WO2003042415A1 - Procede de production de fer metallique - Google Patents

Procede de production de fer metallique Download PDF

Info

Publication number
WO2003042415A1
WO2003042415A1 PCT/JP2002/011085 JP0211085W WO03042415A1 WO 2003042415 A1 WO2003042415 A1 WO 2003042415A1 JP 0211085 W JP0211085 W JP 0211085W WO 03042415 A1 WO03042415 A1 WO 03042415A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon material
iron
atmosphere
solidified
carbonaceous
Prior art date
Application number
PCT/JP2002/011085
Other languages
English (en)
French (fr)
Inventor
Shoichi Kikuchi
Original Assignee
Kabushiki Kaisha Kobe Seiko Sho
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Kobe Seiko Sho filed Critical Kabushiki Kaisha Kobe Seiko Sho
Priority to CA 2462669 priority Critical patent/CA2462669C/en
Priority to EP02770270A priority patent/EP1445336B1/en
Priority to KR20047007144A priority patent/KR100660667B1/ko
Priority to US10/493,313 priority patent/US7384450B2/en
Priority to AU2002336310A priority patent/AU2002336310B2/en
Priority to DE2002624080 priority patent/DE60224080T2/de
Publication of WO2003042415A1 publication Critical patent/WO2003042415A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/10Making spongy iron or liquid steel, by direct processes in hearth-type furnaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0066Preliminary conditioning of the solid carbonaceous reductant
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0073Selection or treatment of the reducing gases
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0086Conditioning, transformation of reduced iron ores
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/10Making spongy iron or liquid steel, by direct processes in hearth-type furnaces
    • C21B13/105Rotary hearth-type furnaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/40Gas purification of exhaust gases to be recirculated or used in other metallurgical processes
    • C21B2100/44Removing particles, e.g. by scrubbing, dedusting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a method for producing metallic iron. More specifically, when a mixture of an iron oxide-containing substance and a carbonaceous reducing agent is supplied to a moving hearth and reduced by heating to produce metallic iron, the reduced heat is used. Atmosphere-adjusting carbon material sprayed on the hearth to increase the potential for reduction of the atmosphere on the hearth is prevented from solidifying on the hearth to form a plate and hindering operability, facilitating continuous operation. It is about an improved method that can be performed. Background art
  • the atmosphere adjusting coal is placed on the hearth. It is known how to sprinkle wood (for example, Japanese Patent Laid-Open No. 111-116, No. 11-106168, No. 111-172) No. 11-33357-12, Japanese Patent Application Laid-Open No. 2000-45008).
  • the above-mentioned carbon material for atmosphere control prevents metal iron and by-product slag generated by heat reduction from coming into direct contact with the hearth refractory, and suppresses melting of the hearth refractory. However, it has been confirmed that it works effectively.
  • the present inventors have been conducting research on a method for producing metallic iron using charging of carbon material for adjusting the atmosphere, but the conventional method described above involves the following unsolved problems. I knew that.
  • the biggest problem pointed out by the conventional method is that, depending on the type of powdered and granular carbon material used for atmosphere control, the powdered and granular carbon material is solidified in the heat reduction step of the iron oxide-containing raw material, resulting in a rice cracker shape. It is likely to warp and harden continuous operation. When this occurs on the hearth during operation,
  • the metallic iron and by-product slag generated by heat reduction are usually cooled and solidified at the most downstream side of the manufacturing equipment and discharged from the hearth by a screw or other extraction device.
  • the solidified carbon material that warped was caught by the extraction device, and the emission of reduced iron and by-product slag from the hearth was significantly impeded.
  • the present invention has been made in view of the above-mentioned circumstances, and an object of the present invention is to solve the above-mentioned various obstacles caused by the solidification of a powdery and granular carbon material used for atmosphere adjustment in a rice cracker shape.
  • the technology to effectively reuse the used carbonaceous material having reduced activity as a valuable resource has been established to reduce the consumption of the atmosphere adjustment carbonaceous material. Disclosure of the invention
  • the method for producing metallic iron according to the present invention that can solve the above-mentioned problems is as follows: a raw material containing an iron oxide-containing substance and a carbonaceous reducing agent is heated on a moving hearth to reduce iron oxide in the raw material.
  • a non-solidified carbon material is used as the atmosphere adjusting carbon material when the raw material is supplied after the powdery and granular atmosphere adjusting carbon material is laid on the hearth. Has a gist.
  • the carbon material for adjusting atmosphere used in the present invention those having a particle size of substantially not more than 3.35 mm and a particle size range of 0.5 to 3.35 mm have a content of not less than 20% by mass. Carbonaceous materials that occupy and have a flow rate of 0 (zero) are preferred.
  • Another preferred example of the atmosphere adjusting carbon material is a non-consolidating carbon material obtained by heat-treating a solidified carbon material at a temperature of about 500 ° C. or more.
  • the recovered carbon material that has been subjected to heat history by using it as an atmosphere adjusting carbon material in a metal iron manufacturing facility loses its consolidation property by receiving the heat history and becomes non-consolidated.
  • the recovered carbon material can also be effectively used as non-consolidated carbon material, and the originally non-consolidated carbon material retains the non-consolidated property due to the above heat history. And recycle Can be used.
  • a non-consolidated mixed carbon material by mixing a non-consolidable carbon material with a solidified carbon material.
  • a fresh carbon material can be used as the solidifying carbon material, and a carbon material heat-treated at a temperature of about 500 ° C. or more can be used as the non-solidifying carbon material.
  • carbon materials that have undergone heat history in a metal iron production facility lose their solidification properties due to the heat history, and if they are collected and recycled, this will be combined with the effective use of waste materials. This is advantageous because the consumption of the carbon material for atmosphere adjustment can be reduced.
  • the preferred compounding ratio when the non-consolidating carbon material is mixed with the above-mentioned consolidable carbon material and used depends on the consolidation force of the consolidating carbon material to be used. The range is 50 to 90% by mass to 50 to 90% by mass.
  • FIG. 1 is a reduction / melting flow diagram employed in an embodiment of the present invention
  • FIG. 2 is a reduction / melting flow diagram employed in another embodiment of the present invention
  • FIG. FIG. 4 is a reduction / melting flow chart employed in still another embodiment of the present invention
  • FIG. 4 is a reduction / melting flow chart adopted in a reference example.
  • FIG. 5 is a flowchart showing a process of separating the metallic iron, by-product slag, and the recovered carbon material used in the present invention.
  • the present invention relates to, for example, U.S. Pat. No. 6,036,744,
  • each gazette i.e., an iron oxide-containing substance such as iron ore and a carbonaceous reducing agent such as carbonaceous materials are mixed and aggregated or pelletized as necessary. It is heated and reduced on a moving hearth, and then further heated to melt and agglomerate the reduced iron produced, and to separate by-product slag to form granular or massive particles. Used in the production of high-purity metallic iron.
  • the present invention is characterized in that a non-consolidating carbon material is used as the atmosphere adjusting carbon material.
  • the following non-consolidating carbon materials include, for example, the following carbon materials. No.
  • a carbonaceous material having a particle size substantially equal to or less than 3.35 mm and having a particle size in the range of 0.5 to 3.35 mm accounts for 20% by mass or more, preferably 40% by mass or more.
  • the highest flow rate (detailed below) is zero (0):
  • Carbon materials satisfying such a particle size composition and the highest fluidity can be used at high temperature conditions that are inherently reducible in the production of metallic iron (usually from 700 to 160 ° C, more It does not solidify even under the temperature range of 0 to 1500 ° C) and maintains a powder state.
  • metallic iron usually from 700 to 160 ° C, more It does not solidify even under the temperature range of 0 to 1500 ° C
  • the granular carbonaceous material having a particle size of 3.35 mm or less and less than 20% by mass of coarse particles in the range of 0.5 to 3.35 mm. It was confirmed that even when the maximum fluidity was zero, solidification occurred under the temperature conditions during reduction and melting.
  • the present inventors have confirmed that, even if the carbon material is a solidified carbon material, the carbonized material loses its solidification property when heated at a temperature of about 500 or more in a non-oxidizing atmosphere. It was confirmed that it became brittle. Therefore, even if the carbonaceous material is inconsistent and lacks suitability, it can be heated to about 500 ° C or more, preferably about 600 ° C After a heat treatment of about 15 minutes, it can be converted into a carbon material that can be used as a non-consolidating carbon material without any problems.
  • the recovered carbon material that is used as the carbon material for adjusting the atmosphere and then separated and recovered from the metal iron and by-product slag is heat equivalent to the heat treatment.
  • the recycled carbon material has been modified into non-consolidated carbon material by heating in a non-oxidizing atmosphere. Can be used effectively.
  • the non-consolidated carbon material is obtained by heat-treating the non-consolidated carbon material to be non-consolidated as described above, and is recovered after undergoing the same heat history at the metal iron manufacturing facility. Recovered carbon material can be used as well.
  • the preferred amount of non-consolidating carbon material to consolidating carbon material is It depends on the level of solidification of the carbonaceous material, for example, the value of the maximum fluidity. If the fluidity is originally small, if only a small amount of non-solidified carbon is blended, it becomes nonconsolidable. Can be changed. On the other hand, when the solidified carbon material having a high fluidity is used, it is necessary to mix a relatively large amount of the non-solidified carbon material. However, the standard compounding amount for converting the solidified carbon material to non-solidified is 50 to 10% by mass of the non-solidified carbon material with respect to 50 to 10% by mass. 0 mass%, more generally, 60 to 10 mass% of the solidified carbon material, and 40 to 90 mass% of the non-solidified carbon material.
  • a recovered carbon material that has been modified to be non-consolidated by receiving a heat history in a metal iron manufacturing facility, and a non-consolidated carbon material in which the recovered carbon material is blended. It is a mixed carbon material that has been consolidated.
  • the carbonaceous material used for atmosphere control must have a reducing activity to prevent reoxidation of metallic iron even at the end of heat reduction and melting. Since it has considerable reduction activity, it can be effectively used as a reducing agent.
  • the recovered carbon material has been converted into non-consolidated carbon material by receiving the heat during the reduction and melting of the iron oxide source, as described above.By using this as recycled carbon material, fresh carbon material can be used. Carbonization can be more reliably prevented than when used, and operating stability can be further improved.
  • the fine-grained metallic iron that is considerably mixed in the recovered carbon material is also made of metallic iron. It will be returned to the production facility, which can contribute to improving the recovery rate of metallic iron.
  • the slag that is mixed in fine particles in the recovered carbonaceous material is returned to the metal iron manufacturing facility along with the carbonaceous material. It also contributes to improvement.
  • the configuration of the apparatus used in carrying out the present invention is not particularly limited.
  • the above-mentioned US Patent No. 6,036,7444, Japanese Unexamined Patent Publication Nos. Hei 9-9-256017, Japanese Unexamined Patent Application Publication No. 2000-0-14424, Japanese Unexamined Patent Application Publication No. All reduction and melting furnaces are applicable.
  • particularly preferred equipment is a rotary furnace for continuously and efficiently carrying out melting of reduced iron, agglomeration into particulate matter, and separation of by-product slag from raw material heating reduction. The use of a hearth furnace is recommended.
  • iron oxide-containing substance used as an iron source in the present invention there is no particular limitation on the type of iron oxide-containing substance used as an iron source in the present invention.
  • waste iron and waste materials such as iron and steel dusts discharged from steel mills and scraps
  • All of the separated and recovered iron scrap can be used as a raw material, and it is of course possible to use a plurality of them as a mixture as needed.
  • the type of carbonaceous reducing agent that is essential for the reduction of iron oxide-containing substances is not particularly limited, and contains carbon as a main component, such as coal and coke, and emits reducing carbon monoxide by combustion or thermal decomposition. If available, all can be used. Further, as long as the carbon material for atmosphere control can be modified or mixed with various coal-coke or the like as necessary as long as it can meet the object of the present invention, it can be formed into a non-consolidated carbon material. All can be used.
  • the specific conditions of reduction and melting are not particularly special.
  • the conditions disclosed in 0 0 — 1 4 4 2 2 4 and JP-A-11-1 13 11 19 may be adopted, but the temperature in the furnace is typically 1 2 0 0 To 150 ° C. (: More preferably, the reduction is mainly carried out by solid-phase reduction while maintaining the temperature in the range of 1200 ° C. to 140 ° C., and then the furnace temperature is reduced to 140 ° C. to 1 ° C.
  • the reduction potential on the hearth can always be kept at a high level.
  • the reduced iron does not undergo reoxidation at the end of the reduction or at the time of the melting of the reduced iron, so that a stable and high reduction efficiency can be secured.
  • the carbonaceous material sprinkled on the hearth refractory also prevents the molten metal iron and slag produced by reduction and melting from directly contacting the hearth refractory and deteriorating the refractory. Therefore, it contributes to prolonging the life of hearth refractories.
  • the thickness of the carbon material for atmosphere adjustment on the hearth surface be in the range of 1 to 10 mm.
  • metal iron, by-product slag, and carbon material for atmosphere adjustment are usually discharged from the metal iron manufacturing facility in a mixed state.
  • metallic iron can be recovered by magnetic force or the like. Some of them, especially fine particulate matter, are returned to the moving hearth furnace again to be reagglomerated, and the yield as coarse-grained iron that is easy to handle as a product and is less likely to undergo oxidative deterioration is obtained. It is preferable because it can be increased.
  • the by-product slag and the carbonaceous material for atmosphere adjustment can be roughly separated by sieving. However, it is preferable to use static electricity because even slag of the same or fine particle size that cannot be separated by a sieve can be easily separated. If necessary, it is also effective to combine the separation operation using a sieve or magnetic force with the separation operation using static electricity.
  • Example
  • each of the carbon materials having the chemical composition shown in Table 1 below was independently subjected to the following heating test.
  • the particle size of each carbon material was adjusted to 0.5 to 1.0 mm, heated in a nitrogen atmosphere at 100 ° C for 90 seconds using a tubular electric furnace, cooled, and then observed for appearance. Then, the presence or absence of consolidation was examined.
  • the maximum fluidity of each carbon material was examined. Still the best Mobility is a value specified in JISM 8801 and can be obtained by a Gieseler P 1 as to meter and is expressed by logD DPM. The results are as shown in Table 1.
  • the carbon materials A to F having the maximum fluidity of 0 (zero) do not show any caking properties and maintain the powdery state even after the heat treatment. I have.
  • Table 2 shows that the non-consolidating carbon material was blended with the solidifying carbon material among the carbon materials shown in Table 1 above, and the carbon material was similarly mixed in a nitrogen atmosphere at 100 ° C at 900 ° C. The result of having investigated the solidification property when heated for 2 seconds is shown. As is clear from this table, even a solidified carbonaceous material can be made into a non-solidified mixed carbonaceous material by blending an appropriate amount of non-solidifying carbon material. . In that case, it can be confirmed that the higher the maximum fluidity of the solidified carbon material, the higher the mixing ratio of the non-solidified carbon material for eliminating the solidification. Table 2
  • the rotary hearth type reduction An experiment was conducted in which the carbon material for atmosphere control was recycled to reduce the iron ore pellets (particle size: 16 to 20 mm) charged with carbon material and reduce and melt it to produce metallic iron. That is, a carbon material for adjusting the atmosphere (a mixture of fresh carbon material and recycled carbon material) is laid on the hearth at the raw material supply section of the rotary hearth furnace to a thickness of about 3 to 6 mm, and The raw material pellets are heated while being supplied, and the raw material pellets are reduced and melted.
  • a carbon material for adjusting the atmosphere a mixture of fresh carbon material and recycled carbon material
  • the generated reduced iron and slag produced as a by-product are cooled together with the atmosphere adjusting carbon material remaining on the hearth to form a joint. It is discharged from the hearth by the discharge device.
  • the effluent is passed through a magnetic separator and a sieve to separate reduced iron, by-product slag, and residual carbon material.
  • the separated residual carbon material is collected, returned to the raw material supply side as recycled carbon material, and used repeatedly.
  • the operating conditions for reduction melting are as follows.
  • Raw material pellet An iron ore raw material having the following composition and a powder of carbonaceous material are blended in a mass ratio of 78:22, and a small amount of binder is added, and the average particle diameter obtained by granulation and drying is 1 Uses 8 mm granular pellets,
  • Iron ore raw material composition (% by mass): T. Fe; 68.1%,
  • Heating reduction zone temperature: approx. 135 ° C., transit time: 10 minutes, melting zone: temperature: approx. 150 ° C., transit time: 5 minutes
  • non-consolidated carbonaceous material A 40 parts by mass
  • recycled carbonaceous material 6.0 parts by mass
  • a mixed carbonaceous material 100 parts by mass
  • it was laid on the hearth of a rotary hearth furnace, on which a carbonaceous interior drying pellet was charged and reduced and melted. After cooling and discharging the product, it is sieved to recover granular iron with a particle size of about 3 mm or more and by-product slag suitable for industrial use. 60 parts by weight of the material was recovered. Therefore, if all the recovered carbon material is recycled and used as recycled carbon material, and if 40 parts by mass of fresh carbon material is additionally supplied, the balance of the entire production line will be maintained and continuous operation will be carried out smoothly. Can be.
  • the pellets were reduced and melted in the same manner except that the dried pellets and non-consolidated carbon material A were used and the carbon material was not recycled.
  • about 9% by mass of the total metallic iron discharged from the furnace is contained as fine-grained iron in the recovered carbonaceous material, which is a product loss.
  • By-product The same applies to lag, and if carbon material recycling is not adopted, about 70% by mass of all by-product slag discharged from the furnace will be discharged as fine slag together with the recovered carbon material. When collected as valuable resources, these become losses as they are.
  • Example 1 Figure 1
  • Example 2 Figure 2
  • the mixture of metallic iron, by-product slag, and carbon material for atmosphere adjustment discharged from the rotary hearth furnace was used as shown in Figure 5
  • metallic iron was first recovered by magnetic separation.
  • the remaining mixture of the by-product slag and the carbon material for atmosphere adjustment is friction-charged, and then supplied to an electrostatic separator equipped with a positive electrode and a negative electrode, where the by-product slag (negatively charged) and the atmosphere are adjusted.
  • Carbon material positively charged
  • was separated carbon material for atmosphere adjustment can be recycled and reused in the same manner as shown in FIGS.
  • a charging method other than the frictional charging method for example, a charging method using an ion generator, corona charging, or the like can be used.
  • the present invention is configured as described above, and heats a raw material containing an iron oxide-containing substance and a carbonaceous reducing agent on a moving hearth to reduce iron oxide in the raw material to produce metallic iron.
  • a powdery and granular atmosphere adjusting carbon material is laid on the hearth and the raw material is supplied, by using a non-solidifying carbon material as the atmosphere adjusting carbon material, the carbon material is solidified. Preventing the rice cake from forming a rice cracker and causing a discharge problem enables continuous operation to be continued smoothly, and also reduces the damage to the hearth refractories and extends their life.
  • the amount of consumption of the carbon material can be greatly reduced, and conventionally, the carbon material can be reduced.
  • Metal iron and by-product slag in the recovered carbon material that has been discarded can also be recovered, and the recovery rate can be increased, and the additional effect of two or more birds per stone can be enjoyed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Manufacture Of Iron (AREA)

Description

明 細 書 金属鉄の製法 技術分野
本発明は金属鉄の製法に関し、 よ り詳細には、 酸化鉄含有物質 と炭素質還元剤の混合物を移動炉床上に供給し、 加熱還元して金 属鉄を製造する際に、 加熱還元が行われる炉床上雰囲気の還元ポ テンシャルを高めるため炉床上へ撒かれる雰囲気調整用炭材が、 炉床上で固結して板状に固まり操業性を阻害する現象を防止し、 連続操業を円滑に遂行し得るように改善された方法に関するもの である。 背景技術
鉄鉱石などの酸化鉄源を加熱還元して金属鉄を製造する比較的 新しい方法として、 鉄鉱石等の酸化鉄源と炭材などの炭素質還元 剤の混合粉末、 あるいは該混合物をペレッ ト状などに固めた炭材 内装原料を使用し、 これらを移動炉床上で加熱することによ り酸 化鉄を還元して金属鉄を製造する方法がある。
この様な方法を実施する際に、 加熱還元が行われる炉床上の還 元ポテンシャルを高めて還元効率を高めるため、 前記原料を炉床 上に供給するに先立って、 炉床上に雰囲気調整用炭材を撒いてお く方法が知られている (例えば特開平 1 1 一 1 0 6 8 1 6号、 同 1 1 — 1 0 6 8 1 6号、 同 1 1 一 1 7 2 3 1 2号、 同 1 1 — 3 3 5 7 1 2号、 特開 2 0 0 0 — 4 5 0 0 8号など) 。 上記雰囲気調 整用炭材は、 加熱還元によ り生成する金属鉄や副生スラグが炉床 耐火物と直接接触するのを防止し、 炉床耐火物の溶損を抑える上 でも有効に作用することが確認されている。
本発明者らも、 かねてより雰囲気調整用炭材の装入を併用した 金属鉄の製法について研究を進めているが、 前述した従来の方法 には、 次の様な未解決の問題が内包されていることを知った。 即ち従来法に指摘される最大の問題は、 雰囲気調整用として使 用する粉粒状炭材の種類によっては、 酸化鉄含有原料の加熱還元 工程で粉粒状の上記炭材が固結し、 煎餅状に固まって反り返り、 連続操業を著しく害することである。 こう した現象が操業中の炉 床上で発生すると、
①加熱還元によって生成した金属鉄と副生スラグは、 通常、 製 造設備の最下流側で冷却凝固させ、 スク リ ューなどの搔出し装置 により炉床上から排出されるが、 煎餅状に固まって反り返った前 記固結炭材が搔出し装置に引っ掛かり、 還元鉄や副生スラグなど の炉床上からの排出が著しく阻害される、
②煎餅状に固まった固結炭材を搔出し装置によって炉床上から 強引に排出すると、 搔出し装置に大きな負荷がかかり、 該装置を 故障させる原因になる。 しかも、 固結した炭材によって炉床耐火 物が傷付けられ、 耐久性を著しく低下させる、
③還元により生成した金属鉄の一部が該固結炭材内に取り込ま れ、 金属鉄の回収率を低下させる、
④原料の装入に先立って炉床上に固結性炭材を敷く と、 該炭材 が煎餅状に固まって反り返り、 その上に原料を供給する と、 原料 が低い方へ流れたり、 炭材層の割れ目に落ち込み、 原料を均一な 厚さに装入できなくなる、
といった様々の問題を引き起こす。
更に加えて、 炉床上から排出される炭材の多くは依然として高 い還元活性を残しているが、 従来技術では該炭材を実質的にその まま廃棄しており、 有価資源の有効利用という観点から しても改 善の余地を残している。
本発明は上記の様な事情に着目 してなされたものであって、 そ の目的は、 雰囲気調整用として用いる粉粒状の炭材が煎餅状に固 結する ことによって生じる上記様々の障害を解消し、 或いは更に 還元活性を残した使用済み炭材を有価資源として有効に再利用す る技術を確立し、 雰囲気調整用炭材の消費量低減を図るところに ある。 発明の開示
上記課題を解決することのできた本発明に係る金属鉄の製法と は、 酸化鉄含有物質と炭素質還元剤とを含む原料を移動炉床上で 加熱し、 該原料中の酸化鉄を還元して金属鉄を製造する方法にお いて、 炉床上に粉粒状の雰囲気調整用炭材を敷いてから前記原料 を供給するに当たり、 前記雰囲気調整用炭材として非固結性の炭 材を使用するところに要旨を有している。
本発明で使用する上記雰囲気調整用炭材としては、 粒径が実質 的に 3 . 3 5 m m以下で、 且つ 0 . 5 〜 3 . 3 5 m mの粒度範囲 のものが 2 0質量%以上を占める と共に、 流動度が 0 (ゼロ) で ある炭材が好ましい。 また該雰囲気調整用炭材の他の好ましい例 として、 固結性炭材を 5 0 0 °C程度以上の温度で熱処理し非固結 性とした炭材を挙げることができる。
また、 金属鉄製造設備で雰囲気調整用炭材として使用すること で熱履歴を受けた回収炭材は、 該熱履歴を受けることで固結性を 失い非固結性となっているので、 この回収炭材も非固結性炭材と して有効に活用できるし、 元々非固結性であった炭材も上記熱履 歴を受けて非固結性を保っているので、 同様に回収してリサイク ル使用することができる。
本発明では更に他の炭材として、 固結性炭材に非固結性炭材を 配合する ことによって非固結性とした混合炭材を使用することも 有効である。 この際、 固結性炭材としてフ レッシュ炭材を使用し 非固結性炭材として、 好ましく は 5 0 0 °C程度以上の温度で熱処 理された炭材を使用することができる。 殊に、 金属鉄製造設備で 熱履歴を受けた炭材は、 該熱履歴を受ける ことで固結性を失うの で、 これを回収してリサイ クルすれば、 廃材の有効利用とも相俟 つて雰囲気調整用炭材の消費量低減を図る ことができるので有利 である。
しかも炭材リサイクル法を採用すれば、 回収炭材中に混入して く る微粒子状の金属鉄や副生スラグを次工程の処理で回収できる ので、 金属鉄の回収率を高めることができ、 また副生スラグを副 産物として有効利用する場合はその回収率も高める ことができる ので好ましい。
また、 前記固結性炭材に非固結性炭材を混合して使用する際の 好ましい配合比率は、 用いる固結性炭材の固結力によっても変わ つてく るが、 好ましく は、 前者 5 0 〜 1 0質量%に対し後者 5 0 〜 9 0質量%の範囲である。
この方法を実施するに当っては、 移動炉床炉から排出される金 属鉄の一部、 特に微細なものについては、 再び移動炉床炉へ返送 するのがよく、 また前記炭材の回収は、 静電気を利用することに よって効率よく行う ことができるので好ましい。 図面の簡単な説明
図 1 は、 本発明の実施例で採用した還元 · 溶融フロー図、 図 2 は、 本発明の他の実施例で採用した還元 · 溶融フロー図、 図 3 は 本発明の更に他の実施例で採用した還元 · 溶融フロー図、 図 4は 参考例で採用した還元 · 溶融フロー図である。
図 5 は、 本発明で採用した金属鉄、副生スラグおよび回収炭材 の分離工程を示すフロー図である。 発明を実施するための最良の形態
本発明は、 例えば米国特許第 6 , 0 3 6, 7 4 4号、 特開平 0
9 一 2 5 6 0 1 7号、 特開平 2 0 0 0 — 1 4 4 2 2 4号、 特開平
1 1 一 1 3 1 1 1 9号などの各公報に開示されている方法、 即ち 鉄鉱石などの酸化鉄含有物質と炭材などの炭素質還元剤を混合し 必要によ り塊状化したりペレツ ト状等に成形してから移動炉床上 で加熱 · 還元し、 その後さ らに加熱することによって、 生成する 還元鉄を溶融 · 凝集させる と共に副生スラグを分離する ことによ り、 粒状あるいは塊状の高純度金属鉄を製造する方法に利用され る。
この様な金属鉄の製法を実用化する際に、 原料混合物中の酸化 鉄源を移動炉床上で効率よく加熱還元するための手段として、 原 料の装入に先立って炉,床上に粉状の雰囲気調整用炭材を敷き、 加 熱還元時における炉床上の還元ポテンシャルを高位に保つことに よ り還元効率を高め、 金属鉄としての回収率向上を図る ことは、 先に従来技術を提示して説明した通り既に公知である。
しかしそれらの従来技術では、 雰囲気調整用炭材の種類によつ ては、 前述した如く該炭材が還元 · 溶融時の熱で固結して板状に 固ま り、 先に説明した如く操業上の様々の障害を引き起こす。
そこで、 前述した様な雰囲気調整用炭材の固結に起因する障害 を解消し、 金属鉄の製造を効率よく且つ円滑に遂行可能にすべく 様々の角度から研究を進めてきた。 その結果、 雰囲気調整用とし て使用する炭材として、 原料混合物を還元 · 溶融する際の加熱条 件下でも固結することなく粉粒状を維持する炭材を選択使用すれ ば、 上記問題が簡単に解決される ことを知り、 本発明に想到した ものである。
よって本発明では、 要するに雰囲気調整用炭材として非固結性 の炭材を使用するところに特徴を有するもので、 非固結性炭材の 具体例としては、 例えば下記の様な炭材が挙げられる。
①粒径が実質的に 3 . 3 5 mm以下で、 且つ粒径 0. 5〜 3 . 3 5 mmの範囲のものが 2 0質量%以上、 好ましく は 4 0質量% 以上を占める炭材であって、 最高流動度 (後で詳述する) がゼロ ( 0 ) であるもの :
この様な粒度構成と最高流動度を満たす炭材は、 金属鉄を製造 する際の本質的に還元性の高温条件 (通常 7 0 0〜 1 6 0 0 °C、 よ り一般的には 9 0 0〜 1 5 0 0 °C ) 下においても固結すること がなく、 粉粒状態を維持する。 ところが、 後記実施例でも明らか にする通り 、 粒径が 3. 3 5 mm以下で、 且つ 0 . 5〜 3. 3 5 mmの範囲の粗粒物が 2 0質量%未満である粉粒状炭材は、 最高 流動度がゼロのものでも、 還元 , 溶融時の温度条件下で固結現象 を起こすこ とが確認された。 その理由は現在のところまだ解明さ れていないが、 その様な炭材は 0 . 5 m m未満の微粉状物を多量 に含んでお り、 これら微粒状の炭材がバイ ンダー的に作用し、 炭 材の固結を増進しているためと考えている。 しかも、 0 . 5 mm 未満の微粉状物の占める比率が多くなると、 金属鉄製造設備内の 気流による飛散も多くなるので好ましくない。
尚、 炭材の粒径が 3. 3 5 m mを超える粗粒物の場合、 固結に よる障害は起こさないが、 表面積不足となって雰囲気調整剤とし ての作用が低下してく るので、 粒径が 3 . 3 5 m mを超える粗粒 物の混入は極力避けるべきである。 ま ^、 雰囲気調整剤としての 機能を有効に発揮させるには、 上記 0 . 5〜 3 . 3 5 m mの粗粒 物の含量が 6 0質量%以下のものを使用することが望ましい。
② 5 0 0 °C程度以上の温度で熱処理した炭材 :
本発明者らが確認したところによると、 固結性の炭材であって も、 これを非酸化性雰囲気下で 5 0 0 程度以上の温度で加熱処 理すると固結性を失い、 非固結性になることが確認された。 よつ て、 固結性で適性を欠く炭材であっても、 これを非酸化性雰囲気 下に 5 0 0 °C程度以上、 好ましく は 6 0 0〜 1 2 0 0 °C程度で 5 〜 1 5分程度加熱処理してやれば、 非固結性炭材として支障なく 活用できる炭材に変えることができる。
尚、 移動炉床炉を用いて金属鉄を製造する場合、 雰囲気調整用 炭材として使用した後に金属鉄や副生スラグと分離して回収され る回収炭材は、 前記加熱処理に相当する熱履歴を受けており、 非 酸化性雰囲気下での加熱によって非固結性炭材に改変されている ので、 このリサイクル炭材は、 回収してから必要により粒度調整 することによって雰囲気調整用炭材として有効利用できる。
③固結性炭材に適量の非固結性炭材を配合し非固結性とした混 合炭材の利用 :
後記実施例でも明らかにする通り、 最高流動度がゼロ超で固結 性を有する炭材に非固結性の炭材を適量配合すると、 混合炭材全 体として非固結性のものとすることができ、 非固結性の雰囲気調 整用炭材として有効に利用できる。 こ こで非固結性炭材としては. 前述の如く 固結性炭材を熱処理して非固結性に改質したもの、 金 属鉄製造設備で同様の熱履歴を受けた後に回収される回収炭材が 同様に利用できる。
固結性炭材に対する非固結性炭材の好適配合量は、 用いる固結 性炭材の固結性の大小、 例えば最高流動度の値によって変わり、 該流動度が元々小さぃ炭材であれば、 少量の非固結性炭材を配合 するだけで非固結性に変えることができる。 一方、 該流動度の高 い固結性炭材を使用する場合は、 非固結性炭材を相対的に多量配 合することが必要となる。 しかし、 固結性炭材を非固結性に改変 するための標準的な配合量は、 固結性炭材 5 0 〜 1 0質量%に対 し、 非固結性炭材 5 0 〜 9 0質量%、 より一般的には、 固結性炭 材 6 0 〜 1 0質量%に対し、 非固結性炭材 4 0 〜 9 0質量%の範 囲である。
上記方法の中でも本発明において特に好ましいのは、 金属鉄製 造設備で熱履歴を受けて非固結性に改変された回収炭材、 および 固結性炭材に該回収炭材を配合して非固結性とした混合炭材であ る。 ちなみに、 還元効率向上のため雰囲気調整用炭材を使用する 従来技術でも、 金属鉄や副生スラグ等と共に排出される雰囲気調 整用炭材を回収して再使用することは試みられたことがなく、 そ の殆どは副生スラグ等と共に埋立て等に投棄されている。
しかし、 雰囲気調整用と して使用される炭材は、 加熱還元 · 溶 融の末期においても金属鉄の再酸化防止のため還元活性を保有し ていなければならず、 よって排出される炭材は相当の還元活性を 残しているので、 還元剤として有効利用できる。 しかも回収炭材 は、 前述の如く酸化鉄源の還元 · 溶融時の熱を受けて非固結性炭 材に改変されているので、 これをリサイクル炭材として利用する ことで、 フレッシュ炭材を使用する場合より も炭材の固結をよ り 確実に防止することができ、 操業安定性を一段と高める ことがで さる。
更に加えて、 上記の如く 回収炭材をリサイクル使用すると、 回 収炭材中に相当量混入してく る微細粒状の金属鉄も再度金属鉄製 造設備へ返送される ことになり、 金属鉄の回収率向上にも寄与で きる。 同様に副生スラグを有価資源として回収する場合にも、 回 収炭材中に微細粒状で混入してく るスラグも該炭材と共に金属鉄 製造設備へ返送されるので、 副生スラグの回収率向上にも寄与す る。
この様に本発明をうまく活用すれば、
1)炭材固結の問題を解消しつつ、
2 )従来は廃棄されている還元活性を残した炭材を有効利用する ことができ、 炭材消費量の低減に寄与できる、
3)炭材と共に廃棄されてロスしていた微細な金属鉄粒子を回収 炭材と共にリサイクルすることで、 金属鉄の回収率が向上する、
4)同様に、 副生スラグを有価資源として回収する場合にも、 そ の回収率を高めることができる、
といった多く の利点を享受できる。
なお本発明を実施する際に採用される装置、 即ち移動炉床型還 元 ·溶融用加熱炉の構成も特に制限されず、 例えば前記米国特許 第 6, 0 3 6, 7 4 4号、 特開平 0 9 — 2 5 6 0 1 7号、 特開平 2 0 0 0 — 1 4 4 2 2 4号、 特開平 1 1 一 1 3 1 1 1 9号などの 各公報に開示されている様な還元 ·溶融炉が全て適用可能である しかし特に好ましい設備は、 原料の加熱還元から還元鉄の溶融と 粒状物への凝集および副生スラグの分離を連続的に効率よく実施 するうえで、 回転炉床炉の使用が推奨される。
本発明で鉄源として使用する酸化鉄含有物質の種類にも特に制 限がなく 、 代表的な鉄鉱石の他、 製鉄工場で排出される製鉄 · 製 鋼ダス トの如き製鉄廃材や端材、 分別回収された鉄スクラップな どを全て原料として使用する ことができ、 これらは必要によ り複 数を適宜混合物して使用することも勿論可能である。 また酸化鉄含有物質の還元に必須となる炭素質還元剤の種類も 特に制限されず、 石炭ゃコークスの如く炭素を主成分として含み 燃焼乃至熱分解により還元性の一酸化炭素を放出するものであれ ば全て使用可能である。 更に、 雰囲気調整用炭材も、 前記本発明 の目的に適合し得る限り種々の石炭ゃコークスなどを必要によ り 改質し或いは混合して非固結性炭材となし得るものであれば全て 使用可能である。
また、 還元 · 溶融の具体的な条件も格別特殊ではなく 、 例えば 前掲の米国特許第 6 , 0 3 6 , 7 4 4号、 特開平 0 9 — 2 5 6 0 1 7号、 特開平 2 0 0 0 — 1 4 4 2 2 4号、 特開平 1 1 — 1 3 1 1 1 9号などに開示されている条件を採用すればよいが、 標準的 には、 炉内温度を 1 2 0 0〜 1 5 0 0 ° (:、 より好ましく は 1 2 0 0〜 1 4 0 0 °Cの範囲に保って固相還元主体の還元を進め、 引き 続いて炉内温度を 1 4 0 0〜 1 5 0 0 °Cに高めるこ とにより、 一 部残存した酸化鉄を還元すると共に、 生成する金属鉄 (還元鉄) を溶融させて粒状に凝集させる 2段加熱方式を採用する ことが望 ましい。 こう した条件を設定することで、 粒状金属鉄を安定して 歩留り よく製造することができる。 この間の 1サイ クル当たりの 所要時間は通常 8分から 1 3分程度であり、 この様に短い時間で 酸化鉄の固相還元と溶融および凝集を完了させることができる。
しかも本発明では、 前述の如く酸化鉄の還元が行われる炉床上 に雰囲気調整用炭材を敷いておく ことで、 炉床上の還元ポテンシ ャルを常に高位に保つことができるので、 殊に加熱還元の末期あ るいは還元鉄の溶融時点で還元鉄が再酸化を受ける こともなく、 安定して高い還元効率を確保できる。 また炉床耐火物上に撒かれ た該炭材は、 還元 · 溶融によって生成する溶融金属鉄や溶融スラ グが炉床耐火物に直接接触して耐火物を劣化させる現象も防止す るので、 炉床耐火物の寿命延長にも寄与する。 こう した作用を有 効に発揮させるには、 炉床表面への雰囲気調整用炭材の敷き厚さ を 1 〜 1 0 m mの範囲とすることが望ましい。
尚、 金属鉄製造設備からは、 通常、 金属鉄と副生スラグおよび 雰囲気調整用炭材が混合状態で排出される。 これらのうち、 金属 鉄は磁力等によって回収する ことができる。 またその一部、 特に 微細な粒状物は、 再び移動炉床炉へ返送して再凝集させることに よ り、 製品として取扱いが容易で且つ酸化劣化を起こし難い粗粒 金属鉄としての収率を高める ことができるので好ましい。 また、 副生スラグと雰囲気調整用炭材は、 篩操作によって大体分離でき るが、 静電気を利用すれば、 篩では分離できない同程度あるいは 微細な粒径のものでも容易に分離できるので好ましい。 必要によ つては、 篩や磁力による分離操作と静電気を利用した分離操作を 併用することも有効である。 実施例 ,
以下、 実施例を挙げて本発明の構成および作用効果を具体的に 説明するが、 本発明はもとよ り下記実施例によって制限を受ける ものではなく 、 前 · 後記の趣旨に適合し得る範囲で適当に変更を 加えて実施することも可能であり、 それらはいずれも本発明の技 術的範囲に包含される。
実施例 1
下記表 1 に示す化学組成の炭材について、 各々単独で下記の加 熱試験に供した。 なお各炭材は粒度を 0 . 5 〜 1 . 0 m mの範囲 に調整し、 管式電気炉を用い窒素雰囲気中 1 0 0 0 °Cで 9 0秒間 加熱した後、 冷却してから外観観察することにより、 固結の有無 を調べた。 また各炭材について最高流動度を調べた。 なお最高流 動度とは、 J I S M 8 8 0 1 に規定されている値であって、 ギ 一セラ— · プラス 卜メーター ( Gieseler P 1 as t o meter) によ つて求める こ とができ、 logD D P Mによって表される値である 結果は表 1 に示す通りであ り、 最高流動度が 0 (ゼロ) である 炭材 A〜 Fは何れも固結性を示さず、 加熱処理後も粉粒状を維持 している。 これらに対し、 最高流動度が 0 を超える炭材 G〜 J は 何れも管式電気炉内で塊状に固結した。 また炭材 K, Lは、 炭材 I , J を窒素雰囲気中において 1 0 0 0 °Cで 8分間熱処理したも のであり、 該熱処理によって非固結性となることが確認された。
表 1 分析値(mass ) 加熱試験 溶融軟化性状 符号 供試炭材
灰分 固定 素 合計 /Fa 最高流動度
A 灰材 13.5 2.0 84.5 100 固結せず 0
' B 灰材 0.1 7.5 92.4 100 固結せず 0
C 灰材 17.0 5.6 77.1 100 固結せず 0
D 灰材 4.5 7.1 88.5 100 固結せず 0
E 灰材 13.6 9.4 77.0 100 固結せず 0
F 灰 16.7 16.9 66.4 100 固結せず 0
G 灰材 11.9 37.2 50.9 100 固結 0.2
H 灰材 9.8 15.9 74.3 100 0.5
I 灰 ¾ 7.4 35.4 57.2 100 固結 1.1
J 灰材 8.8 19.6 71.6 100 固結 2.6
K I の加熱処理品 固結せず
L J の加熱処理品 固結せず
また表 2は、 上記表 1 に示した炭材のうち固結性を示した炭材 に非固結性の炭材を配合し、 同様に窒素雰囲気中、 1 0 0 0 °Cで 9 0秒間加熱したときの固結性を調べた結果を示している。 この 表からも明らかな様に、 固結性を有する炭材であっても、 これに 適量の非固結性炭材を配合してやれば、 非固結性の混合炭材とす る ことができる。 その場合、 固結性炭材の最高流動度が高いもの ほど、 固結性を解消するための非固結性炭材の混合割合を多く し なければならないことが確認できる。 表 2
Figure imgf000016_0001
実施例 2
前記表 1 に示した炭材 H (粒径 3 m m以下) を雰囲気調整用炭 材として使用し、 図 1 に示すフロー図に従って回転炉床型還元溶 こより炭材装入鉄鉱石ペレッ ト (粒径 : 1 6 〜 2 0 m m ) を還元溶融して金属鉄を製造する際に、 雰囲気調整用炭材をリサ ィクル利用する実験を行った。 即ち、 回転炉床炉の原料供給部で 炉床上に雰囲気調整用炭材 (炭材 Hのフレッシュ品とリサイ クル 炭材との混合物) を約 3 〜 6 m mの厚さに敷き、 その上に原料べ レツ トを供給しつつ加熱し、 該原料ペレツ トの還元 · 溶融を行う そして、 生成した還元鉄と副生するスラグを、 炉床上に残った雰 囲気調整用炭材と共に冷却し、 接出し装置によって炉床上から排 出する。 そして排出物を磁選装置および篩いにかけて還元鉄と副 生スラグおよび残存炭材に分離し、 分離した残存炭材は回収しリ サイクル炭材として原料供給側へ返送し、 繰り返し使用する。 還 元溶融の操業条件は下記の通り とした。
[操業条件]
原料ペレツ ト : 下記成分組成の鉄鉱石原料と炭材の粉体を質量 比 7 8 : 2 2 の比率で配合し、 少量のバイ ンダーを加え造粒 · 乾 燥して得た平均粒径 1 8 m mの粒状ペレツ トを使用、
鉄鉱石原料組成 (質量%) : T . F e ; 6 8 . 1 %、
S i O 2; 1 . 4 %、 A 1 2 O 3; 0 . 5 % 操業条件 :
加熱還元ゾ一ン : 温度…約 1 3 5 0 °C、 通過時間… 1 0分、 溶融ゾーン : 温度…約 1 4 5 0 °C、 通過時間… 5分
この方法で、 フ レッ シュ炭材 H : 4 0 質量部と リサイ クル炭 材 : 6 0質量部を混合して連続操業を行ったところ、 該混合炭材 は還元溶融工程で固結する ことがなく、 搔出し装置による炉床炉 上からの排出と リサイクルを円滑に行う ことができ、 連続操業を 支障なく継続することができた。 実施例 3
他の実験として、 上記と同様の回転炉床型還元溶融装置を使用 し、 図 2 に示すフロー図に従って、 前記表 1 に示した炭材 I (固 結性) のフ レッ シュ品と、 前記炭材 F (非固結性) のフレッシュ 品、 並びに同装置で熱履歴を受けた後に回収される リサイクル炭 材を、 質量比で 2 0 : 2 0 : 6 0部の比率で混合して供給し、 同 様に連続操業を行った。 用いた原料ペレッ トおよび操業条件は、 上記実施例 1 と同じとした。
その結果、 冷却凝固した還元溶融生成物の排出位置で雰囲気調 整用炭材の固結は起こ らず、 搔出し装置による生成物の排出を円 滑に行う ことができた。 また、 排出物を磁選機および篩にかけ、 粒状の金属鉄を回収すると共に副生スラグ粒を分離すると、 残存 炭材を得ることができ、 回収された該残存炭材 (粒径 : 3 m m以 下) は非固結性炭材として支障なく繰り返し使用することができ た。
実施例 4
前記表 1 に示した符号 Fの炭材の破碎度合いを変えて、 下記表 3 に示す粒度構成の 2種の炭材を用意し、 それぞれの炭材を用い て、 前記実施例 1 と同様の加熱試験を行い、 固結の有無を比較し た。 結果は表 3 に併記する通りであ り、 同じ成分組成の炭材 Fで あっても、 その粒度構成によっては固結性が変わり、 粒径 0 . 5 〜 3 . 2 5 m mの範囲のものが 2 0質量%以上であるものは固結 を起こさないが、 同粒径範囲のものが 2 0質量%未満 (すなわち 0 . 5 m m未満の微粒物が 8 0質量%を超えるもの) では弱い固 結を生じている。 このことから、 炭材の粒度構成を適正に調整す ることも、 固結防止に有効であることが分る。 表 3
Figure imgf000019_0001
実施例 5
実験用加熱炉の耐火物ト レイ上に 、 前記表 1 に示した符号 Cの '炭材 5 0 gを敷き、 その上に、 前記実施例 1で用いたのと同じ原 料配合の乾燥ペレッ ト (粒径 9. 5〜 1 3. 2 mm) 約 1 7 0 g を 1層に並ベて装入し、 窒素雰囲気中、 炉内温度 1 4 5 0 °Cで 2 0分間加熱して還元 · 溶融を行い、 生成した粒状鉄と副生スラグ の粒度分布を調べた (実験 1, 2
また、 上記と同じ炭材 5 0 gに、 粒径 1〜 3. 3 5 mmの粒状 鉄 2 0 gとスラグ 1 gを混合したものを耐火物ト レイ上に敷いた 他は上記と全く 同様にして還元 , 溶融実験を行い、 生成した粒状 鉄と副生スラグの粒度分布を同様にして求めた (実験 3, 4 ) 。 結果を表 4に示す。
表 4
Figure imgf000020_0001
これらの実験は、 雰囲気調整用と して用いた炭材をリサイ クル する際に、 リサイ クル炭材中に混入してく る粒状鉄とスラグが、 再使用によ り どの程度回収されるかを確認するために行ったもの で、 実験 1, 2は炭材リサイクルを想定していない実験例、 実験 3, 4は炭材リサイクルを想定した実験例である。
表 4の実験 1 , 2 と実験 3, 4 を比較すれば明らかな様に、 炭 材リサイクルを想定した実験 3, 4では、 粒状鉄、 スラグ共に 1 〜 3 . 3 5 m m径の生成物の重量が、 実験 1, 2 の場合の量と炭 材中に予め混合した量の和よ り も減少し、 3 . 3 5〜 6 . 7 m m 径の生成物の量はその分増加している。 このことからも、 粒状鉄 スラグ共に炭材中に予め混合したもの (リサイクル炭材中に混入 したものに相当) が還元 · 溶融工程で凝集したことが分る。
実施例 6
図 3 に示す如く、 非固結性炭材 A ( 4 0質量部) とリサイ クル 炭材 ( 6 .0質量部) を混合して混合炭材 ( 1 0 0質量部) とし、 これを前記実施例 1 と同様にして回転炉床炉の炉床上に敷き、 そ の上に炭材内装乾燥ペレッ トを装入して還元 · 溶融を行った。 生 成物を冷却し排出してから篩にかけ、 工業的利用に適した粒径約 3 m m以上の粒状鉄と副生スラグを回収すると、 微細な粒状鉄と スラグを含む約 3 m m以下の炭材が 6 0質量部回収された。 よつ て、 この回収炭材を全量リサイクル炭材として循環使用し、 フレ ッシュ炭材 4 0質量部を追加供給すれば、 生産ライ ン全体として のバランスが保たれ、 連続操業を円滑に行う ことができる。
参考例
図 4 に従って、 乾燥ペレッ トと非固結性炭材 Aを使用し、 炭材 リサイクルを行わなかった他は同様にして還元 · 溶融を行い、 粒 径約 3 m mで粒状鉄と副生スラグおよび回収炭材に篩い分けした この場合、 炉から排出される全金属鉄のうち約 9質量%は微細粒 鉄として回収炭材中に含まれ、 この分が製品ロスとなる。 副生ス ラグも同様であ り、 炭材リサイクルを採用しない場合は、 炉から 排出される全副生スラグのうち約 7 0質量%が微細スラグと して 回収炭材と共に排出されることになり、 スラグを有価資源と して 回収する際には、 これらがそのままロスとなる。
実施例 7
,前掲の実施例 1 (図 1 ) および実施例 2 (図 2 ) における分離 操作において、 回転炉床炉から排出された金属鉄と副生スラグお よび雰囲気調整用炭材の混合物を、 図 5 に示す如く先ず磁選にか けて金属鉄を回収した。 次いで、残り の副生スラグと雰囲気調整 用炭材の混合物を摩擦帯電させてから、 正電極と負電極を備えた 静電分離装置に供給し、副生スラグ (マイナスに帯電) と雰囲気 調整用炭材 (プラスに帯電) を分離した。 分離した雰囲気調整用 炭材は、前記図 1 , 2 に示したのと同様にリサイクルして再使用 できる。
なお帯電法としては、 摩擦帯電法以外の帯電法、 たとえばィォ ン発生装置を用いた帯電法やコロナ帯電などを採用する ことも勿 論可能である。 産業上の利用可能性
本発明は以上の様に構成されており、 酸化鉄含有物質と炭素質 還元剤とを含む原料を移動炉床上で加熱し、 該原料中の酸化鉄を 還元して金属鉄を製造する際に、 炉床上に粉粒状の雰囲気調整用 炭材を敷いてから前記原料を供給するに当たり、 前記雰囲気調整 用炭材として非固結性炭材を使用する ことで、 該炭材が固結して 煎餅状に固ま り排出障害を起こすのを防止する ことによ り、 連続 操業を円滑に継続可能にすると共に、 炉床耐火物の損傷も抑えて その寿命を延長することができる。 更に加えて、 該雰囲気調整用炭材と して当該金属鉄製造設備 で回収される炭材を リサイ クルする方法を採用すれば、 該炭材 の消費量を大幅に低減できる他、 従来はそのまま廃棄されてい た回収炭材中の金属鉄や副生スラグも回収する こ とができ、 そ れらの回収率を高める ことができ、 一石二鳥以上の付加的作用 効果も享受できる。

Claims

請求の範囲
1 .酸化鉄含有物質と炭素質還元剤とを含む原料を移動炉床上 で加熱し、 該原料中の酸化鉄を還元して金属鉄を製造する方法に おいて、 炉床上に粉粒状の雰囲気調整用炭材を敷いてから前記原 料を供給するに当たり、 前記,雰囲気調整用炭材として非固結性炭 材を使用することを特徴とする金属鉄の製法。
2 . 前記雰囲気調整用炭材として、 粒径が実質的に 3 . 3 5 m m以下で、 且つ 0 . 5 〜 3 . 3 5 m mの粒度範囲のものが 2 0質 量%以上を占めると共に、 最高流動度が 0 (ゼロ) である炭材を 使用する請求項 1 に記載の製法。
3 . 前記雰囲気調整用炭材として、 '固結性炭材の熱処理物を使 用する請求項 1 または 2に記載の製法。
4 . 前記雰囲気調整用炭材として、 金属鉄製造設備で熱履歴を 受けた回収炭材を使用する請求項 1 〜 3 のいずれかに記載の製法
5 . 前記雰囲気調整用炭材として、 非固結性炭材と、 金属鉄製 造設備で熱履歴を受けた回収炭材を混合して使用する請求項 1 〜 4のいずれかに記載の製法。
6 . 前記雰囲気調整用炭材として、 固結性炭材に非固結性炭材 を配合し非固結性とした混合炭材を使用する請求項 1 または 2 に 記載の製法。
7 . 前記固結性炭材としてフレッシュ炭材を使用し、 非固結性 炭材としては熱処理された炭材を使用する請求項 6 に記載の製法
8 . 前記熱処理された炭材として、 金属鉄製造設備で熱履歴を 受けた回収炭材を使用する請求項. 7 に記載の製法。
9 . 前記固結性炭材と非固結性炭材の配合比率を、 前者 5 0 〜 1 0質量%に対し、 後者 5 0 〜 9 0質量%とする請求項 5 〜 8 の いずれかに記載の製法。
1 0 . 移動炉床炉から排出される金属鉄の一部を再び移動炉床 炉へ戻す請求項 1 〜 9 のいずれかに記載の製法。
1 1 . 前記炭材の回収に静電気を利用する請求項 4, 5 , 8 の いずれかに記載の製法。
PCT/JP2002/011085 2001-11-12 2002-10-25 Procede de production de fer metallique WO2003042415A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA 2462669 CA2462669C (en) 2001-11-12 2002-10-25 Method of producing metallic iron
EP02770270A EP1445336B1 (en) 2001-11-12 2002-10-25 Method for producing metallic iron
KR20047007144A KR100660667B1 (ko) 2001-11-12 2002-10-25 금속철의 제조법
US10/493,313 US7384450B2 (en) 2001-11-12 2002-10-25 Method for producing metallic iron
AU2002336310A AU2002336310B2 (en) 2001-11-12 2002-10-25 Method for producing metallic iron
DE2002624080 DE60224080T2 (de) 2001-11-12 2002-10-25 Verfahren zur herstellung von metallischem eisen

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2001/346675 2001-11-12
JP2001346675 2001-11-12
JP2002/243385 2002-08-23
JP2002243385A JP4256645B2 (ja) 2001-11-12 2002-08-23 金属鉄の製法

Publications (1)

Publication Number Publication Date
WO2003042415A1 true WO2003042415A1 (fr) 2003-05-22

Family

ID=26624490

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/011085 WO2003042415A1 (fr) 2001-11-12 2002-10-25 Procede de production de fer metallique

Country Status (13)

Country Link
US (1) US7384450B2 (ja)
EP (1) EP1445336B1 (ja)
JP (1) JP4256645B2 (ja)
KR (1) KR100660667B1 (ja)
CN (1) CN100491544C (ja)
AT (1) ATE380886T1 (ja)
AU (1) AU2002336310B2 (ja)
CA (1) CA2462669C (ja)
DE (1) DE60224080T2 (ja)
ES (1) ES2297001T3 (ja)
RU (1) RU2278167C2 (ja)
TW (1) TW562863B (ja)
WO (1) WO2003042415A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI282818B (en) * 2003-01-16 2007-06-21 Kobe Steel Ltd A rotary hearth furnace and iron production method thereby
JP4214157B2 (ja) 2006-04-25 2009-01-28 株式会社神戸製鋼所 溶鉄製造方法および溶鉄製造装置
JP4893347B2 (ja) * 2007-02-02 2012-03-07 Jfeスチール株式会社 移動型炉床炉の操業方法
US20110018179A1 (en) 2009-06-29 2011-01-27 Bairong Li Metal reduction processes, metallurgical processes and products and apparatus
JP2011042870A (ja) * 2009-07-21 2011-03-03 Kobe Steel Ltd アルカリ含有製鉄ダストを原料とする還元鉄の製造装置および製造方法
JP5406803B2 (ja) * 2010-08-09 2014-02-05 株式会社神戸製鋼所 粒状金属鉄の製造装置、および粒状金属鉄の製造方法
RU2529435C1 (ru) * 2010-08-30 2014-09-27 Кабусики Кайся Кобе Сейко Се Способ получения гранулированного металлического железа
RU2497953C2 (ru) * 2011-12-07 2013-11-10 Владимир Евгеньевич Черных Способ получения гранулированного металлического железа
JP2014167164A (ja) * 2013-02-01 2014-09-11 Kobe Steel Ltd 還元鉄の製造方法
JP6623118B2 (ja) * 2016-05-20 2019-12-18 株式会社神戸製鋼所 還元鉄の製造方法
CN107354257A (zh) * 2017-07-10 2017-11-17 中冶南方工程技术有限公司 一种金属铁的生产方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999016913A1 (fr) * 1997-09-30 1999-04-08 Kawasaki Steel Corporation Four a sole mobile pour la reduction d'oxydes, et son procede de fonctionnement
JP2000109912A (ja) * 1998-09-30 2000-04-18 Mitsubishi Heavy Ind Ltd 回転床式還元炉による湿潤ペレットの還元方法および回転床式還元炉
JP2002302710A (ja) * 2000-10-27 2002-10-18 Nippon Steel Corp 回転床炉の操業方法、回転炉床上への塊成物の敷設方法および原料資材供給設備

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3333951A (en) * 1965-06-14 1967-08-01 Mcdowell Wellman Eng Co Metallized pellets
US4341598A (en) * 1979-08-14 1982-07-27 Occidental Research Corporation Fluidized coal pyrolysis apparatus
US5186741A (en) * 1991-04-12 1993-02-16 Zia Patent Company Direct reduction process in a rotary hearth furnace
US5575824A (en) * 1995-01-03 1996-11-19 Brown; Charles K. Coal preparation device
JP3296974B2 (ja) 1996-08-15 2002-07-02 株式会社神戸製鋼所 直接還元法及び回転床炉
JPH10195513A (ja) 1996-12-27 1998-07-28 Kobe Steel Ltd 金属鉄の製法
US6149709A (en) 1997-09-01 2000-11-21 Kabushiki Kaisha Kobe Seiko Sho Method of making iron and steel
CA2251339A1 (en) 1997-10-30 1999-04-30 Hidetoshi Tanaka Method of producing iron oxide pellets
TW495552B (en) 1997-12-18 2002-07-21 Kobe Steel Ltd Method of producing reduced iron pellets
JP3081581B2 (ja) 1998-03-23 2000-08-28 株式会社神戸製鋼所 高金属化率還元鉄塊成物の製造方法
EP0952230A1 (en) 1998-03-24 1999-10-27 KABUSHIKI KAISHA KOBE SEIKO SHO also known as Kobe Steel Ltd. Method of producing reduced iron agglomerates
JP2997459B1 (ja) 1998-11-04 2000-01-11 株式会社神戸製鋼所 還元鉄塊成物の製造方法
JP3817969B2 (ja) 1998-05-27 2006-09-06 Jfeスチール株式会社 還元金属の製造方法
JP4069493B2 (ja) 1998-05-27 2008-04-02 Jfeスチール株式会社 還元鉄の製造方法
TW502066B (en) 1998-08-27 2002-09-11 Kobe Steel Ltd Method for operating moving hearth reducing furnace
US6413295B2 (en) * 1998-11-12 2002-07-02 Midrex International B.V. Rotterdam, Zurich Branch Iron production method of operation in a rotary hearth furnace and improved furnace apparatus
JP3004265B1 (ja) 1998-11-24 2000-01-31 株式会社神戸製鋼所 炭材内装ペレット及び還元鉄製造方法
JP3404309B2 (ja) 1999-01-18 2003-05-06 株式会社神戸製鋼所 還元鉄塊成物の製造方法および製造装置
JP3009661B1 (ja) 1999-01-20 2000-02-14 株式会社神戸製鋼所 還元鉄ペレットの製造方法
US6126718A (en) * 1999-02-03 2000-10-03 Kawasaki Steel Corporation Method of producing a reduced metal, and traveling hearth furnace for producing same
CN1219891C (zh) 1999-05-06 2005-09-21 株式会社神户制钢所 直接还原法及回转炉床炉
CN1306045C (zh) 1999-08-30 2007-03-21 株式会社神户制钢所 粒状还原铁原料的供给方法及其装置
CN100554448C (zh) 1999-10-15 2009-10-28 株式会社神户制钢所 还原金属制造设备以及还原金属的制造方法
JP2001279313A (ja) 2000-03-30 2001-10-10 Midrex Internatl Bv 溶融金属鉄の製法
JP3844941B2 (ja) 2000-03-30 2006-11-15 株式会社神戸製鋼所 調温装置および高温排ガスの調温方法
EP1764420B1 (en) 2000-03-30 2011-02-16 Kabushiki Kaisha Kobe Seiko Sho Method of producing metallic iron in a moving hearth type smelt reduction furnace
JP2001288504A (ja) 2000-03-31 2001-10-19 Midrex Internatl Bv 溶融金属鉄の製造方法
TW562860B (en) 2000-04-10 2003-11-21 Kobe Steel Ltd Method for producing reduced iron
JP4287572B2 (ja) 2000-04-26 2009-07-01 株式会社神戸製鋼所 回転式炉床炉
TW539829B (en) 2000-05-19 2003-07-01 Kobe Strrl Ltd Processing method for high-temperature exhaust gas
JP4757982B2 (ja) 2000-06-28 2011-08-24 株式会社神戸製鋼所 粒状金属鉄の歩留まり向上方法
JP3866492B2 (ja) 2000-06-29 2007-01-10 株式会社神戸製鋼所 回転炉床式還元炉の操業方法
EP1178276A3 (en) 2000-07-31 2002-02-20 Kabushiki Kaisha Kobe Seiko Sho Discharge apparatus for movable hearth type heat-treatment furnace, its operation method, and method and apparatus for manufacturing molten iron using the same
JP4330257B2 (ja) 2000-08-09 2009-09-16 株式会社神戸製鋼所 金属鉄の製法
JP3553873B2 (ja) 2000-12-07 2004-08-11 株式会社神戸製鋼所 還元金属製造用回転式炉床炉及び還元金属の製造方法
US6648942B2 (en) * 2001-01-26 2003-11-18 Midrex International B.V. Rotterdam, Zurich Branch Method of direct iron-making / steel-making via gas or coal-based direct reduction and apparatus
JP4139581B2 (ja) 2001-07-23 2008-08-27 株式会社神戸製鋼所 還元炉の操業方法
JP2003041310A (ja) 2001-07-27 2003-02-13 Kobe Steel Ltd 溶融金属の製造方法
US6689182B2 (en) 2001-10-01 2004-02-10 Kobe Steel, Ltd. Method and device for producing molten iron
JP3679084B2 (ja) 2002-10-09 2005-08-03 株式会社神戸製鋼所 溶融金属製造用原料の製造方法および溶融金属の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999016913A1 (fr) * 1997-09-30 1999-04-08 Kawasaki Steel Corporation Four a sole mobile pour la reduction d'oxydes, et son procede de fonctionnement
JP2000109912A (ja) * 1998-09-30 2000-04-18 Mitsubishi Heavy Ind Ltd 回転床式還元炉による湿潤ペレットの還元方法および回転床式還元炉
JP2002302710A (ja) * 2000-10-27 2002-10-18 Nippon Steel Corp 回転床炉の操業方法、回転炉床上への塊成物の敷設方法および原料資材供給設備

Also Published As

Publication number Publication date
AU2002336310B2 (en) 2009-04-23
EP1445336A1 (en) 2004-08-11
RU2004117890A (ru) 2005-03-27
US7384450B2 (en) 2008-06-10
RU2278167C2 (ru) 2006-06-20
EP1445336A4 (en) 2004-12-15
ES2297001T3 (es) 2008-05-01
CA2462669C (en) 2009-08-18
EP1445336B1 (en) 2007-12-12
KR20040058274A (ko) 2004-07-03
DE60224080T2 (de) 2008-11-27
US20050087039A1 (en) 2005-04-28
TW562863B (en) 2003-11-21
DE60224080D1 (de) 2008-01-24
JP2003213312A (ja) 2003-07-30
CA2462669A1 (en) 2003-05-22
JP4256645B2 (ja) 2009-04-22
TW200300174A (en) 2003-05-16
CN100491544C (zh) 2009-05-27
CN1585826A (zh) 2005-02-23
ATE380886T1 (de) 2007-12-15
KR100660667B1 (ko) 2006-12-21

Similar Documents

Publication Publication Date Title
KR100576397B1 (ko) 입상 금속의 제조 방법
US5972066A (en) Mixed bed iron reduction process
TWI412602B (zh) The manufacturing method of the agglomerate, the manufacturing method of the reduced metal, and the separation method of zinc or lead
WO2004090175A1 (ja) 冶金用改質炭の製造方法、ならびに冶金用改質炭を用いた還元金属および酸化非鉄金属含有スラグの製造方法
WO2003042415A1 (fr) Procede de production de fer metallique
KR101234388B1 (ko) 환원철의 제조 방법
JP2007231418A (ja) 還元金属の製造方法
CN106661667B (zh) 镍氧化矿的冶炼方法、颗粒的装入方法
JPH11152511A (ja) 製鋼炉ダストの処理方法及びダストペレット
JPH06330198A (ja) ダスト中の亜鉛の回収方法
JP2009041107A (ja) 粒状金属の製法
JPH1112619A (ja) 還元鉄の製造方法
WO2020059630A1 (ja) 酸化鉱石の製錬方法
JP4893347B2 (ja) 移動型炉床炉の操業方法
JPS61207526A (ja) 還元性にすぐれた製鉄原料の製造法
JP2014167164A (ja) 還元鉄の製造方法
JPH02111840A (ja) 酸化ニッケル鉱石の処理方法
JPH0364571B2 (ja)
JPH09310128A (ja) 含油スラッジの処理方法
JPH01156433A (ja) 酸化ニッケル鉱石の処理方法
JP3856943B2 (ja) 還元鉄の製造方法
JP4779675B2 (ja) 還元金属の製造方法
EP1017858A1 (en) Mixed bed iron reduction process
WO2003018849A1 (fr) Creuset de four a sole mobile
JP2007231419A (ja) 還元金属の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2462669

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2002770270

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10493313

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 20028223055

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020047007144

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2002336310

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 2002770270

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2002770270

Country of ref document: EP