WO2003060413A1 - Ailette d'echange thermique, et son procede de fabrication - Google Patents

Ailette d'echange thermique, et son procede de fabrication Download PDF

Info

Publication number
WO2003060413A1
WO2003060413A1 PCT/FR2003/000077 FR0300077W WO03060413A1 WO 2003060413 A1 WO2003060413 A1 WO 2003060413A1 FR 0300077 W FR0300077 W FR 0300077W WO 03060413 A1 WO03060413 A1 WO 03060413A1
Authority
WO
WIPO (PCT)
Prior art keywords
wave
fin
spacer
heat exchange
members
Prior art date
Application number
PCT/FR2003/000077
Other languages
English (en)
Inventor
Claire Szulman
Etienne Werlen
Fabienne Chatel
Original Assignee
L'air Liquide Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by L'air Liquide Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude filed Critical L'air Liquide Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude
Priority to US10/502,123 priority Critical patent/US7445040B2/en
Priority to JP2003560461A priority patent/JP4409293B2/ja
Priority to DE60303197T priority patent/DE60303197T2/de
Priority to EP03715008A priority patent/EP1468238B1/fr
Publication of WO2003060413A1 publication Critical patent/WO2003060413A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F17/00Removing ice or water from heat-exchange apparatus
    • F28F17/005Means for draining condensates from heat exchangers, e.g. from evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J5/00Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants
    • F25J5/002Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants for continuously recuperating cold, i.e. in a so-called recuperative heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J5/00Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants
    • F25J5/002Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants for continuously recuperating cold, i.e. in a so-called recuperative heat exchanger
    • F25J5/005Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants for continuously recuperating cold, i.e. in a so-called recuperative heat exchanger in a reboiler-condenser, e.g. within a column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0062Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by spaced plates with inserted elements
    • F28D9/0068Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by spaced plates with inserted elements with means for changing flow direction of one heat exchange medium, e.g. using deflecting zones
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/025Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/025Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements
    • F28F3/027Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements with openings, e.g. louvered corrugated fins; Assemblies of corrugated strips
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/02Bath type boiler-condenser using thermo-siphon effect, e.g. with natural or forced circulation or pool boiling, i.e. core-in-kettle heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/32Details on header or distribution passages of heat exchangers, e.g. of reboiler-condenser or plate heat exchangers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S165/00Heat exchange
    • Y10S165/913Condensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4935Heat exchanger or boiler making

Definitions

  • the present invention relates to a thermal exchange spacer-fin intended to be sandwiched between two plates which define a condensation passage of a brazed-plate heat exchanger, of the type comprising a corrugated product, in particular with corrugation at rectangular section, having wave legs which, in the mounted state, define flow channels of a gas to be condensed at least partially, comprising at least one condensed liquid drainage channel on the wave legs, extending along a lateral edge of the wave leg, and deflection members disposed on the wave leg and adapted to divert condensed liquid to this drainage channel.
  • the invention applies in particular to vaporizers-condensers.
  • Thermosiphon vaporizers-condensers comprise an exchanger body, which is more or less completely immersed in a liquid oxygen bath.
  • the exchanger body is constituted by a stack of vertical rectangular plates, spacer waves comprising heat exchange waves, and closure bars, which delimit a plurality of first passages and a plurality of second passages.
  • the first passages are condensation passages for a circulating fluid.
  • the second passages are vaporization passages for a refrigerant, open upwardly and downwardly and provided with vertical main-direction spacer-wave fins.
  • the exchanger body further comprises input and output boxes of circulating fluid which cap rows of inlet and outlet windows opening into the first passages.
  • Liquid oxygen enters the second passages from the bottom, is warmed to its bubble point, and is partially vaporized.
  • Nitrogen gas enters from the top in the first passages, gives heat to the oxygen circulating in the second passages and is condensed.
  • a film of liquid nitrogen settles on the surface of the fin and flows downward.
  • the flow is called "dripping film”.
  • the resistance to heat transfer, in dripping film condensation is substantially proportional to the thickness of the liquid film. Since the resistance varies in power 1/3 of the flow rate, it increases rapidly at the locations of condensation of nitrogen and thus decreases the heat transfer capacity between the nitrogen gas and the fin.
  • the invention aims to provide a heat exchange fin for a condensation passage which has an increased heat exchange capacity.
  • the subject of the invention is a thermal exchange spacer fin of the aforementioned type, characterized in that at least one deflection member has a leading edge and / or a trailing edge inclined towards a channel associated.
  • the spacer vane according to the invention may comprise one or more of the following characteristics, taken separately or in all their technically possible combinations:
  • the angle between the leading edges and the general direction of liquid flow is between 5 ° and 70 °, preferably between 10 ° and 45 °.
  • the angle between the trailing edges and the general direction of liquid flow is between 5 ° and 70 °, preferably between 10 ° and 45 °.
  • each wave leg is adapted to drain the liquid towards a single lateral edge of the wave leg, and the deflection members of two successive wave legs are adapted to drain the liquid towards two edges opposite sides;
  • the deflection members are adapted to drain towards the two lateral edges the condensed liquid on each of the wave legs;
  • the spacer fin comprises wave bases and wave peaks
  • the deflection members comprise first and second members, the first of which are inclined towards a channel associated with the wave base and the second of which are inclined towards a channel associated with the wave-top;
  • the members of two successive wave legs consist solely of first members on one of the two wave legs and only second members on the other of these two wave legs;
  • each wave leg comprises a first group of successive first organs and a second group consisting of second successive members, the first and second members each extending over substantially the entire height of the wave legs;
  • said first and said second members are symmetrical with respect to the median line of the wave leg; said first members are offset relative to said second members, according to the general direction of liquid flow, in particular by half the distance between two first or two second successive members;
  • said first and second members are located opposite one another and on the other side of the center line, in particular by forming a chevron; in the unfolded state of the spacer fin, the deflection members of the wave legs form rows extending parallel to an edge of the spacer fin and perpendicular to the edges of the wave legs, and deflection members of one row are identical;
  • the deflection members have a leading edge and a trailing edge, and at least the leading edge and preferably the leading edge and the trailing edge are at all points inclined and directed towards the drainage channel associated;
  • the deflection members comprise a slot which is formed in the wave leg
  • the deflection members comprise a portion projecting from the surface of the wave leg or recessed with respect to the surface of the wave leg, in particular a stamped part;
  • Each gas flow channel has on both side faces consisting of wavelength parts only projecting or on both side faces of the parts only recessed relative to the surfaces of these legs of wave;
  • the drainage channel comprises a strip of continuous material of the wave leg adjacent to the deflection members and a continuous material ribbon of the wave-top or of the wave-base adjacent to the wave-leg;
  • the general direction of liquid flow is substantially identical to the general flow direction of fluid in the gas flow channels;
  • the spacer fin comprises partial shift corrugations, and in that the distances between two successive offsets have a length of at least 3 mm and preferably at least 1 cm;
  • the spacer-fin comprises at least two fin parts, each of which has a different drainage capacity, and in that the drainage capacity of a fin part at the following fin part in the direction of general flow of fluid increases.
  • the invention also relates to a brazed plate heat exchanger comprising plates which define between them heating and partial or total condensation of generally flat flat, and comprising in each passage of condensation a spacer-spacer of thermal exchange, as well as lateral closure bars, characterized in that at least one heat exchange spacer-fin is a spacer-fin as defined above.
  • the heat exchanger may constitute a vaporizer-condenser of an air distillation plant.
  • the invention furthermore relates to a method for manufacturing a heat exchange fin as defined above, characterized in that it comprises the following successive steps: - parallel rows of deflection members are maintained in a blank of flat product, in particular sheet metal;
  • the flat product is folded plastically, forming corrugations, so that the deflection members of a row are situated on the wave legs.
  • the method is characterized in that
  • Figure 1 schematically shows part of a double column of air distillation according to the invention
  • FIG. 2 is a sectional view of the vaporizer-condenser of this double column, taken in vertical section along the plane ll-ll of Figure 1;
  • FIG. 3 is a perspective view of a portion of a heat exchange fin according to the invention
  • FIG. 4 is a view of a condenser vaporizer-condensation passage in section along the line IV-IV of FIG. 2;
  • Figure 5 is a side view of the leg of the fin of Figure 3;
  • Figure 6 is a plan view of a portion of a blank of a fin according to Figures 3 to 5; - Figure 7 is a plan view of a blank of a first variant of a fin according to the invention;
  • Figure 8 is a view of a condensation passage of the vaporizer-condenser comprising a fin according to one of Figures 7, 9 or 10;
  • FIG. 9 and 10 are views similar to Figure 5 respectively of a second and a third embodiment of the fin according to the invention.
  • FIG. 11 is a sectional view of a condensation passage comprising a fin according to a second embodiment of the invention.
  • FIG. 1 diagrammatically shows the intermediate part of a double air distillation column 1.
  • the shell 2 of the double column common to the medium pressure column 3 and to the low pressure column 4 which is superimposed.
  • the rounded upper bottom 5 of the column 3 separates the two columns and retains in the tank of the column 4 a bath of liquid oxygen 6.
  • the top nitrogen of the column 3 is condensed by indirect heat exchange with the liquid oxygen in the main vaporizer-condenser 7 of the double column, which is arranged in the tank of the column 4 and is totally immersed in the bath 6.
  • the vaporizer-condenser 7 consists of a parallelepipedal heat exchanger body 8, generally made of aluminum or aluminum alloy, and of four nitrogen inlet / outlet boxes of generally semi-cylindrical shape, including two upper inlet boxes 9 and two lower outlet boxes 10.
  • the body 8 consists of a stack of a large number of vertical rectangular plates 11, all identical. Between these plates are interposed on the one hand peripheral closure bars 12, on the other hand spacer waves, namely heat exchange waves 13 of vertical main orientation.
  • the body 8 is assembled in a single operation by soldering in the oven, and the four boxes 9 and 10 are welded to this body. Between the plates 11 are thus defined a large number of flat passages which are alternately first nitrogen condensation passages and second oxygen vaporization passages 16.
  • the first passages 15 are closed all around their periphery by the bars 12, which nevertheless leave free, at each longitudinal end, an upper nitrogen inlet window 17 and a lower nitrogen outlet window 18. liquid.
  • Each first passage contains four distribution zones, respectively associated with the four windows 17 and 18. Each of these zones contains a wave 19 distribution of horizontal main orientation.
  • the remainder of the first passage 15, which extends over a large majority of its surface, is occupied by a heat exchange wave 13 consisting of a first spacer-spacer 20 of heat exchange. This spacer-fin 20 is sandwiched between two plates 11.
  • Each of the two nitrogen inlet boxes 9 cap a horizontal row of windows 17.
  • each of the two nitrogen outlet boxes 10 cap a horizontal row of windows 18.
  • the second passages 16 are fully open on their upper and lower sides, and they are closed on their two vertical sides, over their entire height, by the closing bars 12. They contain only exchange waves 13 consisting of a second heat exchange fin. These fins may be corrugated sheet with a smooth surface.
  • the nitrogen gas coming from the column 3 via lines 22, is introduced into the first passages 15 via the two boxes 9, is distributed over the entire length of the first passages by the upper 19 waves. and condense on the surface of the first heat exchange spacer fins 20.
  • the nitrogen gas flows in the vaporizer-condenser 7 in a general direction of circulation V of nitrogen, which in this case is vertical.
  • Figure 3 is shown, in perspective view, a portion of a first spacer-spacer 20 of heat exchange.
  • This fin 20 comprises a corrugation 24 with a rectangular cross-section, having a wave pitch p 0 and consisting of wave bases 26 and wave vertices 28 connected by wave legs 30.
  • Each wave leg 30 has two lateral edges 31 extending along the bases 26 or 28 wave vertices.
  • the wave bases 26 and the wave peaks 28 are fixed on their width 10 respectively to two plates 11 by a layer of brazing material 32.
  • the wave legs 30 extend between these two plates 11 and have a height h 0 .
  • the fin 20 and the plates 11 delimit channels 34 of nitrogen gas flow.
  • the height h 0 is between 3 mm and 10 mm and the width l 0 is between 0.5 mm and 5 mm.
  • the fin 20 comprises liquid nitrogen drainage means condensed on the surface of the legs 30 of the fin, towards the corners of the fin.
  • These drainage means comprise, on the one hand, first drainage channels 36A and 36B and, on the other hand, bodies 38 for diverting liquid condensed towards these channels 36.
  • Each of the first drainage channels 36A is formed by the junction of a wave leg 30 with a wave vertex 28, while each of the first channels 36B is formed by the junction of a wave leg 30 with a wave base 28.
  • each wave leg 30 comprises a zone 39 of continuous material which extends in the wave leg of the base 26 of the wave or the summit 28 of the wave at the beginning of the wave organ. deviation 38.
  • This zone 39 called ribbon, has a width c which is at least 0.2 mm, and is preferably between 0.5 mm and 1 mm (see Figure 5).
  • the base 26 and the wave vertex 28 each consist of a web of continuous material, devoid of liquid deflection members 38. As a result, this band forms a ribbon similar to the ribbon 39.
  • the first drainage channels 36A, 36B extend along the general direction V of nitrogen circulation.
  • Second drainage channels 42A, 42B are formed at the junction locations of the wave legs 30 with the plate 11. These second channels 42A, 42B are substantially identical to the first drainage channels 36A, 36B. However, their width is increased by the thickness of the wave base 26 or the wave peak 28 and the solder material layer 32.
  • the liquid deflection members 38 are constituted by a succession of identical quadrilateral, in this case parallelogram-shaped, slits 44A, 44B formed in the wave legs 30.
  • the slits 44A are inclined towards the drainage channels 36A, 42A, in the general liquid flow direction L, while the slots 44B are inclined towards the drainage channels 36B, 42B.
  • Each slot 44A, 44B thus has two long leading edges 46 and trailing edges 48 and two short trailing edge 50 and trailing edges 52.
  • the leading edges meet the trailing edges at attack junction points A and leak F.
  • the edges of the slots are slightly rounded at the locations of points A and F.
  • the width e of the slot measured in one direction perpendicular to the direction of flow L, is less than 2 mm and is preferably between 0.1 mm and 1 mm.
  • the long 46 and short leading edges 50 are inclined with respect to the general direction of liquid flow L, towards the drainage channels 36A, 36B, 42A, 42B, at angles ⁇ , and ⁇ , while the edges of long leak 48 and short 52 are inclined with respect to this direction L along angles Y and ⁇ .
  • the angles ⁇ , ⁇ , Y and ⁇ are between 5 ° and 70 ° and preferably between 10 ° and 45 ° measured with respect to the general direction of liquid flow L.
  • the inclination ⁇ and ⁇ of the leading edges 46, 50 is chosen as a function of the flow velocity of the liquid and the viscosity of the condensed liquid so that the drops of liquid adhere to the leading edges 46, 50 before being drained at point F by the drainage channels 36A, 36B, 42A, 42B.
  • the trailing edges 48, 52 are arranged such that the leakage junction point F between the long leading edge 46 and the short trailing edge 52 is, on the one hand, the point the most downstream of the trailing edge 48, 52 and is, on the other hand, the point of the edge of the slot 44A, 44B closest to the associated drainage channels 36A, 36B, 42A, 42B. With this configuration, the liquid flowing along the leading edge 46, 50 is prevented from being deflected towards the middle of the wave leg 30 from the leakage junction point F.
  • the driving junction point A is disposed as close as possible to the wave base 26 or the wave peak 28, and preferably coincides with the latter or the latter.
  • the leading edge 46, 50 is at each point inclined in the direction L towards the associated drainage channel 36A, 36B, 42A, 42B.
  • the leading edge 46, 50 has a concave or rectilinear shape upwards
  • the trailing edge 48, 52 is at each point convex or rectilinear downwards.
  • each slot 44A, 44B measured along the direction of the liquid flow L is chosen so as to weaken as little as possible the structure of the fin 20.
  • the height h f is for example between 0.5mm and 20 mm and preferably between 5 mm and 15 mm.
  • the distance between two successive slots 44A, 44B is named d j .
  • This distance df is the distance between the leakage point F of a slot 44A, 44B and the point of attack A of the next slot 44A, 44B.
  • This distance f is chosen less than 5 cm and is preferably less than 20 mm.
  • Ge ⁇ f is selected so that the surface of the wave leg 30 is just rewired over its height h 0 between two successive slots 44A, 44B.
  • the perforation rate i.e., the ratio of the area of the perforations to the total area of the fin, is less than 15%.
  • a film 56 of liquid nitrogen is established which flows on the surface of the fin 20.
  • the liquid then encounters the leading edge 46, 50 of a slot 44A, 44B and is deflected towards a channel 36A, 36B, 42A, 42B so that a dried zone 54 is established downstream of the slot 44A, 44B. Downstream of this slot 44A, 44B gradually establishes a liquid film 56 by condensation of liquid nitrogen gas which is drained by the next slot 44A, 44B.
  • Slots 44A, 44B decrease the thickness of the liquid film on the wavelength 30 and hence the heat transfer resistance. They lead, therefore, to an increase in heat exchange efficiency of the fin.
  • liquid flows are established in the drainage channels 36A, 36B, 42A, 42B.
  • the free surface of the liquid flow in a drainage channel is in the form of a partial cylinder of radius r.
  • the liquid flowing in the drainage channels 36A, 36B, 42A, 42B is prevented from emerging therefrom by the capillary forces acting on the liquid.
  • the drainage capacity of the channels is important due to the fact that the radius r of the free surface of the liquid varies in power V of the flow of liquid in the channel concerned.
  • Figure 6 is shown a bottom portion of a blank F used for the manufacture of the fin 20.
  • the blank F has rows R p of slots 44A and 44B in zones corresponding to the wave legs 30. These rows R P extend perpendicular to the bottom edge B of the blank F.
  • the slots also form rows R extending parallel to the lower edge B and perpendicular to the side edges 31 of the wave legs 30.
  • the pattern formed by the slots 44A, 44B is identical on all the legs 30 and is reproduced with a frequency p identical to the folding period p p .
  • a single punch can be used for manufacturing slots 44A and 44B and this punch is driven synchronously with the blank folding tool.
  • Figure 7 is shown a portion of a blank of a first variant of a fin-spacer according to the invention.
  • the blank F has on each zone corresponding to a wave leg
  • First groups G1 of five successive first slots 44A and second groups G2 of five successive second slots 44B are inclined to one side of the wave leg 30, while the second slots 44B are inclined on the other side thereof.
  • the two groups G1 and G2 are spaced from each other by a distance dg of between 0.5 mm and 5 cm.
  • Each wave leg 30 has two continuous material ribbons 39 associated with both side edges 31 of the wave leg 30 and adjacent to the base regions 26 or vertex regions 28.
  • Each slot 44A, 44B extends between these two ribbons 39.
  • the liquid deflection members 38 are formed by a succession of first slots 44A and second slots 44B.
  • the first and second slits extend on each leg of wave 30 on either side of a median line M-M thereof.
  • This line M-M extends parallel to the direction of liquid flow L, midway between the wave vertex 28 and the wave base 26 of the fin 20.
  • the first slits 44A are inclined from the median line MM to the wavelengths 28, while the second slits 44B are inclined towards the wave bases 26.
  • the first slits 44A and the second slits 44B have a symmetrical shape in relation to the median line MM.
  • each slot 44A, 44B is arranged at a distance d c from the top 28, respectively of the base 26.
  • the vane 20 comprises the first drainage channels 36A, 36B on both sides of each leg of wave 30.
  • each slot 44A, 44B is disposed on the line MM.
  • substantially the entire width of the leg 30 is provided with drainage slots 44A, 44B.
  • the liquid is diverted to the apex 28 and base 26 associated with each leg 30, to the channels 36A, 36B and 42A, 42B.
  • Each of the first 44A or second 44B slots is offset from the first or second next slot by a distance p f.
  • the pattern consisting of the set of two slots 44A, 44B is repeated after a distance p_ m .
  • This shift leads to a significant rigidity of the fin 20 along the direction of the wave leg 30.
  • Figure 10 is shown a third variant of the fin according to the invention.
  • the slots 44 of this fin 20 are substantially chevron-shaped.
  • the tip A of the chevron is located on the median line M-M and is directed upstream with respect to the general direction of liquid flow L.
  • the two arms 44A, 44B of the chevron have a shape substantially identical to the first 44A and 44B second slots of the first variant of the fin 20.
  • the leading edge 46A, 46B of each arm is straight from the point A fluid flow is established on both sides of each wave leg 30 during operation, similar to that of the second variant (FIG 8).
  • Each chevron-shaped slot (Fig. 10) is either cut by a corresponding chevron-shaped punch, or by two separate punches each of which corresponds to an arm 44A, 44B of a slot 44. In the latter case, the cutting of the slot 44 is performed in two successive steps.
  • Figure 11 a second embodiment of a pallet according to the invention. This view corresponds to the view of Figure 4, but shows only one wave.
  • the liquid deflection members 38 consist of stamped portions 60 in the surface of the wave legs 30.
  • the parts stamped 60 form on one side of the wave leg a groove 62 and on the other side of the wave leg a rib 64.
  • the shape and the geometric configuration of the stamped portions 60 in side view are identical to that of the slots 44A, 44B of the embodiments of the fin described above.
  • the drawing depth f e of the embossed part 60 is less than half the wavelength ⁇ 0 , and is, for example, between 0.1 mm and 0.25 mm.
  • the heat exchange fin according to the invention can be easily manufactured from a flat product, for example an aluminum sheet.
  • the slots 44, 44A, 44B are then made by perforation.
  • the stamped portions 60 are formed by stamping before folding the flat product.
  • the stamping is performed on one side, so that the grooves 62 are on one side of the blank.
  • each channel 34 has on its two lateral faces, constituted by the wave legs 30, either deflection grooves 62 or deflection ribs 64.
  • the deflection members 38 are manufactured on a fin of the type "serrated", that is to say having partial shift corrugations.
  • the length of the corrugations in the general flow direction of the liquid must be large enough to wet the surface of the leg.
  • the length of the corrugation, also called serration length, in the liquid flow direction L must be at least 3 mm and preferably at least 1 cm.
  • the fin may also be used in a heat exchanger in which a gaseous mixture circulates in the cooling passages, and wherein a fraction of the mixture is condensed.
  • the fin may consist of two or more fin parts arranged one after the other in the general flow direction of liquid.
  • the drainage means 36A, 36B, 38 have a different drainage capacity from one vane part to another and that the drainage capacity of a fin part to the part of the following fin, in the direction of drainage fluid flow, increases.
  • An example of such a fin is a fin-spacer which comprises a first fin portion provided with channel 36A, 36B and drainage members 38 and a second fin portion, which is located downstream in the liquid flow direction L and which comprises smooth wave legs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)

Abstract

Cette ailette-entretoise d'échange thermique est destinée à être disposée en sandwich entre deux plaques qui délimitent un passage de condensation d'un échangeur de chaleur à plaques brasées. L'ailette entretoise comprend un produit ondulé ayant des jambes d'onde (30) qui, à l'état monté, délimitent des canaux d'écoulement d'un gaz à condenser. L'ailette (20) comporte au moins une rigole de drainage (36A, 36B) de liquide condensé sur ces jambes d'onde (30) et des organes de déviation (38) adaptés pour drainer vers au moins un bord latéral des jambes d'ondes (30) le liquide, ayant au moins un bord d'attaque et/ou au moins un bord de fuite incliné. Application aux échangeurs de chaleur principaux des doubles co­lonnes de distillation d'air.

Description

AILETTE D ' ECHANGE THERMIQUE ET SON PROCEDE DE FABRICATION
La présente invention est relative à une ailette-entretoise d'échange thermique destinée à être disposée en sandwich entre deux plaques qui délimitent un passage de condensation d'un echangeur de chaleur à plaques brasées, du type comprenant un produit ondulé, notamment à ondulation à section rectangulaire, ayant des jambes d'onde qui, à l'état monté, délimitent des canaux d'écoulement d'un gaz à condenser au moins partiellement, comportant au moins une rigole de drainage de liquide condensé sur les jambes d'onde, s'étendant suivant un bord latéral de la jambe d'onde, et des organes de déviation disposés sur la jambe d'onde et adaptés pour dévier du liquide condensé vers cette rigole de drainage. L'invention s'applique en particulier aux vaporiseurs-condenseurs. principaux des doubles colonnes de distillation d'air, qui vaporisent de l'oxygène liquide par condensation d'azote gazeux, aux vaporiseurs-condenseurs des triple colonne de distillation d'air et aux vaporiseurs-condenseurs des colonnes argon. Ces vaporiseurs-condenseurs fonctionnent par exemple en thermosi- phon.
Les vaporiseurs-condenseurs fonctionnant en thermosiphon comprennent un corps d'échangeur, qui est plus ou moins complètement immergé dans un bain d'oxygène liquide. Le corps d'échangeur est constitué d'un empilement de plaques rectangulaires verticales, d'ondes-entretoises comprenant des ondes d'échange thermique, et de barres de fermeture, qui délimitent une pluralité de premiers passages et une pluralité de secondes passages. Les premiers passages sont des passages de condensation pour un fluide calorigène. Les seconds passages sont des passages de vaporisation pour un fluide frigorigène, ouverts vers le haut et vers le bas et munis d'ailettes à ondes-entretoises à direction principale verticale. Le corps d'échangeur comporte en outre des boîtes d'entrée et de sortie de fluide calorigène qui coiffent des rangées de fenêtres d'entrée et de sortie débouchant dans les premiers passages. L'oxygène liquide pénètre par le bas dans les seconds passages, y est réchauffé jusqu'à son point de bulle puis est vaporisé partiellement. De l'azote gazeux pénètre par le haut dans les premiers passages, cède de la chaleur à l'oxygène circulant dans les seconds passages et est condensé. En conséquence, un film d'azote liquide s'établit sur la surface de l'ailette et s'écoule vers le bas. L'écoulement est dit en « film ruisselant ». La résistance au transfert de chaleur, en condensation en film ruisselant, est sensiblement proportionnelle à l'épaisseur du film liquide. Etant donné que la résistance varie en puissance 1/3 du débit, celle-ci augmente rapidement aux emplacements de condensation de l'azote et diminue ainsi la capacité de transfert de chaleur entre l'azote gazeux et l'ailette. L'invention a pour but de proposer une ailette d'échange thermique pour un passage de condensation qui ait une capacité d'échange thermique augmentée.
A cet effet, l'invention a pour objet une ailette-entretoise d'échange thermique du type précité, caractérisée en ce qu'au moins un organe de déviation a un bord d'attaque et/ou un bord de fuite incliné vers une rigole associée.
L'ailette-entretoise suivant l'invention peut comporter l'une ou plusieurs des caractéristiques suivantes, prises isolément ou suivant toutes leurs combinaisons techniquement possibles :
- l'angle entre les bords d'attaque et le sens général d'écoulement de liquide est entre 5° et 70°, de préférence entre 10° et 45°.
- L'angle entre les bords de fuite et le sens général d'écoulement de liquide est entre 5° et 70°, de préférence entre 10° et 45°.
- les organes de déviation de chaque jambe d'onde sont adaptés pour drainer le liquide vers un seul bord latéral de la jambe d'onde, et les organes de déviation de deux jambes d'onde successives sont adaptés pour drainer le liquide vers deux bords latéraux opposés ;
- les organes de déviation sont adaptés pour drainer vers les deux bords latéraux le liquide condensé sur chacune des jambes d'onde ;
- toute la hauteur des jambes d'onde à l'exception des zones asso- ciées à une rigole de drainage porte des organes de déviation ;
- l'ailette-entretoise comprend des bases d'onde et des sommets d'onde, et les organes de déviation comprennent des premiers et seconds organes dont les premiers sont inclinés vers une rigole associée à la base d'onde et dont les seconds sont inclinés vers une rigole associée au sommet d'onde ; - les organes de deux jambes d'onde successifs sont constitués uniquement de premiers organes sur l'une des deux jambes d'onde et uniquement de seconds organes sur l'autre de ces deux jambes d'onde ;
- chaque jambe d'onde comprend un premier groupe de premiers or- ganes successifs et un second groupe constitué de seconds organes successifs, les premiers et les seconds organes s'étendant chacun sur sensiblement toute la hauteur des jambes d'onde ;
- lesdits premiers et lesdits seconds organes sont symétriques par rapport à la ligne médiane de la jambe d'onde ; - lesdits premiers organes sont décalés par rapport auxdits seconds organes, suivant le sens général d'écoulement de liquide, notamment de la moitié de la distance entre deux premiers ou deux seconds organes successifs ;
- lesdits premiers et seconds organes se trouvent en vis-à-vis de côté et de l'autre de la ligne médiane, notamment en formant un chevron ; - à l'état déplié de l'ailette-entretoise, les organes de déviation des jambes d'onde forment des rangées s'étendant parallèlement à un bord de l'ailette-entretoise et perpendiculairement aux bords de jambes d'onde , et les organes de déviation d'une rangée sont identiques ;
- les organes de déviation présentent un bord d'attaque et un bord de fuite, et au moins le bord d'attaque et de préférence le bord d'attaque et le bord de fuite sont en tout point inclinés et dirigés vers la rigole de drainage associée ;
- les organes de déviation comprennent une fente qui est ménagée dans la jambe d'onde ;
- les organes de déviation comprennent une partie en saillie sur la sur- face de la jambe d'onde ou en retrait par rapport à la surface de la jambe d'onde, notamment une partie emboutie ;
- chaque canal d'écoulement de gaz comporte sur les deux faces latérales constituées de jambes d'onde des parties uniquement en saillie ou sur lès deux faces latérales des parties uniquement en retrait par rapport aux surfaces de ces jambes d'onde ;
- deux organes de déviation successifs sur une jambe d'onde sont distants l'un de l'autre, dans ledit sens général d'écoulement de liquide, d'une distance inférieure à 5 cm, de préférence inférieure à 20 mm ; - la rigole de drainage comprend un ruban de matière continu de la jambe d'onde adjacente aux organes de déviation et un ruban de matière continu du sommet d'onde ou de la base d'onde adjacent à la jambe d'onde ;
- le sens général d'écoulement de liquide est sensiblement identique au sens d'écoulement général de fluide dans les canaux d'écoulement de gaz ;
- l'ailette-entretoise comprend des ondulations à décalage partiel, et en ce que les distances entre deux décalages successifs ont une longueur d'au moins 3 mm et de préférence d'au moins 1 cm ; et
- l'ailette-entretoise comprend au moins deux parties d'ailette dont chacune présente une capacité de drainage différente, et en ce que la capacité de drainage d'une partie d'ailette à la partie d'ailette suivante dans le sens d'écoulement général de fluide augmente.
L'invention a également pour objet un echangeur de chaleur à plaques brasées comprenant des plaques qui définissent entre elles des passages d'echauffement et de condensation partielle ou totale de forme générale plate, et comprenant dans chaque passage de condensation une ailette-entretoise d'échange thermique, ainsi que des barres de fermeture latérales, caractérisé en ce qu'au moins une ailette-entretoise d'échange thermique est une ailette- entretoise telle que définie ci-dessus. L'échangeur de chaleur peut constituer un vaporiseur-condenseur d'une installation de distillation d'air.
L'invention a par ailleurs pour objet un procédé de fabrication d'une ailette d'échange thermique telle que définie ci-dessus, caractérisé en ce qu'il comprend les étapes successives suivantes : - on ménage des rangées parallèles d'organes de déviation dans un flan de produit plat, notamment de la tôle ;
- on plie plastiquement le produit plat, en formant des ondulations, de telle sorte que les organes de déviation d'une rangée sont situés sur les jambes d'onde. Selon un mode particulier de réalisation, le procédé est caractérisé en ce que
- on ménage des premières branches du chevron dans le flan, puis
- on ménage des secondes branches du chevron dans le flan. L'invention sera mieux comprise à la lecture de la description qui va suivre, donnée uniquement à titre d'exemple et faite en se référant aux dessins sur lesquels :
- la Figure 1 représente schématiquement une partie d'une double co- lonne de distillation d'air conforme à l'invention ;
- la Figure 2 est une vue en coupe du vaporiseur-condenseur de cette double colonne, prise en coupe verticale suivant le plan ll-ll de la Figure 1 ;
- la Figure 3 est une vue en perspective d'une partie d'une ailette d'échange thermique selon l'invention ; - la Figure 4 est une vue d'un passage de condensation du vaporiseur- condenseur en coupe suivant la ligne IV-IV de la Figure 2 ;
- la Figure 5 est une vue de côté de la jambe de l'ailette de la Figure 3 ;
- la Figure 6 est une vue en plan d'une partie d'un flan d'une ailette selon les Figures 3 à 5 ; - la Figure 7 est une vue en plan d'un flan d'une première variante d'une ailette selon l'invention ;
- la Figure 8 est une vue d'un passage de condensation du vaporiseur- condenseur comprenant une ailette selon l'une des Figures 7, 9 ou 10 ; et
- les Figures 9 et 10 sont des vues analogues à la Figure 5 respective- ment d'une deuxième et d'une troisième variantes de réalisation de l'ailette suivant l'invention ;
- la Figure 11 est une vue en coupe d'un passage de condensation comportant une ailette conforme à un second mode de réalisation selon l'invention.
On a représenté schématiquement sur la Figure 1 la partie intermédiaire d'une double colonne de distillation d'air 1. On voit la virole 2 de la double colonne, commune à la colonne moyenne pression 3 et à la colonne basse pression 4 qui lui est superposée. Le fond supérieur bombé 5 de la colonne 3 sépare les deux colonnes et retient en cuve de la colonne 4 un bain d'oxygène liquide 6. L'azote de tête de la colonne 3 est condensé par échange de chaleur indirect avec l'oxygène liquide dans le vaporiseur-condenseur principal 7 de la double colonne, qui est disposé dans la cuve de la colonne 4 et est totalement immergé dans le bain 6.
Le vaporiseur-condenseur 7 est constitué d'un corps d'échangeur paral- lélépipédique 8, généralement en aluminium ou en alliage d'aluminium, et de quatre boîtes d'entrée/sortie d'azote de forme générale semi-cylindrique, dont deux boîtes d'entrée supérieures 9 et deux boîtes de sortie inférieures 10.
Le corps 8 est constitué d'un empilement d'un grand nombre de plaques rectangulaires verticales 11, toutes identiques. Entre ces plaques sont interpo- sées d'une part des barres de fermeture périphériques 12, d'autre part des ondes-entretoises, à savoir des ondes d'échange thermique 13 d'orientation principale verticale.
Le corps 8 est assemblé en une seule opération par brasage au four, et les quatre boîtes 9 et 10 sont soudées sur ce corps. Entre les plaques 11 sont ainsi délimités un grand nombre de passages plats qui sont alternativement des premiers passages 15 de condensation d'azote et des seconds passages 16 de vaporisation d'oxygène.
Les premiers passages 15 (Figure 2) sont fermés sur tout leur pourtour par les barres 12, qui laissent toutefois libre, à chaque extrémité longitudinale, une fenêtre supérieure 17 d'entrée d'azote gazeux et une fenêtre inférieure 18 de sortie d'azote liquide.
Chaque premier passage contient quatre zones de distribution, associées respectivement aux quatre fenêtres 17 et 18. Chacune de ces zones contient une onde 19 de distribution d'orientation principale horizontale. Le reste du premier passage 15, qui s'étend sur une large majorité de sa surface, est occupé par une onde d'échange thermique 13 constituée d'une première ailette- entretoise 20 d'échange thermique. Cette ailette-entretoise 20 est prise en sandwich entre deux plaques 11.
Chacune des deux boîtes d'entrée d'azote 9 coiffe une rangée horizon- taie de fenêtres 17. De même, chacune des deux boîtes de sortie d'azote 10 coiffe une rangée horizontale de fenêtres 18.
Les seconds passages 16 sont entièrement ouverts sur leurs côtés supérieur et inférieur, et ils sont fermés sur leurs deux côtés verticaux, sur toute leur hauteur, par les barres de fermeture 12. Ils contiennent uniquement des ondes d'échange 13 constituée d'une seconde ailette d'échange thermique. Ces ailettes peuvent être de la tôle ondulée à surface lisse.
En fonctionnement, l'azote gazeux, provenant de la colonne 3 via des conduites 22, est introduit dans les premiers passages 15 via les deux boîtes 9, est distribué sur toute la longueur des premiers passages par les ondes 19 supé- rieures, et se condense sur la surface des premières ailettes-entretoises 20 d'échange thermique. L'azote liquide ainsi obtenu, collecté dans les deux boîtes 10 par les ondes 19 inférieures, est renvoyé en reflux dans la colonne 3 via des conduites 23. L'azote gazeux circule dans le vaporiseur-condenseur 7 suivant un sens général de circulation V d'azote, qui est en l'occurrence vertical.
La condensation de l'azote provoque une vaporisation d'oxygène liquide dans les seconds passages 16.
Sur la Figure 3 est représentée, vue en perspective, une partie d'une première ailette-entretoise 20 d'échange thermique.
Cette ailette 20 comporte une ondulation 24 à section rectangulaire, présentant un pas d'onde p_0 et constitué de bases d'ondes 26 et de sommets d'onde 28 reliés par des jambes d'onde 30. Chaque jambe d'onde 30 a deux bords latéraux 31 s'étendant le long des bases 26 ou des sommets 28 d'onde. Comme il ressort de la Figure 4, les bases d'onde 26 et les sommets d'onde 28 sont fixés sur leur largeur l0 respectivement à deux plaques 11 par une couche de matière de brasage 32. Les jambes d'onde 30 s'étendent entre ces deux plaques 11 et présentent une hauteur h0. Ainsi, l'ailette 20 et les plaques 11 délimitent des canaux 34 d'écoulement d'azote gazeux. Typiquement la hauteur h0 est comprise entre 3 mm et 10 mm et la largeur l0 est comprise entre 0,5 mm et 5 mm.
L'ailette 20 comprend des moyens de drainage d'azote liquide condensé sur la surface des jambes 30 de l'ailette, vers les coins de l'ailette.
Ces moyens de drainage comprennent, d'une part, des premières rigoles de drainage 36A et 36B et, d'autre part, des organes 38 de déviation de liquide condensé vers ces rigoles 36.
Chacune des premières rigoles de drainage 36A est formée par la jonction d'une jambe d'onde 30 avec un sommet d'onde 28, tandis que chacune des premières rigoles 36B est formée par la jonction d'une jambe d'onde 30 avec une base d'onde 28.
A cet effet, chaque jambe d'onde 30 comporte une zone 39 de matière continue qui s'étend dans la jambe d'onde de la base 26 de l'onde ou du sommet 28 de l'onde au début de l'organe de déviation 38. Cette zone 39, appelée ruban, présente une largeur dc qui est d'au moins 0,2 mm, et qui est de préférence comprise entre 0,5 mm et 1 mm (voir Figure 5).
La base 26 et le sommet 28 d'onde sont chacun constitués d'une bande de matière continue, dépourvue d'organes de déviation 38 de liquide. En consé- quence, cette bande forme un ruban analogue au ruban 39.
Les premières rigoles de drainage 36A, 36B s'étendent suivant le sens général V de circulation de l'azote.
Des secondes rigoles de drainage 42A, 42B sont formées aux emplacements de jonction des jambes d'onde 30 avec la plaque 11. Ces secondes rigoles 42A, 42B sont sensiblement identiques aux premières rigoles de drainage 36A, 36B. Toutefois, leur largeur est augmentée de l'épaisseur de la base d'onde 26 ou du sommet d'onde 28 et de la couche de matière de brasage 32.
Les organes 38 de déviation de liquide sont constitués par une succession de fentes identiques 44A, 44B en forme quadrilatère, en l'occurrence en forme de parallélogramme, ménagées dans les jambes d'onde 30. Les fentes 44A sont inclinées vers les rigoles de drainage 36A, 42A, dans le sens d'écoulement général de liquide L, tandis que les fentes 44B sont inclinées vers les rigoles de drainage 36B, 42B.
Chaque fente 44A, 44B comporte ainsi deux bords longs d'attaque 46 et de fuite 48 ainsi que deux bords courts d'attaque 50 et de fuite 52. Les bords d'attaque rencontrent les bords de fuite en des points de jonction d'attaque A et de fuite F. Dans le cas où l'ailette 20 est fabriquée à partir d'une tôle perforée, les bords des fentes sont légèrement arrondis aux emplacements des points A et F. La largeur e de la fente, mesurée suivant un sens perpendiculaire au sens d'écoulement L, est inférieure à 2 mm et est de préférence comprise entre 0,1 mm et 1 mm.
Les bords d'attaque long 46 et court 50 sont inclinés par rapport au sens général d'écoulement de liquide L, vers les rigoles de drainage 36A, 36B, 42A, 42B, suivant des angles α, et β, tandis que les bords de fuite long 48 et court 52 sont inclinés par rapport à ce sens L suivant des angles Y et δ . Dans le cas d'un parallélogramme α = Y et β = δ (voir Figure 5). Les angles α, β, Y et δ sont compris entre 5° et 70° et de préférence compris entre 10° et 45° mesurés par rapport au sens général d'écoulement de liquide L. L'inclinaison α et β des bords d'attaque 46, 50 est choisie en fonction de la vitesse d'écoulement du liquide et de la viscosité du liquide condensé de telle sorte que les gouttes de liquide adhèrent aux bords d'attaque 46, 50 avant d'être drainées au point F par les rigoles de drainage 36A, 36B, 42A, 42B. D'une manière générale, les bords de fuite 48, 52 sont disposés de telle sorte que le point de jonction F de fuite entre le bord d'attaque long 46 et le bord de fuite court 52 est, d'une part, le point le plus en aval du bord de fuite 48, 52 et est, d'autre part, le point du bord de la fente 44A, 44B le plus proche des rigoles de drainage 36A, 36B, 42A, 42B associées. Grâce à cette configuration, le li- quide s'écoulant le long du bord d'attaque 46, 50 est empêché d'être dévié vers le milieu de la jambe d'onde 30 à partir du point de jonction F de fuite.
Le point de jonction d'attaque A est disposé le plus près possible de la base d'onde 26 ou du sommet d'onde 28, et coïncide de préférence avec cette dernière ou ce dernier. En d'autres termes, le bord d'attaque 46, 50 est en chaque point incliné dans le sens L vers la rigole de drainage 36A, 36B, 42A, 42B associée. De préférence, le bord d'attaque 46, 50 a une forme concave ou rectiligne vers le haut, et le bord de fuite 48, 52 est en chaque point convexe ou rectiligne vers le bas.
La hauteur hf de chaque fente 44A, 44B mesurée suivant le sens d'écoulement de liquide L est choisie de sorte à affaiblir le moins possible la structure de l'ailette 20. La hauteur hf est comprise par exemple entre 0,5mm et 20 mm et de préférence entre 5 mm et 15 mm.
La distance entre deux fentes 44A, 44B successives est nommée dj. Cette distance df est la distance entre le point de fuite F d'une fente 44A, 44B et le point d'attaque A de la fente 44A, 44B suivante. Cette distance df est choisie inférieure à 5 cm et est de préférence inférieure à 20 mm.
Le pas entre deux fentes 44A, 44B successives est nommé p.f = hf + df. Ge pas βf est choisi de telle sorte que la surface de la jambe d'onde 30 est juste remouillée sur sa hauteur h0 entre deux fentes 44A, 44B successives. Le taux de perforation, c'est-à-dire le rapport de la surface des perforations à la surface totale de l'ailette, est inférieur à 15%.
Pendant le fonctionnement de l'échangeur, il s'établit un film 56 d'azote liquide qui s'écoule sur la surface de l'ailette 20. Le liquide rencontre alors le bord d'attaque 46, 50 d'une fente 44A, 44B et est dévié vers une rigole 36A, 36B, 42A, 42B de telle sorte qu'une zone asséchée 54 est établie en aval de la fente 44A, 44B. En aval de cette fente 44A, 44B s'établit de nouveau, progressivement, un film de liquide 56 par condensation d'azote gazeux, liquide qui est drainé par la fente 44A, 44B suivante. Les fentes 44A, 44B diminuent l'épaisseur du film liquide sur la jambe d'onde 30 et par conséquent la résistance de transfert de chaleur. Elles conduisent, en conséquence, à une augmentation de l'efficacité d'échange thermique de l'ailette.
Comme il ressort de la Figure 4, pendant le fonctionnement, il s'établit des écoulements de liquide dans les rigoles de drainage 36A, 36B, 42A, 42B. La surface libre de l'écoulement de liquide dans une rigole de drainage est en forme de cylindre partiel de rayon r. Le liquide s'écoulant dans les rigoles de drainage 36A, 36B, 42A, 42B est empêché de sortir de ces derniers par les forces de capillarité agissant sur le liquide. La capacité de drainage des rigoles est importante grâce au fait que le rayon r de la surface libre du liquide varie en puissance V du débit de liquide dans la rigole concernée.
Sur la Figure 6 est représenté une partie inférieure d'un flan F utilisé pour la fabrication de l'ailette 20.
Le flan F comporte des rangées Rp de fentes 44A et 44B dans des zones correspondant aux jambes d'onde 30. Ces rangées RP s'étendent perpendiculairement au bord inférieur B du flan F.
Les fentes forment également des rangées R s'étendant parallèlement au bord inférieur B et perpendiculairement aux bords latéraux 31 des jambes d'onde 30. Le motif formé par les fentes 44A, 44B est identique sur tous les jambes d'onde 30 et se reproduit avec une périodicité p_ identique à la périodicité de pliage p_p.
Ainsi, un seul poinçon peut être utilisé pour la fabrication des fentes 44A et 44B et ce poinçon est entraîné de façon synchrone avec l'outil de pliage du flan.
Sur la figure 7 est représentée une partie d'un flan d'une première variante d'une ailette-entretoise selon l'invention.
Uniquement les différences par rapport à l'ailette précitée seront décrites. Le flan F comporte sur chaque zone correspondant à une jambe d'onde
30 des premiers groupes G1 de cinq premières fentes 44A successives et des seconds groupes G2 de cinq secondes fentes 44B successives. Les premières fentes 44A sont inclinées vers un côté de la jambe d'onde 30, tandis que les se- condes fentes 44B sont inclinées de l'autre côté de celle-ci.
Les deux groupes G1 et G2 sont distants l'un de l'autre d'une distance dg comprise entre 0,5 mm et 5cm.
Chaque jambe d'onde 30 comporte deux rubans 39 de matière continue, associés aux deux bords latéraux 31 de la jambe d'onde 30 et adjacents aux zo- nés de base 26 ou zones de sommet 28.
Chaque fente 44A, 44B s'étend entre ces deux rubans 39.
Pendant le fonctionnement, les fentes 44A dévient le liquide vers un bord de la jambe d'onde 30, tandis que les fentes 44B dévient le liquide vers l'autre bord de la jambe (voir Figure 8). Sur la Figure 9 est représentée une deuxième variante de l'ailette 20 selon l'invention. Cette Figure correspond à la vue de la Figure 5. Les éléments analogues portent des références identiques.
Les organes 38 de déviation de liquide sont formés par une succession de premières fentes 44A et de secondes fentes 44B. Les premières et secondes fentes s'étendent sur chaque jambe d'onde 30 de part et d'autre d'une ligne médiane M-M de celle-ci.
Cette ligne M-M s'étend parallèlement au sens d'écoulement de liquide L, à mi-distance entre le sommet d'onde 28 et la base d'onde 26 de l'ailette 20.
Les premières fentes 44A sont inclinées à partir de la ligne médiane M-M vers les sommets d'onde 28, tandis que les secondes fentes 44B sont inclinées vers les bases d'onde 26. Les premières fentes 44A et les secondes fentes 44B ont une forme symétrique par rapport à la ligne médiane M-M.
Le point de jonction de fuite F de chaque fente 44A, 44B est disposé à une distance dc du sommet 28, respectivement de la base 26. Cette ailette 20 comprend des premières rigoles de drainage 36A, 36B sur les deux côtés de chaque jambe d'onde 30.
Le point de jonction d'attaque A de chaque fente 44A, 44B est disposé sur la ligne M-M. Ainsi, sensiblement toute la largeur de la jambe 30 est munie de fentes de drainage 44A, 44B. Pendant le fonctionnement et comme représenté sur la Figure 8, le liquide est dévié vers le sommet 28 et la base 26 associés à chaque jambe 30, vers les rigoles 36A, 36B et 42A, 42B.
Chacune des premières 44A ou secondes 44B fentes est décalée par rapport à la première ou seconde fente suivante d'une distance p_f.
En d'autres termes, le motif constitué par l'ensemble de deux fentes 44A, 44B est répété après une distance p_m .
La distance df entre le point F d'une fente 44A, 44B et le point A d'une fente 44B, 44A suivante est comprise entre 0 mm et 2,5 cm. Les premières fentes 44A sont décalées par rapport aux secondes fentes 44B d'une distance p_f = gm/2 suivant le sens d'écoulement L.
Ce décalage conduit à une rigidité importante de l'ailette 20 suivant le sens de la jambe d'onde 30.
Sur la Figure 10 est représentée une troisième variante de l'ailette selon l'invention.
Les fentes 44 de cette ailette 20 sont sensiblement en forme de chevron. La pointe A du chevron est située sur la ligne médiane M-M et est dirigée vers l'amont par rapport au sens général d'écoulement de liquide L.
Les deux bras 44A, 44B du chevron ont une forme sensiblement identi- que aux premières 44A et secondes 44B fentes de la première variante de l'ailette 20. Comme différence, le bord d'attaque 46A, 46B de chaque bras est rectiligne du point d'attaque A jusqu'au point de fuite F. Pendant le fonctionnement, l'écoulement de liquide s'établit des deux côtés de chaque jambe d'onde 30, de façon analogue à celui de la deuxième variante (Fig. 8). Chaque fente en forme de chevron (Fig. 10) est soit découpée par un poinçon correspondant en forme de chevron, soit par deux poinçons séparés dont chacun correspond à un bras 44A, 44B d'une fente 44. Dans ce dernier cas, le découpage de la fente 44 est effectuée en deux étapes successives.
Sur la Figure 11 est représenté un second mode de réalisation d'une ai- lette selon l'invention. Cette vue correspond à la vue de la Figure 4, mais ne montre qu'une onde.
Comme différence, les organes 38 de déviation de liquide sont constitués de parties embouties 60 dans la surface des jambes d'onde 30. Les parties embouties 60 forment sur un côté de la jambe d'onde une rainure 62 et sur l'autre côté de la jambe d'onde une nervure 64.
La forme et la configuration géométrique des parties embouties 60 en vue de côté sont identiques à celle des fentes 44A, 44B des réalisations de l'ailette décrites ci-dessus.
La profondeur d'emboutissage fe de la partie emboutie 60 est inférieure à la moitié de la largeur d'onde j0, et est par exemple comprise entre 0,1 mm et 0,25 mm.
L'ailette d'échange thermique selon l'invention peut être facilement fabri- quée à partir d'un produit plat, par exemple une tôle en aluminium.
Les fentes 44, 44A, 44B sont alors réalisées par perforation.
Alternativement, les parties embouties 60 sont formées par emboutissage avant pliage du produit plat. De préférence, l'emboutissage est effectué sur un seul côté, de sorte que les rainures 62 se trouvent sur un seul côté du flan. Dans ce cas, chaque canal 34 comporte sur ses deux faces latérales, constituées par les jambes d'onde 30, soit des rainures 62 de déviation soit des nervures 64 de déviation.
En variante, les organes de déviation 38 sont fabriqués sur une ailette du type « serrated », c'est-à-dire comportant des ondulations à décalage partiel. Dans ce cas, la longueur des ondulations dans le sens d'écoulement général de liquide doit être suffisamment importante afin de mouiller la surface de la jambe. La longueur de l'ondulation, appelée également longueur de serration, dans le sens d'écoulement de liquide L doit être au moins 3 mm et de préférence au moins 1 cm. L'ailette peut également être utilisée dans un echangeur de chaleur dans lequel circule un mélange gazeux dans les passages de refroidissement, et dans lequel une fraction du mélange est condensé.
En variante encore, l'ailette peut être constituée par deux ou plusieurs parties d'ailette disposées l'une après l'autre dans le sens d'écoulement général de liquide. Dans ce cas, il est avantageux que les moyens de drainage 36A, 36B, 38 aient une capacité de drainage différente d'une partie d'ailette à l'autre et que la capacité de drainage d'une partie d'ailette à la partie d'ailette suivante, dans le sens d'écoulement de fluide de drainage, augmente. Un exemple d'une telle ailette est une ailette-entretoise qui comprend une première partie d'ailette munie de rigoles 36A, 36B et des organes de drainage 38 et une seconde partie d'ailette, qui est située en aval dans le sens d'écoulement de liquide L et qui comprend des jambes d'onde 30 lisses.

Claims

REVENDICATIONS
1. Ailette-entretoise d'échange thermique destinée à être disposée en sandwich entre deux plaques qui délimitent un passage de condensation (15) d'un echangeur de chaleur (7) à plaques brasées, du type comprenant un produit ondulé, notamment à ondulation à section rectangulaire, ayant des jambes d'onde (30) qui, à l'état monté, délimitent des canaux (34) d'écoulement d'un gaz à condenser au moins partiellement, l'ailette-entretoise (20) comportant au moins une rigole de drainage (36A, 36B) de liquide condensé sur les jambes d'onde (30), s'étendant suivant un bord latéral (31) de la jambe d'onde (30), et des or- ganes de déviation (38) disposés sur la jambe d'onde (30) et adaptés pour dévier du liquide (56) condensé vers cette rigole de drainage (36A, 36B), caractérisée en qu'au moins un organe de déviation a un bord d'attaque (46,50 ; 46A.46B) et/ou un bord de fuite (48,52) incliné(s) vers une rigole associée (36A.36B).
2. Ailette-entretoise d'échange thermique selon la revendication 1 , ca- ractérisée en ce que les organes de déviation (38) de chaque jambe d'onde (30) sont adaptés pour drainer le liquide vers un. seul bord latéral (31) de la jambe d'onde (30), et en ce que les organes de déviation (38) de deux jambes d'onde
(30) successives sont adaptés pour drainer le liquide vers deux bords latéraux
(31) opposés.
3. Ailette-entretoise d'échange thermique selon la revendication 1 , caractérisée en ce que les organes de déviation (38) sont adaptés pour drainer vers les deux bords latéraux (31) le liquide (56) condensé sur chacune des jambes d'onde (30).
4. Ailette-entretoise d'échange thermique selon l'une quelconque des revendications précédentes, caractérisée en ce que toute la hauteur des jambes d'onde (30) à l'exception des zones (39) associées à une rigole de drainage (36A, 36B) porte des organes de déviation (38).
5. Ailette-entretoise d'échange thermique selon l'une quelconque des revendications précédentes, caractérisée en ce que l'ailette-entretoise comprend des bases d'onde (26) et des sommets d'onde (28), et en ce que les organes de déviation (38) comprennent des premiers (44A) et seconds (44B) organes dont les premiers sont inclinés vers une rigole (36A) associée à la base d'onde (26) et dont les seconds sont inclinés vers une rigole (36B) associée au sommet d'onde (28).
6. Ailette-entretoise d'échange thermique selon les revendications 2 et 5 prises ensemble, caractérisée en ce que les organes de deux jambes d'onde (30) successifs sont constitués uniquement de premiers organes (44A) sur l'une des deux jambes d'onde (30) et uniquement de seconds organes (44B) sur l'autre de ces deux jambes d'onde (30).
7. Ailette-entretoise d'échange thermique selon les revendications 3 et 5 prises ensemble, caractérisée en ce que chaque jambe d'onde (30) comprend un premier groupe (G1) de premiers organes (44A) successifs et un second groupe (G2) constitué de seconds organes (44B) successifs, les premiers et les seconds organes s'étendant chacun sur sensiblement toute la hauteur des jambes d'onde (30).
8. Ailette-entretoise d'échange thermique selon la revendication 5, caractérisée en ce que lesdits premiers (44A) et lesdits seconds organes (44B) sont symétriques par rapport à la ligne médiane (M-M) de la jambe d'onde (30).
9. Ailette-entretoise d'échange thermique selon la revendication 8, caractérisée en ce que lesdits premiers organes (44A) sont décalés par rapport auxdits seconds organes (44B), suivant le sens général d'écoulement de liquide (L), notamment de la moitié de la distance entre deux premiers (44A) ou deux seconds (44B) organes successifs (Q^.
10. Ailette-entretoise d'échange thermique selon la revendication 8, caractérisée en ce que lesdits premiers (44A) et seconds organes (44B) se trouvent en vis-à-vis de côté et de l'autre de la ligne médiane (M-M), notamment en formant un chevron (44).
1 1 . Ailette-entretoise d'échange thermique selon l'une quelconque des revendications 5 à 10, caractérisée en ce que, à l'état déplié de l'ailette- entretoise, les organes de déviation (38) des jambes d'onde (30) forment des rangées (R) s'étendant parallèlement à un bord de l'ailette-entretoise et perpendiculairement aux bords de jambes d'onde (30), et en ce que les organes de déviation (38) d'une rangée (R) sont identiques.
12. Ailette-entretoise d'échange thermique selon l'une quelconque des revendications 5 à 1 1 , caractérisée en ce que les organes de déviation (38) présentent un bord d'attaque (46, 50 ; 46A, 46B) et un bord de fuite (48, 52), et en ce qu'au moins le bord d'attaque (46, 50 ; 46A, 46B) et de préférence le bord d'attaque et le bord de fuite (48, 52) sont en tout point inclinés et dirigés vers la rigole de drainage (36A, 36B) associée.
13. Ailette-entretoise d'échange thermique selon l'une quelconque des revendications précédentes, caractérisée en ce que les organes de déviation (38) comprennent une fente (44 ; 44A, 44B) qui est ménagée dans la jambe d'onde (30).
14. Ailette-entretoise d'échange thermique selon l'une quelconque des revendications précédentes, caractérisée en ce que les organes de déviation (38) comprennent une partie en saillie (64) sur la surface de la jambe d'onde (30) ou en retrait (62) par rapport à la surface de la jambe d'onde (30), notamment une partie emboutie (60).
15. Ailette-entretoise d'échange thermique selon la revendication 14, caractérisée en ce que chaque canal d'écoulement de gaz (34) comporte sur les deux faces latérales constituées de jambes d'onde (30) des parties uniquement en saillie (64) ou sur les deux faces latérales des parties uniquement en retrait (62) par rapport aux surfaces de ces jambes d'onde (30).
16. Ailette-entretoise d'échange thermique selon l'une quelconque des revendications précédentes, caractérisée en ce que deux organes de déviation (38) successifs sur une jambe d'onde (30) sont distants l'un de l'autre, dans ledit sens général d'écoulement de liquide (L), d'une distance (df) inférieure à 5 cm, de préférence inférieure à 20 mm.
17. Ailette-entretoise d'échange thermique selon l'une quelconque des revendications précédentes, caractérisée en ce que la rigole de drainage (36A, 36B) comprend un ruban de matière continu (39) de la jambe d'onde (30) adja- cente aux organes de déviation (38) et un ruban de matière continu du sommet d'onde (28) ou de la base d'onde (26) adjacent à la jambe d'onde (30).
18. Ailette-entretoise d'échange thermique selon l'une quelconque des revendications précédentes, caractérisée en ce que le sens général d'écoulement de liquide (L) est sensiblement identique au sens d'écoulement général de fluide (V) dans les canaux (34) d'écoulement de gaz.
19. Ailette-entretoise d'échange thermique selon l'une quelconque des revendications précédentes, caractérisée en ce que l'ailette-entretoise comprend des ondulations à décalage partiel, et en ce que les distances entre deux déca- lages successifs ont une longueur d'au moins 3 mm et de préférence d'au moins 1 cm.
20. Ailette-entretoise d'échange thermique selon l'une quelconque des revendications précédentes, caractérisée en ce qu'elle comprend au moins deux parties d'ailette dont chacune présente une capacité de drainage différente, et en ce que la capacité de drainage d'une partie d'ailette à la partie d'ailette suivante dans le sens d'écoulement général de fluide augmente.
21. Echangeur de chaleur à plaques brasées comprenant des plaques (11 ) qui définissent entre elles des passages d'echauffement (16) et de conden- sation (15) partielle ou totale de forme générale plate, et comprenant dans chaque passage de condensation (15) une ailette-entretoise d'échange thermique (20), ainsi que des barres de fermeture latérales (12), caractérisé en ce qu'au moins une ailette-entretoise d'échange thermique (20) est conforme à l'une quelconque des revendications précédentes.
22. Echangeur de chaleur suivant la revendication 21 , caractérisé en ce qu'il constitue un vaporiseur-condenseur (7) d'une installation de distillation d'air.
23. Procédé de condensation d'un gaz dans une echangeur de chaleur selon l'une des revendications 21 et 22.
24. Procédé de fabrication d'une ailette d'échange thermique suivant l'une quelconque des revendications 2 à 20, caractérisé en ce qu'il comprend les étapes successives suivantes :
- on ménage des rangées parallèles (Rp) d'organes de déviation (38) dans un flan de produit plat, notamment de la tôle ; - on plie plastiquement le produit plat, en formant des ondulations, de telle sorte que les organes de déviation (38) d'une rangée (Rp) sont situés sur les jambes d'onde (30).
25. Procédé de fabrication selon la revendication 23 d'une ailette d'échange thermique selon la revendication 10 ou l'une des revendications dé- pendantes de la revendication 10, caractérisé en ce que
- on ménage des premières branches (44A, 44B) du chevron dans le flan, puis
- on ménage des secondes branches (44B, 44A) du chevron dans le flan.
PCT/FR2003/000077 2002-01-17 2003-01-10 Ailette d'echange thermique, et son procede de fabrication WO2003060413A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US10/502,123 US7445040B2 (en) 2002-01-17 2003-01-10 Heat exchange fin and the production method thereof
JP2003560461A JP4409293B2 (ja) 2002-01-17 2003-01-10 熱交換フィンおよびそれの製造方法
DE60303197T DE60303197T2 (de) 2002-01-17 2003-01-10 Wärmeaustauschrippe und herstellungsverfahren dafür
EP03715008A EP1468238B1 (fr) 2002-01-17 2003-01-10 Ailette d echange thermique, et son procede de fabrication

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR02/00542 2002-01-17
FR0200542A FR2834783B1 (fr) 2002-01-17 2002-01-17 Ailette d'echange thermique, son procede de fabrication et echangeur de chaleur correspondant

Publications (1)

Publication Number Publication Date
WO2003060413A1 true WO2003060413A1 (fr) 2003-07-24

Family

ID=8871326

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2003/000077 WO2003060413A1 (fr) 2002-01-17 2003-01-10 Ailette d'echange thermique, et son procede de fabrication

Country Status (8)

Country Link
US (1) US7445040B2 (fr)
EP (1) EP1468238B1 (fr)
JP (1) JP4409293B2 (fr)
CN (1) CN1321313C (fr)
AT (1) ATE315770T1 (fr)
DE (1) DE60303197T2 (fr)
FR (1) FR2834783B1 (fr)
WO (1) WO2003060413A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016166473A1 (fr) * 2015-04-16 2016-10-20 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Échangeur de chaleur présentant des éléments de microstructure et unité de séparation comprenant un tel échangeur de chaleur
FR3075337A1 (fr) * 2017-12-19 2019-06-21 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Element intercalaire a texturation de surface, echangeur de chaleur comprenant un tel element

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10218912A1 (de) * 2002-04-27 2003-11-06 Modine Mfg Co Gewellter Wärmetauschkörper
FR2891901B1 (fr) * 2005-10-06 2014-03-14 Air Liquide Procede de vaporisation et/ou de condensation dans un echangeur de chaleur
JP5156773B2 (ja) * 2010-02-25 2013-03-06 株式会社小松製作所 コルゲートフィンおよびそれを備える熱交換器
US20140326432A1 (en) * 2011-12-19 2014-11-06 Dpoint Technologies Inc. Counter-flow energy recovery ventilator (erv) core
US20130153172A1 (en) * 2011-12-20 2013-06-20 Conocophillips Company Method and apparatus for reducing the impact of motion in a core-in-shell heat exchanger
JP6270734B2 (ja) * 2011-12-20 2018-01-31 コノコフィリップス カンパニー シェル内コア熱交換器内におけるスロッシング抑制のための内部バッフル
CN102767983A (zh) * 2012-08-10 2012-11-07 湖南创化低碳环保科技有限公司 一种可实现流体均匀分配的导流装置及换热器
ITTO20130055A1 (it) * 2013-01-23 2014-07-24 Denso Thermal Systems Spa Struttura di aletta per scambiatore di calore per applicazioni automotive, in particolare per macchine agricole e da cantiere.
TW201437599A (zh) * 2013-03-25 2014-10-01 He Ju Technology Co Ltd 扁管板片及對流熱交換器
JP6203080B2 (ja) * 2013-04-23 2017-09-27 カルソニックカンセイ株式会社 熱交換器
JP6046558B2 (ja) * 2013-05-23 2016-12-14 カルソニックカンセイ株式会社 熱交換器
RU2578773C1 (ru) * 2015-01-28 2016-03-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Юго-Западный государственный университет" (ЮЗГУ) Секционный конденсатор с капиллярной насадкой
RU2717184C2 (ru) * 2015-10-08 2020-03-18 Линде Акциенгезельшафт Ламель для пластинчатого теплообменника и способ ее изготовления
FR3075339B1 (fr) * 2017-12-19 2019-11-22 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Echangeur de chaleur avec elements et plaques a texturation de surface
FR3075340B1 (fr) * 2017-12-19 2021-04-30 Air Liquide Element intercalaire a texturation de surface, echangeur de chaleur et procede de fabrication associes
US10544997B2 (en) * 2018-03-16 2020-01-28 Hamilton Sundstrand Corporation Angled fluid redistribution slot in heat exchanger fin layer
WO2020033139A1 (fr) * 2018-08-10 2020-02-13 Modine Manufacturing Company Plaque de refroidissement de batterie
US11236953B2 (en) 2019-11-22 2022-02-01 General Electric Company Inverted heat exchanger device
CN111545160A (zh) * 2020-05-29 2020-08-18 北京化工大学 一种高效填料支撑装置及适用于大塔径的填料支撑装置
RU2738749C1 (ru) * 2020-08-18 2020-12-16 Федеральное государственное бюджетное образовательное учреждение высшего образования. "Юго-Западный государственный университет" (ЮЗГУ) Многослойный кожухотрубчатый капиллярный конденсатор
US11940232B2 (en) 2021-04-06 2024-03-26 General Electric Company Heat exchangers including partial height fins having at least partially free terminal edges
US11686537B2 (en) 2021-04-06 2023-06-27 General Electric Company Heat exchangers and methods of manufacturing the same
FR3127561B1 (fr) 2021-09-27 2023-10-27 Air Liquide Echangeur comprenant au moins une structure d’échange thermique à surface striée
CN113941641A (zh) * 2021-10-15 2022-01-18 杭州电子科技大学 高压高密度板翅式换热器翅片的热冲压成形方法及装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3523577A (en) * 1956-08-30 1970-08-11 Union Carbide Corp Heat exchange system
JPS5841637A (ja) * 1981-09-03 1983-03-10 Hitachi Ltd コルゲ−トフインの成形方法
GB2175990A (en) * 1985-05-24 1986-12-10 Mitsubishi Electric Corp Heat exchanger
GB2199933A (en) * 1987-01-14 1988-07-20 Marston Palmer Ltd Surface condensers
DE3843688A1 (de) * 1988-12-23 1989-11-23 Bayerische Motoren Werke Ag Verdampferf einer klimaanlage
JPH09159313A (ja) * 1995-12-08 1997-06-20 Fujitsu General Ltd 熱交換器
EP0952419A1 (fr) * 1998-04-20 1999-10-27 Air Products And Chemicals, Inc. Conception d'ailettes améliorées pour rebouilleur à courant descendant
FR2804471A1 (fr) * 2000-01-28 2001-08-03 Behr Gmbh & Co Refroidisseur d'air de suralimentation, notamment pour vehicules automobiles

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1494167A (fr) * 1966-07-15 1967-09-08 Chausson Usines Sa Echangeur thermique, notamment pour véhicules automobiles et applications analogues
US3457990A (en) * 1967-07-26 1969-07-29 Union Carbide Corp Multiple passage heat exchanger utilizing nucleate boiling
US3542124A (en) * 1968-08-08 1970-11-24 Garrett Corp Heat exchanger
US4715431A (en) * 1986-06-09 1987-12-29 Air Products And Chemicals, Inc. Reboiler-condenser with boiling and condensing surfaces enhanced by extrusion
JP2555449B2 (ja) * 1989-08-26 1996-11-20 日本電装株式会社 熱交換器
AU1888595A (en) * 1994-03-03 1995-09-18 Gea Luftkuhler Gmbh Finned tube heat exchanger
FR2798598B1 (fr) * 1999-09-21 2002-05-24 Air Liquide Vaporiseur-condenseur a bain et appareil de distillation d'air correspondant
US6729388B2 (en) * 2000-01-28 2004-05-04 Behr Gmbh & Co. Charge air cooler, especially for motor vehicles
FR2811747B1 (fr) * 2000-07-11 2002-10-11 Air Liquide Ailette d'echange thermique pour echangeur de chaleur a plaques brasees, et echangeur de chaleur correspondant

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3523577A (en) * 1956-08-30 1970-08-11 Union Carbide Corp Heat exchange system
JPS5841637A (ja) * 1981-09-03 1983-03-10 Hitachi Ltd コルゲ−トフインの成形方法
GB2175990A (en) * 1985-05-24 1986-12-10 Mitsubishi Electric Corp Heat exchanger
GB2199933A (en) * 1987-01-14 1988-07-20 Marston Palmer Ltd Surface condensers
DE3843688A1 (de) * 1988-12-23 1989-11-23 Bayerische Motoren Werke Ag Verdampferf einer klimaanlage
JPH09159313A (ja) * 1995-12-08 1997-06-20 Fujitsu General Ltd 熱交換器
EP0952419A1 (fr) * 1998-04-20 1999-10-27 Air Products And Chemicals, Inc. Conception d'ailettes améliorées pour rebouilleur à courant descendant
FR2804471A1 (fr) * 2000-01-28 2001-08-03 Behr Gmbh & Co Refroidisseur d'air de suralimentation, notamment pour vehicules automobiles

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 007, no. 124 (M - 218) 28 May 1983 (1983-05-28) *
PATENT ABSTRACTS OF JAPAN vol. 1997, no. 10 31 October 1997 (1997-10-31) *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016166473A1 (fr) * 2015-04-16 2016-10-20 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Échangeur de chaleur présentant des éléments de microstructure et unité de séparation comprenant un tel échangeur de chaleur
FR3035202A1 (fr) * 2015-04-16 2016-10-21 Air Liquide Echangeur de chaleur presentant des elements de microstructure et unite de separation comprenant un tel echangeur de chaleur
FR3075337A1 (fr) * 2017-12-19 2019-06-21 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Element intercalaire a texturation de surface, echangeur de chaleur comprenant un tel element
WO2019122663A1 (fr) * 2017-12-19 2019-06-27 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Element intercalaire a texturation de surface, echangeur de chaleur comprenant un tel element

Also Published As

Publication number Publication date
EP1468238A1 (fr) 2004-10-20
FR2834783B1 (fr) 2004-06-11
JP4409293B2 (ja) 2010-02-03
US20050121181A1 (en) 2005-06-09
JP2005515392A (ja) 2005-05-26
ATE315770T1 (de) 2006-02-15
FR2834783A1 (fr) 2003-07-18
CN1620591A (zh) 2005-05-25
DE60303197D1 (de) 2006-04-06
CN1321313C (zh) 2007-06-13
EP1468238B1 (fr) 2006-01-11
DE60303197T2 (de) 2006-11-02
US7445040B2 (en) 2008-11-04

Similar Documents

Publication Publication Date Title
EP1468238B1 (fr) Ailette d echange thermique, et son procede de fabrication
EP1192402B1 (fr) Echangeur de chaleur a tubes a plusieurs canaux
WO2005073657A1 (fr) Echangeur thermique et module d’echange s’y rapportant
EP1348100B1 (fr) Echangeur de chaleur a plaques brasees
EP0546947B1 (fr) Echangeur de chaleur indirect du type à plaques
EP1008826B1 (fr) Vaporiseur à film ruisselant et installations de distillation d'air correspondantes
EP0491591B1 (fr) Colonne de distillation d'air à garnissage ondulé-croisé
EP0045257B1 (fr) Echangeur de chaleur à plaques à structure rigide
WO2007074290A1 (fr) Nouvelles ondes d'echange de chaleur et leurs applications
EP1073515B1 (fr) Structure maritime flottante perfectionnee avec colonne de distillation
EP3615877B1 (fr) Echangeur de chaleur à jonction d'ondes améliorée, installation de séparation d'air associée et procédé de fabrication d'un tel échangeur
EP1426722B1 (fr) Plaque d'un échangeur thermique et échangeur thermique à plaques
WO2005100901A1 (fr) Tubes d'echangeur de chaleur favorisant le drainage des condensats
FR2793548A1 (fr) Vaporiseur-condenseur a plaques fonctionnant en thermosiphon, et double colonne de distillation d'air comportant un tel vaporiseur-condenseur
EP4155647B1 (fr) Echangeur comprenant au moins une structure d échange thermique à surface striée
EP1170565A1 (fr) Echangeur de chaleur du type à deux voies d'écoulement de fluide
WO2010058115A1 (fr) Garnissage ondulé-croisé et colonne incorporant un tel garnissage
FR2676371A1 (fr) Colonne de distillation d'air a garnissage ondule-croise.
WO2004110617A1 (fr) Bande pour module de garnissage et installation correspondante
FR3062901A1 (fr) Tube d’echangeur thermique, echangeur thermique et procede d’assemblage du tube correspondants
FR2947188A1 (fr) Bande pour module de garnissage, module de garnissage et installation de distillation correspondants
CA2451830A1 (fr) Bande pour module de garnissage, module et installation correspondants
FR2718835A1 (fr) Echangeur de chaleur à plaques brasées.
BE381979A (fr)
FR2878454A1 (fr) Element de garnissage regulier perfectionne, son procede de preparation et ses utilisations

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003715008

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2003560461

Country of ref document: JP

Ref document number: 10502123

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 20038024292

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2003715008

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2003715008

Country of ref document: EP