対物レンズァクチユエ一夕の可動側の部材に対向させて、 対物レン ズァクチユエ一夕 4の固定側の部材であるァクチユエ一夕ベース 4 dに 設置されている。 ディスク偏心等に追従させるために対物レンズ 5が対 物レンズァクチユエ一夕 4によりトラッキング方向に移動せしめられた 時、 フォトインタラブ夕 9の出力信号に基づいて、 位置信号発生手段 6 0は図 2に示すような対物レンズのトラッキング方向の移動量に比例し たリニアな対物レンズ位置信号を生成する。 次に、 得られた対物レンズ 位置信号を用いて、 実施の形態 1と同様に、 次段の駆動信号変調手段 4 0は対物レンズ移動量に応じた変調信号を生成し、 R F信号発生手段 5 0で生成した信号と演算することにより駆動信号を出力し、 最終段の駆 動手段 3 0はこれを増幅して磁気へッド 2 0を駆動する。
以上のように本実施の形態によれば、 対物レンズ 5の半径方向移動量 が小さい時には、 印加される磁界が記録に必要な磁界の下限に近い強さ となるようにコイルに電流を流し、 対物レンズ 5の半径方向移動量が大 きくなつて印加される磁界の強さが記録できないほどに減少する時には 、 対物レンズ 5の移動量に応じてコイルに印加する電流を増加させて磁 界の強さを一定に保つ。 その結果、 消費電力が低減された光ディスク記 録再生装置が得られる。 、 また、 反射型のフォトインタラブ夕 9を用いて対物レンズァクチユエ —夕の可動部と固定部との相対的変位を検出するので、 対物レンズのト ラッキング方向の移動量検出手段を簡単且つコンパクトに構成できる。
(実施の形態 3 )
本発明の実施の形態 3の構成と動作について、 図 8、 図 9 A、 図 9 B 、 図 9 Cを用いて説明する。, 図 8は本実施の形態の光ヘッド及び磁気へ ッドの平面図、 図 9 A、 図 9 B、 図 9 Cの光検出器の模式図である。 図 8、 図 9 A、 図 9 B、 図 9 Cにおいて、 図 1 4と機能及び動作が同 一である部材には同一の符号を付してあり、 それらについての詳しい説 明は省略する。
本実施の形態が図 7に示した実施の形態 2と異なるのは、 実施の形態 2のフォトィンタラプタ 9を使用せず、 受発光素子 1を対物レンズのト ラッキング方向の移動量検出手段 (図示せず) として使用している点で ある。
図 9 A、 図 9 B、 図 9 Cにおいて、 1 aは受発光素子 1内に納められ ている光検出器、 A、 B、 C , Dは光検出器 1 aの分割領域、 l bは記 録媒体から戻ってきた光束のファーフィールドの光スポットである。 分 割領域 Aは光検出器 1 aの上半分両外側の部分に、 分割領域 Bは光検出 器 1 aの下半分両外側の部分に、 分割領域 Cは光検出器 1 aの上半分中 央の部分に、 分割領域 Dは光検出器 1 aの下半分中央の部分に、 それぞ れ入射する光を受光して、 受光強度に応じた信号を出力する。 Xは記録 媒体の半径方向、 Yは記録媒体の記録トラックの接線方向にそれぞれ対 応する。
次にその動作について説明する。 記録媒体からの戻り光から対物レン ズの半径方向の移動量を検出する方法は数種類あるが、 ここでは A P P (Advanced Push-pull) 法について説明する。 図 9 A、 図 9 B、 図 9 Cにおいて、 光検出器 1 a上に記録媒体から戻ってきたファーフィ一ル ドの光スポット 1 bが結ばれている。 図 9 Bは対物レンズ 5の半径方向 移動量が 0の時を示している。 対物レンズ 5が半径方向に移動すると図 9 A、 図 9 Cのように光スポット 1 bが X方向に移動する。 光検出器 1 a上の領域 Aと領域 Bは記録媒体の溝による回折の影響を受けない領域 であるので、 両者の出力信号の差動 (A— B ) をとると、 図 2と同様な リニァな対物レンズ位置信号が得られる。
また、 トラッキングエラー信号は対物レンズ位置信号 (A— B ) とプ ッシュプル信号 (C— D ) の差動 (K * ( A— B ) — (C— D )、 ここ で Kは定数) をとることにより得られる。
得られた対物レンズ位置信号を用いて、 実施の形態 1と同様に、 次段 の駆動信号変調手段 4 0は、 対物レンズ移動量に応じた変調信号を生成 し、 R F信号発生手段 5 0で生成した信号と演算することにより駆動信 号を出力し、 最終段の駆動手段 3 0はこれを増幅して磁気ヘッド 2 0を 駆動する。
以上のように本実施の形態によれば、 対物レンズ 5の半径方向移動量 が小さい時には、 印加される磁界が記録に必要な磁界の下限に近い強さ となるようにコイルに電流を流し、 対物レンズ 5の半径方向移動量が大 きくなつて印加される磁界の強さが記録できないほどに減少する時には 、 対物レンズ 5の移動量に応じてコイルに印加する電流を増加させて磁 界の強さを一定に保つ。 その結果、 消費電力が低減された光ディスク記 録再生装置が得られる。
更に、 受発光素子 1を対物レンズのトラッキング方向の移動量検出手 段として用いることにより、 光ヘッドのサーポ信号を得る過程において 対物レンズ位置信号を生成できるので、 対物レンズのトラッキング方向 の移動量検出のための新たな装置や回路を付加する必要がないので、 装 置の大型化や高コスト化を招くことがない。
なお、 本実施の形態では、 検出方法として A P P法について述べたが 、 同様な検出ができる方法であれば他の方法でも良いのは言うまでもな い。
(実施の形態 4 )
以下、 本発明の実施の形態 4の構成と動作について、 図 1 0 A、 図 1 0 B、 図 1 1, 図 1 2を用いて説明する。 図 1 0 Aは磁気へッドの側面 断面図、 図 1 0 Bは磁気ヘッドの正面図であり、 磁気コアの寸法と対物 レンズの移動量とを併せて示している。 図 1 1は半径方向の磁界の強さ の分布を示した図、 図 1 2は駆動電流ピーク波形を示した図、 図 1 3は 駆動電流パルス波形を示した図である。 図 1 0 A、 図 1 0 Bにおいて、 図 1 4と機能及び動作が同一である部材には同一の符号を付してあり、 それらについての詳しい説明は省略する。
本実施の形態では、 図 1 0に示すように、 磁気コア 7 aの半径方向 X の寸法 Wが対物レンズ 5の想定されるトラッキング方向の最大移動量 L より大きい。 このような条件下で光へッドの対物レンズ 5がディスク偏 心等に追従してトラッキング方向に移動すると、 光へッド 1 0の移動量 検出手段 1 5から得られた信号に基づいて位置信号発生手段 6 0は図 2 に示すような対物レンズの半径方向位置に比例した対物レンズ位置信号 を生成する。 次に、 次段の駆動信号変調手段 4 0は、 この対物レンズ位 置信号を用いて対物レンズ移動量に応じた変調信号を生成し、 R F信号 発生手段 5 0で生成した信号と演算することにより駆動信号を出力し、 最終段の駆動手段 3 0はこれを増幅して磁気へッド 2 0を駆動する。 以下に駆動信号変調手段 4 0における動作について説明する。 駆動信 号変調手段 4 0は、 前記の対物レンズ位置信号と磁気へッドの磁界の強 さの分布とから変調信号を生成する。
その過程を図 1 1、 図 1 2を用いて説明する。 図 1 1において、 横軸 は磁気コアの中央位置からの半径方向距離 D、 縦軸は磁界の強さであり 、 記録に必要な磁界強さで無次元化している。
点線は、 従来例の磁気ヘッドの磁界の強さの分布を示しており、 これ は図 3, 図 1 5に示したのと同じである。 半径方向距離 Dが ± 0. 5m mの範囲内では磁界の強さ 1. 2 5であり、 半径方向距離 Dの絶対値が 0. 5mmを超えると磁界強さは減少する。 磁界強さが 1. 2 5である 範囲 (± 0. 5mm) が磁気コア 7 aの半径方向の寸法 W ( 1mm) に 対応する。 本従来例では、 有効磁界領域は磁気コアの中央位置から半径 方向に ± 0. 6mmの範囲に設定されており、 この範囲において磁界強 さが 1以上になるようにコイルに電流を印加している。
本実施の形態では、 従来例に対して駆動電流値を 2 0 %低下させるこ とにより、 即ち、 最大磁界の強さを従来例の 1. 2 5から 1に低下させ ることにより、 駆動電流の低減化を図る。 更に、 磁気コア寸法 Wを従来 例の 1 mmに対して 0. 7 mmに低下させることによりコイルのインダ クタンスの低減化を図る。 この場合の磁界の強さ分布は図 1 1の実線の 通りとなる。 半径方向距離 Dが ± 0. 3 5 mmの範囲内では磁界の強さ 1であり、 半径方向距離 Dの絶対値が 0. 3 5mmを超えると磁界強さ は減少する。
図 1 1の下図は、 偏心量が 0. 6 mmである光ディスクに対物レンズ を追従させた場合の、 磁気コアの中央位置に対する対物レンズの半径方 向の移動量を示している。 磁気コアの中央位置に対する対物レンズの半 径方向の移動量の絶対値が 0. 3 5 mmを超える場合にのみ磁界強さが 不足して記録を行うことができない。
そこで、 本実施の形態では、 対物レンズの半径方向の移動量を検知し て、 その移動量が磁気コアの中央位置に対して ± 0. 35mmの範囲を 超えた場合には、 図 1 1の実線で示す磁界強さ分布からその移動量に対 応する磁界強さの減少割合を求める。 そして、 この減少割合の逆数分だ け電流を変調 (増幅) してコイルに印加する。 その結果、 対物レンズが 磁気コアの中央位置からの半径方向に 0. 35mmを超え、 0. 6 mm 以下の範囲に位置ずれしても、 磁界強さを常に 1にすることができ、 記 録を行うことが可能になる。
ディスク偏心量が 0. 6 mm ( 0 -peak) の光ディスクに記録を行 う場合のコイルに印加する駆動電流のピーク波形を図 12に示す。 横軸 は光ディスクの回転角度、 縦軸は電流値を示す。 電流値が 「1」 のとき 、 図 1 1における磁界の強さが 「1」 の磁界が印加される。 図 12にお いて、 実線 B0は、 本実施の形態における駆動電流のピーク波形 (peak to peak 値) である。 光ディスクの偏心に追従して変位する対物レンズ の移動量が ±0. 35 mmの範囲内では電流は 1であるが、 移動量の絶 対値が 0. 35mmを超えると電流が増加し、 移動量の絶対値が 0. 6 mmに達した時電流が 1. 75となり、 さらに 0. 6 mmをすぎると減 少し電流値が 1に戻る。 光ディスクの 1回転につき、 電流ピークは 2回 発生する。
この波形を R F信号発生手段 50から得られる信号にかけ算すること により、 図 13に示す実際の駆動電流パルス波形が得られる。
図 1 2において、 2点鎖線 B1は駆動電流変調波形 B0の平均値を示 しており、 その電流値は 1. 25で、 これは従来例の駆動電流値と同等 である。
以上のように本実施の形態によれば、 対物レンズ 5の半径方向移動量 が小さい時には、 印加される磁界が記録に必要な磁界の下限に近い強さ となるようにコイルに電流を流し、 対物レンズ 5の半径方向移動量が大 きくなつて印加される磁界の強さが記録できないほどに減少する時には
、 対物レンズ 5の移動量に応じてコイルに印加する電流を増加させて磁 界の強さを一定に保つ。 その結果、 幅の狭い磁気コアを用いても従来例 と同程度の駆動電流で磁気ヘッドを駆動することができる。 従って、 磁 気コアおよびコイルを小さくできるので、 高周波特性の良好な光デイス ク記録再生装置が得られる。
以上に説明した実施の形態は、 いずれもあくまでも本発明の技術的内 容を明らかにする意図のものであって、 本発明はこのような具体例にの み限定して解釈されるものではなく、 その発明の精神と請求の範囲に記 載する範囲内でいろいろと変更して実施することができ、 本発明を広義 に解釈すべきである。

Claims

請 求 の 範 囲
1 . 磁界変調を行う磁気ヘッドと、
記録媒体に光を集光するための対物レンズと、
前記対物レンズをフォーカス方向及びトラッキング方向に追従させる 対物レンズァクチユエ一夕と、
前記対物レンズのトラッキング方向の移動量を検出する移動量検出手 段と、
前記移動量検出手段からの出力信号から前記対物レンズの位置に対応 する位置信号を発生させる位置信号発生手段と、
前記位置信号に応じて前記磁気へッドの駆動電流を変調する駆動信号 変調手段と
を有することを特徴とする光ディスク記録再生装置。
2 . 前記駆動信号変調手段は前記磁気へッドの駆動電流の変調を段階 的に行う請求項 1に記載の光ディスク記録再生装置。
3 . 前記移動量検出手段は、 前記対物レンズァクチユエ一夕の可動部 と固定部との相対的変位を検出することにより前記対物レンズのトラッ キング方向の移動量を検出する請求項 1に記載の光ディスク記録再生装
4 . 前記移動量検出手段は、 記録媒体からの反射光から前記対物レン ズのトラッキング方向の移動量を検出する請求項 1に記載の光ディスク 記録再生装置。
5 . 前記磁気ヘッドの磁気コアのトラッキング方向の寸法が、 前記対 物レンズのトラッキング方向の移動量より小さい請求項 1に記載の光デ イスク記録再生装置。
6 . 前記磁気へッドの駆動電流の絶対値の上限値が設定されている請 求項 1に記載の光 記録再生装置。
PCT/JP2003/000033 2002-01-10 2003-01-07 Dispositif d'enregistrement/de reproduction de disque optique WO2003060902A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2003201904A AU2003201904A1 (en) 2002-01-10 2003-01-07 Optical disk recording/reproducing device
EP03700466A EP1465177A4 (en) 2002-01-10 2003-01-07 OPTICAL DISC RECORDING / REPRODUCING DEVICE
JP2003560916A JP4124738B2 (ja) 2002-01-10 2003-01-07 光ディスク記録再生装置
US10/487,981 US7206262B2 (en) 2002-01-10 2003-01-07 Optical disk recording/reproducing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002003080 2002-01-10
JP2002-3080 2002-01-10

Publications (1)

Publication Number Publication Date
WO2003060902A1 true WO2003060902A1 (fr) 2003-07-24

Family

ID=19190826

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/000033 WO2003060902A1 (fr) 2002-01-10 2003-01-07 Dispositif d'enregistrement/de reproduction de disque optique

Country Status (6)

Country Link
US (1) US7206262B2 (ja)
EP (1) EP1465177A4 (ja)
JP (1) JP4124738B2 (ja)
CN (1) CN1277266C (ja)
AU (1) AU2003201904A1 (ja)
WO (1) WO2003060902A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007139012A1 (ja) * 2006-05-30 2007-12-06 Panasonic Corporation 光ヘッド移送装置、光ヘッド移送装置の集積回路、集束レンズ駆動装置、および集束レンズ駆動装置の集積回路
JP2011227979A (ja) * 2010-04-02 2011-11-10 Sony Corp 光学ピックアップ、光学ドライブ装置、光照射方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62189655A (ja) * 1986-02-17 1987-08-19 Fujitsu Ltd 光磁気記録ヘツドのバイアス磁界駆動法
JPH03150742A (ja) * 1989-11-06 1991-06-27 Canon Inc 情報記録再生装置
JPH04205940A (ja) 1990-11-30 1992-07-28 Kyocera Corp 磁界変調光磁気記録装置
JPH0620329A (ja) * 1992-06-30 1994-01-28 Victor Co Of Japan Ltd 光磁気ディスク装置
JP2001067746A (ja) * 1999-08-26 2001-03-16 Fujitsu Ltd 情報記憶装置
JP2002319205A (ja) * 2001-04-24 2002-10-31 Sanyo Electric Co Ltd 光磁気ディスク装置
JP2002373460A (ja) * 2001-06-15 2002-12-26 Sony Corp 光磁気ディスクドライブ装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0340250A (ja) * 1989-07-06 1991-02-21 Matsushita Electric Ind Co Ltd 光磁気ディスクおよび光磁気ディスク装置
EP0564148B1 (en) * 1992-03-31 1998-07-22 Canon Kabushiki Kaisha Magnetooptical information recording/reproducing apparatus and method using magnetic head
JPH1021599A (ja) * 1996-06-28 1998-01-23 Matsushita Electric Ind Co Ltd 超解像記録媒体を用いた磁界変調の記録再生方法
JP4258046B2 (ja) * 1998-11-17 2009-04-30 ソニー株式会社 ディスクドライブ装置
JP3357852B2 (ja) * 1998-12-17 2002-12-16 三洋電機株式会社 光磁気ディスク装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62189655A (ja) * 1986-02-17 1987-08-19 Fujitsu Ltd 光磁気記録ヘツドのバイアス磁界駆動法
JPH03150742A (ja) * 1989-11-06 1991-06-27 Canon Inc 情報記録再生装置
JPH04205940A (ja) 1990-11-30 1992-07-28 Kyocera Corp 磁界変調光磁気記録装置
JPH0620329A (ja) * 1992-06-30 1994-01-28 Victor Co Of Japan Ltd 光磁気ディスク装置
JP2001067746A (ja) * 1999-08-26 2001-03-16 Fujitsu Ltd 情報記憶装置
JP2002319205A (ja) * 2001-04-24 2002-10-31 Sanyo Electric Co Ltd 光磁気ディスク装置
JP2002373460A (ja) * 2001-06-15 2002-12-26 Sony Corp 光磁気ディスクドライブ装置

Also Published As

Publication number Publication date
US20040233796A1 (en) 2004-11-25
AU2003201904A1 (en) 2003-07-30
JP4124738B2 (ja) 2008-07-23
EP1465177A4 (en) 2008-07-02
EP1465177A1 (en) 2004-10-06
JPWO2003060902A1 (ja) 2005-05-19
CN1568511A (zh) 2005-01-19
US7206262B2 (en) 2007-04-17
CN1277266C (zh) 2006-09-27

Similar Documents

Publication Publication Date Title
KR100281495B1 (ko) 광 디스크 장치
JP3135389B2 (ja) 情報再生方法、情報記録再生方法、情報再生装置、記録媒体及び光ヘッド
US6744700B2 (en) Optical output adjusting apparatus based on shortest recording marks
KR100377980B1 (ko) 보조 렌즈와 자기 재생 헤드가 일체화된 광자기 헤드 장치, 및 이 장치를 사용한 기록 재생 장치
US6560168B1 (en) Information recording/reproducing device
JPH03116539A (ja) ディスク装置
JP4576316B2 (ja) サーボ制御信号生成装置、光ディスク装置及びサーボ制御信号生成方法
US6683823B2 (en) Method for reproducing information on a recording medium
JP4124738B2 (ja) 光ディスク記録再生装置
KR20030085416A (ko) 광기록매체의 종류 판별방법 및 장치
US6115330A (en) Optical information storage unit for recording and/or reproducing information on both the lands and the grooves of an optical medium
JPH0668498A (ja) 情報記録媒体処理装置
KR20040036663A (ko) 기록 및 재생 장치
KR100567485B1 (ko) 광디스크 드라이브, 그 제어방법 및 광디스크 드라이브를 포함하는 전자장치
JP2778428B2 (ja) 光ディスク装置
JP2001118274A (ja) 記録媒体、記録媒体駆動装置及びチルト検出方法
JP4240661B2 (ja) 記録及び/又は再生装置、及び記録及び/又は再生方法
JPH0676460A (ja) 光ディスク装置
JP3552752B2 (ja) 光ディスクの記録方法
JPH11265509A (ja) 光学的情報記録再生方法および光学的情報記録媒体
US8339911B2 (en) Method and device for retrieving information from an optical record carrier at various reading speeds
JP2505845Y2 (ja) 光磁気記録再生装置
JPH01166344A (ja) 光ディスク装置の光ヘッド
JPH04117626A (ja) 光学情報装置および光学情報記録部材
JPH05182230A (ja) 光学的情報記録再生装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2003560916

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 10487981

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2003700466

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 20038012545

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2003700466

Country of ref document: EP