EP1348100B1 - Echangeur de chaleur a plaques brasees - Google Patents

Echangeur de chaleur a plaques brasees Download PDF

Info

Publication number
EP1348100B1
EP1348100B1 EP01989656A EP01989656A EP1348100B1 EP 1348100 B1 EP1348100 B1 EP 1348100B1 EP 01989656 A EP01989656 A EP 01989656A EP 01989656 A EP01989656 A EP 01989656A EP 1348100 B1 EP1348100 B1 EP 1348100B1
Authority
EP
European Patent Office
Prior art keywords
exchanger according
subpattern
pattern
corrugation
exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01989656A
Other languages
German (de)
English (en)
Other versions
EP1348100A1 (fr
Inventor
Claire Turgis
Fabienne Chatel
Etienne Werlen
Gilles Lebain
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Publication of EP1348100A1 publication Critical patent/EP1348100A1/fr
Application granted granted Critical
Publication of EP1348100B1 publication Critical patent/EP1348100B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0062Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by spaced plates with inserted elements
    • F28D9/0068Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by spaced plates with inserted elements with means for changing flow direction of one heat exchange medium, e.g. using deflecting zones
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/025Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements
    • F28F3/027Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements with openings, e.g. louvered corrugated fins; Assemblies of corrugated strips
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/10Particular pattern of flow of the heat exchange media
    • F28F2250/108Particular pattern of flow of the heat exchange media with combined cross flow and parallel flow

Definitions

  • the present invention relates to a brazed plate heat exchanger, the passages of which contain at least one corrugated fin of the type comprising in cross section a corrugated repeating pattern which extends between two extreme upper and lower planes defined by the plates of the exchanger.
  • the invention is particularly applicable to gas-gas cryogenic exchangers of air distillation apparatuses, such as the main heat exchange line of these apparatus, which cools the incoming air by indirect heat exchange with the cold products. from the distillation column.
  • corrugated fins in question are widely used in brazed plate heat exchangers, which have the advantage of offering a large heat exchange area in a relatively small volume, and of being easy to manufacture.
  • the flows of the fluids can be co-current, countercurrent or crossed.
  • FIG. 1 of the accompanying drawings shows in perspective, with partial cutaway, an example of such a heat exchanger of conventional structure to which the invention applies. It can be in particular a cryogenic heat exchanger.
  • the heat exchanger 1 shown consists of a stack of parallel rectangular plates 2 all identical, which define between them a plurality of passages for fluids to put in indirect heat exchange relationship.
  • these passages are successively and. cyclically passages 3 for a first fluid, 4 for a second fluid and 5 for a third fluid.
  • Each passage 3 to 5 is bordered by closing bars 6 which delimit it leaving free windows 7 input / output of the corresponding fluid.
  • waves-eatretoises or corrugated fins 8 serving both thermal fins, spacers between the plates, especially during brazing and to prevent any deformation of the plates during the implementation of fluids under pressure and guiding fluid flows.
  • the stack of plates, closing bars and wave-spacers is generally made of aluminum or aluminum alloy and is assembled in a single operation by soldering in the oven.
  • Fluid inlet / outlet boxes 9, of generally semi-cylindrical shape, are then welded to the exchanger body thus produced so as to cover the rows of corresponding inlet / outlet windows, and they are connected to conduits 10 for supplying and evacuating fluids.
  • spacers-waves 8 There are various types of spacers-waves 8. It is possible to cite the straight fins, with rectilinear generatrices, possibly perforated, so-called “herringbone” fins, with sinuous generatrices, louvered fins, the wavelengths of which have rows of punctured, and partial offset fins where 'serrated'.
  • the cross section of the wave can be square, rectangular, triangular, sinusoidal, and so on.
  • US-A-3016921 discloses an exchanger according to the preamble of claim 1.
  • the object of the invention is to improve the thermal performance of corrugated fin exchangers.
  • the serrated fin 1 shown in Figuras 2 and 3 has a main direction of corrugation D1 and includes a large number of adjacent identical wave rows 12A, 12B, ..., oriented in a direction D2 perpendicular to the direction D1.
  • Each wave array 12 has, in cross section perpendicular to D1, a base pattern M which has two vertical wave legs 13. With respect to a general direction F of fluid flow along the direction D1 in the passage considered, each leg has an edge 14 and a trailing edge 15. The legs are alternately connected along their upper edge by a rectangular, plane and horizontal wave vertex 16, and along their lower edge by a wave base 17 also rectangular, flat and horizontal.
  • the basic pattern M is modified by a sub-pattern M1 consisting of a rectangular projection extending downwards in the middle of each vertex 16 and upwards in the middle of each base 17.
  • Each sub-pattern M1 consists of a flat end portion 18 located midway from the end planes defined by the adjacent plates 2, and two vertical tabs 19 which connect the edges to the apex 16 or to the corresponding base 17 .
  • each sub-pattern forms a slot that enters between the two legs 13 adjacent.
  • This slot defines three additional exchange surfaces, namely a horizontal exchange surface 20 and two vertical exchange surfaces 21.
  • the rows 12 are offset relative to each other in the direction D2, alternately in one direction and the other.
  • step the distance p between two successive legs 12 (ignoring the thickness e of the thin sheet material constituting the wave)
  • the offset is p / 6 alternately in one direction and in the other. other, while the width of the slot M1 is p / 3.
  • each row '12 is connected to the next row 12 by the vertices 16, along line segments 22 of length p / 6, and by the bases 17, along line segments 23 of the same length p / 6.
  • the offset planes are the vertical planes such as P AB and the offset lines, in top view, are designated 24.
  • each row 12 in the direction D1 designates the length of each row 12 in the direction D1, the length being called “serration length”, and by h the height of the fin.
  • the shapes of the various parts of the waves may differ more or less from the theoretical forms described above, in particular as regards the flatness and the rectangular shape of the facets 13 and 16 to 19, and the verticality of the facets 13 and 19 .
  • the patterns M are offset laterally with respect to themselves and with respect to the patterns M1, that is to say that the legs 13 of a given serration row 12 appear each between one leg 13 of adjacent rows and a tab 19 of a sub-pattern M1 neighbor. Conversely, the legs 19 of the same row. 12 each appear between two legs 19 or between a tab 19 and a leg 13, adjacent rows 12.
  • the flow separation is increased at each shift line 24, which increases the temperature difference between the fluid and the fin and thereby increases the heat exchange flux.
  • the presence of additional leading edges 20 and 21 further generates vortices within the fluid which promote convective heat transfer to the flow core and not conduction through the boundary layer, which is favorable to heat exchange.
  • the variant of Figure 4 differs from that of Figure 3 by a greater depth of slots M1, this depth from h / 2 to 2/3 hours. In this way, the preferential flow zones which escape the beneficial effect of the M1 slots described above are reduced.
  • FIGS. 5 and 6 show two adjacent vertical planes P1 and P2 to facilitate understanding of the structure of the fin.
  • each subpattern M1 is triangular and no longer rectangular or square. It thus introduces into each wave two oblique leading edges 25, symmetrical with respect to the vertical plane of symmetry P of the wave.
  • the height of the triangle is h / 2, but, as before, it may have a different value, especially greater than h / 2 to reduce the preferential flow areas.
  • the manufacture of the fins can be achieved by simply folding a flat product to the press or the wheel, as for the corrugated fins, including serrated, conventional. Indeed, the surfaces are all developable, so that it suffices to adapt the profile of the folding tools.
  • sub-patterns M1 causes passage restrictions at the shift lines, and therefore pressure drops. These pressure losses may be reduced by providing notches judiciously placed in at least some leading edges and / or leakage patterns M and / or M1. These indentations will preferably be located opposite the attacking and / or trailing edges of the sub-motifs M1, or in these, as shown in phantom at 26 in FIG. 2.
  • fin whatever the type of fin, it can be made from either a solid sheet, a perforated sheet or otherwise provided with lights.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

  • La présente invention est relative à un échangeur de chaleur à plaques brasées, dont les passages contiennent au moins une ailette ondulée du type comprenant en section transversale un motif répétitif ondulé qui s'étend entre deux plans extrêmes supérieur et inférieur définis par les plaques de l'échangeur.
  • L'invention s'applique en particulier aux échangeurs cryogéniques gaz-gaz des appareils de distillation d'air, tels que la ligne d'échange thermique principale de ces appareils, qui refroidit l'air entrant par échange de chaleur indirect avec les produits froide issus de la colonne de distillation.
  • Les ailettes ondulées en question sont largement utilisées dans les échangeurs de chaleurs à plaques brasées, qui présentent l'avantage d'offrir une grande surface d'échange thermique dans un volume relativement réduit, et d'être faciles à fabriquer. Dans ces échangeurs, les écoulements des fluides peuvent être à co-courant, à contre-courant ou croisés.
  • La Figure 1 des dessins annexés représente en perspective, avec des arrachements partiels, un exemple d'un tel échangeur de chaleur, de structure classique auquel s'applique l'invention. Il peut s'agir en particulier d'un échangeur de chaleur cryogénique.
  • L'échangeur de chaleur 1 représenté est constitué d'un empilement de plaques rectangulaires parallèles 2 toutes identiques, qui définissent entre elles une pluralité de passages pour des fluides à mettre en relation d'échange thermique indirect. Dans l'exemple représenté, ces passages sont successivement et. cycliquement des passages 3 pour un premier fluide, 4 pour un deuxième fluide et 5 pour un troisième fluide.
  • Chaque passage 3 à 5 est bordé de barres de fermeture 6 qui le délimitent en laissant libres des fenêtres 7 d'entrée/sortie du fluide correspondant. Dans chaque passage sont disposées des ondes-eatretoises ou ailettes ondulées 8 servant à la fois d'ailettes thermiques, d'entretoises entre les plaques, notamment lors du brasage et pour éviter toute déformation des plaques lors de la mise en oeuvre de fluides sous pression, et de guidage des écoulements des fluides.
  • L'empilement des plaques, des barres de fermeture et des ondes-entretoises est généralement réalisé en aluminium ou en alliage d'aluminium et est assemblé en une seule opération par brasage au four.
  • Des boîtes 9 d'entrée/sortie de fluide, de forme générale semi-cylindrique, sont ensuite soudées sur le corps d'échangeur ainsi réalisé de façon à coiffer les rangées de fenêtres d'entrée/sortie correspondantes, et elles sont reliées à des conduites 10 d'amenée et d'évacuation des fluides.
  • Il existe divers types d'ondes-entretoises 8. On peut ainsi citer les ailettes droites, à génératrices rectilignes, éventuellement perforées, les ailettes dites « herringbone », à génératrices sinueuses, les ailettes à persiennes, dont les jambes d'ondes présentent des rangées de crevés, et les ailettes à décalage partiel où « serrated ».
  • Dans ces diverses ailettes, la section transversale de l'onde peut être carrée, rectangulaire, triangulaire, sinusoïdale, etc.
  • US-A-3016921 décrit un échangeur selon le préambule de la revendication 1.
  • L'invention a pour but d'améliorer les performances thermiques des échangeurs à ailettes ondulées.
  • A cet effet, l'invention a pour objet un échangeur de chaleur à plaques brasées selon la revendication 1.
    Selon d'autres aspects facultatifs :
    • le sous-motif définit une sous-ondulation qui ne s'étend que sur une fraction de la distance qui sépare les deux plans extrêmes.
    • le sous-motif comprend au moins une partie non-verticale situés à un niveau intermédiaire entre les deux plans extrêmes.
    • le sous-motif comprend en outre des paires de pattes qui relient les parties non-verticales alternativement à un sommet d'ondes et à une base d'onde .
    • les pattes sont verticales.
    • le sous-motif comprend au moins: une surface d'échange additionnelle oblique.
    • le sous-motif a une section en V.
    • le sous-motif comprend un gradin adjacent à au moine certaines jambes du motif principal.
    • l'ailette est à décalage partiel.
    • les distances de décalage assurent un décalage du motif principal à la fois par rapport à lui-même et par rapport au sous-motif.
    • le motif se retrouve tous les N rangs d'ondes, avec N ≥ 3 et en particulier N = 4.
    • au moins certaines parties d'au moins certaines bases et/ou sous-motifs comportent une échancrure sur au moins un bord d'attaque et/où da fuite et sur au moins une partie de leur hauteur ou de leur largeur.
    • la section transversale de l'onde est carrée, rectangulaire, triangulaire ou sinusoïdale.
    • le motif ondulé de base est constant sur toute la longueur des deux plans extrêmes.
  • Dans ce qui suit, on s'intéressera essentiellement aux ailettes serrated , mais on comprendra que l'invention s'applique également aux' autres types d'ailettes décrits ci-dessus.
  • Des exemples de réalisation de l'invention vont maintenant être décrits en regard des dessins annexés, sur lesquels :
    • la Figure 2 représente en perspective une ailette serrated conforme à l'invention;
    • la Figure 3 est une vue en bout de cette ailette ;
    • la figure 4 est une vue en bout d'une variante;
    • la Figure 5 représente en perspective une autre ailette serrated suivant l'invention ;
    • la Figure 6 est une vue en perspective éclatée de l'ailette de la Figure 5 ;
    • la Figure 7 est une vue en bout de l'ailette de la Figure 5 ;et
    • la Figure 8 est une vue en bout d'une autre ailette serrated suivant l'invention.
  • L'ailette serrated 1 représentée aux Figuras 2 et 3 possède une direction générale principale d'ondulation D1 et comprend un grand nombre de rangées d'ondes adjacentes toutes identiques 12A, 12B,..., orientées suivant une direction D2 perpendiculaire à la direction D1.
  • Pour la commodité de la description, on supposera que, comme représenté sur la Figure 2, les directions D1 et D2 sont horizontales, la même que les plaques 2 de l'échangeur.
  • Chaque rangée d'ondes 12 a, en section transversale perpendiculaire à D1, un motif de base M qui comporte deux jambes d'ondes 13 verticales. Vis-à-vis d'un sens général F d'écoulement du fluide suivant la direction D1 dans le passage considéré, chaque jambe comporte un bord d'attaque 14 et un bord de fuite 15. Les jambes sont reliées alternativement le long de leur bord supérieur par un sommet d'onde 16 rectangulaire, plan et horizontal, et le long de leur bord inférieur par une base d'onde 17 également rectangulaire, plane et horizontale.
  • Le motif de base M est modifié par un sous-motif M1 constitué par une saillie rectangulaire s'étendant vers le bas au milieu de chaque sommet 16 et vers le haut au milieu de chaque base 17.
  • Chaque sous-motif M1 est constitué d'une partie d'extrémité plane 18 située à mi-distance des plans extrêmes définis par les plaques 2 adjacentes, et deux pattes verticales 19 qui en relient les bords au sommet 16 ou à la base 17 correspondant.
  • Ainsi, chaque sous-motif forme un créneau qui pénètre entre les deux jambes 13 adjacentes. Ce créneau définit trois surfaces d'échange supplémentaires, à savoir une surface d'échange horizontale 20 et deux surfaces d'échange verticales 21.
  • Les rangées 12 sont décalées les unes par rapport aux autres suivant la direction D2, alternativement dans un sens et dans l'autre. En appelant « pas » la distance p qui sépare deux jambes 12 successives (en faisant abstraction de l'épaisseur e de la matière en feuille mince qui constitue l'onde), le décalage est p/6 alternativement dans un sens et dans l'autre, alors que la largeur du créneau M1 est p/3.
  • Ainsi, chaque rangée' 12 est reliée à la rangée 12 suivante par les sommets 16, suivant des segments de droite 22 de longueur p/6, et par les bases 17, suivant des segments de droites 23 de même longueur p/6. Les plans de décalage sont les plans verticaux tels que PAB et les lignes de décalage, en vue de dessus, sont désignées par 24.
  • Par ailleurs, on désigne par l la longueur de chaque rangée 12 suivant la direction D1, cette longueur étant appelée « longueur de serration », et par h la hauteur de l'ailette.
  • En pratique, les formes des diverses parties des ondes peuvent différer plus ou moins des formes théoriques décrites ci-dessus, notamment en ce qui concerne la planéité et la forme rectangulaire des facettes 13 et 16 à 19, et la verticalité des facettes 13 et 19.
  • En vue en bout (Figure 3), les motifs M sont décalés latéralement par rapport à eux-mêmes et par rapport aux motifs M1, c'est-à-dire que les jambes 13 d'une rangée de serration 12 donnée apparaissent chacune entre une jambe 13 des rangées adjacentes et une patte 19 d'un sous-motif M1 voisin. Inversement, les pattes 19 de la même rangée. 12 apparaissent chacune soit entre deux pattes 19, soit entre une patte 19 et une jambe 13, des rangées 12 adjacentes.
  • Grâce à la présence des sous-motifs M1, la séparation de l'écoulement est augmentée au niveau de chaque ligne de décalage 24, ce qui accroît la différence de température entre le fluide et l'ailette et accroît ainsi le flux de chaleur échangé. La présence de bords d'attaque supplémentaires 20 et 21 génère de plus au sein du fluide des tourbillons qui favorisent le transfert de chaleur par convection vers le coeur de l'écoulement et non par conduction à travers la couche limite, ce qui est favorable à l'échange thermique.
  • La variante de la Figure 4 diffère de celle de la Figure 3 par une plus grande profondeur des créneaux M1, cette profondeur passant de h/2 à 2h/3 environ. On réduit de cette manière les zones d'écoulement préférentiel qui échappent à l'effet bénéfique des créneaux M1 décrit plus haut.
  • Dans le même objectif, les Figures 5 à 7 représentent une ailette serrated dont le motif M+M1 se retrouve non pas une rangée sur deux, mais une rangée sur N, avec N ≥ 3. Ceci permet d'augmenter la symétrie de l'écoulement. Dans l'exemple représenté, N = 4. On décrira par suite ci-dessous quatre rangées successives 12A à 12D.
  • Chaque rangée a, comme précédemment, un même motif de base M rectangulaire, comprenant des jambes verticales 13 espacées du pas p et reliées alternativement par un sommet d'ondes 16 de largeur p et par une base d'ondes 17 de même largeur p. Le motif M est modifié par un sous-motif MlA à M1D.
    • sous-motif MIA : dans chaque ondulation ouverte vers le haut, la partie inférieure de la jambe 13 de droite est déformée par un gradin qui comporte une partie horizontale 24 située à mi-hauteur de la jambe et une partie verticale 25 située à mi-distance entre cette jambe et l'autre jambe de l'ondulation. Ainsi, la moitié inférieure de la jambe et la moitié de droite de la base d'onde adjacente sont supprimées, comme indiqué en traits mixtes.
    • sous-motif M1B : dans chaque ondulation ouverte vers le bas, la partie supérieure de la jambe 13 de gauche est déformée par un gradin analogue, c'est à dire rectangulaire et de dimensions p/2 et h/2.
    • sous-motif M1C : dans chaque ondulation ouverte vers le haut, la partie inférieure de la jambe 13 de gauche est déformée par un gradin analogue. Ce sous-motif est donc symétrique par rapport au sous-motif M1A.
    • sous-motif M1D : dans chaque ondulation ouverte vers le bas, la partie supérieure de la jambe 13 de droite est déformée par un gradin analogue. Ce sous-motif est donc symétrique par rapport au sous-motif M1B.
  • Par ailleurs, dans ce mode de réalisation, le décalage d'une rangée à la suivante est p/2, alternativement dans un sens et dans l'autre. On a indiqué sur les Figures 5 et 6 deux plans verticaux voisins P1 et P2, pour faciliter la compréhension de la structure de l'ailette.
  • Le mode de réalisation de la Figure 8 est dérivé de celui de la Figure 3 par le fait que chaque sous-motif M1 est triangulaire et non plus rectangulaire ou carré. Il introduit ainsi dans chaque onde deux bords d'attaque obliques 25, symétriques par rapport au plan vertical de symétrie P de l'onde.
  • Dans l'exemple représenté, la hauteur du triangle est h/2, mais, comme précédemment, elle peut avoir une valeur différente, notamment supérieure à h/2 pour réduire les zones d'écoulement préférentiel.
  • Dans tous les exemples ci-dessus, on obtient des performances thermiques élevées de l'échangeur, avec un écoulement fortement divisé et turbulent et de configuration bidimensionnelle, voire tridimensionnelle.
  • On remarque que la fabrication des ailettes peut être réalisée par simple pliage d'un produit plat à la presse ou à la molette, comme pour les ailettes ondulées, notamment serrated, classiques. En effet, les surfaces sont toutes développables, de sorte qu'il suffit d'adapter le profil des outils de pliage.
  • La présence des sous-motifs M1 provoque des restrictions de passage au niveau des lignes de décalage, et donc des pertes de charge. On peut éventuellement réduire ces pertes de charge en prévoyant des échancrures judicieusement placées dans au moins certains bords d'attaque et/ou de fuite des motifs M et/ou M1. Ces échancrures seront de préférence situées en regard des bords d'attaques et/ou de fuite des sous-motifs M1, ou dans ceux-ci, comme indiqué en traits mixtes en 26 sur la Figure 2 .
  • Quel que soit la type d'ailette, celle-ci peut être réalisée à partir soit d'une tôle pleine, soit d'une tôle perforée ou munie autrement de lumières.

Claims (13)

  1. Echangeur de chaleur à plaques brasées, du type comprenant un empilement de plaques parallèles (2) qui définissent une pluralité de passages (3 à 5) de circulation de fluides de forme générale plate, des barres de fermeture (6) qui délimitent ces passages, et des ailettes ondulées (8) disposées dans les passages, au moins une partie des ailettes ondulées (8) étant du type comprenant en section transversale un motif répétitif ondulé qui s'étend entré deux plans extrêmes supérieur et inférieur définis par deux plaques adjacentes de l'échangeur, le motif comprenant un motif ondulé de base (M) comprenant des jambes d'ondes (13) reliées par des sommets d'ondes (16) et des bases d'ondes (17) caractérisé en ce que ce motif de base est modifié par un sous-motif (M1) qui définit, entre au moins certaines paires de jambes d'ondes, des surfaces d'échange additionnelles (20, 21) situées à un niveau intermédiaire entre les deux plans extrêmes.
  2. Echangeur suivant la revendication 1, caractérisé en ce que le sous-motif (M1) définit une sous-ondulation qui ne s'étend que sur une fraction de la distance qui sépare les deux plans extrêmes.
  3. Echangeur suivant la revendication 1 ou 2, caractérisé en ce que le sous-motif comprend au moins une partie non-verticale (18) située à un niveau intermédiaire entre les deux plans extrêmes.
  4. Echangeur suivant la revendication 3, caractérisé en ce que le sous-motif (M1) comprend en outre des paires de pattes (19) qui relient les parties non-verticales (18) alternativement à un sommet d'ondes (16) et à une base d'onde (17).
  5. Echangeur suivant la revendication 4,
    caractérisé en ce que les pattes (19) sont verticales.
  6. Echangeur suivant la revendication 1 ou 2, caractérisé en ce que le sous-motif (M1) comprend au moins une surface d'échange additionnelle oblique (25).
  7. Echangeur suivant la revendication 6, caractérisé en ce que le sous-motif (M1) a une section en V.
  8. Echangeur suivant la revendication 1 ou 2, caractérise en ce que le sous-motif (M1) comprend un gradin (24,25) adjacent à au moins certaines jambes (13) du motif principal (M).
  9. Echangeur suivant l'une quelconques des revendications 1 à 8, caractérisé en ce que l'ailette (11) est à décalage partiel.
  10. Echangeur suivant la revendication 9, caractérisé en ce que les distances de décalage assurent un décalage du motif principal (M) à la fois par rapport à lui-même et par rapport au sous-motif (M1).
  11. Echangeur suivant la revendication 10, caractérisé en ce que le motif (M,M1) se retrouve tous les N rangs d'ondes, avec N ≥ 3.
  12. Echangeur suivant la revendication 11, caractérisé en ce que N - 4.
  13. Echangeur suivant l'une quelconque des revendications 1 à 12, caractérisé en ce qu'au moins certaines parties d'au moins certaines bases (M) et/ou sous-motifs (M1) comportent une échancrure (26) sur au moins un bord d'attaque et/ou de fuite et sur au moins une partie de leur hauteur ou de leur largeur.
EP01989656A 2000-12-28 2001-12-21 Echangeur de chaleur a plaques brasees Expired - Lifetime EP1348100B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0017178A FR2819048B1 (fr) 2000-12-28 2000-12-28 Ailette ondulee pour echangeur de chaleur a plaques brasees et echangeur de chaleur correspondant
FR0017178 2000-12-28
PCT/FR2001/004141 WO2002054000A1 (fr) 2000-12-28 2001-12-21 Echangeur de chaleur a plaques brasees

Publications (2)

Publication Number Publication Date
EP1348100A1 EP1348100A1 (fr) 2003-10-01
EP1348100B1 true EP1348100B1 (fr) 2006-03-15

Family

ID=8858307

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01989656A Expired - Lifetime EP1348100B1 (fr) 2000-12-28 2001-12-21 Echangeur de chaleur a plaques brasees

Country Status (7)

Country Link
US (1) US7059397B2 (fr)
EP (1) EP1348100B1 (fr)
JP (1) JP3974526B2 (fr)
CN (1) CN1284958C (fr)
DE (1) DE60118029T2 (fr)
FR (1) FR2819048B1 (fr)
WO (1) WO2002054000A1 (fr)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2471969A1 (fr) * 2004-06-23 2005-12-23 Lionel Gerber Echangeur de chaleur pour utilisation dans une machine a glace
US7434765B2 (en) * 2005-02-16 2008-10-14 The Boeing Company Heat exchanger systems and associated systems and methods for cooling aircraft starter/generators
FR2887020B1 (fr) * 2005-06-09 2007-08-31 Air Liquide Echangeur de chaleur a plaques avec structure d'echange formant plusieurs canaux dans un passage
JP4881583B2 (ja) * 2005-06-27 2012-02-22 株式会社豊田自動織機 パワーモジュール用ヒートシンク
FR2895493B1 (fr) * 2005-12-22 2009-01-23 Air Liquide Nouvelles ondes d'echange de chaleur et leurs applications
US8136578B2 (en) * 2006-03-13 2012-03-20 Volvo Lastvagnar Ab Heat exchanger for EGR-gas
JP4818044B2 (ja) * 2006-09-28 2011-11-16 三洋電機株式会社 熱交換器の製造方法
JP2009204182A (ja) * 2008-02-26 2009-09-10 Denso Corp 熱交換器
FR2938904B1 (fr) * 2008-11-24 2012-05-04 Air Liquide Echangeur de chaleur
US8726691B2 (en) * 2009-01-30 2014-05-20 Praxair Technology, Inc. Air separation apparatus and method
US20100192628A1 (en) * 2009-01-30 2010-08-05 Richard John Jibb Apparatus and air separation plant
US20100192629A1 (en) * 2009-01-30 2010-08-05 Richard John Jibb Oxygen product production method
KR100938802B1 (ko) * 2009-06-11 2010-01-27 국방과학연구소 마이크로채널 열교환기
FR2950682B1 (fr) * 2009-09-30 2012-06-01 Valeo Systemes Thermiques Condenseur pour vehicule automobile a integration amelioree
US9303925B2 (en) 2012-02-17 2016-04-05 Hussmann Corporation Microchannel suction line heat exchanger
WO2014056587A1 (fr) * 2012-10-09 2014-04-17 Linde Aktiengesellschaft Mesure de température au moyen d'un guide d'ondes lumineuses dans un échangeur de chaleur à plaques
CN208254300U (zh) * 2014-08-21 2018-12-18 特灵国际有限公司 带有错位翅片的换热器盘管
CN106762018A (zh) * 2016-12-05 2017-05-31 蚌埠市国乐汽配有限公司 一种箱式机油冷却器
FR3071595B1 (fr) * 2017-09-28 2020-05-22 F2A - Fabrication Aeraulique Et Acoustique Echangeur air/air a double flux a contre-courant
US11454448B2 (en) 2017-11-27 2022-09-27 Dana Canada Corporation Enhanced heat transfer surface
DE102018003479A1 (de) * 2018-04-27 2019-10-31 Linde Aktiengesellschaft Plattenwärmetauscher, verfahrenstechnische Anlage und Verfahren
US12044483B2 (en) * 2019-06-03 2024-07-23 Mitsubishi Electric Corporation Plate heat exchanger and heat transfer apparatus

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3016921A (en) * 1958-04-14 1962-01-16 Trane Co Heat exchange fin element
GB1216306A (en) * 1967-03-31 1970-12-16 Marston Excelsior Limiited Plate-type heat exchangers
US3451473A (en) * 1967-04-11 1969-06-24 United Aircraft Corp Heat exchanger construction
GB1601952A (en) * 1977-02-17 1981-11-04 Covrad Ltd Apparatus for making corrugated sheet material
US4246963A (en) * 1978-10-26 1981-01-27 The Garrett Corporation Heat exchanger
DE3227146A1 (de) * 1982-07-21 1984-01-26 Schäfer Werke GmbH, 5908 Neunkirchen Waermetauscher, insbesondere plattenheizkoerper
DE3303237C2 (de) * 1982-10-07 1985-11-28 Schäfer Werke GmbH, 5908 Neunkirchen Wärmetauscher, insbesondere Heizkörper
DE9101494U1 (de) * 1991-02-09 1991-05-02 Buderus Heiztechnik GmbH, 6330 Wetzlar Plattenheizkörper
US5107922A (en) * 1991-03-01 1992-04-28 Long Manufacturing Ltd. Optimized offset strip fin for use in contact heat exchangers
US5636685A (en) * 1996-08-16 1997-06-10 General Motors Corporation Plate and fin oil cooler with improved efficiency
EP1072783B1 (fr) * 1999-07-30 2002-09-25 Denso Corporation Exchangeur de chaleur du gaz d'échappement avec des segments inclinés
US6729388B2 (en) * 2000-01-28 2004-05-04 Behr Gmbh & Co. Charge air cooler, especially for motor vehicles

Also Published As

Publication number Publication date
EP1348100A1 (fr) 2003-10-01
WO2002054000A1 (fr) 2002-07-11
FR2819048A1 (fr) 2002-07-05
CN1483134A (zh) 2004-03-17
CN1284958C (zh) 2006-11-15
JP2004517293A (ja) 2004-06-10
FR2819048B1 (fr) 2005-08-19
DE60118029T2 (de) 2006-12-28
US20040144525A1 (en) 2004-07-29
JP3974526B2 (ja) 2007-09-12
US7059397B2 (en) 2006-06-13
DE60118029D1 (de) 2006-05-11

Similar Documents

Publication Publication Date Title
EP1348100B1 (fr) Echangeur de chaleur a plaques brasees
EP1172625A2 (fr) Ailette d'échange thermique pour échangeur de chaleur à plaques brasées, et échangeur de chaleur correspondant
EP1395787B1 (fr) Ailette a persiennes pour echangeur de chaleur
EP1468238B1 (fr) Ailette d echange thermique, et son procede de fabrication
FR2895493A1 (fr) Nouvelles ondes d'echange de chaleur et leurs applications
US8453719B2 (en) Heat transfer surfaces with flanged apertures
FR2871074A1 (fr) Bande pour module de garnissage, module de garnissage et installation de distillation correspondants
US20090260789A1 (en) Heat exchanger with expanded metal turbulizer
EP1426722B1 (fr) Plaque d'un échangeur thermique et échangeur thermique à plaques
EP1295077B1 (fr) Echangeur spirale multiecartement
EP2367626A1 (fr) Garnissage ondulé-croisé et colonne incorporant un tel garnissage
FR2538889A1 (fr) Echangeur de chaleur a chambres plates ainsi que procede et machine pour la fabrication de cet echangeur
CN105215228A (zh) 具有带凸缘的孔口的传热面
FR3088996A1 (fr) Procédé de fabrication d’un échangeur comprenant une zone à supporter et échangeur fabriqué par un tel procédé
CA2451830A1 (fr) Bande pour module de garnissage, module et installation correspondants
EP2635867B1 (fr) Echangeur de chaleur a plaques soudees, et plaque constitutive d'un tel echangeur
WO2004110617A1 (fr) Bande pour module de garnissage et installation correspondante
FR2826879A1 (fr) Bande pour module de garnissage, module et installation correspondants
FR2738906A1 (fr) Faisceau de plaques pour un echangeur thermique et echangeur thermique comportant un tel faisceau de plaques
BE823832A (fr) Corps de ruissellement pour refrigerant atmospherique ou echangeur a contact direct.
FR3071595A1 (fr) Echangeur air/air a double flux a contre-courant
FR2878454A1 (fr) Element de garnissage regulier perfectionne, son procede de preparation et ses utilisations

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030728

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RIN1 Information on inventor provided before grant (corrected)

Inventor name: WERLEN, ETIENNE

Inventor name: CHATEL, FABIENNE

Inventor name: TURGIS, CLAIRE

Inventor name: LEBAIN, GILLES

RIN1 Information on inventor provided before grant (corrected)

Inventor name: LEBAIN, GILLES

Inventor name: TURGIS, CLAIRE

Inventor name: WERLEN, ETIENNE

Inventor name: CHATEL, FABIENNE

RBV Designated contracting states (corrected)

Designated state(s): DE FR

17Q First examination report despatched

Effective date: 20050124

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR

REF Corresponds to:

Ref document number: 60118029

Country of ref document: DE

Date of ref document: 20060511

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20061218

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20121220

Year of fee payment: 12

Ref country code: FR

Payment date: 20130130

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60118029

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140829

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60118029

Country of ref document: DE

Effective date: 20140701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131231