EP0045257B1 - Echangeur de chaleur à plaques à structure rigide - Google Patents

Echangeur de chaleur à plaques à structure rigide Download PDF

Info

Publication number
EP0045257B1
EP0045257B1 EP81401190A EP81401190A EP0045257B1 EP 0045257 B1 EP0045257 B1 EP 0045257B1 EP 81401190 A EP81401190 A EP 81401190A EP 81401190 A EP81401190 A EP 81401190A EP 0045257 B1 EP0045257 B1 EP 0045257B1
Authority
EP
European Patent Office
Prior art keywords
plates
exchanger according
plate
heat exchanger
distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP81401190A
Other languages
German (de)
English (en)
Other versions
EP0045257A3 (en
EP0045257A2 (fr
Inventor
Raymond Berger
Maurice Bouvier De Cachard
Alain Collet
Didier Costes
André Gouzy
Guy Dupuy
Pierre Caunes
Claude Chevrier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alusuisse France SA
Alusuisse Lonza France SA
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Alusuisse France SA
Alusuisse Lonza France SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR8016472A external-priority patent/FR2487495A1/fr
Priority claimed from FR8106641A external-priority patent/FR2503344B2/fr
Application filed by Commissariat a lEnergie Atomique CEA, Alusuisse France SA, Alusuisse Lonza France SA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP0045257A2 publication Critical patent/EP0045257A2/fr
Publication of EP0045257A3 publication Critical patent/EP0045257A3/fr
Application granted granted Critical
Publication of EP0045257B1 publication Critical patent/EP0045257B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/042Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0093Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/001Casings in the form of plate-like arrangements; Frames enclosing a heat exchange core
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/005Other auxiliary members within casings, e.g. internal filling means or sealing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2230/00Sealing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/10Particular pattern of flow of the heat exchange media
    • F28F2250/104Particular pattern of flow of the heat exchange media with parallel flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2270/00Thermal insulation; Thermal decoupling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/02Fastening; Joining by using bonding materials; by embedding elements in particular materials
    • F28F2275/025Fastening; Joining by using bonding materials; by embedding elements in particular materials by using adhesives

Definitions

  • the present invention relates to a rigid structure heat exchanger.
  • Heat exchangers are the devices used to pass a heat flow from a first fluid flow, which cools, to a second which heats.
  • the plate exchangers consist of a stack of suitably spaced plates, between which the two flows circulate in an alternate arrangement.
  • To obtain the most efficient heat exchange it is known to adopt the counter-current arrangement of the flows, the speeds in these then being substantially parallel and opposite, but this arrangement makes the constitution of the collection zones quite complex. at the ends of the exchange routes. The less thermally efficient cross-current arrangement is often adopted for this reason.
  • the four collectors for the entry and exit of the two flows, are constituted by the two chimney lines and the two corresponding faces of the flow, where the plates are in pairs in contact.
  • the two flows can be substantially equal in mass and volume and a uniform spacing spacing between plates is then adopted. The explanations below correspond to this case but easily extend to different spacings e i and e 2 for the two flows.
  • the distribution chimneys are preferably of elongated section in the direction of circulation of the fluids from one distribution zone to the other, which makes it possible to obtain large passage sections vis-à-vis -screw of the section corresponding to the thickness between plates.
  • a plate heat exchanger of this type is described in French Patent No. 1,038,859. It describes a heat exchanger for two media circulating against the current. Plates arranged in parallel provide passages for the fluid media. The end parts of these plates are connected by perpendicular transverse conduits which can have, according to a particular embodiment, a pear-shaped cross section.
  • an exchanger of this type does not have a rigid structure. Indeed, a plate of the stack rests on the plate immediately below by its periphery only. There is no intermediate support point of a plate 1 on the lower plate 2 in the exchange zone. Flanges 1 c, 2 c constitute the edges of chimney perforations. The collars 1c are relatively short while the collars 2c are relatively long. A plate 1 therefore rests on the plate 2 which is lower by the periphery of the collar 2c.
  • the exchanger of the invention relates to a plate exchanger which by itself has a rigid structure.
  • the plates of this exchanger have two planar surfaces, an upper planar surface and a lower planar surface.
  • One of the planar surfaces is formed by the plane of the distribution zone while the other planar surface, on the same side of the exchanger is formed by the plane of the edge of the chimney perforations.
  • the plate exchanger of the invention of the type which includes a stack of suitably spaced parallel plates, said plates comprising a central exchange zone and two parallel edges forming by their stack two distributor blocks, the distribution taking place in a block for one space out of two by direct outlet on the face of the stack, and for the other space out of two, by outlet on a chimney line obtained by perforations of elongated shape in the direction of the flow of fluids from one distributor block to the other carried out across the entire stack, is characterized in that the planes of the parallel edges of the plates are offset on either side of the plane of the central zone of exchange, so that when the stacking of the plates is carried out, one of the edges of a plate is in plan-on-plane contact with the edge of the immediately superior plate, while the other edge of this plate that is in contact with the edge of the immediately lower plate, which achieves a so-called “accordion” structure which closes every second space in each distributor block, and in that the edges of the perforations in the chimneys are deformed in
  • the contact of the two plates over a large part of the distribution zone makes it possible to obtain a better robustness of the assembly, in particular when using very thin sheets.
  • the plane of one or two distribution zones is offset from that of the exchange zone, which results in two-to-two contact of these distribution zones, subject to the maintenance of the normal gap between the distribution zone. exchange and the opposite end of each perforation, and subject to the locally raised parts to constitute the walls of the chimneys.
  • the plates are linked two by two by assembling their edges and / or the edges of the chimneys located in contact. An accordion chain is thus formed.
  • the connections are made all around the chimneys. These connections can be obtained by crimping added or stamped rivets, or they can be obtained directly from the plates themselves by bonding pre-coated areas, by welding plastic films deposited on the plates, by welding the plates themselves. - even when made from an appropriate material. You can still use plastic inserts assembled "in situ".
  • Lines of distribution chimneys are thus formed, the passage section of which can be as large as desired, in order to supply the entire stack while allowing a fine distribution of the fluid between the plates.
  • the distribution chimneys open only by their short side which is oriented towards the exchange zone. The rigidity of the stack is thus ensured by the two long sides and by the short side of the opening, the walls of which are parallel to the crushing forces.
  • bosses are formed in the exchange zone.
  • These bosses can be inclined relative to the axis of the plate, in particular oriented alternately, for example at 45 degrees, on either side of the general direction of flow of the gas streams.
  • the height of these bosses can be equal to the spacing pitch of the plates. In this case, each boss then rests on a smooth part of the exchange zone.
  • the height of the bosses can also be equal to the half spacing step of the plates.
  • the plate heat exchanger produced in accordance with the invention has its own rigidity qualities which make it possible to considerably reduce the thickness of the plates used, and consequently their weight.
  • FIG. 1 shows a perspective view of an exchanger 2 produced in accordance with the invention.
  • This exchanger is a static heat recovery exchanger operating between two gas streams circulating against the current. It can be used in particular for air conditioning and for the recovery of heat lost through the ventilation of premises.
  • the exchanger 2 is constituted by a stack of stamped rectangular sheets 4.
  • the sheets 4 are stacked with a spacing pitch e (see Fig. 3) and clamped together to determine two separate circuits in which the fluid streams flow.
  • Each sheet 4 has a central zone 6, called the exchange zone, in which the actual heat exchange takes place, and two distribution zones 8 and 10, located on either side of the exchange zone. 6 in which distribution chains 12 and 14 are formed.
  • These chimneys are formed by stamps of elongated shape, arranged in the direction of flow of the fluids.
  • a first gas stream 16 enters the exchanger via the distribution chimneys 12.
  • the fluid 16 circulates along the exchange zone 6 then leaves the exchanger at 17.
  • a second fluid 18 enters the exchanger 2 by the distribution chimneys 14, circulates along the exchange surface 6 and then leaves the exchanger in 19.
  • the planes of the distribution zones 8 and 10 are offset on either side of the plane of the exchange zone 6 by an amount equal to half the spacing pitch e of the plates 4.
  • the plane of the distribution zone 8 of the cladding 4 is located lower than the plane of the exchange zone 6, while the plane of the distribution zone 10 is on the contrary elevated from it.
  • the stack of the exchanger plates is produced by alternately superimposing plates such as plate 4 and identical plates turned 180 ° around their transverse axis.
  • the distribution zone 8 comes into contact with the distribution zone of the immediately lower plate.
  • the distribution zone 10 will come into contact with the distribution zone of the plate immediately above.
  • the exchange zone 6 comprises elongated bosses inclined on either side with respect to the longitudinal axis of the plate 4.
  • these bosses are inclined at 45 ° on either side of the general direction of flow of the gas veins.
  • the height of these bosses is preferably equal to the spacing pitch e of the plates.
  • bosses 20 on each of the faces of the exchange zone 6, their height being equal to half the spacing step e.
  • the bosses formed on the upper face of a plate thus come into contact after turning, with those of the upper plate.
  • the continuity of the walls parallel to the axis of the crushing forces is thus also ensured.
  • FIG. 2 shows a perspective view of a plate 4 of the exchanger shown in FIG. 1.
  • the exchange zone 6 the distribution zones 8 and 10, the distribution chimneys 12 and 14 and the bosses 20.
  • This figure shows in particular the shape of the distribution chimneys 12 and 14.
  • Elongated openings, respectively 12a and 14a through which the fluids circulate are formed at the top of the stamping.
  • the passage section of exchange chimneys can be as large as desired, which makes it possible to supply the entire stack while retaining a fine distribution of the gas flow.
  • one end of each distribution chimney, respectively 12b and 14b is formed in the exchange zone 6. This arrangement determines an orifice through which the fluid can flow between the zones of exchange of two successive plates.
  • the distribution chimneys 12 and 14 only open by their short side 12b and 14b oriented towards the exchange zone 6.
  • the rigidity of the stack is thus ensured along the long sides and the short side remaining. plates thus come to bear one against the other two by two by the edges 1 2c and 14c of the distribution chimneys 12 and 14.
  • the edge 12c comes into contact with the edge of the distribution chimney of the immediately upper plate.
  • the rim 14c of the distribution chimney 14 comes into contact with that of the immediately lower plate.
  • FIG. 3 a longitudinal section of the plate 4 represented in FIG. 2.
  • the respective heights have been indicated in this figure as a function of the spacing pitch e of the plates, the distribution chimneys 12 and 14 and the bosses 20.
  • the planes of the distribution zones 8 and 10 are offset on either side of the plane of the exchange zone 10 by an amount equal to half the spacing step e of the plates.
  • the height of the distribution chimneys 12 and 14 relative to the plane of the exchange zone 6 is equal to the spacing pitch e.
  • the height of the bosses 20 is equal to the spacing step e.
  • a highly rigid exchanger is thus obtained. This arrangement makes it possible to considerably reduce the thickness of the plates 4 and consequently their weight. In the case of the embodiment described, satisfactory rigidity in all respects was obtained with aluminum sheets 0.2 mm thick.
  • Figure 4 There is shown in Figure 4 a longitudinal section of the exchanger shown in Figure 1.
  • Figure 4a shows a longitudinal section taken along the line AA which passes in the middle of the distribution chimneys.
  • FIG. 4b represents a longitudinal section of this same exchanger taken along the line BB which does not cut the distribution chimneys 12 and 14.
  • the bosses 20 have not been shown in these figures.
  • FIG. 4a makes it possible to see the two separate flow circuits for the fluids 16 and 18.
  • the fluid 16 circulates from right to left, in the figure, to exit at 17 from the exchanger while the fluid 18 circulates against flow of fluid 16, that is to say from left to right to exit at 19 from the exchanger.
  • FIG. 4b shows the connection of the distribution chimneys such as 12 and 14. These connections, carried out all around the chimneys, can be obtained by crimping added or stamped rivets directly from the plates themselves, or by gluing . The manner in which the sealing is achieved between the two gas streams in the distribution zones at the level of the distribution chimneys will be described in more detail with reference to FIGS. 5 to 7.
  • the exchanger 2 produced in accordance with the invention can be placed directly in a single operation in a housing provided with suitable fixing and connection means.
  • the lateral sealing of the plates 4 is obtained by means of a flexible foam sheet or any other suitable known means.
  • the plates of the exchanger are made of aluminum sheet with a thickness of 0.2 mm.
  • Three methods are possible for ensuring the connection of the edges 12c of the distribution chimneys. In FIG. 5, these edges are assembled by gluing. This bonding can be carried out with a quick cold glue. It is also possible to deposit a polyethylene film on one of the faces of the plate. The coated faces of the two successive plates are then bonded and they are placed under a hot press so as to melt the polyethylene film. After cooling, it forms a weld.
  • the latter method is expensive.
  • FIG. 6 shows an attached oblong rivet 30, made of aluminum or plastic
  • FIG. 7 shows a rivet 32 formed in one of the plates during manufacture and consequently integral with the latter.
  • FIGS. 1 to 4 A heat exchanger has been described in FIGS. 1 to 4, the planes of the distribution zones being offset on either side of the plane of the exchange zone by a quantity spread at half the spacing pitch plates.
  • FIGS. 8 and 9 show, in a manner analogous to FIG. 4a, a longitudinal section of a heat exchanger whose planes of the distribution zones are offset by any amount of on either side of the exchange zone plan.
  • each plate has in its distribution zones stamped reliefs of different heights 34, 36, 38 and 40 constituting the chimneys, the edges of the chimneys cooperating with each other.
  • a single distribution zone is provided with a stamped relief 12.
  • the flange of the chimney cooperates with the edge of the opening made in the distribution zone.
  • the invention thus described makes it possible to constitute counter-current exchangers with integrated collectors obtained by stacking stamped plates, in which the collectors can take up a large section relative to the section of passage of an elementary flow between two plates. , which allows the stacking of many plates and obtaining very compact one-piece exchangers for given applications. They are used in particular for air conditioning of premises, with small pressure differences from one flow to another, which makes it possible to form the plates of a thin metal sheet, material mainly envisaged for assemblies which have been described.
  • the exchanger 2 shown in perspective in Figure 10 is constituted by a stack of stamped rectangular sheets 4.
  • the sheets 4 are stacked with a spacing step 2 .0t clamped together to determine two separate circuits in which the fluid streams flow.
  • a first gas stream 16 enters the upper part of the exchanger.
  • the gas stream 16 circulates along the exchange zone of the exchanger, then emerges at 17.
  • a second fluid 18 enters the upper part of the exchanger via the distribution chimneys 14, circulates along the surface d exchange then spring from the exchanger according to arrow 19.
  • At the upper part of the exchanger 2 are mounted two distributors 16a and 18a which distribute the fluids 16 and 18 inside the respective distribution chimneys.
  • the lateral sealing of the plates 4 is obtained by means of a foam 52 with closed porosity.
  • Longitudinal profiles such as 54 are embedded in the foam 52 with closed porosity. These profiles are visible more particularly in FIG. 11.
  • the foam 52 can be an epoxy resin, a prepolymer foam or a phenolic foam.
  • the insulation 52 ensures the 'thermal insulation and total sealing between the veins 16 and 18, thanks to the two components of this foam which produces closed cells. This is an important characteristic, because the qualification of a heat exchanger is linked to the seal between the two gas streams circulating against the current. Thanks to the reinforcement by the sections 54, it is possible to eliminate the metal casing of the prior art. This results in a lowering of the cost price of the exchanger in which the casing intervened for a large fraction.
  • the coating 52 constitutes at the same time the packaging for the purposes of shipping the exchanger.
  • FIG. 12 shows an alternative embodiment in which a texture 56 has been embedded in the foam 52.
  • the texture 56 may be metallic or plastic. It improves the rigidity of the whole.
  • the coating 52 can be produced either by injection or by molding.
  • thermosetting foam in an exemplary embodiment, was used which became semi-hard in a very short time.
  • the characteristics of this foam are indicated in the appendix below.
  • This foam is deposited using a gun that automatically mixes the two components. To isolate a face, it suffices to place vertically 3 cm from the wall of the exchanger a rigid panel which occupies the surface of this wall. In this panel are made cylindrical openings of 8 mm in diameter which are used both for injecting the foam and for evacuating the air when the foam is injected. After about 60 seconds, this thermosetting foam is dry. It only remains to remove the panel.
  • the side wall of the exchanger is insulated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

  • La présente invention concerne un échangeur de chaleur à structure rigide.
  • Les échangeurs de chaleur sont les appareils permettant de faire passer un flux thermique d'un premier écoulement fluide, qui se refroidit, à un second qui se réchauffe. Les échangeurs à plaques sont constitués d'un empilement de plaques convenablement espacées, entre lesquelles circulent les deux écoulements dans une disposition alternée. Pour obtenir l'échange thermique le plus efficace, il est connu d'adopter la disposition à contre-courants des écoulements, les vitesses dans ceux-ci étant alors sensiblement parallèles et opposées, mais cette disposition rend assez complexe la constitution des zones de collecte aux extrémités des parcours d'échange. La disposition à courants croisés, moins efficace thermiquement, est souvent adoptée pour cette raison.
  • Pour permettre la fabrication économique d'échangeurs à plaques à contre-courants, il a été proposé précédemment de constituer un collecteur par une ligne de cheminées de section par exemple circulaire, perpendiculaires aux plaques, disposées côte à côte le long d'un bord de l'empilement et ouvertes dans un espace sur deux entre les plaques, ces cheminées étant obtenues grâce à des percements dans les plaques et à des raccordements étanches. Un des écoulements est ainsi collecté par les cheminées tandis que l'autre écoulement aboutit, entre les cheminées, à la face correspondante de l'empilement.
  • Les quatre collecteurs, pour l'entrée et la sortie des deux écoulements, sont constitués par les deux lignes de cheminées et les deux faces correspondantes de l'écoulement, où les plaques sont deux à deux en contact. On peut choisir de collecter un écoulement par les deux lignes de cheminées et l'autre par les faces, ou de collecter chaque écoulement par une ligne de cheminée et une face, disposition adoptée' pour la description qui suit et les figures. Les deux écoulements peuvent être sensiblement égaux en masse et volume et l'on adopte alors un pas d'espacement e uniforme entre plaques. Les explications ci-dessous correspondent à ce cas mais s'étendent facilement à des espacements différents ei et e2 pour les deux écoulements.
  • Dans les échangeurs de ce type, les cheminées de distribution sont de préférence de section allongée dans le sens de la circulation des fluides d'une zone de distribution à l'autre, ce qui permet d'obtenir des sections de passage importantes vis-à-vis de la section correspondant à l'épaisseur entre plaques.
  • Un échangeur de chaleur à plaques de ce type est décrit dans le brevet français n° 1 038 859. Il décrit un échangeur de chaleur pour deux milieux circulant à contre-courant. Des plaques disposées parallèlement ménagent des passages pour les milieux fluides. Les parties extrêmes de ces plaques sont reliées par des conduits transversaux perpendiculaires qui peuvent présenter, selon un mode de réalisation particulier une coupe transversale en forme de poire.
  • Cependant, un échangeur de ce type ne possède pas une structure rigide. En effet, une plaque de l'empilement repose sur la plaque immédiatement inférieure par sa périphérie seulement. On ne trouve aucun point d'appui intermédiaire d'une plaque 1 sur la plaque inférieure 2 dans la zone d'échange. Des collerettes 1 c, 2c constituent des bordures de perforations de cheminées. Les collerettes 1 c sont relativement courtes tandis que les collerettes 2c sont relativement longues. Une plaque 1 repose donc sur la plaque 2 qui lui est inférieure par le pourtour de la collerette 2c.
  • Il est donc nécessaire de rigidifier cet échangeur au moyen d'entretoises telles que les croisillons 3a.
  • L'échangeur de l'invention concerne au contraire un échangeur à plaques qui présente par lui- même une structure rigide. Les plaques de cet échangeur comportent deux surfaces planes, une surface plane supérieure et une surface plané inférieure. L'une des surfaces planes est constituée par le plan de la zone de distribution tandis que l'autre surface plane, du même côté de l'échangeur est constituée par le plan de la bordure des perforations de cheminées. Lorsque l'on empile ces plaques l'une sur l'autre, on réalise une structure rigide par elle-même sans l'aide d'aucune entretoise.
  • Plus précisément, l'échangeur à plaque de l'invention, du genre de ceux qui comportent un empilement de plaques parallèles convenablement espacées, lesdites plaques comportant une zone centrale d'échange et deux bordures parallèles formant par leur empilement deux blocs distributeurs, la distribution s'effectuant dans un bloc pour un espace sur deux par débouché direct sur la face de l'empilement, et pour l'autre espace sur deux, par débouché sur une ligne de cheminée obtenue par des perforations de forme allongée dans le sens de l'écoulement des fluides d'un bloc distributeur à l'autre réalisées en regard dans tout l'empilement, se caractérise en ce que les plans des bordures parallèles des plaques sont décalés de part et d'autre du plan de la zone centrale d'échange, de telle sorte que lorsque l'empilement des plaques est réalisé, l'une des bordures d'une plaque est en contact plan sur plan avec la bordure de la plaque immédiatement supérieure, tandis que l'autre bordure de cette plaque est en contact avec la bordure de la plaque immédiatement inférieure, ce qui réalise une structure dite «en accordéon» qui ferme un espace sur deux dans chaque bloc distributeur, et en ce que les bordures des perforations des cheminées sont déformées dans le sens opposé au décalage de la bordure par rapport à la zone centrale pour venir en contact avec la bordure de la perforation de la cheminée de la plaque adjacente, le contact plan sur plan des bordures parallèles de distribution s'étendant à la partie des régions situées entre les cheminées, mais non à la région située en regard de la zone centrale d'échange.
  • Le contact des deux plaques sur une grande partie de la zone de distribution permet d'obtenir une meilleure robustesse de l'assemblage, en particulier quand on utilise des tôles très fines. Le plan d'une ou des deux zones de distribution est décalé de celui de la zone d'échange, ce qui aboutit au contact deux à deux de ces zones de distribution, sous réserve du maintien de l'écart normal entre la zone d'échange et l'extrémité en regard de chaque perforation, et sous réserve des parties localement releveées pour constituer les parois des cheminées.
  • Conformément à l'invention, les plaques sont liées deux par deux par assemblage de leur rebords et/ou des rebords des cheminées situées en contact. On constitue ainsi une chaîne en accordéon. Les liaisons sont effectuées sur tout le pourtour des cheminées. Ces liaisons peuvent être obtenues par sertissage de rivets rapportés ou emboutis, ou encore elles peuvent être obtenues directement à partir des plaques elles-mêmes par collage de zones pré-enduites, par soudage de films plastiques déposés sur les plaques, par soudage des plaques elles-mêmes lorsqu'elles sont réalisées à partir d'un matériau approprié. On peut encore utiliser des inserts en matériau plastique assemblés «in situ».
  • On constitue ainsi des lignes de cheminées de distribution dont la section de passage peut être aussi grande qu'on le désire, afin d'alimenter la totalité de l'empilement tout en permettant une répartition fine du fluide entre les plaques. Les cheminées de distribution ne débouchent que par leur petit côté qui est orienté vers la zone d'échange. La rigidité de l'empilement est ainsi assurée par les deux grands côtés et par le petit côté de l'ouverture, dont les parois sont parallèles aux efforts d'écrasement.
  • Selon une autre caractéristique de l'invention, des bossages allongés sont pratiqués dans la zone d'échange. Ces bossages peuvent être inclinés par rapport à l'axe de la plaque, notamment orientés alternativement, par exemple à 45 degrés, de part et d'autre de la direction générale d'écoulement des veines gazeuses. La hauteur de ces bossages peut être égale au pas d'espacement des plaques. Dans ce cas, chaque bossage s'appuie alors sur une partie lisse de la zone d'échange. La hauteur des bossages peut aussi être égale au demi-pas d'espacement des plaques. Ainsi, lorsque ces plaques sont superposées dans l'empilement après rotation d'une plaque sur deux de 180 degrés autour de son axe transversal, ces bossages viennent en contact les uns avec les autres, par exemple à angle droit. La continuité des parois parallèlement à l'axe des efforts d'écrasement est ainsi assurée. En outre, ces bossages accroissent la longueur du trajet des veines gazeuses dans la zone d'échange.
  • L'échangeur de chaleur à plaques réalisé conformément à l'invention possède des qualités propres de rigidité qui permettent de réduire considérablement l'épaisseur des plaques utilisées, et par conséquent leur poids.
  • D'autres caractéristiques et avantages de l'invention apparaîtront mieux après la description qui suit, donnée à titre illustratif et non limitatif en référence aux dessins annexés sur lesquels:
    • - la figure 1 représente une vue en perspective d'un échangeur réalisé conformément à l'invention,
    • - la figure 2 représente une vue en perspective d'une plaque de l'échangeur représenté sur la figure 1,
    • - la figure 3 représente une section longitudinale de la plaque représentée sur la figure 2,
    • - les figures 4a et 4b représentent une section longitudinale de l'échangeur selon les lignes A-A et B-B de la figure 1,
    • - les figures 5 à 7 représentent différentes variantes de réalisation de l'assemblage des rebords de cheminée de distribution,
    • - les figures 8 et 9 représentent les sections longitudinales de variantes de réalisation de l'invention,
    • - la figure 10 représente une vue en perspective d'un mode de réalisation dans lequel l'isolation latérale des plaques est réalisée au moyen d'une mousse à porosité fermée, dans laquelle sont noyés des profilés de renforcement,
    • - la figure 11 représente une vue en perspective de l'échangeur de la figure 10 montrant la forme du carter seul,
    • - la figure 12 représente une vue de détail de l'isolation des plaques de l'échangeur des figures 10 et 11 dans laquelle on a noyé une texture métallique de renforcement.
  • On a représenté sur la figure 1, une vue en perspective d'un échangeur 2 réalisé conformément à l'invention. Cet échangeur est un échangeur récupérateur de chaleur statique fonctionnant entre deux veines gazeuses circulant à contre-courant. Il peut être utilisé en particulier pour la climatisation et pour la récupération de chaleur perdue par la ventilation des locaux.
  • L'échangeur 2 est constitué par un empilement de tôles rectangulaires 4, embouties. Les tôles 4 sont empilées avec un pas d'espacement e (voir Fig. 3) et serrées entre elles pour déterminer deux circuits séparés dans lesquels s'écoulent les veines fluides. Chaque tôle 4 comporte une zone centrale 6, dite zone d'échange, dans laquelle s'effectue l'échange de chaleur proprement dit, et deux zones de distribution 8 et 10, situées de part et d'autre de la zone d'échange 6 dans lesquelles des chaeminées de distribution 12 et 14 sont formées. Ces cheminées sont constituées par des emboutis de forme allongée, disposés dans le sens de l'écoulement des fluides. Un premier courant gazeux 16 pénètre dans l'échangeur par les cheminées de distribution 12. Le fluide 16 circule le long de la zone d'échange 6 puis sort de l'échangeur en 17. Un second fluide 18 pénètre dans l'échangeur 2 par les cheminées de distribution 14, circule le long de la surface d'échange 6 puis ressort de l'échangeur en 19.
  • Conformément à l'invention, les plans des zones de distribution 8 et 10 sont décalés de part et d'autre du plan de la zone d'échange 6 d'une quantité égale à la moitié du pas d'espacement e des plaques 4. Comme on peut le constater sur Ta figure 1, le plan de la zone de distribution 8 de la plaqué 4 est situé plus bas que le plan de la zone d'échange 6, tandis que le plan de la zone de distribution 10 est au contraire surélevé par rapport à celui-ci. L'empilement des plaques de l'échangeur est réalisé en superposant alternativement des plaques telles que la plaque 4 et des plaques identiques retournées de 180° autour de leur axe transversal. Ainsi, la zone de distribution 8 vient au contact de la zone de distribution de la plaque immédiatement inférieure. De la même manière, la zone de distribution 10 viendra au contact de la zone de distribution de la plaque immédiatement supérieure.
  • La zone d'échange 6 comporte des bossages allongés inclinés de part et d'autre part rapport à l'axe longitudinal de la plaque 4. Dans l'exemple de réalisation décrit, ces bossages sont inclinés à 45° de part et d'autre de la direction générale d'écoulement des veines gazeuses. Comme cela sera décrit plus en détail dans la suite du texte, la hauteur de ces bossages est de préférence égale au pas d'espacement e des plaques. Ainsi, lorsque ces plaques sont superposées, après rotation d'une plaque sur deux, les bossages 20 prennent appui les uns sur les autres en formant des angles droits. En outre, les bossages 20 permettent d'accroître sensiblement la longueur du trajet des veines gazeuses dans la zone d'échange 6.
  • Selon un autre exemple de réalisation, on aurait pu former des bossages 20 sur chacune des faces de la zone d'échange 6, leur hauteur étant égale à la moitié du pas d'espacement e. Les bossages formés sur la face supérieure d'une plaque viennent ainsi en contact après retournement, avec ceux de la plaque supérieure. La continuité des parois parallèlement à l'axe des efforts d'écrasement est ainsi également assurée.
  • On a représenté sur la figure 2, une vue en perspective d'une plaque 4 de l'échangeur représenté sur la figure 1. On reconnait la zone d'échange 6, les zones de distribution 8 et 10, les cheminés de distribution 12 et 14 et les bossages 20. Cette figure montre en particulier la forme des cheminées de distribution 12 et 14. Des ouvertures de forme allongée, respectivement 12a et 14a au travers desquelles circulent les fluides sont formées au sommet de l'embouti. La section de passage de cheminées d'échange peut être aussi grande qu'on le désire, ce qui permet d'alimenter la totalité de l'empilement tout en conservant une répartition fine de l'écoulement gazeux. Comme on peut le voir sur la figure 2, une extrémité de chaque cheminée de distribution, respectivement 12b et 14b est formée dans la zone d'échange 6. Cette disposition détermine un orifice par lequel le fluide peut s'écouler entre les zones d'échange de deux plaques successives. Ainsi, les cheminées de distribution 12 et 14 ne débouchent que par leur petit côté 12b et 14b orienté vers la zone d'échange 6. La rigidité de l'empilement est ainsi assuré tout le long des grands côtés et du petit côté restant.Les plaques viennent ainsi s'appuyer l'une contre l'autre deux par deux par les rebords 1 2c et 14c des cheminées de distribution 12 et 14. Le rebord 12c vient au contact du rebord de la cheminée de distribution de la plaque immédiatement supérieure. Le rebord 14c de la cheminée de distribution 14 vient au contact de celui de la plaque immédiatement inférieure.
  • On a représenté sur la figure 3, une section longitudinale de la plaque 4 représentée sur la figure 2. On a indiqué sur cette figure les hauteurs respectives en fonction du pas d'espacement e des plaques, des cheminées de distribution 12 et 14 et des bossages 20. Comme on peut le constater, les plans des zones de distribution 8 et 10 sont décalés de part et d'autre du plan de la zone d'échange 10 d'une quantité égale à la moitié du pas d'espacement e des plaques. D'autre part, la hauteur des cheminées de distribution 12 et 14 par rapport au plan de la zone d'échange 6 est égale au pas d'espacement e. Enfin, on remarque que la hauteur des bossages 20 est égale au pas d'espacement e. On obtient ainsi un échangeur d'une grande rigidité. Cette disposition permet de réduire considérablement l'épaisseur des plaques 4 et par conséquent leur poids. Dans le cas de l'exemple de réalisation décrit, une rigidité en tous points satisfaisante a été obtenue avec des feuilles d'aluminium de 0,2 mm d'épaisseur.
  • On a représenté sur la figure 4 une section longitudinale de l'échangeur représenté sur la figure 1. La figure 4a représente une section longitudinale prise selon la ligne AA qui passe au milieu des cheminées de distribution.
  • La figure 4b représente une section longitudinale de ce même échangeur prise selon la ligne BB qui ne coupe pas les cheminées de distribution 12 et 14. Afin de ne pas surcharger le dessin, les bossages 20 n'ont pas été représentés sur ces figures.
  • La figure 4a permet de voir les deux circuits d'écoulement séparés pour les fluides 16 et 18. Le fluide 16 circule de droite à gauche, sur la figure, pour sortir en 17 de l'échangeur tandis que le fluide 18 circule à contre-courant du fluide 16, c'est-à-dire de gauche à droite pour sortir en 19 de l'échangeur.
  • La figure 4b montre le raccordement des cheminées de distribution telles que 12 et 14. Ces liaisons, effectuées sur tout le pourtour des cheminées, peuvent être obtenues par sertissage de rivets rapportés ou emboutis directement à partir des plaques elles-mêmes, ou encore par collage. La manière dont l'étanchéité est réalisée entre les deux veines gazeuses dans les zones de distribution au niveau des cheminées de distribution sera décrite plus en détail en référence aux figures 5à7.
  • L'échangeur 2 réalisé conformement à l'invention peut être placé directement en une seule opération dans un carter muni des moyens de fixation et de raccordement appropriés. L'étanchéité latérale des plaques 4 est obtenue au moyen d'une feuille de mousse souple ou de tout autre moyen approprié connu.
  • L'étanchéité longitudinale de ces mêmes plaques 4 peut être assurée comme représenté sur les figures 4a et 4b par un retournement des bords 25, ou par tout autre moyen approprié.
  • On a représenté sur les figures 5 à 7 différents modes de réalisation de l'étanchéité entre les rebords des cheminées de distribution. La qualification d'un échangeur de chaleur étant liée à l'étanchéité entre les deux veines de gaz circulant à contre-courant, la réalisation de cette étanchéité est une caractéristique importante de l'échangeur réalisé conformément à l'invention.
  • Comme il a été dit précédemment, selon l'exemple de réalisation décrit, les plaques de l'échangeur sont réalisées en tôle d'aluminium d'une épaisseur de 0,2 mm. Trois procédés sont possibles pour assurer la liaison des bords 12c des cheminées de distribution. Sur la figure 5, ces bords sont assemblés par collage. Ce collage peut être effectué avec une colle rapide à froid. On peut également déposer un film polyéthylène sur l'une des faces de la plaque. On accolle ensuite les faces enduites des deux plaques successives et on les met sous presse à chaud de manière à fondre le film de polyéthylène. Après refroidissement, celui-ci forme une soudure. Cependant, ce dernier procédé est coûteux.
  • On a représenté sur les figures 6 et 7, deux procédés d'assemblage par rivetage. La figure 6 montre un rivet oblong 30 rapporté, en aluminium ou en matière plastique, tandis que la figure 7 montre un rivet 32 pratiqué dans l'une des plaques à la fabrication et par conséquent solidaire de celle-ci. Ces deux procédés ont donné les meilleursr résultats, tant au point de vue du prix de fabrication que de la rapidité d'exécution.
  • Dans le cas d'un échangeur à plaques conforme à l'invention réalisé en matière plastique, on réalise soit un collage à chaud sous presse des bords dans le cas où l'on utilise un film de polyéthylène, soit par induction, pour le PVC. On purraît également utiliser des rivets rapportés 30 en aluminium comme décrit en référence à la figure 6.
  • On a décrit, aux figures 1 à 4, un échangeur de chaleur dont les plans des zones de distribution sont décalés de part et d'autre du plan de la zone d'échange d'une quantité étale à la moitié du pas d'espacement des plaques.
  • Bien évidemment, ceci n'est pas une obligation et les figures 8 et 9 montrent, de manière analogue à la figure 4a, une section longitudinale d'un échangeur de chaleur dont les plans des zones de distribution sont décalés d'une quantité quelconque de part et d'autre du plan de la zone d'échange.
  • Sur la figure 8, chaque plaque comporte dans ses zones de distribution des reliefs emboutis de hauteurs différentes 34, 36, 38 et 40 constituant les cheminées, les bords de cheminées coopérant entre eux.
  • Sur la figure 9, une seule zone de distribution est munie d'un relief embouti 12. Dans ce cas, le rebord de la cheminée coopère avec le bord de l'ouverture pratiquée dans la zone de distribution.
  • L'invention ainsi décrite permet de constituer des échangeurs à contre-courants à collecteurs intégrés obtenus par l'empilement de plaques embouties, dans lesquels les collecteurs peuvent prendre une section importante par rapport à la section de passage d'un écoulement élémentaire entre deux plaques, ce qui permet l'empilement de nombreuses plaques et l'obtention d'échangeurs monoblocs très compacts pour des applications données. Ils s'utilisent en particulier en matière de climatisation des locaux, avec de faibles différences de pression d'un écoulement à l'autre, ce qui permet de constituer les plaques d'une feuille métallique fine, matériau principalement envisagé pour les assemblages qui ont été décrits.
  • L'échangeur 2 représenté en perspective sur la figure 10 est constitué par un empilement de tôles rectangulaires 4 embouties. Les tôles 4 sont empilées avec un pas d'espacement 2.0t serrées entre elles pour déterminer deux circuits séparés dans lesquels s'écoulent les veines fluides. Un premier courant gazeux 16 pénètre à la partie supérieure de l'échangeur. Le courant gazeux 16 circule le long de la zone d'échange de l'échangeur, puis ressort en 17. Un second fluide 18 pénètre à la partie supérieure de l'échangeur par les cheminées de distribution 14, circule le long de la surface d'échange puis ressort de l'échangeur selon la flèche 19. A la partie supérieure de l'échangeur 2 sont montés deux distributeurs 16a et 18a qui répartissent les fluides 16 et 18 à l'intérieur des cheminées de distribution respectives. Des collecteurs, dont seul le collecteur 17a est représenté, canalisent les fluides 17 et 19 qui sortent de l'échangeur. Des tirants 50 maintiennent ces deux collecteurs.
  • Conformément à l'invention, l'étanchéité latérale des plaques 4 est obtenue au moyen d'une mousse 52 à porosité fermée. Des profilés longitudinaux tels que 54 sont noyés dans la mousse 52 à porosité fermée. Ces profilés sont visibles plus particulièrement sur la figure 11. La mousse 52 peut être une résine époxy, une mousse prépo- lymère ou une mousse phénolique.
  • Sur la la figure 11, on note également la présence de deux ouvertures rectangulaires 53, pratiquées au droit des cheminées de distribution afin de permettre le passage des courants de fluide 16 et 18. En plus des avantages énumérés précédemment, l'isolation 52 assure l'isolement thermique et une étanchéité totale entre les veines 16 et 18, grâce aux deux composants de cette mousse qui produit des alvéoles fermés. Il s'agit là d'une caractéristique importante, car la qualification d'un échangeur de chaleur est liée à l'étanchéité entre les deux veines gazeuses circulant à contre-courant. Grâce au renforcement par les profilés 54, il est possible de supprimer le carter métallique de l'art antérieur. Il en résulte un abaissement du prix de revient de l'échangeur dans lequel le carter intervenait pour une fraction importante. En outre, l'enrobage 52 constitue en même temps l'empaquetage aux fins d'expédition de l'échangeur.
  • La figure 12 montre une variante de réalisation dans laquelle on a noyé une texture 56 dans la mousse 52. La texture 56 peut être métallique ou plastique. Elle améliore la rigidité de l'ensemble.
  • L'enrobage 52 peut être réalisé soit par injection, soit par moulage.
  • Dans un exemple de réalisation, on a utilisé une mousse thermodurcissable injectable à deux composants devenant semi-durs dans un temps très court. Les caractéristiques de cette mousse sont indiquées en annexe ci-dessous. Cette mousse est déposée à l'aide d'un pistolet mélangeant automatiquement les deux composants. Pour isoler une face, il suffit de placer verticalement à 3 cm de la paroi de l'échangeur un panneau rigide qui occupe la surface de cette paroi. Dans ce panneau sont pratiquées des ouvertures cylindriques de 8 mm de diamètre qui servent à la fois à l'injection de la mousse et à l'évacuation de l'air lorsque la mousse est injectée. Au bout de 60 secondes environ, cette mousse thermodurcissable est sèche. Il ne reste plus qu'à enlever le panneau. L'isolation de la paroi latérale de l'échangeur est ainsi réalisée.
  • Figure imgb0001

Claims (12)

1. Echangeur à plaques du genre de ceux qui comportent un empilement de plaques (4) parallèles convenablement espacées, lesdites plaques comportant une zone centrale d'échange (6) et deux bordures parallèles (8, 10) formant par leur empilement deux blocs distributeurs, la distribution s'effectuant dans un bloc, pour un espace sur deux, par débouché direct sur la face de l'empilement, et pour l'autre espace sur deux, par débouché sur une ligne des cheminées obtenues par des perforations (12, 14) de forme allongée dans le sens de l'écoulement des fluides d'un bloc distributeur à l'autre réalisées en regard dans tout l'empilement, caractérisé en ce que les plans des bordures parallèles des plaques sont décalés de part et d'autre du plan de la zone centrale d'échange, de telle sorte que lorsque l'empilement des plaques est réalisé, l'une des bordures d'une plaque est en contact plan sur plan avec la bordure de la plaque immédiatement supérieure, tandis que l'autre bordure de cette plaque est en contact plan sur plan avec la bordure de la plaque immédia- mente inférieure, ce qui réalise une structure dite «en accordéon» qui ferme un espace sur deux dans chaque bloc distributeur, et en ce que les bordures des perforations (12a, 14a) des cheminées (12,14) sont déformées dans le sens opposé au décalage de la bordure par rapport à la zone centrale pour venir en contact avec la bordure de la perforation de la cheminée de la plaque adjacente, le contact plan sur plan des bordures parallèles de distribution s'étendant à la partie des régions situées entre les cheminées, mais non à la région (12b, 14b) située en regard de la zone centrale d'échange (6).
2. Echangeur de chaleur selon la revendication 1, caractérisé en ce que les zones centrales (6) comportent des bossages (20) de hauteur égale à l'écartement entre plaques, coopérant avec l'une ou l'autre des plaques adjacentes dans une partie lisse.
3. Echangeur de chaleur selon la revendication 1, caractérisé en ce que les zones centrales (6) comportent des bossages (20) de hauteur inférieure à l'écartement entre les plaques, coopérant avec d'autres bossages situés sur les plaques adjacentes. ______
4. Echangeur de chaleur selon l'une quelconque des revendications 2 et 3, caractérisé en ce que les bossages (20) sont de forme allongée et sont disposés en biais par rapport à la direction générale de l'écoulement.
5. Echangeur de chaleur selon la revendication 1, caractérisé en ce que la déformation des bordures de perforation (12a, 14a) est obtenue par emboutissage, formant en périphérie de la perforation un rebord plan décalé par rapport au plan de la zone d'échange (6), le contact entre les deux plaques adjacentes étant ainsi assuré plan sur plan.
6. Echangeur de chaleur selon la revendication 5, caractérisé en ce que lesdites zones planes de périphérie des perforations (12a, 14a) sont assemblées deux à deux au moyen de rivets oblongs (30) rapportés.
7. Echangeur de chaleur selon la revendication 5, caractérisé en ce que lesdites zones planes en périphérie des perforations (12a, 14a) sont assemblées deux à deux par collage.
8. Echangeur de chaleur selon la revendication 1, caractérisé en ce que la déformation des bordures de perforation (12a, 14a) est obtenue par emboutissage, formant au moins un bord relevé et permettant ainsi la liaison entre plaques adjacentes par pénétration et rivetage.
9. Echangeur de chaleur selon l'une quelconque des revendications 1 à 8, caractérisé en ce que l'écart entre les plaques (4) planes adjacentes dans la zone d'échange (6) est constant dans tout l'empilement.
10. Echangeur à plaques selon l'une quelconque des revendications 1 à 9, caractérisé en ce qu'il comporte une isolation latérale (52) des plaques (4), cette isolation étant réalisée au moyen d'une mousse à porosité fermée dans laquelle sont noyés des profilés (54) de renforcement.
11. Echangeur selon la revendication 10, caractérisé en ce qu'il comporte en outre une texture métallique ou plastique (56) noyée dans la mousse (52).
12. Echangeur selon l'une quelconque des revendications 10 et 11, caractérisé en ce que la mousse (52) à porosité fermée est choisie dans le groupe comprenant les résines époxy, les mousses prépolymères, les mousses phénoliques.
EP81401190A 1980-07-25 1981-07-24 Echangeur de chaleur à plaques à structure rigide Expired EP0045257B1 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR8016472 1980-07-25
FR8016472A FR2487495A1 (fr) 1980-07-25 1980-07-25 Echangeur de chaleur a plaques comportant des cheminees de distribution allongees, orientees dans le sens des veines gazeuses
FR8106641A FR2503344B2 (fr) 1981-04-02 1981-04-02 Echangeur de chaleur a plaques dans lequel l'etancheite laterale des plaques est assuree par une mousse a porosite fermee
FR8106641 1981-04-02

Publications (3)

Publication Number Publication Date
EP0045257A2 EP0045257A2 (fr) 1982-02-03
EP0045257A3 EP0045257A3 (en) 1982-02-10
EP0045257B1 true EP0045257B1 (fr) 1984-01-25

Family

ID=26221912

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81401190A Expired EP0045257B1 (fr) 1980-07-25 1981-07-24 Echangeur de chaleur à plaques à structure rigide

Country Status (3)

Country Link
US (1) US4407359A (fr)
EP (1) EP0045257B1 (fr)
DE (1) DE3162034D1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19723878B4 (de) * 1997-06-06 2007-10-25 Behr Gmbh & Co. Kg Wärmeübertrager

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4592414A (en) * 1985-03-06 1986-06-03 Mccord Heat Transfer Corporation Heat exchanger core construction utilizing a plate member adaptable for producing either a single or double pass flow arrangement
JPH0612217B2 (ja) * 1985-04-30 1994-02-16 日本電装株式会社 アルミニウム製熱交換器およびその製法
US4815534A (en) * 1987-09-21 1989-03-28 Itt Standard, Itt Corporation Plate type heat exchanger
SE502984C2 (sv) * 1993-06-17 1996-03-04 Alfa Laval Thermal Ab Plattvärmeväxlare med speciellt utformade portpartier
US5462113A (en) * 1994-06-20 1995-10-31 Flatplate, Inc. Three-circuit stacked plate heat exchanger
US5964280A (en) * 1996-07-16 1999-10-12 Modine Manufacturing Company Multiple fluid path plate heat exchanger
CN100347510C (zh) * 1998-10-15 2007-11-07 株式会社荏原制作所 板式热交换器
DE19909881A1 (de) * 1999-03-06 2000-09-07 Behr Gmbh & Co Wärmeübertrager in Kreuzstrom-Bauweise
CA2312113C (fr) * 2000-06-23 2005-09-13 Long Manufacturing Ltd. Echangeur de chaleur a liquides a ecoulement en parallele
GB2367885A (en) * 2000-10-11 2002-04-17 Centrax Ltd Heat exchanger with improved header system
DE10153877A1 (de) * 2001-11-02 2003-05-15 Behr Gmbh & Co Wärmeübertrager
NL1022794C2 (nl) * 2002-10-31 2004-09-06 Oxycell Holding Bv Werkwijze voor het vervaardigen van een warmtewisselaar, alsmede met de werkwijze verkregen warmtewisselaar.
EP1462751A1 (fr) * 2003-03-25 2004-09-29 Soleco, SL Panneau d'échange thermique et sa méthode de fabrication
WO2006111941A2 (fr) * 2005-04-22 2006-10-26 Ferrotec (Usa) Corporation Echangeur thermique de fluide a efficacite elevee et procede de fabrication associe
DE102006048305B4 (de) * 2006-10-12 2011-06-16 Modine Manufacturing Co., Racine Plattenwärmetauscher
SE530574C2 (sv) * 2006-11-20 2008-07-08 Alfa Laval Corp Ab Plattvärmeväxlare
FI20095267A (fi) * 2009-03-13 2010-09-14 Mauri Kontu Levylämmönsiirrin ja menetelmä levylämmönsiirtimen paineenkestävyyden parantamiseksi
JP5545198B2 (ja) * 2010-12-16 2014-07-09 三菱電機株式会社 プレート式熱交換器
CN102313470B (zh) * 2011-09-30 2013-11-27 茂名重力石化机械制造有限公司 一种铸造板翅空气预热器
US10591220B2 (en) 2017-08-31 2020-03-17 Dana Canada Corporation Multi-fluid heat exchanger
IL255877B (en) * 2017-11-23 2019-12-31 Dulberg Sharon A device for extracting water from the air, and for drying the air using high energy and methods for its production
CN111684229A (zh) 2017-12-14 2020-09-18 加拿大粉体流冷却科学公司 用于加热或冷却固体颗粒物料的板式热交换器
EP3587978A1 (fr) * 2018-06-26 2020-01-01 Valeo Vyminiky Tepla, s.r.o. Tube d'échangeur de chaleur
JP7208053B2 (ja) * 2019-02-19 2023-01-18 株式会社Subaru 冷却装置
IT201900000665U1 (it) * 2019-02-27 2020-08-27 Onda S P A Scambiatore di calore a piastre.

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE492527C (de) * 1930-02-22 Voigt & Haeffner Akt Ges Mit Waermeschutzmasse umkleideter Behaelter, insbesondere fuer Warmwasserspeicher
FR962422A (fr) * 1950-06-10
CH215204A (de) * 1939-08-02 1941-06-15 Jendrassik Georg Ing Dipl Wärmeaustauscher.
FR1038859A (fr) * 1950-06-23 1953-10-02 English Electric Co Ltd Perfectionnements aux échangeurs de chaleur
DE844600C (de) * 1950-11-26 1952-07-21 Ahlborn E Ag Plattenfoermige Waermeaustauschvorrichtung
DE1071732B (fr) * 1956-04-13 1959-12-24
FR1192623A (fr) * 1959-12-26 1959-10-27 échangeur de chaleur à contre-courants à tôles parallèles
GB1043224A (en) * 1961-09-05 1966-09-21 Howden James & Co Ltd Improvements in or relating to heat exchangers
DE1288278B (de) * 1963-05-11 1969-01-30 Hansa Metallwerke Ag Waermeisolierter Druckspeicher, insbesondere Heisswasserspeicher
US3174301A (en) * 1963-10-07 1965-03-23 Gen Electric Heat exchanger structure
FR1392708A (fr) * 1964-02-13 1965-03-19 Siemens Elektrogeraete Gmbh Récipient à eau pour chauffe-eau électrique
DE1454723A1 (de) * 1964-09-11 1969-07-17 Siemens Elektrogeraete Gmbh Thermischer Isolationskoerper aus Kunststoffschaum fuer elektrische Heisswasserspeicher
US3422844A (en) * 1965-03-05 1969-01-21 Grimar Inc Flexible check valve
GB1165173A (en) * 1966-08-19 1969-09-24 Marston Excelsior Ltd Heat Exchanger
DE1928146A1 (de) * 1968-06-06 1969-12-11 Delaney Gallay Ltd Waermeaustauscher
BE794794A (fr) * 1971-11-04 1973-05-16 Modine Mfg Cy Appareil echangeur de chaleur
DE2206316B2 (de) * 1972-02-10 1975-12-04 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Isoliermaterial für ein elektrisch beheiztes Heißwassergerät
FR2179344A5 (en) * 1972-04-07 1973-11-16 Cepem Insulated reservoir - comprises inner tube separated from outer housing by rigid expanded plastic
FR2251793A1 (en) * 1973-11-15 1975-06-13 Rech Ventilation Et Heat recovery in ventilation systems - by plate heat exchanger constructed from corrugated partitions with flat plates interposed
SE7505884L (sv) * 1974-05-27 1975-11-28 Juha Hakotie Vermevexlare for uppvermning eller avkylning av friskluft som ledes till en lokalitet, med luft som avledes fran denna.
US4184542A (en) * 1976-04-16 1980-01-22 Hisaka Works, Ltd. Plate type condenser
US4131159A (en) * 1976-07-26 1978-12-26 Karen L. Beckmann Heat exchanger
GB2023796B (en) * 1978-06-19 1982-08-25 Gen Motors Corp Hollow-plate heat exchange element
US4291754A (en) * 1978-10-26 1981-09-29 The Garrett Corporation Thermal management of heat exchanger structure
US4327802A (en) * 1979-06-18 1982-05-04 Borg-Warner Corporation Multiple fluid heat exchanger

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19723878B4 (de) * 1997-06-06 2007-10-25 Behr Gmbh & Co. Kg Wärmeübertrager

Also Published As

Publication number Publication date
DE3162034D1 (en) 1984-03-01
EP0045257A3 (en) 1982-02-10
EP0045257A2 (fr) 1982-02-03
US4407359A (en) 1983-10-04

Similar Documents

Publication Publication Date Title
EP0045257B1 (fr) Echangeur de chaleur à plaques à structure rigide
EP2376860B1 (fr) Échangeur thermique a plaques soudées
EP1192402B1 (fr) Echangeur de chaleur a tubes a plusieurs canaux
EP0571263B1 (fr) Faisceau de plaques pour échangeur thermique et procédé d'assemblage d'un tel faisceau de plaques
EP0165179B1 (fr) Echangeurs de chaleur à plaques et nouveau type de plaques permettant l'obtention de tels échangeurs
FR2575279A1 (fr) Echangeur a plaques
FR2705445A1 (fr) Echangeur de chaleur à plaques.
FR2504251A1 (fr) Echangeur de chaleur et procede de fabrication de celui-ci
FR3034592A1 (fr) Panneau solaire photovoltaique et thermique
EP2912396B1 (fr) Échangeur thermique, notamment pour vehicule automobile
EP1533585B1 (fr) Echangeur de chaleur à empilement de plaques
EP3099994B1 (fr) Echangeur de chaleur pour véhicule automobile
EP1058807B1 (fr) Echangeur de chaleur a tubes souples
EP2623909B1 (fr) Panneau photovoltaïque à récupération thermique
FR2487495A1 (fr) Echangeur de chaleur a plaques comportant des cheminees de distribution allongees, orientees dans le sens des veines gazeuses
WO2003081159A1 (fr) Echangeur de chaleur, notamment pour un vehicule automobile, constitue d'elements tubulaires empiles
EP3447432B1 (fr) Plaque d'échange thermique à microcanaux comportant un élément d'assemblage en bordure de plaque
BE1006482A4 (fr) Dispositif de garnissage pour installation de mise en contact de liquide et de gaz.
WO2017109345A1 (fr) Échangeur thermique, notamment pour véhicule automobile
WO2020069880A1 (fr) Plaque pour un échangeur de chaleur à plaques
FR2787875A1 (fr) Echangeur de chaleur a tubes souples, notamment pour une installation de refroidissement d'un moteur de vehicule automobile
FR2604246A1 (fr) Echangeur de chaleur modulaire.
FR2519579A1 (fr) Procede de fabrication des plaques d'un echangeur de chaleur, par assemblage d'elements bout a bout, en matiere plastique
WO2023217970A1 (fr) Plaque pour échangeur de chaleur à perturbateurs d'écoulement de fluide
FR2508593A1 (fr) Dispositif de cale d'espacement pour systeme d'isolation par le vide

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): CH DE GB

AK Designated contracting states

Designated state(s): CH DE GB

17P Request for examination filed

Effective date: 19820712

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): CH DE GB LI

REF Corresponds to:

Ref document number: 3162034

Country of ref document: DE

Date of ref document: 19840301

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19840625

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19840704

Year of fee payment: 4

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19880724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19880731

Ref country code: CH

Effective date: 19880731

GBPC Gb: european patent ceased through non-payment of renewal fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19890401