EP1172625A2 - Ailette d'échange thermique pour échangeur de chaleur à plaques brasées, et échangeur de chaleur correspondant - Google Patents

Ailette d'échange thermique pour échangeur de chaleur à plaques brasées, et échangeur de chaleur correspondant Download PDF

Info

Publication number
EP1172625A2
EP1172625A2 EP01401708A EP01401708A EP1172625A2 EP 1172625 A2 EP1172625 A2 EP 1172625A2 EP 01401708 A EP01401708 A EP 01401708A EP 01401708 A EP01401708 A EP 01401708A EP 1172625 A2 EP1172625 A2 EP 1172625A2
Authority
EP
European Patent Office
Prior art keywords
fin
fluid
heat exchanger
flow
plates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01401708A
Other languages
German (de)
English (en)
Other versions
EP1172625A3 (fr
Inventor
Jean-Yves Lehman
Etienne Werlen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
LAir Liquide SA a Directoire et Conseil de Surveillance pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude, LAir Liquide SA a Directoire et Conseil de Surveillance pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Publication of EP1172625A2 publication Critical patent/EP1172625A2/fr
Publication of EP1172625A3 publication Critical patent/EP1172625A3/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J5/00Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants
    • F25J5/002Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants for continuously recuperating cold, i.e. in a so-called recuperative heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0062Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by spaced plates with inserted elements
    • F28D9/0068Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by spaced plates with inserted elements with means for changing flow direction of one heat exchange medium, e.g. using deflecting zones
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0093Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/025Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements
    • F28F3/027Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements with openings, e.g. louvered corrugated fins; Assemblies of corrugated strips
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/32Details on header or distribution passages of heat exchangers, e.g. of reboiler-condenser or plate heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/42Modularity, pre-fabrication of modules, assembling and erection, horizontal layout, i.e. plot plan, and vertical arrangement of parts of the cryogenic unit, e.g. of the cold box
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0033Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for cryogenic applications
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/10Particular pattern of flow of the heat exchange media
    • F28F2250/108Particular pattern of flow of the heat exchange media with combined cross flow and parallel flow

Definitions

  • the present invention relates to a fin heat exchanger for plate heat exchanger brazed, of the type comprising a corrugated perforated product and / or flat which has a main direction of undulation and which is bounded by two side edges.
  • the invention applies for example to lines main heat exchange systems air distillation, which put in exchange relation indirect thermal incoming air and cold products from the air distillation column.
  • Brazed plate heat exchangers are commonly used because they offer a large area heat exchange in a particularly compact volume, and, moreover, they are relatively easy to manufacture.
  • exchangers often made of aluminum or aluminum alloy, consist of a plurality of parallel plates, usually rectangular, between which are arranged on the one hand of the spacer waves or fins of various geometries, and on the other hand bars for closing shaped fluid flow passages flat delimited by the plates.
  • the flows can be against the current, co-current or cross-currents.
  • the fins have the function of increasing the heat exchange surface and therefore performance overall heat transfer. They transfer into effect of heat fluxes by conduction to the plates adjacent, which they are secured by brazing.
  • the fins are produced very economically from a folded, perforated, punctured and / or flat product stamped.
  • the basic wave may have a cross section substantially square, rectangular or triangular.
  • the direction main ripple which is the middle direction of ripple in the case of herringbone waves, defines the direction of least resistance to fluid flow.
  • a part main of the passage length constitutes the part heat exchange proper, which is furnished with a fin called heat exchanger fin.
  • this part is bordered by distribution parts fluid inlet and outlet lined with fins distribution.
  • the heat exchange part is delimited by two parallel side bars on two sides opposite plates, and the main direction of ripple of the heat exchange fin is parallel to these bars of closure, with the exception sometimes of limited regions where this main direction is perpendicular to the bars of side closures (so-called “hard-way” arrangement) for create a local pressure drop.
  • hard-way arrangement
  • the fins have a general ripple direction very inclined by compared to that of the heat exchange fins.
  • the invention aims to increase the compactness of brazed plate heat exchangers by improving their thermal performance.
  • the invention relates to a fin heat exchange of the aforementioned type, characterized in that the main ripple direction is oblique to the at the two side edges, and in that the fin has a general direction of least resistance to the flow of a fluid which is substantially parallel to the two edges side.
  • the invention also relates to a heat exchanger brazed plate heat, of the type comprising a plurality of parallel rectangular plates that define between passages of generally flat shape, and, in each passage, a heat exchange fin, each fin forming a spacer between two plates, as well as bars side closure, and in which an exchange fin thermal is as defined above.
  • the heat exchanger 1 shown in Figure 1 is for example a cryogenic heat exchanger. It is consisting of a stack of rectangular plates parallel 2 all identical, which define them a plurality of passages for fluids to be introduced indirect heat exchange relationship. In the example shown, these passages are successively and cyclically passages 3 for a first fluid, 4 for a second fluid and 5 for a third fluid.
  • Each passage 3 to 5 is bordered by bars of lateral closure 6 and end closure 7 which delimit it in leaving free windows 8 for inlet / outlet of the fluid corresponding.
  • spacer waves or wavy fins serving both thermal fins, spacers between the plates, especially during soldering and to avoid any deformation plates when using fluids under pressure, and for guiding the flow of fluids.
  • These fins are, over most of the length of the passage, fins 9 heat exchange. In their regions adjacent to the windows, these fins 9 are extended by distribution fins 10. These distribute the fluid entering from an inlet window to the entire width of the fin 9, or collect the fluid leaving all this width up to an exit window.
  • the stacking of plates, closing bars and spacer waves are generally made of aluminum or aluminum alloy and is assembled in one oven brazing operation.
  • Fluid inlet / outlet boxes 11 general semi-cylindrical, are then welded to the body exchanger thus produced so as to cover the rows of corresponding input / output windows 8, and they are connected to pipes 12 supply and evacuation of fluids.
  • the heat exchange fin 9 has a main direction ripple F1 which forms a positive acute angle ⁇ , typically between 1 ° and 30 °, and preferably between 2 ° and 10 °, with the longitudinal direction F2 passage, which is that of the closing side bars 6.
  • the arrangement of the fin 9 is such that the general direction of least resistance to flow in the passage remains substantially the direction F2.
  • the fin 9 is made from a material made of folded sheet whose longitudinal direction is perpendicular to F1. This material is, after folding, cut to length along two lines 13 parallel to the direction F2, which leads to several wave mat 14, the number of three in Figure 2, in the form of a parallelogram (for the or intermediate mats) or rectangular trapezoid or right triangle (for both end mats).
  • Figures 3 to 8 show three modes of different construction of the fin 9.
  • the fin has a corrugation with a rectangular section, with wave bases 15 and wave vertices 16 connected by wave legs 17.
  • Each leg 17 is provided at intervals regular, hearing 18 pushed back on the side of the leg which receives the fluid flow (the left side in Figures 3 and 4) and which are open upstream of this flow. So, as shown by arrows in Figure 4, a vein fluid guided in the direction F1 between two legs 17 is partially deviated transversely to this direction by hearing 18.
  • the direction of least resistance to flow of the fin 9 is substantially the direction F2, when one chooses appropriately the shape and dimensions of the gills 18.
  • the inclination F1 and the vents 18 give the flow a two-dimensional and turbulent configuration which favors the efficiency of heat exchange.
  • the fin 9 is of the "serrated" type. It thus comprises, at a regular interval along the direction F1 called “tightening length" l , a lateral offset d , alternately on one side and the other, which is generally equal to half the distance between two legs 17, called “no tightening” p .
  • the fin thus comprises parallel offset planes P which, in top view (FIG. 4), are parallel offset lines 19.
  • Each elementary leg 17 has its leading edge folded at right angles over its entire height, which defines a deflection plate 20. All the plates 20 are oriented on the same side, namely on the side of the legs 17 which receives the fluid flow.
  • the platelets 20 have the effect of reducing the fluid passage section on the side where they are provided and to increase this passage section on the opposite side.
  • each vein of fluid guided between two legs 17 sees its flow favored in a direction close to F2, even oblique in the opposite direction to F1 with respect to F2.
  • the fin 9 Given the turbulence generated in the fluid, the fin 9 generally has, as previously, a direction of less resistance to the flow close to F2, with an appropriate choice of fin parameters and the size of the pads 20.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

Cette ailette (9) comprend un produit ondulé perforé et/ou crevé qui présente une direction principale d'ondulation (F1) et qui est délimité par deux bords latéraux (13). La direction principale d'ondulation (F1) est oblique par rapport aux deux bords latéraux (13). Application aux lignes d'échange thermique principales des installations de distillation d'air. <IMAGE>

Description

La présente invention est relative à une ailette d'échange thermique pour échangeur de chaleur à plaques brasées, du type comprenant un produit ondulé perforé et/ou crevé qui présente une direction principale d'ondulation et qui est délimité par deux bords latéraux.
L'invention s'applique par exemple aux lignes d'échange thermique principales des installations de distillation d'air, qui mettent en relation d'échange thermique indirect l'air entrant et les produits froids issus de la colonne de distillation d'air.
Les échangeurs de chaleur à plaques brasées sont couramment utilisés car ils offrent une grande surface d'échange thermique sous un volume particulièrement compact, et, de plus, ils sont relativement faciles à fabriquer.
Ces échangeurs, souvent réalisés en aluminium ou en alliage d'aluminium, sont constitués d'une pluralité de plaques parallèles, généralement rectangulaires, entre lesquelles sont disposées d'une part des ondes-entretoises ou ailettes de géométries variées, et d'autre part de barres de fermeture des passages d'écoulement de fluide de forme plate délimités par les plaques. Les écoulements peuvent être à contre-courant, à co-courant ou à courants croisés.
Les ailettes ont pour fonction d'augmenter la surface d'échange thermique et donc les performances globales de transfert de chaleur. Elles transfèrent en effet des flux thermiques par conduction jusqu'aux plaques adjacentes, dont elles sont solidaires par brasage.
Les ailettes sont réalisées de façon très économique à partir d'un produit plat plié, perforé, crevé et/ou embouti. L'onde de base peut avoir une section transversale sensiblement carrée, rectangulaire ou triangulaire. On connaít essentiellement les ailettes dites « ondes droites », qui sont une simple tôle ondulée, « ondes perforées » , « ondes herringbone », à génératrices ondulées, « ondes à persiennes », dont les jambes d'onde possèdent des crevés, et « ondes serrated », ou « à décalage partiel », dans lesquelles, à intervalles réguliers le long des génératrices, on produit un décalage transversal de l'onde, généralement d'un demi-pas d'onde.
Dans toutes ces ailettes connues, la direction principale d'ondulation, qui est la direction moyenne d'ondulation dans le cas des ondes herringbone, définit la direction de moindre résistance à l'écoulement du fluide.
Dans chaque passage de l'échangeur, une partie principale de la longueur du passage constitue la partie d'échange de chaleur proprement dite, qui est garnie d'une ailette dite ailette d'échange de chaleur. Dans certains cas, cette partie est bordée de parties de distribution d'entrée et de sortie de fluide garnies d'ailettes de distribution.
La partie d'échange de chaleur est délimitée par deux barres de fermeture latérales parallèles à deux côtés opposés des plaques, et la direction principale d'ondulation de l'ailette d'échange de chaleur est parallèle à ces barres de fermeture, à l'exception parfois de régions limitées où cette direction principale est perpendiculaire aux barres de fermeture latérales (disposition dite en « hard-way ») pour créer une perte de charge locale. Dans ce qui suit, on fera abstraction des ailettes en hard-way.
Dans les parties de distribution, les ailettes ont une direction générale d'ondulation très inclinée par rapport à celle des ailettes d'échange thermique.
L'invention a pour but d'augmenter la compacité des échangeurs à plaques brasées par une amélioration de leurs performances thermiques.
A cet effet, l'invention a pour objet une ailette d'échange thermique du type précité, caractérisée en ce que la direction principale d'ondulation est oblique par rapport aux deux bords latéraux, et en ce que l'ailette présente une direction générale de moindre résistance à l'écoulement d'un fluide qui est sensiblement parallèle aux deux bords latéraux.
L'invention a également pour objet un échangeur de chaleur à plaques brasées, du type comprenant une pluralité de plaques rectangulaires parallèles qui définissent entre elles des passages de forme générale plate, et, dans chaque passage, une ailette d'échange thermique, chaque ailette formant entretoise entre deux plaques, ainsi que des barres de fermeture latérales, et dans lequel une ailette d'échange thermique est telle que définie ci-dessus.
Des exemples de réalisation de l'invention vont maintenant être décrits en regard des dessins annexés , sur lesquels :
  • la Figure 1 représente en perspective, avec arrachements partiels, un échangeur de chaleur à plaques brasées suivant l'invention ;
  • la Figure 2 représente un passage de cet échangeur de chaleur ;
  • la Figure 3 représente en perspective une partie d'une ailette suivant l'invention ;
  • la Figure 4 représente la même ailette, prise en coupe suivant le plan médian IV de la Figure 3 ;
  • les Figures 5 et 7 représentent en perspective deux autres modes de réalisation de l'ailette de l'invention ; et
  • les Figures 6 et 8 représentent respectivement les ailettes des Figures 5 et 7 en coupe suivant les plans médians VI de la Figure 5 et VIII de la Figure 7.
L'échangeur de chaleur 1 représenté à la Figure 1 est par exemple un échangeur de chaleur cryogénique . Il est constitué d'un empilement de plaques rectangulaires parallèles 2 toutes identiques, qui définissent entre elles une pluralité de passages pour des fluides à mettre en relation d'échange thermique indirect. Dans l'exemple représenté, ces passages sont successivement et cycliquement des passages 3 pour un premier fluide, 4 pour un deuxième fluide et 5 pour un troisième fluide.
Chaque passage 3 à 5 est bordé de barres de fermeture latérales 6 et d'extrémité 7 qui le délimitent en laissant libres des fenêtres 8 d'entrée/sortie du fluide correspondant. Dans chaque passage sont disposées des ondes-entretoises ou ailettes ondulées servant à la fois d'ailettes thermiques, d'entretoises entre les plaques, notamment lors du brasage et pour éviter toute déformation des plaques lors de la mise en oeuvre de fluides sous pression, et de guidage des écoulements de fluides. Ces ailettes sont, sur l'essentiel de la longueur du passage, des ailettes 9 d'échange thermique. Dans leurs régions adjacentes aux fenêtres, ces ailettes 9 sont prolongées par des ailettes de distribution 10. Celles-ci répartissent le fluide entrant d'une fenêtre d'entrée jusque sur toute la largeur de l'ailette 9, ou rassemblent le fluide sortant de toute cette largeur jusqu'à une fenêtre de sortie.
L'empilement des plaques, des barres de fermeture et des ondes-entretoises est généralement réalisé en aluminium ou en alliage d'aluminium et est assemblé en une seule opération par brasage au four.
Des boítes 11 d'entrée/sortie de fluides, de forme générale semi-cylindrique, sont ensuite soudées sur le corps d'échangeur ainsi réalisé de façon à coiffer les rangées de fenêtres d'entrée/sortie 8 correspondantes, et elles sont reliées à des conduites 12 d'amenée et d'évacuation des fluides.
On a représenté schématiquement sur la Figure 2, l'un des passages du même échangeur, à savoir un passage 3. L'ailette 9 d'échange thermique a une direction principale d'ondulation F1 qui forme un angle aigu positif α, typiquement compris entre 1° et 30°, et de préférence compris entre 2° et 10°, avec la direction longitudinale F2 du passage, qui est celle des barres latérales de fermeture 6.
Cependant l'agencement de l'ailette 9 est tel que la direction générale de moindre résistance à l'écoulement dans le passage reste sensiblement la direction F2.
On reconnaít par ailleurs sur la Figure 2 les deux ailettes 10 de distribution, adjacentes aux fenêtres d'entrée/sortie 8 du passage. L'angle β que font les ondulations de ces ailettes de distribution avec la direction F2 est très supérieur à l'angle α, et typiquement voisin de 75°, et leur direction générale de moindre résistance à l'écoulement est leur direction principale d'ondulation, afin qu'elles puissent remplir leur fonction distributrice.
L'ailette 9 est réalisée à partir d'un matériau en feuille plié dont la direction longitudinale est perpendiculaire à F1. Ce matériau est, après pliage, coupé à longueur suivant deux lignes 13 parallèles à la direction F2, ce qui conduit à plusieurs tapis d'onde 14, au nombre de trois sur la Figure 2, en forme de parallélogramme (pour le ou les tapis intermédiaires) ou de trapèze rectangle ou de triangle rectangle (pour les deux tapis d'extrémité).
Les Figures 3 à 8 représentent trois modes de réalisation différents de l'ailette 9.
Dans le mode de réalisation des Figures 3 et 4, l'ailette comporte une ondulation à section rectangulaire, avec des bases d'ondes 15 et des sommets d'onde 16 reliées par des jambes d'onde 17.
Chaque jambe 17 est pourvue, à intervalles réguliers, d'ouïes 18 repoussées du côté de la jambe qui reçoit le flux de fluide (le côté gauche sur les Figures 3 et 4) et qui sont ouvertes vers l'amont de ce flux. Ainsi, comme représenté par des flèches sur la Figure 4, une veine de fluide guidée suivant la direction F1 entre deux jambes 17 est partiellement déviée transversalement à cette direction par l'ouïe 18.
Ainsi, globalement, la direction de moindre résistance à l'écoulement de l'ailette 9 est sensiblement la direction F2, lorsque l'on choisit de façon appropriée la forme et les dimensions des ouïes 18. De plus, l'inclinaison F1 et les ouïes 18 confèrent à l'écoulement une configuration bi-dimensionnelle et turbulente qui favorise l'efficacité de l'échange thermique.
Dans le mode de réalisation des Figures 5 et 6, l'ailette 9 est du type « serrated ». Elle comporte ainsi, à un intervalle régulier le long de la direction F1 appelé « longueur de serration » l, un décalage latéral d, alternativement d'un côté et de l'autre, qui est généralement égal à la moitié de la distance qui sépare deux jambes 17, appelée « pas de serration » p. L'ailette comporte de cette manière des plans de décalage parallèles P qui, en vue de dessus (Figure 4), sont des lignes de décalage parallèles 19.
Chaque jambe élémentaire 17 a son bord d'attaque replié à angle droit sur toute sa hauteur, ce qui définit une plaquette de déviation 20. Toutes les plaquettes 20 sont orientées du même côté, à savoir du côté des jambes 17 qui reçoit l'écoulement de fluide.
Les plaquettes 20 ont pour effet de réduire la section de passage du fluide du côté où elles sont prévues et à augmenter cette section de passage du côté opposé. Ainsi, comme on le voit sur la Figure 6, chaque veine de fluide guidée entre deux jambes 17 voit son écoulement favorisé dans une direction voisine de F2, voire oblique dans le sens opposé à F1 par rapport à F2.
Compte-tenu des turbulences générées dans le fluide, l'ailette 9 a globalement, comme précédemment, une direction de moindre résistance à l'écoulement voisine de F2, moyennant un choix approprié des paramètres de l'ailette et de la dimension des plaquettes 20.
Le mode de réalisation des Figures 7 et 8 diffère du précédent par la suppression des plaquettes 20 et par la présence d'échancrures 21 sur toute la hauteur de certains bords d'attaque et de certains bords de fuite des jambes 17. Plus précisément :
  • sur une rangée sur deux de jambes 17, celles-ci comportent alternativement une échancrure à la fois sur leur bord d'attaque et sur leur bord de fuite, et aucune échancrure ;
  • sur les autres rangées, les jambes 17 comportent alternativement une échancrure 21 sur leur bord d'attaque et une échancrure sur leur bord de fuite.
L'effet résultant est sensiblement le même que celui décrit plus haut en regard des Figures 5 et 6.

Claims (11)

  1. Ailette d'échange thermique pour échangeur de chaleur à plaques brasées, du type comprenant un produit ondulé perforé et/ou crevé qui présente une direction principale d'ondulation (F1) et qui est délimité par deux bords latéraux (13), caractérisée en ce que la direction principale d'ondulation (F1) est oblique par rapport aux deux bords latéraux (13).
  2. Ailette suivant la revendication 1, caractérisée en ce qu'elle présente une direction générale (F2) de moindre résistance à l'écoulement d'un fluide qui forme un angle substantielle avec la direction principale d'ondulation (F1).
  3. Ailette suivant la revendication 2, caractérisée en ce que la direction générale (F2) de moindre résistance à l'écoulement d'un fluide est sensiblement parallèle aux deux bords latéraux (13).
  4. Ailette suivant l'une des revendications 2 à 3, caractérisée en ce qu'elle comporte sur ses jambes d'onde (17) des conformations (18 ; 20 ; 21) qui favorisent un déplacement du fluide transversalement à la direction générale de moindre résistance à l'écoulement (F2).
  5. Ailette suivant l'une des revendications 1 à 4, caractérisée en ce qu'elle comporte sur ses jambes d'onde (17) des conformations (18 ; 20 ; 21) de création de turbulences dans le fluide.
  6. Ailette suivant la revendication 4 ou 5, caractérisée en ce que les conformations (18) sont constituées par des ouïes prévues sur le côté des jambes d'onde (17) qui reçoit l'écoulement du fluide et ouvertes vers l'amont de cet écoulement.
  7. Ailette suivant la revendication 4 ou 5, du type serrated, caractérisée en ce que les conformations sont constituées par des plaquettes (20) en saillie sur le côté des jambes d'onde (17) qui reçoit l'écoulement du fluide.
  8. Ailette suivant la revendication 7, caractérisée en ce que les plaquettes (20) sont prévues sur le bord d'attaque des jambes d'onde (15).
  9. Ailette suivant la revendication 4 ou 5, du type serrated, caractérisée en ce que les conformations sont constituées par des échancrures (21) des bords d'attaque et/ou des bords de fuite des jambes d'onde (15) agencées sur les lignes de décalage (19) de l'ailette (9) de façon à augmenter la section de passage du fluide dans une direction qui, par rapport à la direction principale d'ondulation (F1), se 'rapproche de la direction (F2) desdits bords latéraux (13).
  10. Echangeur de chaleur à plaques brasées, du type comprenant une pluralité de plaques rectangulaires parallèles (2) qui définissent entre elles des passages (3, 4,5) de forme générale plate, et, dans chaque passage, une ailette d'échange thermique (9), chaque ailette formant entretoise entre deux plaques, ainsi que des barres de fermeture latérales (6), caractérisé en ce qu'au moins une ailette d'échange thermique (9) est conforme à l'une quelconque des revendications 1 à 9.
  11. Echangeur de chaleur suivant la revendication 10, caractérisé en ce qu'il constitue une ligne d'échange thermique principale d'une installation de distillation d'air.
EP01401708A 2000-07-11 2001-06-27 Ailette d'échange thermique pour échangeur de chaleur à plaques brasées, et échangeur de chaleur correspondant Withdrawn EP1172625A3 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0009033 2000-07-11
FR0009033A FR2811747B1 (fr) 2000-07-11 2000-07-11 Ailette d'echange thermique pour echangeur de chaleur a plaques brasees, et echangeur de chaleur correspondant

Publications (2)

Publication Number Publication Date
EP1172625A2 true EP1172625A2 (fr) 2002-01-16
EP1172625A3 EP1172625A3 (fr) 2003-11-19

Family

ID=8852341

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01401708A Withdrawn EP1172625A3 (fr) 2000-07-11 2001-06-27 Ailette d'échange thermique pour échangeur de chaleur à plaques brasées, et échangeur de chaleur correspondant

Country Status (6)

Country Link
US (1) US20020011331A1 (fr)
EP (1) EP1172625A3 (fr)
JP (1) JP2002062085A (fr)
CN (1) CN1333451A (fr)
CA (1) CA2352632A1 (fr)
FR (1) FR2811747B1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2844040A1 (fr) * 2002-08-28 2004-03-05 Air Liquide Echangeur de chaleur a plaques brasees et installation correspondante
DE10247264A1 (de) * 2002-10-10 2004-04-29 Behr Gmbh & Co. Plattenwärmeübertrager in Stapelbauweise
EP2045556A2 (fr) * 2007-10-04 2009-04-08 KTM-Kühler GmbH Echangeur thermique à plaques
CN103673719A (zh) * 2012-09-26 2014-03-26 杭州三花研究院有限公司 换热器的翅片及换热器
FR3075335A1 (fr) * 2017-12-19 2019-06-21 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Echangeur de chaleur avec elements intercalaires superposes

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2834783B1 (fr) * 2002-01-17 2004-06-11 Air Liquide Ailette d'echange thermique, son procede de fabrication et echangeur de chaleur correspondant
ATE389857T1 (de) * 2002-12-02 2008-04-15 Lg Electronics Inc Wärmetauscher einer lüftungsanlage
EP1452817A1 (fr) * 2003-02-25 2004-09-01 Linde Aktiengesellschaft Echangeur de chaleur
EP1471322B1 (fr) * 2003-02-25 2016-06-29 Linde AG Procédé de fabrication d'un échangeur de chaleur
JP2004257728A (ja) 2003-02-25 2004-09-16 Linde Ag プレート式熱交換器
JP2004257729A (ja) * 2003-02-25 2004-09-16 Linde Ag 熱交換器の製作法
DE10316711A1 (de) * 2003-02-25 2004-09-02 Linde Ag Wärmetauscher
SE526831C2 (sv) * 2004-03-12 2005-11-08 Alfa Laval Corp Ab Värmeväxlarplatta och plattpaket
CN101084409B (zh) * 2004-10-07 2011-03-23 布鲁克斯自动化有限公司 用于制冷过程的高效热交换器
CA2487459A1 (fr) * 2004-11-09 2006-05-09 Venmar Ventilation Inc. Coeur d'echangeur thermique avec entretoise metallique aplatie
US7779899B2 (en) * 2006-06-19 2010-08-24 Praxair Technology, Inc. Plate-fin heat exchanger having application to air separation
CN100516758C (zh) * 2007-06-12 2009-07-22 缪志先 一种无封条板翅式换热器
EP2434543B1 (fr) * 2009-05-19 2014-04-09 Toyota Jidosha Kabushiki Kaisha Echangeur thermique et son procédé de fabrication
FR2956900B1 (fr) * 2010-03-01 2012-06-01 Air Liquide Appareil et procede de separation d'un melange contenant du dioxyde de carbone par distillation
FR2997482B1 (fr) * 2012-10-25 2018-07-27 Valeo Systemes Thermiques Module thermo electrique et echangeur de chaleur comprenant un tel module.
CA2839884C (fr) 2013-02-19 2020-10-27 Scambia Holdings Cyprus Limited Echangeur thermique a plaques comprenant des elements de separation
JP6046558B2 (ja) * 2013-05-23 2016-12-14 カルソニックカンセイ株式会社 熱交換器
CN103245247A (zh) * 2013-05-24 2013-08-14 南京北大工道软件技术有限公司 一种后掠型波纹翅片
JP6590917B2 (ja) * 2014-10-01 2019-10-16 三菱重工コンプレッサ株式会社 プレート積層型熱交換器
JP6414482B2 (ja) * 2015-02-17 2018-10-31 株式会社デンソー オフセットフィン製造方法およびオフセットフィン製造装置
KR101706263B1 (ko) * 2015-04-16 2017-02-15 서울시립대학교 산학협력단 웨이비 핀, 이를 구비하는 열교환기, 이를 제조하기 위한 장치, 이를 제조하기 위한 방법 및 이 방법이 기록된 컴퓨터 판독 가능한 기록매체
CN107782182A (zh) * 2016-08-31 2018-03-09 航天海鹰(哈尔滨)钛业有限公司 一种用于三种流体换热的换热器芯部
JP2018044680A (ja) * 2016-09-12 2018-03-22 株式会社デンソー 熱交換器
CN107014230A (zh) * 2017-03-30 2017-08-04 贵州永红航空机械有限责任公司 一种内部折流式多流程板翅式散热器
US11938782B2 (en) * 2018-03-07 2024-03-26 Dana Canada Corporation Heat exchanger with integrated electrical heating element
WO2019210413A1 (fr) * 2018-05-01 2019-11-07 Dana Canada Corporation Échangeur de chaleur doté d'une surface de transfert de chaleur multizone
JP7480487B2 (ja) 2018-11-13 2024-05-10 株式会社デンソー 熱交換器
WO2020100687A1 (fr) * 2018-11-13 2020-05-22 株式会社デンソー Échangeur de chaleur
EP3887744A4 (fr) * 2018-11-26 2022-08-03 PTT Global Chemical Public Company Limited Échangeur thermique à microcanaux
EP4155648A1 (fr) * 2019-09-13 2023-03-29 Alfa Laval Corporate AB Echangeur de chaleur à plaques pour le traitement d'une charge liquide

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2990163A (en) * 1958-06-09 1961-06-27 Borg Warner Turbulizer
US3216495A (en) * 1963-08-07 1965-11-09 Gen Motors Corp Stacked plate regenerators
EP0129272A1 (fr) * 1983-05-27 1984-12-27 FDO Technische Adviseurs B.V. Dispositif pour exécuter un procédé d'échange de matière
JPS60253792A (ja) * 1984-05-30 1985-12-14 Hitachi Ltd 熱交換器用フイン及びその製造方法
US4699209A (en) * 1986-03-27 1987-10-13 Air Products And Chemicals, Inc. Heat exchanger design for cryogenic reboiler or condenser service
EP0338704A1 (fr) * 1988-04-13 1989-10-25 Mitsubishi Aluminum Kabushiki Kaisha Noyau d'échangeur de chaleur
DE29622191U1 (de) * 1996-02-15 1997-02-13 KTM-Kühler GmbH, Mattighofen Plattenwärmetauscher, insbesondere Ölkühler
JPH10259991A (ja) * 1997-01-17 1998-09-29 Kobe Steel Ltd 空気分離装置用熱交換器および空気分離装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2990163A (en) * 1958-06-09 1961-06-27 Borg Warner Turbulizer
US3216495A (en) * 1963-08-07 1965-11-09 Gen Motors Corp Stacked plate regenerators
EP0129272A1 (fr) * 1983-05-27 1984-12-27 FDO Technische Adviseurs B.V. Dispositif pour exécuter un procédé d'échange de matière
JPS60253792A (ja) * 1984-05-30 1985-12-14 Hitachi Ltd 熱交換器用フイン及びその製造方法
US4699209A (en) * 1986-03-27 1987-10-13 Air Products And Chemicals, Inc. Heat exchanger design for cryogenic reboiler or condenser service
EP0338704A1 (fr) * 1988-04-13 1989-10-25 Mitsubishi Aluminum Kabushiki Kaisha Noyau d'échangeur de chaleur
DE29622191U1 (de) * 1996-02-15 1997-02-13 KTM-Kühler GmbH, Mattighofen Plattenwärmetauscher, insbesondere Ölkühler
JPH10259991A (ja) * 1997-01-17 1998-09-29 Kobe Steel Ltd 空気分離装置用熱交換器および空気分離装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 010, no. 126 (M-477), 10 mai 1986 (1986-05-10) -& JP 60 253792 A (HITACHI SEISAKUSHO KK), 14 décembre 1985 (1985-12-14) *
PATENT ABSTRACTS OF JAPAN vol. 1998, no. 14, 31 décembre 1998 (1998-12-31) -& JP 10 259991 A (KOBE STEEL LTD), 29 septembre 1998 (1998-09-29) *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2844040A1 (fr) * 2002-08-28 2004-03-05 Air Liquide Echangeur de chaleur a plaques brasees et installation correspondante
DE10247264A1 (de) * 2002-10-10 2004-04-29 Behr Gmbh & Co. Plattenwärmeübertrager in Stapelbauweise
EP2045556A2 (fr) * 2007-10-04 2009-04-08 KTM-Kühler GmbH Echangeur thermique à plaques
EP2045556A3 (fr) * 2007-10-04 2010-03-17 KTM-Kühler GmbH Echangeur thermique à plaques
US8418752B2 (en) 2007-10-04 2013-04-16 Mahle International Gmbh Plate heat exchanger having a turbulence generator
CN103673719A (zh) * 2012-09-26 2014-03-26 杭州三花研究院有限公司 换热器的翅片及换热器
FR3075335A1 (fr) * 2017-12-19 2019-06-21 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Echangeur de chaleur avec elements intercalaires superposes
WO2019122676A1 (fr) 2017-12-19 2019-06-27 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Echangeur de chaleur avec éléments intercalaires superposés

Also Published As

Publication number Publication date
US20020011331A1 (en) 2002-01-31
JP2002062085A (ja) 2002-02-28
CA2352632A1 (fr) 2002-01-11
CN1333451A (zh) 2002-01-30
FR2811747B1 (fr) 2002-10-11
FR2811747A1 (fr) 2002-01-18
EP1172625A3 (fr) 2003-11-19

Similar Documents

Publication Publication Date Title
EP1172625A2 (fr) Ailette d&#39;échange thermique pour échangeur de chaleur à plaques brasées, et échangeur de chaleur correspondant
FR2807828A1 (fr) Ailette ondulee a decalage partiel pour echangeur de chaleur a plaques et echangeur de chaleur a plaques correspondant
EP0447528B1 (fr) Condenseur pour automobile
EP2294348B1 (fr) Condenseur
EP1348100B1 (fr) Echangeur de chaleur a plaques brasees
US20070012430A1 (en) Heat exchangers with corrugated heat exchange elements of improved strength
CA2451424A1 (fr) Echangeur de chaleur a profile bas a turbulateur rainure
FR2895493A1 (fr) Nouvelles ondes d&#39;echange de chaleur et leurs applications
FR2772901A1 (fr) Tube plie et brase pour echangeur de chaleur, et echangeur de chaleur comportant de tels tubes
FR2866104A1 (fr) Ailette metallique pour echangeur thermique a air
FR2832789A1 (fr) Ailette de module d&#39;echange de chaleur, en particulier pour vehicule automobile
FR2823840A1 (fr) Tube plie pour echangeur de chaleur et procede pour sa conformation
EP2877800B1 (fr) Ailette destinée à perturber l&#39;écoulement d&#39;un fluide, échangeur de chaleur comprenant une telle ailette et procédé de fabrication d&#39;une telle ailette
WO2007009220A1 (fr) Echangeurs thermiques pourvus d&#39;elements d&#39;echange thermique ondules presentant une resistance amelioree
FR2814537A1 (fr) Echangeur de chaleur pour deux fluides a rendement ameliore
FR3056737B1 (fr) Boite collectrice, echangeur thermique et procede d’assemblage correspondants
FR2786558A1 (fr) Tube plat pour echangeur de chaleur de largeur reduite
EP3794299A1 (fr) Echangeur de chaleur de véhicule automobile
FR2887975A1 (fr) Echangeur de chaleur a tubes plats resistant a la pression
WO2018060625A1 (fr) Échangeur thermique, notamment pour véhicule automobile
FR3062901A1 (fr) Tube d’echangeur thermique, echangeur thermique et procede d’assemblage du tube correspondants
FR2855770A1 (fr) Bande pour module de garnissage et installation correspondante
FR3071595A1 (fr) Echangeur air/air a double flux a contre-courant
FR2989766A1 (fr) Faisceau d&#39;echange de chaleur pour echangeur de chaleur et echangeur de chaleur comprenant ledit faisceau
FR2770635A1 (fr) Echangeur de chaleur du type brase, notamment de vehicule automobile, et procede de fabrication

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: L'AIR LIQUIDE, S.A. A DIRECTOIRE ET CONSEIL DE SUR

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RIC1 Information provided on ipc code assigned before grant

Ipc: 7F 28D 9/00 B

Ipc: 7F 28F 13/12 B

Ipc: 7F 28F 3/02 A

AKX Designation fees paid
REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20040520