WO2003054929A2 - Verfahren zum abscheiden von iii-v-halbleiterschichten auf einem nicht-iii-v-substrat - Google Patents

Verfahren zum abscheiden von iii-v-halbleiterschichten auf einem nicht-iii-v-substrat Download PDF

Info

Publication number
WO2003054929A2
WO2003054929A2 PCT/EP2002/012869 EP0212869W WO03054929A2 WO 2003054929 A2 WO2003054929 A2 WO 2003054929A2 EP 0212869 W EP0212869 W EP 0212869W WO 03054929 A2 WO03054929 A2 WO 03054929A2
Authority
WO
WIPO (PCT)
Prior art keywords
layer
iii
substrate
layers
particular according
Prior art date
Application number
PCT/EP2002/012869
Other languages
English (en)
French (fr)
Other versions
WO2003054929B1 (de
WO2003054929A3 (de
Inventor
Holger JÜRGENSEN
Alois Krost
Armin Dadgar
Original Assignee
Aixtron Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10219223A external-priority patent/DE10219223A1/de
Application filed by Aixtron Ag filed Critical Aixtron Ag
Priority to AU2002366856A priority Critical patent/AU2002366856A1/en
Priority to JP2003555558A priority patent/JP2006512748A/ja
Priority to EP02790389A priority patent/EP1459362A2/de
Priority to KR10-2004-7009466A priority patent/KR20040070239A/ko
Publication of WO2003054929A2 publication Critical patent/WO2003054929A2/de
Publication of WO2003054929A3 publication Critical patent/WO2003054929A3/de
Publication of WO2003054929B1 publication Critical patent/WO2003054929B1/de
Priority to US10/872,905 priority patent/US7078318B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • C30B29/406Gallium nitride
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02463Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Definitions

  • the invention relates to a method for depositing III-V semiconductor layers, for example gallium arsenide, aluminum arsenide, gallium indium arsenide or gallium indium aluminum arsenide phosphide, on a light III-V substrate, for example silicon, by introducing gaseous starting materials into the process chamber of a reactor.
  • III-V semiconductor layers for example gallium arsenide, aluminum arsenide, gallium indium arsenide or gallium indium aluminum arsenide phosphide
  • III-V layers are deposited according to the invention in the MOCVD
  • silicon substrates have the advantage of being less expensive than III-V substrates and also suitable for integration into silicon component structures.
  • One possibility of improving the layer quality is the deposition of thick semiconductor layers. However, this is limited by the thermal mismatch of the layers. These thermal mismatches lead to lattice tension and strong tension
  • Another problem is the combination of Ill-V layer structures or electronic components made from such layer structures with silicon Components on a substrate.
  • the invention is based on the object of crystalline deposition of thick III-V semiconductor layers on a silicon substrate without the disadvantageous lattice stresses occurring.
  • the invention is also based on the abe to combine on a Sustrat III-V components with silicon components.
  • the object is achieved by the invention specified in the claims, claim 1 initially and essentially aimed at depositing a thin intermediate layer between two III-V layers at a reduced growth temperature.
  • the reduced growth temperature for the intermediate layer should, if possible, be at least 100 ° C. below the growth temperature for the III-V layers.
  • the lattice constant of the intermediate layer is preferably smaller than the lattice constant of the III-V layers.
  • a multiplicity of intermediate layers, each separated by a III-V layer is deposited. Multiple thin intermediate layers are thus deposited on one III-N layer each.
  • the intermediate layer is preferably deposited untensioned.
  • the intermediate layer can contain boron or silicon.
  • the thickness of the intermediate layer is in the annometer range.
  • the III-N layers deposited between the intermediate layers can be considerably thicker. They can be a few micrometers thick.
  • the III-V layer grows on the at low temperatures different intermediate layer on pseudomorph. This leads to tension.
  • a compressive prestress is preferably achieved.
  • the compressive pre-tension is achieved with the low-temperature intermediate layer.
  • the method according to the invention enables the growth of essentially unstressed III-V semiconductor layers in the system (AI, Ga, In) (As, PN, Sb) by the growth of low-temperature layers between III-V layers, the low temperature always showing a clear temperature , is at least 100 ° C below the usual growth temperature.
  • the preferred compressive tension is created by the tensile stress during cooling. In the case of an indium phosphite system, this can be carried out by means of a GaAs, AlAs, AlInAs or GalnAlAsPN low-temperature layers.
  • aluminum arsenide, boron aluminum arsenide and also boron arsenite are considered as compressively tensioning low-temperature layers. However, it can also be used for materials in the nitridic system.
  • the thermal stress but also the strain induced by lattice mismatch, can be reduced again and again to such an extent that layers of any thickness can be deposited, which are then essentially unstressed overall.
  • the second task mentioned at the outset is achieved by first depositing a III-V semiconductor layer on a non-III-V substrate, in particular on a silicon substrate, by introducing gaseous starting materials into the process chamber of a reactor.
  • This III-V semiconductor layer is deposited on a first substrate which has an orientation which is optimized for the deposition of the III-V layer.
  • a GaN layer is particularly suitable for a silicon substrate with an (III) orientation.
  • this semiconductor layer is detached from the substrate together with a thin film of the first substrate.
  • the thickness of the detached film is, for example, 50 ⁇ m.
  • the detached layer is applied to a second substrate together with the thin film of the first substrate.
  • This second substrate can be a silicon substrate with a (100) orientation.
  • the detached layer is preferably applied by gluing.
  • a masking step can follow this bonding.
  • it is provided that lateral areas of the applied layer are removed as far as the area of the second substrate. This removal is preferably done by etching.
  • a layer sequence with silicon technology is then applied to the (100) silicon crystal which then forms the surface.
  • These layers, which are adjacent to the III-V layer structures, can be insulation layers, electrically conductive layers or p- or n-doped silicon layers.
  • the deposited III-N layer is preferably a gallium nitride layer.
  • a seed layer made of gallium arsenide is first deposited on a silicon substrate.
  • a gallium arsenide buffer layer is deposited on this seed layer at the typical growth temperatures known in the literature for the deposition of high quality gallium arsenide layers in the MOCVD or VPE process or MBE.
  • a low-temperature intermediate layer is then deposited on this first III-V layer.
  • the temperature inside the process chamber i.e. the substrate temperature
  • the gases required for the growth of the intermediate layer are then introduced into the process chamber. Trimethylaluminium nium and arsine or a boron compound.
  • the intermediate layer is deposited at this reduced temperature until the desired layer thickness, which is between 5 and 50 nm, is reached.
  • the layer thickness is preferably between 10 and 20 nm.
  • the temperature inside the process chamber is raised again. This is done by heating the substrate holder accordingly. Then another gallium arsenide layer is pseudomorphically deposited on the low-temperature intermediate layer. This gallium arsenide layer is considerably thicker than the low-temperature intermediate layer. Their thickness can be a few ⁇ m.
  • a further low-temperature intermediate layer can be deposited on the last described gallium arsenide layer, which also has a smaller lattice constant than gallium arsenide.
  • Gallium arsenide can be deposited again on this intermediate layer. Overall, the process leads to a thick gallium arsenide layer with few dislocations.
  • FIG. 1 schematically shows in cross section a first substrate with an ( ⁇ ll) crystal orientation optimized for the deposition of a III-V layer
  • 2 shows the substrate with III-V layers deposited thereon
  • 3 shows the substrate with a III-V layer structure detached therefrom, together with a thin film of the first substrate
  • FIG. 5 shows an illustration according to FIG. 4 after a lateral structuring by etching.
  • a (III) silicon substrate is shown in regions and in cross section in FIG. 1.
  • Two III-V layers 2, 3 are deposited on this silicon substrate (see FIG. 2) in the exemplary embodiment.
  • These layers 2, 3 can be gallium arsenide, gallium nitride, indium phosphide or any other III-V composition.
  • This layer sequence 2, 3 is removed together with a thin film V of the first substrate 1.
  • the detached layer system V, 2, 3 is then glued onto a second substrate (see FIG. 4).
  • the second substrate is preferably a (100) silicon substrate.
  • the (100) silicon surface is suitable for the deposition of further, in particular silicon
  • the intermediate product shown in FIG. 4 is structured laterally; this can be done, for example, by masking. Then the glued layer sequence Y, 2, 3 is etched away. This layer sequence is removed as far as into the second substrate 4, so that the exposed surface is in it etched area 5 is a (100) silicon surface on which CMOS structures can be deposited.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Recrystallisation Techniques (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Semiconductor Lasers (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zum Abscheiden von dicken III-V-Halbleiterschichten auf einem Nicht-III-V-Substrat, insbesondere Siliciumsubstrat, durch Einleiten gasförmiger Ausgangsstoffe in die Prozesskammer eines Reaktors. Um auf einem Siliciumsubstr at dicke III-V-Halbleiterschichten kristallin abzuscheiden, ohne dass nachteilige Gitterverspannungen auftreten, schlägt die Erfindung vor, dass zwischen zwei III-V-Schichten eine dünne Zwischenschicht bei einer reduzierten Wachstumstemperatur abgeschieden wird.

Description

Verfahren zum Abscheiden von III-N-Halbleiterschichten auf einem Νicht- III-V-Substrat.
Die Erfindung betrifft ein Verfahren zum Abscheiden von III-V-Halbleiter- schichten, beispielsweise Galliumarsenid, Aluminiumarsenid, Galliumindium- arsenid oder Galliumindiumaluminiumarsenidphosphid auf einem Νicht-III-V- Substrat, beispielsweise Silicium durch Einleiten gasförmiger Ausgangsstoffe in die Prozesskammer eines Reaktors.
Das Abscheiden der III-V-Schichten erfolgt erfindungsgemäß im MOCVD-
Nerfahren bei dem als Ausgangsstoffe beispielsweise TMG, TMI, TMA1, Arsin, Phosphin oder ΝH3 in die beheizte Prozesskammer eines Reaktors eingeleitet werden, wo auf einem auf Prozesstemperatur beheitztem Substrathalter ein Substrat aus Silicum liegt. Anders als bei der Abscheidung von Galliumarsenid auf Galliumarsenid oder Indiumphosphid auf Indiumphosphid treten bei der Abscheidung von III-V-Schichten auf Siliciumsubstraten Fehlanpassungen auf. Einhergehend damit besitzen die aufgewachsenen Schichten hohe Defektdichten.
Andererseits besitzen Siliciumsubstrate den Vorteil gegenüber III-V-Substraten kostengünstiger zu sein und s ch auch für die Integration in Silicium- Bauelemente-Strukturen eignet. Eine Möglichkeit die Schichtqualität zu verbessern ist das Abscheiden von dicken Halbleiterschichten. Dies wird jedoch durch die thermische Fehlanpassung der Schichten beschränkt. Diese thermischen Fehlanpassungen führen zu Gitterverspannungen und stark verspannten
Schichtenfolgen. Es kann zu Rissen in den Schichten führen oder zu mechanischen Verbiegungen.
Ein weiteres Problem ist die Kombination von Ill-V-Schichtstrukturen bzw. aus derartigen Schichtstrukturen gefertigte elektronische Bauelemente mit Silicium- Bauelementen auf einem Substrat. Insbesondere ist es wünschenswert, auf einem Substrat optoelektronische III-V-Bauelemente mit CMOS-Bauelementen zu kombinieren.
Der Erfindung liegt zunächst die Aufgabe zugrunde, auf einem Siliciumsubstrat dicke III-V-Halbleiterschichten kristallin abzuscheiden, ohne dass die nachteiligen Gitterverspannungen auftreten.
Der Erfindung liegt ferner die Auf abe zugrunde, auf einem Sustrat III-V- Bauelemente mit Silicium-Bauelementen zu kombinieren.
Gelöst wird die Aufgabe durch die in den Ansprüchen angegebene Erfindung, wobei der Anspruch 1 zunächst und im Wesentlichen darauf abzielt, dass zwischen zwei III-V-Schichten eine dünne Zwischenschicht bei einer reduzierten Wachstumstemperatur abgeschieden wird. Die reduzierte Wachstumstemperatur für die Zwischenschicht soll möglichst mindestens 100° C unterhalb der Wachstumstemperatur für die III-V-Schichten liegen. Ferner ist vorgesehen, dass die Gitterkonstante der Zwischenschicht bevorzugt kleiner ist, als die Gitterkonstante der III-V-Schichten. In einer bevorzugten Weiterbildung der Er- findung ist vorgesehen, dass eine Vielzahl von Zwischenschichten, jeweils getrennt durch eine III-V-Schicht abgeschieden wird. Es werden somit mehrfach dünne Zwischenschichten auf jeweils eine III-N-Schicht abgeschieden. Die Zwischenschicht wird bevorzugt unverspannt abgeschieden. Die Zwischenschicht kann bor- oder siliciumhaltig sein. Die Dicke der Zwischenschicht liegt im Νannometer-Bereich. Die zwischen den Zwischenschichten abgeschiedenen III- N-Schichten können erheblich dicker sein. Sie können wenige Mikrometer dick sein. Vorzugsweise befindet sich zwischen dem Siliciumsubstrat und einer ersten III-V-Schicht eine Keimschicht, die ebenfalls aus einem III-V-Material bestehen kann. Die III-V-Schicht wächst auf der bei niedrigen Temperaturen abge- schiedenen Zwischenschicht pseudomorph auf. Dies führt zu einer Verspannung. Bevorzugt wird eine kompressive Vorspannung erreicht. Die kompressive Vorspannung wird mit der Niedertemperatur-Zwischenschicht erzielt.
Das erfindungsgemäße Verfahren ermöglicht das Wachstum von im Wesentlichen unverspannten III-V-Halbleiterschichten im System (AI, Ga, In) (As, PN, Sb) durch das Wachstum von Niedertemperaturschichten zwischen III-V- Schichten, wobei die Niedertemperatur immer eine Temperatur deutlich, also mindestens 100° C unterhalb der üblichen Wachstumstemperatur ist . Durch die tensile Versparmung beim Abkühlen entsteht die bevorzugte kompressive Verspannung. Bei einem Indiumphosphit-System kann dies durch eine GaAs-, A- lAs-, AlInAs- oder GalnAlAsPN-Niedertemperaturschichten erfolgen. Im Gal- liumarsenidsystem kommt Aluminiumarsenid, Bor Aluminiumarsenid und auch Borarsenit als kompressiv verspannende Niedertemperaturschicht in Be- tracht. Es kann aber auch auf Materialien im nitridischen System ausgewichen werden.
Durch das wiederholte Abscheiden solcher Niedertemperatur-Zwischenschichten kann die thermische, aber auch die durch Gitterfehlanpassung indu- zierte Verspannung immer wieder soweit reduziert werden, dass beliebig dicke Schichten abgeschieden werden können, die dann insgesamt im Wesentlichen unverspannt sind.
Die eingangs genannte zweite Aufgabenstellung wird dadurch gelöst, dass zu- nächst auf einem Nicht-III-V-Substrat, insbesondere auf einem Siliciumsubstrat durch Einleiten von gasförmigen Ausgangsstoffen in die Prozesskammer eines Reaktors eine III-V-Halbleiterschicht abgeschieden wird. Diese III- V- Halbleiterschicht wird auf einem ersten Substrat abgeschieden, welches eine für die Abscheidung der III-V-Schicht optimierte Orientierung aufweist. Zum Ab- scheiden einer GaN-Schicht eignet sich insbesondere ein Siliciumsubtrat mit einer (lll)-Orientierung. Diese Halbleiterschicht wird in einem nächsten Schritt zusammen mit einem dünnen Film des ersten Substrates vom Substrat abgelöst. Die Dicke des mitabgelösten Films beträgt beispielsweise 50 μm. In einem wei- teren Verfahrensschritt wird die abgelöste Schicht zusammen mit dem dünnen Film des ersten Substrates auf ein zweites Substrat aufgebracht. Bei diesem zweiten Substrat kann es sich um ein Silicium-Substrat handeln mit einer (100)- Orientierung. Das Aufbringen der abgelösten Schicht erfolgt vorzugsweise durch Kleben. Dieser Verklebung kann ein Maskierungsschritt folgen. Erf in- dungsgemäß ist vorgesehen, dass laterale Bereiche der aufgebrachten Schicht bis in den Bereich des zweiten Substrates entfernt werden. Dieses Entfernen erfolgt bevorzugt durch ätzen. Auf den dann die Oberfläche bildenden (100)- Siliciumkristall wird sodann eine Schichtenfolge mit der Silicium-Technologie aufgebracht. Bei diesen Schichten, die benachbart liegen zu den III-V- Schichtstrukturen kann es sich um Isolationsschichten, um elektrisch leitende Schichten oder um p- oder n-dotierte Silicium-Schichten handeln. Bei der abgeschiedenen III-N-Schicht handelt es sich bevorzugt um eine Galliumnitrid- Schicht.
In einem ersten Ausführungsbeispiel der Erfindung wird auf ein Siliciumsubstrat zunächst eine Keimschicht aus Galliumarsenid abgeschieden. Auf diese Keimschicht erfolgt das Abscheiden einer Pufferschicht aus Galliumarsenid bei den typischen, in der Literatur bekannten Wachstumstemperaturen für das Abscheiden hochqualitativer Galliumarsenidschichten im MOCVD- oder auch VPE- Verfahren oder MBE. Auf diese erste III-V-Schicht wird sodann eine Niedertemperatur-Zwischenschicht abgeschieden. Hierzu wird die Temperatur innerhalb der Prozesskammer, also die Substrattemperatur um mindestens 100° C abgesenkt. Sodann werden die für das Wachstum der Zwischenschicht erforderlichen Gase in die Prozesskammer eingeleitet. Dies können Trimethylalumi- nium und Arsin bzw. eine Borverbindung sein. Die Zwischenschicht wird bei dieser reduzierten Temperatur so lange abgeschieden, bis die gewünschte Schichtdicke erreicht ist, die zwischen 5 und 50 nm liegt. Bevorzugt liegt die Schichtdicke zwischen 10 und 20 nm.
Nach dem Abscheiden der Niedertemperatur-Zwischenschicht wird die Temperatur innerhalb der Prozesskammer wieder angehoben. Dies erfolgt durch ein entsprechendes Aufheizen des Substrathalters. Sodann wird eine weitere Galliumarsenidschicht pseudomorph auf die Niedertemperatur- Zwischenschicht abgeschieden. Diese Galliumarsenidschicht ist erheblich dicker, als die Niedertemperatur-Zwischenschicht. Ihre Dicke kann wenige μm betragen.
Um zu besonders dicken Pufferschichten kommen, kann auf die zuletzt be- schriebene Galliumarsenidschicht eine weitere Niedertemperatur- Zwischenschicht abgeschieden werden, welche ebenfalls eine kleinere Gitterkonstante als Galliumarsenid besitzt. Auf diese Zwischenschicht kann erneut Galliumarsenid abgeschieden werden. Insgesamt führt das Verfahren zu einer dicken Galliumarsenidschicht mit wenigen Versetzungen.
In einem zweiten Ausführungsbeispiel wird das Verfahren zum Aufbringen von III-V-Schichten in lateraler Nachbarschaft zu IV-Strukturen erläutert. Es zeigen:
Fig. 1 schematisch im Querschnitt ein erstes Substrat mit einer für das Abscheiden einer III-V-Schicht optimierten (Ιll)-Kristall-Orientierung,
Fig. 2 das Substrat mit darauf abgeschiedenen III-V-Schichten, Fig. 3 das Substrat mit davon gelöster III-V-Schichtstruktur nebst dünnem Film des ersten Substrates,
Fig. 4 die auf ein zweites Substrat aufgebrachte, zuvor abgelöste Schichtstruk- tur und
Fig. 5 eine Darstellung gemäß Fig. 4 nach einer lateralen Strukturierung durch Ätzen.
In der Fig. 1 ist bereichsweise und im Querschnitt ein (lll)-Siliciumsubtrat dargestellt. Auf dieses Siliciumsubtrat werden (siehe Fig. 2) im Ausführungsbeispiel zwei III-V-Schichten 2, 3 abgeschieden. Bei diesen Schichten 2, 3 kann es sich um Galliumarsenid, Galliumnitrid, Indiumphosphid oder eine beliebige andere III-V-Zusammensetzung handeln.
Diese Schichtenfolge 2, 3 wird zusammen mit einem dünnen Film V des ersten Substrates 1 abgelöst. Das abgelöste Schichten-System V, 2, 3 wird sodann auf ein zweites Substrat aufgeklebt (siehe Figur 4). Bei dem zweiten Substrat handelt es sich bevorzugt um ein (lOO)-Siliciumsubstrat. Die (100)- Siliciumoberfläche ist für das Abscheiden weiterer, insbesondere Silicium-
Schichten optimiert. Insbesondere ist diese Oberflächenorientierung für die Abscheidung von CMOS-Strukturen optimiert.
Um benachbart zu den III-V-Schichten derartige Strukturen anzuordnen, wird das in der Fig. 4 dargestellte Zwischenprodukt lateral strukturiert, dies kann beispielsweise durch eine Maskierung erfolgen. Sodann wird die aufgeklebte Schichtenfolge Y, 2, 3 weggeätzt. Die Entfernung dieser Schichtenfolge erfolgt bis in das zweite Substrat 4 hinein, so dass die freigelegte Oberfläche in diesem weggeätzten Bereich 5 eine (lOO)-Silicium-Oberfläche ist, auf welcher CMOS- Strukturen abgeschieden werden können.
Alle offenbarten Merkmale sind (für sich) erfindungswesentlich. In die Offenbarung der Anmeldung wird hiermit auch der Off enbarungsinhalt der zugehörigen/beigefügten Prioritätsunterlagen (Abschrift der Voranmeldung) vollinhaltlich mit einbezogen, auch zu dem Zweck, Merkmale dieser Unterlagen in Ansprüche vorliegender Anmeldung mit aufzunehmen.

Claims

ANSPRUCHE
1. Verfahren zum Abscheiden von dicken III-V-Halbleiterschichten auf einem Nicht-III-V-Substrat, insbesondere Siliciumsubstrat, durch Einleiten gas- f örmiger Ausgangsstoffe in die Prozesskammer eines Reaktors, dadurch gekennzeichnet, dass zwischen zwei III-V-Schichten eine dünne Zwischenschicht bei einer reduzierten Wachstumstemperatur abgeschieden wird.
2. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche oder insbesondere danach, dadurch gekennzeichnet, dass die Wachstumstemperatur der Zwischenschicht um mindestens 100° C geringer ist, als die Wachstumschicht der III-V-Schichten.
3. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche oder insbesondere danach, dadurch gekennzeichnet, dass die Gitterkonstante der Zwischenschicht kleiner ist als die Gitterkonstante der III-V-Schichten.
4. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche oder insbesondere danach, dadurch gekennzeichnet, dass mehrfach eine dünne Niedertemperatur-Zwischenschicht auf jeweils eine III-V-Schicht abgeschieden wird.
5. Verfaliren nach einem oder mehreren der vorhergehenden Ansprüche oder insbesondere danach, dadurch gekennzeichnet, dass die Zwischenschicht unverspannt abgeschieden wird.
6. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche oder insbesondere danach, dadurch gekennzeichnet, dass die Zwischenschicht Bor enthält.
7. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche oder insbesondere danach, dadurch gekennzeichnet, dass die Zwischenschicht Stickstoff enthält.
8. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche oder insbesondere danach, dadurch gekennzeichnet, dass die Zwischenschicht eine Dicke von 5-50 nm, bevorzugt 10-20 nm besitzt.
9. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche oder insbesondere danach, dadurch gekennzeichnet, dass als Beschichtungsver- fahren die MOCVD, VPE oder MBE benutzt wird.
10. Verfahren nach einem oder mehren der vorhergehenden Ansprüche oder insbesondere danach, dadurch gekennzeichnet, dass die dünne Zwischenschicht in situ unmittelbar nach der ersten III-V-Schicht und unmittelbar vor der zweiten III-V-Schicht abgeschieden wird.
11. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche oder insbesondere danach, dadurch gekennzeichnet, dass die III-V-Schichten und die dünne Zwischenschicht in zwei oder mehreren Prozessen nacheinander abgeschieden werden.
12. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche oder insbesondere danach, dadurch gekennzeichnet, dass auf die dicke III-V-
Halbleiterschicht Bauelementeschichtenf olgen abgeschieden werden.
13. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche oder insbesondere danach, dadurch gekennzeichnet, dass aus den Bauelemente- schichtenfolgen Bauelemente gefertigt werden.
14. Verfahren zum Aufbringen von III-V-Halbeiterschichten auf einem Nicht- III-V-Substrat, insbesondere einem Siliciumsubstrat, durch Einleiten gasförmiger Ausgangsstoffe in die Prozesskammer eines Reaktors, dadurch gekennzeichnet, dass die III-V-Schicht auf der Oberfläche eines ersten Substrates (1) mit einer für die Abscheidung der III-V-Schicht (2, 3) optimierten Orientierung, insbesondere eines (Hl)-Silicium-Substrat abgeschieden, die
Schicht (2, 3) zusammen mit einem dünnen Film (1') des ersten Substrates (1) abgelöst, die abgelöste Schicht (2, 3) zusammen mit dem dünnen Film (1') des ersten Substrates (1) auf ein zweites Substrat (4), insbesondere auf ein (lOO)-Siliciumsubstrat aufgebracht, und gegebenenfalls nach einem Maskierungsschritt laterale Bereiche (5) der aufgebrachten Schicht (2, 3) bis in das zweite Substrat (4) entfernt werden.
15. Verfahren nach Anspruch 14 oder insbesondere danach, dadurch gekennzeichnet, dass die zusammen mit dem dünnen Film (1') des ersten Substra- tes (1) abgelöste Schicht (2, 3) auf das zweite Substrat (4) aufgeklebt werden.
16. Verfahren nach Anspruch 14 oder 15 oder insbesondere danach, dadurch gekennzeichnet, dass die III-V-Schicht eine Galliumnitrid, Galliumarsenid oder Indiumphosphidschicht ist.
17. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche 14 bis 16 oder insbesondere danach, dadurch gekennzeichnet, dass die von der aufgebrachten Schichtenfolge (Y, 2, 3) befreiten Bereiche (5) des zweiten Substrates (4) mit einer Isolationsschicht, einer elektrisch leitenden Schicht und/ oder einer p- oder n-dotierten Schicht beschichtet werden.
18. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche 14 bis 16 oder insbesondere danach, dadurch gekennzeichnet, dass auf die freigelegten Oberflächenabschnitte des zweiten Substrates (4) CMOS-Strukturen aufgebracht werden.
PCT/EP2002/012869 2001-12-21 2002-11-16 Verfahren zum abscheiden von iii-v-halbleiterschichten auf einem nicht-iii-v-substrat WO2003054929A2 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU2002366856A AU2002366856A1 (en) 2001-12-21 2002-11-16 Method for depositing iii-v semiconductor layers on a non-iii-v substrate
JP2003555558A JP2006512748A (ja) 2001-12-21 2002-11-16 Iii−v半導体皮膜を非iii−v基板に沈積する方法
EP02790389A EP1459362A2 (de) 2001-12-21 2002-11-16 Verfahren zum abscheiden von iii-v-halbleiterschichten auf einem nicht-iii-v-substrat
KR10-2004-7009466A KR20040070239A (ko) 2001-12-21 2002-11-16 비 ⅲ-ⅴ 기판상에 ⅲ-ⅴ 반도체층을 증착하는 방법
US10/872,905 US7078318B2 (en) 2001-12-21 2004-06-21 Method for depositing III-V semiconductor layers on a non-III-V substrate

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
DE10163718 2001-12-21
DE10163718.7 2001-12-21
DE10206753.8 2002-02-19
DE10206753 2002-02-19
DE10219223A DE10219223A1 (de) 2001-12-21 2002-04-30 Verfahren zum Abscheiden von III-V-Halbleiterschichten auf einem Nicht-III-V-Substrat
DE10219223.5 2002-04-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/872,905 Continuation US7078318B2 (en) 2001-12-21 2004-06-21 Method for depositing III-V semiconductor layers on a non-III-V substrate

Publications (3)

Publication Number Publication Date
WO2003054929A2 true WO2003054929A2 (de) 2003-07-03
WO2003054929A3 WO2003054929A3 (de) 2004-04-08
WO2003054929B1 WO2003054929B1 (de) 2004-06-10

Family

ID=27214692

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2002/012869 WO2003054929A2 (de) 2001-12-21 2002-11-16 Verfahren zum abscheiden von iii-v-halbleiterschichten auf einem nicht-iii-v-substrat

Country Status (6)

Country Link
US (1) US7078318B2 (de)
EP (1) EP1459362A2 (de)
JP (1) JP2006512748A (de)
AU (1) AU2002366856A1 (de)
TW (1) TWI265558B (de)
WO (1) WO2003054929A2 (de)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7244630B2 (en) * 2005-04-05 2007-07-17 Philips Lumileds Lighting Company, Llc A1InGaP LED having reduced temperature dependence
US8012592B2 (en) * 2005-11-01 2011-09-06 Massachuesetts Institute Of Technology Monolithically integrated semiconductor materials and devices
US20070262051A1 (en) * 2006-05-12 2007-11-15 Advanced Chip Engineering Technology Inc. Method of plasma etching with pattern mask
US8362503B2 (en) 2007-03-09 2013-01-29 Cree, Inc. Thick nitride semiconductor structures with interlayer structures
US7825432B2 (en) * 2007-03-09 2010-11-02 Cree, Inc. Nitride semiconductor structures with interlayer structures
US20080314311A1 (en) * 2007-06-24 2008-12-25 Burrows Brian H Hvpe showerhead design
US20090149008A1 (en) * 2007-10-05 2009-06-11 Applied Materials, Inc. Method for depositing group iii/v compounds
CN101802254B (zh) 2007-10-11 2013-11-27 瓦伦斯处理设备公司 化学气相沉积反应器
US8183132B2 (en) * 2009-04-10 2012-05-22 Applied Materials, Inc. Methods for fabricating group III nitride structures with a cluster tool
US8491720B2 (en) * 2009-04-10 2013-07-23 Applied Materials, Inc. HVPE precursor source hardware
WO2010124261A2 (en) * 2009-04-24 2010-10-28 Applied Materials, Inc. Substrate pretreatment for subsequent high temperature group iii depositions
US8110889B2 (en) * 2009-04-28 2012-02-07 Applied Materials, Inc. MOCVD single chamber split process for LED manufacturing
JP2012525718A (ja) * 2009-04-29 2012-10-22 アプライド マテリアルズ インコーポレイテッド HVPEにおいてその場プレ−GaN堆積層を形成する方法
DE102009051520B4 (de) 2009-10-31 2016-11-03 X-Fab Semiconductor Foundries Ag Verfahren zur Herstellung von Siliziumhalbleiterscheiben mit Schichtstrukturen zur Integration von III-V Halbleiterbauelementen
FR2953328B1 (fr) * 2009-12-01 2012-03-30 S O I Tec Silicon On Insulator Tech Heterostructure pour composants electroniques de puissance, composants optoelectroniques ou photovoltaiques
US20110256692A1 (en) 2010-04-14 2011-10-20 Applied Materials, Inc. Multiple precursor concentric delivery showerhead
DE102010046792A1 (de) 2010-09-28 2012-03-29 Osram Opto Semiconductors Gmbh Optoelektronischer Halbleiterchip und Verfahren zu dessen Herstellung
TWI534291B (zh) 2011-03-18 2016-05-21 應用材料股份有限公司 噴淋頭組件
US9299560B2 (en) * 2012-01-13 2016-03-29 Applied Materials, Inc. Methods for depositing group III-V layers on substrates
WO2013120960A1 (de) 2012-02-15 2013-08-22 Ursula Kastner Vorrichtung und verfahren zur analyse und transfektion von zellen oder partikeln
US8603898B2 (en) 2012-03-30 2013-12-10 Applied Materials, Inc. Method for forming group III/V conformal layers on silicon substrates
US9941295B2 (en) 2015-06-08 2018-04-10 Sandisk Technologies Llc Method of making a three-dimensional memory device having a heterostructure quantum well channel
US9425299B1 (en) 2015-06-08 2016-08-23 Sandisk Technologies Llc Three-dimensional memory device having a heterostructure quantum well channel
US20160376191A1 (en) * 2015-06-24 2016-12-29 United States Gypsum Company Composite gypsum board and methods related thereto
US9721963B1 (en) 2016-04-08 2017-08-01 Sandisk Technologies Llc Three-dimensional memory device having a transition metal dichalcogenide channel
WO2017222513A1 (en) * 2016-06-22 2017-12-28 Intel Corporation Techniques for monolithic co-integration of silicon and iii-n semiconductor transistors
US9818801B1 (en) 2016-10-14 2017-11-14 Sandisk Technologies Llc Resistive three-dimensional memory device with heterostructure semiconductor local bit line and method of making thereof
KR102369676B1 (ko) 2017-04-10 2022-03-04 삼성디스플레이 주식회사 표시 장치의 제조장치 및 표시 장치의 제조방법

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0377940A2 (de) * 1989-01-13 1990-07-18 Kabushiki Kaisha Toshiba Verbindungshalbleiter, denselben anwendendes Halbleiter-Bauelement und Herstellungsverfahren des Halbleiter-Bauelementes
EP0468814A2 (de) * 1990-07-27 1992-01-29 Kabushiki Kaisha Toshiba Ultraviolett-Halbleiterlaser und Verfahren zur Herstellung desselben
WO2000033364A1 (en) * 1998-11-27 2000-06-08 Agilent Technologies, Inc. Epitaxial aluminium-gallium nitride semiconductor substrate
US6242324B1 (en) * 1999-08-10 2001-06-05 The United States Of America As Represented By The Secretary Of The Navy Method for fabricating singe crystal materials over CMOS devices
WO2001043174A2 (en) * 1999-12-13 2001-06-14 North Carolina State University Fabrication of gallium nitride layers on textured silicon substrates
US20010009134A1 (en) * 1998-10-15 2001-07-26 Lg Electronics Inc. GaN system compound semiconductor and method for growing crystal thereof
US6303405B1 (en) * 1998-09-25 2001-10-16 Kabushiki Kaisha Toshiba Semiconductor light emitting element, and its manufacturing method
WO2001093325A1 (fr) * 2000-05-30 2001-12-06 Commissariat A L'energie Atomique Substrat fragilise et procede de fabrication d'un tel substrat
WO2001095380A1 (fr) * 2000-06-09 2001-12-13 Centre National De La Recherche Scientifique Procede de preparation d'une couche de nitrure de gallium

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5268327A (en) * 1984-04-27 1993-12-07 Advanced Energy Fund Limited Partnership Epitaxial compositions
US4891329A (en) * 1988-11-29 1990-01-02 University Of North Carolina Method of forming a nonsilicon semiconductor on insulator structure
JP2669368B2 (ja) * 1994-03-16 1997-10-27 日本電気株式会社 Si基板上化合物半導体積層構造の製造方法
US5838029A (en) * 1994-08-22 1998-11-17 Rohm Co., Ltd. GaN-type light emitting device formed on a silicon substrate
JP3491492B2 (ja) * 1997-04-09 2004-01-26 松下電器産業株式会社 窒化ガリウム結晶の製造方法
US5966622A (en) * 1997-10-08 1999-10-12 Lucent Technologies Inc. Process for bonding crystalline substrates with different crystal lattices

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0377940A2 (de) * 1989-01-13 1990-07-18 Kabushiki Kaisha Toshiba Verbindungshalbleiter, denselben anwendendes Halbleiter-Bauelement und Herstellungsverfahren des Halbleiter-Bauelementes
EP0468814A2 (de) * 1990-07-27 1992-01-29 Kabushiki Kaisha Toshiba Ultraviolett-Halbleiterlaser und Verfahren zur Herstellung desselben
US6303405B1 (en) * 1998-09-25 2001-10-16 Kabushiki Kaisha Toshiba Semiconductor light emitting element, and its manufacturing method
US20010009134A1 (en) * 1998-10-15 2001-07-26 Lg Electronics Inc. GaN system compound semiconductor and method for growing crystal thereof
WO2000033364A1 (en) * 1998-11-27 2000-06-08 Agilent Technologies, Inc. Epitaxial aluminium-gallium nitride semiconductor substrate
US6242324B1 (en) * 1999-08-10 2001-06-05 The United States Of America As Represented By The Secretary Of The Navy Method for fabricating singe crystal materials over CMOS devices
WO2001043174A2 (en) * 1999-12-13 2001-06-14 North Carolina State University Fabrication of gallium nitride layers on textured silicon substrates
WO2001093325A1 (fr) * 2000-05-30 2001-12-06 Commissariat A L'energie Atomique Substrat fragilise et procede de fabrication d'un tel substrat
WO2001095380A1 (fr) * 2000-06-09 2001-12-13 Centre National De La Recherche Scientifique Procede de preparation d'une couche de nitrure de gallium

Also Published As

Publication number Publication date
TW200301515A (en) 2003-07-01
AU2002366856A8 (en) 2003-07-09
US20050026392A1 (en) 2005-02-03
WO2003054929B1 (de) 2004-06-10
JP2006512748A (ja) 2006-04-13
US7078318B2 (en) 2006-07-18
EP1459362A2 (de) 2004-09-22
WO2003054929A3 (de) 2004-04-08
TWI265558B (en) 2006-11-01
AU2002366856A1 (en) 2003-07-09

Similar Documents

Publication Publication Date Title
EP1459362A2 (de) Verfahren zum abscheiden von iii-v-halbleiterschichten auf einem nicht-iii-v-substrat
EP1908099B1 (de) Halbleitersubstrat sowie verfahren und maskenschicht zur herstellung eines freistehenden halbleitersubstrats mittels der hydrid-gasphasenepitaxie
DE10392313B4 (de) Auf Galliumnitrid basierende Vorrichtungen und Herstellungsverfahren
EP1875523B1 (de) Nitridhalbleiter-bauelement und verfahren zu seiner herstellung
DE102012103686B4 (de) Epitaxiesubstrat, Verfahren zur Herstellung eines Epitaxiesubstrats und optoelektronischer Halbleiterchip mit einem Epitaxiesubstrat
EP1327267A1 (de) Verfahren zur herstellung eines halbleiterbauelements auf gan-basis
DE102005021099A1 (de) GaN-Schichten
EP1456872A1 (de) Verfahren zum abscheiden von iii-v-halbleiterschichten auf einem nicht-iii-v-substrat
DE3335189A1 (de) Verfahren zum herstellen einer heterostruktur
DE112013000798T5 (de) Epitaktische Technik zum Reduzieren von Schraubenversetzungen in unter Spannung befindlichen Halbleiterverbundstoffen
DE102014116231A1 (de) Gesteuertes Abspalten von Gruppe-III-Nitriden, die eine eingebettete Abspalt-Ablösungsebene enthalten
DE10320160A1 (de) Verfahren zum Herstellen einer Mehrzahl von Halbleiterkörper und elektronischer Halbleiterkörper
DE102011114671A1 (de) Verfahren zur Herstellung eines optoelektronischen Halbleiterchips und optoelektronischer Halbleiterchip
WO2014019752A1 (de) Verfahren zur herstellung eines optoelektronischen halbleiterchips und optoelektronischer halbleiterchip
WO2013045190A1 (de) Verfahren zur herstellung eines optoelektronischen halbleiterchips und entsprechender optoelektronischer halbleiterchip
DE10219223A1 (de) Verfahren zum Abscheiden von III-V-Halbleiterschichten auf einem Nicht-III-V-Substrat
DE10009876A1 (de) Verfahren zum Bilden eines einkristallinen Films
DE60303014T2 (de) Zwischenprodukt für die Herstellung von optischen, elektronischen oder optoelektronischen Komponenten
EP1459365A2 (de) Verfahren zum herstellen von iii-v-laserbauelementen
EP2478551A1 (de) Semipolare wurtzitische gruppe-iii-nitrid basierte halbleiterschichten und darauf basierende halbleiterbauelemente
DE102011107657A1 (de) Monolithische integrierte Halbleiterstruktur
DE102004038573A1 (de) Verfahren zum epitaktischen Wachstum dicker, rissfreier Gruppe-III-Nitrid Halbleiterschichten mittels metallorganischer Gasphasenepitaxie auf Si oder SIC
DE10011876A1 (de) III-V-Verbundhalbleiter
EP2245657B1 (de) Optoelektronischer halbleiterkörper und verfahren zur herstellung eines optoelektronischen halbleiterkörpers
DE10102315B4 (de) Verfahren zum Herstellen von Halbleiterbauelementen und Zwischenprodukt bei diesen Verfahren

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003555558

Country of ref document: JP

B Later publication of amended claims

Effective date: 20040402

WWE Wipo information: entry into national phase

Ref document number: 1020047009466

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10872905

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2002790389

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2002790389

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWW Wipo information: withdrawn in national office

Ref document number: 2002790389

Country of ref document: EP