WO2003040549A1 - Pompe a injection et dispositif d'alimentation en carburant dme de moteur diesel dote de la pompe a injection - Google Patents

Pompe a injection et dispositif d'alimentation en carburant dme de moteur diesel dote de la pompe a injection Download PDF

Info

Publication number
WO2003040549A1
WO2003040549A1 PCT/JP2002/011657 JP0211657W WO03040549A1 WO 2003040549 A1 WO2003040549 A1 WO 2003040549A1 JP 0211657 W JP0211657 W JP 0211657W WO 03040549 A1 WO03040549 A1 WO 03040549A1
Authority
WO
WIPO (PCT)
Prior art keywords
injection
fuel
dme fuel
plunger
delivery valve
Prior art date
Application number
PCT/JP2002/011657
Other languages
English (en)
French (fr)
Inventor
Toshifumi Noda
Shinya Nozaki
Daijo Ushiyama
Yukihiro Hayasaka
Original Assignee
Bosch Automotive Systems Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bosch Automotive Systems Corporation filed Critical Bosch Automotive Systems Corporation
Priority to US10/495,057 priority Critical patent/US6955156B2/en
Priority to EP02775510A priority patent/EP1457666A1/en
Publication of WO2003040549A1 publication Critical patent/WO2003040549A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/44Details, components parts, or accessories not provided for in, or of interest apart from, the apparatus of groups F02M59/02 - F02M59/42; Pumps having transducers, e.g. to measure displacement of pump rack or piston
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/24Varying fuel delivery in quantity or timing with constant-length-stroke pistons having variable effective portion of stroke
    • F02M59/26Varying fuel delivery in quantity or timing with constant-length-stroke pistons having variable effective portion of stroke caused by movements of pistons relative to their cylinders
    • F02M59/265Varying fuel delivery in quantity or timing with constant-length-stroke pistons having variable effective portion of stroke caused by movements of pistons relative to their cylinders characterised by the arrangement or form of spill port of spill contour on the piston
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M53/00Fuel-injection apparatus characterised by having heating, cooling or thermally-insulating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M55/00Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M55/00Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
    • F02M55/002Arrangement of leakage or drain conduits in or from injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M55/00Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
    • F02M55/007Venting means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/02Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type
    • F02M59/10Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type characterised by the piston-drive
    • F02M59/102Mechanical drive, e.g. tappets or cams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/36Varying fuel delivery in quantity or timing by variably-timed valves controlling fuel passages to pumping elements or overflow passages
    • F02M59/366Valves being actuated electrically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/44Details, components parts, or accessories not provided for in, or of interest apart from, the apparatus of groups F02M59/02 - F02M59/42; Pumps having transducers, e.g. to measure displacement of pump rack or piston
    • F02M59/46Valves
    • F02M59/462Delivery valves

Definitions

  • the present invention relates to an injection pump of a DME fuel supply device of a diesel engine, and a diesel fuel supply device of a diesel engine provided with the injection pump.
  • DME fuel is a liquefied gas fuel unlike light oil, which is the conventional fuel.
  • DME has the property of being gaseous at room temperature
  • gas oil has a lower boiling point than gas oil and is liquid at room temperature under atmospheric pressure. Therefore, when using DME fuel in a conventional diesel engine, if the supply pressure to the injection pump is low, the DME fuel will vaporize. Therefore, in order to supply liquid DME fuel to the injection pump, the supply pressure to the injection pump must be higher than that for light oil fuel.
  • the high supply pressure to the injection pump causes the plunger barrel of the injection pump to deliver DME fuel to the fuel injection nozzle of the engine.
  • the amount of fuel leaking from the gap between the plunger and the cam chamber of the injection pump is greater than when gas oil fuel is used.
  • the problem of swelling occurs.
  • DME has a lower viscosity than light oil, so it easily leaks from gaps, and the amount increases. DME fuel leaking from the gap between the plunger barrel and the plunger flows into the cam chamber of the injection pump and is vaporized, and the vaporized DME fuel may enter the engine crank chamber and catch fire.
  • the DME fuel remaining in the injection system after the engine is stopped leaks from the nozzle seat of the fuel injection nozzle into the engine cylinder and vaporizes, and the cylinder is filled with the vaporized DME fuel.
  • abnormal combustion such as knocking may occur, and the engine may not start normally, causing large vibration and noise.
  • DME fuel supply device that reduces the gap between the plunger barrel and the plunger and reduces the amount of DME fuel that leaks into the cam chamber of the injection pump. It is disclosed in Japanese Patent Application Publication No. 10-28010. However, the above-described prior art merely reduces the amount of DME fuel leakage, and does not solve the problem caused by the leaked DME fuel.
  • the cam chamber of the injection pump of the DME fuel supply device and the crankcase of the engine are separated, and DME fuel that leaks into the cam chamber of the injection pump from the gap between the plunger barrel and the plunger, and DME fuel remaining in the injection system after the engine stops, is collected in a tank by an electric compressor or the like.
  • the supply device is known.
  • the cam chamber of the engine pump for the DME fuel supply device and the crank chamber of the engine are separated from each other, and the cam chamber of the induction pump is provided through the gap between the plunger barrel and the plunger. Since the leaked DME fuel is collected in the fuel tank by an electric compressor or the like, it is possible to prevent the vaporized DME fuel from entering the engine crankcase. In addition, since the DME fuel remaining in the injection system after the engine stops is collected by the electric compressor in the evening, the DME fuel remaining in the injection system after the engine stops may cause knocking, etc. when starting the engine. It is possible to prevent abnormal combustion from occurring.
  • the present invention has been made in view of such a situation, and an object of the present invention is to provide a diesel engine capable of recovering DME fuel remaining between an injection pump element and a fuel injection nozzle after an engine stop. It is to provide an engine DME fuel supply system. Disclosure of the invention
  • a first aspect of the present invention provides a feed pump which pressurizes DME fuel in a fuel tank to a predetermined pressure and sends it to a feed pipe, and the rotation of a drive shaft of a diesel engine is transmitted.
  • the DME fuel in the oil reservoir, through which the DME fuel delivered through the feed pipe flows, is supplied to a predetermined tie by a delivery valve that can be opened and closed by a vertical movement of a plunger engaged with the rotating cam shaft.
  • An injection pump having an injection pump element for delivering to an injection pipe communicating with a fuel injection nozzle of a diesel engine; the DME fuel overflowing from the fuel injection nozzle; and the injection pump An overflow fuel pipe for returning the DME fuel overflowed from the fuel tank to the fuel tank; and the DME fuel remaining in the oil reservoir and the overflow fuel pipe after the diesel engine is stopped.
  • the DME fuel supply device of the diesel engine further comprising: a residual fuel recovery means capable of recovering the fuel into the fuel tank, wherein the delivery valve is opened and closed by a cam of the power shaft.
  • the injection pump element includes an injection state switching unit that switches between a non-injection state in which the delivery valve does not open and close even when the injection valve is moved.
  • the injection pipe is connected to the oil reservoir even when the delivery valve is closed in a state where the injection state is switched to the non-injection state by the injection state switching means.
  • the DME fuel in the oil reservoir is recovered by the residual fuel recovery means, the DME fuel remaining in the injection pipe can be recovered.
  • the residual fuel in the oil reservoir is recovered by the residual fuel recovery means after the engine is stopped, the residual fuel remains in the injection pipe.
  • DME fuel can be recovered.
  • DME fuel remaining between the element and the fuel injection nozzle can be recovered, and abnormal combustion such as knocking described above causes the engine not to start normally and generates large vibrations and noise. This has the effect of being able to prevent this.
  • the injection pump element is configured such that the plunger having a substantially cylindrical shape is rotated in the circumferential direction in the plunger barrel by the injection state switching means.
  • the injection amount of the DME fuel changes according to the rotation position, and the injection position is zero at the rotation position of the plunger where the injection amount becomes zero, and the injection pipe and the oil
  • An injection pump comprising a purge passage communicating with a storage chamber.
  • the injection pump according to the second aspect of the present invention has a configuration in which the plunger is rotated in the circumferential direction by the injection state switching means, and the injection amount of the DME fuel changes according to the rotational position.
  • the injection state becomes non-injection state, and the purge passage that connects the injection pipe and the oil reservoir is formed, thereby achieving the operation and effect according to the first aspect of the present invention. Can be obtained.
  • the injection pump element is a delivery valve holder having a delivery valve installation hole communicating with the injection pipe; and the delivery valve.
  • the delivery valve which is reciprocally mounted in the installation hole, and the delivery valve holder, wherein the injection valve is disposed integrally with the delivery valve holder, and the delivery valve is abutted against the delivery valve.
  • a delivery valve seat having a valve seat portion in which communication between a pipe and the oil reservoir is closed to close the valve, and urging the delivery valve to the delivery valve sheet
  • the plunger moves from the valve-closed state to the cam.
  • the communication between the hydraulic chamber and the oil reservoir is interrupted, and the DME fuel in the hydraulic chamber pushes up the delivery valve to be in a valved state, and the delivery valve is opened from the delivery valve.
  • the DME fuel in the hydraulic chamber is pumped to the injection pipe, and the hydraulic chamber and the oil sump are formed through a cutout formed in the outer peripheral surface of the plunger.
  • the delivery valve is closed by the urging force of the delivery spring, and the delivery valve is formed on the outer peripheral surface of the plunger in the non-injection state.
  • the injection state switching means rotates the plunger in the circumferential direction so that the purge groove and the purge port formed on the inner peripheral surface of the plunger barrel communicate with each other.
  • It is an injection pump characterized by the following.
  • the plunger is rotated in the circumferential direction by the injection state switching means until the purge position formed on the outer peripheral surface of the plunger communicates with the purge port formed on the inner peripheral surface of the plunger barrel.
  • the injection state is set to the non-injection state, so the injection state is established through the purge passage that connects the injection pipe formed in the delivery valve seat to the purge port.
  • Index pipe and oil sump When the engine is stopped, the residual fuel recovery means recovers the DME fuel in the oil reservoir and collects the DME fuel remaining in the injection pipe. it can.
  • the plunger is rotated in the circumferential direction by the injection state switching means, and the purge groove formed on the outer peripheral surface of the plunger;
  • the injection state is changed to the non-injection state at the time of rotation to the rotation position where the purge port formed on the inner peripheral surface of the barrel communicates with the purge port. The operation and effect can be obtained.
  • the injection pump is provided with the cam shaft, and the cam chamber in which lubricating oil is stored includes the diesel engine.
  • the cam chamber is driven by an oil separator that separates the DME fuel from the lubricating oil mixed with the DME fuel and a cam of the cam shaft.
  • a compressor that pressurizes the separated DME fuel and sends the pressurized DME fuel to the fuel tank.
  • the cam chamber is a dedicated lubrication system separated from the diesel engine lubrication system, so the DME leaked into the cam chamber from the gap between the plunger and the plunger barrel of the injection pump element There is no danger of fuel entering the lubrication system of the diesel engine.
  • the oil separator installed in the cam chamber separates the DME fuel from the lubricating oil mixed with the DME fuel, and the separated DME fuel is sent out to the fuel tank by the compressor. It is possible to prevent a decrease in lubricating performance of the lubricating oil due to the mixing of water.
  • the compressor since the compressor is driven by a cam in the power chamber, the compressor of an electric motor Does not require a driving source for driving.
  • the plunger of the injection pump element is provided.
  • the DME fuel that has leaked into the cam chamber through the gap between the DME fuel and the plunger barrel has no risk of entering the lubrication system of the diesel engine.
  • the lubrication performance of the lubricating oil can be prevented from deteriorating due to the incorporation of DME fuel
  • the performance of the induction pump can be prevented from deteriorating due to the deteriorating lubrication performance of the lubricating oil. Since a drive source for driving a compressor such as the above is not required, an operation effect that a more power-saving induction pump can be obtained is obtained.
  • the injection state switching means is reciprocally movable so as to engage with the plunger and rotate the plunger in a circumferential direction.
  • a control rack provided therein; and a governor having a high-speed control means for returning the rack position of the control rack in the fuel decreasing direction so that the rotational speed of the diesel engine does not exceed the maximum permissible rotational speed.
  • the control rack is a purge rack located outside the moving range of the control rack between a full rack position in the high speed control means of the governor and a non-injection rack position where the injection state is switched to the non-injection state.
  • a position is set, and the governor is provided by the residual fuel recovery means, after the diesel engine is stopped, in the oil reservoir, and The DME fuel remaining in the overflow fuel pipe when recovering to the fuel tank, the controls rack T JP02 / 11657
  • the rack position is moved to the purge rack position, and the injection pump element is configured to perform the non-injection with the purge passage configured only when the control rack is at the purge rack position. And an injection pump.
  • the purge rack position is set in the rack position range of the control rack where the injection pump element is in the non-injection state, and the rack position of the control rack controlled by the governor is set to the purge position.
  • the purge passage for the injection pump element is configured only when it is at the one-zirak position.
  • the residual fuel / fuel recovery means moves the control port rack to the page rack position by a governor when recovering the DME fuel remaining in the oil storage chamber or the like after stopping the diesel engine. Therefore, the purge passage of the injection pump element can be configured only when the DME fuel remaining in the oil reservoir etc. is recovered after the diesel engine stops, so the diesel engine such as the idling stop can be stopped. If the DME fuel remaining in the oil storage chamber or the like is not recovered later in the non-injection state, the purge passage can be configured without the injection state.
  • the operation pump of the fifth aspect of the present invention in addition to the operation and effect of any one of the first to fourth aspects, after stopping the diesel engine, When the DME fuel remaining in the oil storage chamber or the like is not recovered in the injection state, the operation and effect can be obtained in that the purge passage can be prevented from being configured in the non-injection state.
  • the purge rack position is set within a movement range of the control rack on a non-injection state side from the non-injection rack position.
  • This is an injection pump characterized by
  • the purge rack position is a movement range of the control rack closer to the non-injection state than the non-injection rack position. Since it is set within the range, there is an operational effect that the possibility that the purge passage is formed in the injection state can be eliminated.
  • a DME fuel supply device for a diesel engine including the injection pump according to any one of the first to sixth aspects.
  • the DME fuel supply device for a diesel engine according to the seventh aspect of the present invention, in the DME fuel supply device for a diesel engine, the operation according to any one of the first to sixth aspects of the present invention described above. The effect can be obtained.
  • the residual fuel recovery means is provided by a feed pump provided between the feed pipe and the overflow fuel pipe.
  • the DME fuel discharged from the DME fuel is returned to the fuel tank as it is, and the DME fuel remaining in the oil reservoir and in the overflow fuel pipe is sucked into the DME fuel flowing back.
  • the feed pump is used as a drive source without newly providing a residual fuel recovery pump or the like. This has the effect of being able to recover the DME fuel that has been stored in the fuel tank.
  • the feed pump is disposed near the delivery port of the DME fuel in the fuel tank, and the delivery port is provided with the fuel A DME fuel supply device for a diesel engine, which is located below a liquid level of the DME fuel in a tank.
  • the fuel in the fuel tank is sucked by a feed pump provided in the injection pump.
  • DME fuel has the property of evaporating into gas at normal temperature and atmospheric pressure, so the DME fuel in the fuel tank is fed by the feed pump on the injection pump side. If sucked, the pressure in the fuel tank will decrease and the DME fuel may evaporate.
  • the DME fuel outlet of the fuel tank is provided below the level of the DME fuel in the fuel tank, and the feed pump is arranged near the DME fuel outlet of the fuel tank, and the DME fuel is discharged.
  • the DME fuel in the fuel tank is infused with the engine.
  • the pressure drop in the fuel tank can be reduced at the time of delivery to the injection pump, so that the DME fuel in the fuel tank evaporates due to the pressure drop in the fuel tank.
  • the operation and effect of reducing the risk of occurrence can be obtained.
  • FIG. 1 is a system configuration diagram showing a schematic configuration of a DME fuel supply device for a diesel engine according to a preferred embodiment of the present invention.
  • FIG. 2 is a perspective view of a main part showing the vicinity of an injection pump element of an injection pump according to a preferred embodiment of the present invention.
  • FIG. 3 is an enlarged perspective view showing a part of a plunger provided in a plunger barrel of the injection pump element.
  • FIG. 4 is a main part front view showing a cross section of the injection pump element, showing a suction process in a state of injection.
  • FIG. 5 is a front view of a main part showing a cross section of the injection pump element, and shows a start of injection in an injection step in an injection state.
  • FIG. 1 is a system configuration diagram showing a schematic configuration of a DME fuel supply device for a diesel engine according to a preferred embodiment of the present invention.
  • FIG. 2 is a perspective view of a main part showing the vicinity of an injection pump element of an injection pump
  • FIG. 6 is a main part front view showing a cross section of the injection pump element, showing the end of injection in an injection step in an injection state.
  • FIG. 7 is a front view of an essential part showing a cross section of the injection pump element, showing a non-injection state (when the diesel engine is stopped).
  • FIG. 8 is a front view showing a cross section of the injection pump element.
  • Fig. 9 is a plan view of the injection pump element shown in Fig. 8, taken along X-X section.
  • Fig. 9 (a) shows the injection state
  • Fig. 9 (b) shows the non-injection state. It is what it showed.
  • FIG. 10 shows a governor diagram and a plunger effective stroke diagram for the governor rack position in the injection pump according to the preferred embodiment of the present invention. a) is the plunger effective stroke diagram, and Fig. 10 (b) is the governor diagram.
  • FIG. 1 is a system configuration diagram showing a schematic configuration of a DME fuel supply device for a diesel engine according to the present invention.
  • DME fuel is supplied to the diesel engine 200; the DME fuel supply device 100 includes the injection pump 1 according to the present invention.
  • the injection pump 1 includes the same number of injection pump elements 2 as the number of the cylinders 31 included in the diesel engine 200.
  • the feed pump 5 pressurizes the DME fuel stored in the fuel tank 4 to a predetermined pressure and sends it to a feed pipe 52.
  • the DME fuel outlet of the fuel tank 4 is provided below the level of the DME fuel in the fuel tank 4, and the feed pump 5 is installed near the DME fuel outlet of the fuel tank 4. I have.
  • the DME fuel sent to the feed pipe 52 is filtered at the filter 51 and sent to the syringe: pump 1 via the three-way solenoid valve 71.
  • the three-way solenoid valve 71 is in the ON state in the injection state (during operation of the diesel engine 200) and communicates in the direction of the arrow indicated by the symbol A.
  • the DME fuel outlet of the fuel tank 4 is provided below the level of the DME fuel in the fuel tank 4, and the feed pump 5 is disposed near the DME fuel outlet of the fuel tank 4. Then, the configuration is such that the DME fuel is sent to the inching work pump 1, so that a decrease in the pressure in the fuel tank 4 can be reduced. Thus, the risk that the DME fuel in the fuel tank 4 is vaporized due to a decrease in the pressure in the fuel tank 4 can be reduced.
  • the cam chamber (not shown) in the injection pump 1 is a dedicated lubrication system separated from the diesel engine 200 lubrication system, and the oil chamber 6 is a cam chamber in the injection pump 1.
  • the lubricating oil in the cam chamber containing the DME fuel leaked into the cam chamber is separated into DME fuel and lubricating oil, and the lubricating oil is returned to the cam chamber.
  • the DME fuel separated in the oil separator 6 is sent to the compressor 61 driven by the cam in the cam chamber via the check valve 62 that prevents the pressure in the cam chamber from dropping below the atmospheric pressure. After being pressurized at 61, it is returned to the fuel tank 4 via the check valve 63 and the cooler 41.
  • the check valve 63 is provided to prevent the DME fuel from flowing back from the fuel tank 4 to the cam chamber when the diesel engine 200 is stopped.
  • the cam chamber of the injection pump 1 is a dedicated lubrication system separated from the lubrication system of the diesel engine 200, the DME leaked from the injection pump element 2 into the cam chamber. There is no danger of fuel entering the diesel engine's lubrication system. As a result, it is possible to eliminate the risk that the DME fuel that has entered the lubrication system of the diesel engine 200 is vaporized, and that the vaporized DME fuel enters the engine crankcase and ignites.
  • the oil separator 6 arranged in the cam chamber separates the DME fuel from the lubricating oil mixed with the DME fuel, and the separated DME fuel is sent out to the fuel tank 4 by the compressor 16 1. It is possible to prevent the lubrication performance of the lubricating oil from deteriorating due to the incorporation of DME fuel. Thus, it is possible to prevent the performance of the injection pump 1 from being deteriorated due to a decrease in the lubricating performance of the lubricating oil.
  • the DME fuel pressurized from the fuel tank 4 to a predetermined pressure by the feed pump 5 and sent out from each injection pump element 2 of the injection pump 1 via the injection pipe 3 at a predetermined timing.
  • the amount is pumped to the fuel injection nozzle 32 provided in each cylinder 31 of the diesel engine 200.
  • the DME fuel that overflows from each fuel injection nozzle 32 passes through the overflow fuel pipe 9, passes through the check valve 91 that determines the pressure of the overflow fuel, and the cooler 41.
  • the DME fuel supply device 100 remains in the oil sump (not shown) in the injection pump 1, the overflow fuel pipe 8, and the overflow fuel pipe 9.
  • the gas turbine 7, a three-way solenoid valve 71, and a two-way solenoid valve 72 are provided.
  • the aspirator 7 has an inlet 7a, an outlet 7b, and an inlet 7c.
  • the inlet 7a and the outlet 7b are in straight communication with each other, and the inlet 7c is branched in a substantially vertical direction from the communication path between the inlet 7a and the outlet 7b.
  • the outlet side of the communication passage (the direction of communication indicated by the arrow B) communicating with the three-way solenoid valve 71 when it is at 0FF is connected to the inlet 7a, and is connected to the fuel tank 4 via the cooler 41. Exit 7b is connected to the path of.
  • the suction port 7c is connected to the two-way solenoid valve 72 which is in the OFF state when in the injection state (during operation of the diesel engine 200).
  • the valve 71 is turned off to form a communication passage in the direction indicated by the arrow B, and the two-way solenoid valve 72 is set to 0 N to allow the overflow fuel pipe 8 and the overflow fuel to flow.
  • the fuel returns to the fuel tank 4 via the feed pump 5 and is sent out again to the gas pump 7 from the feed pump 5. In other words, the DME fuel liquid is circulated through the aspirator 7.
  • the DME fuel remaining in the oil reservoir, the overflow fuel pipe 8, and the overflow fuel pipe 9 in the injection pump 1 is suctioned by the flow of the DME fuel liquid flowing through the inlet 7a and the outlet 7b.
  • the fuel is sucked from the port 7 c and collected in the fuel tank 4.
  • the residual fuel recovery means uses the feed pump 5 as a drive source and aspirator 7 to suck the DME fuel in the oil reservoir, the overflow fuel pipe 8 and the overflow fuel pipe 9 to draw the fuel. Since it is configured to recover to fuel tank 4, there is no need to install a new pump for recovering residual fuel.
  • FIG. 2 is a perspective view of a main part showing the vicinity of the injection pump element 2 of the injection pump 1 according to the present invention.
  • the delivery valve holder 21 has a shape having a delivery valve installation hole 211 and is fixed to the base of the injection pump 1.
  • An injection pipe 3 is connected to a fuel liquid outlet 2 12 communicating with the delivery valve insertion hole 2 1 1.
  • Delivery knob installation hole 2 1 1 Is provided with a delivery valve 23 so as to be able to reciprocate.
  • the delivery valve 23 is provided with a delivery spring 22 and a delivery valve sheet 2 provided integrally with the delivery valve 21
  • the valve section 2 31 is urged against the valve seat section 24 a of FIG.
  • the plunger barrel 25 has a hydraulic chamber 25 a that is provided integrally with the delino revalp sheet 24 and communicates with the delivery valve 24.
  • a plunger 26 is provided so as to be able to reciprocate, and one end of the plunger 26 faces the deliperino "reb 23.
  • the plunger 26 is formed by a plunger spring 27.
  • the plunger 26 is connected to the drive shaft of the diesel engine 200 and is connected to the cam shaft 13 of the cam shaft 12 which is rotated by the driving force of the diesel engine 200. Therefore, the plunger 26 is pushed up to the delivery valve 23 side (the direction shown by the arrow of the symbol D) through the evening port 28.
  • the flange 261 of the plunger 26 is connected to the outlet 14 of the outlet.
  • a control port 1 that engages with a sleeve 291, which is a cylindrical member integral with the pinion 29 that rotates by engaging, and whose position is adjusted by the governor 15 (Fig. 1). 4 reciprocation rotates pinion 29 and plunger 26 rotates in the circumferential direction.
  • the amount of DME fuel injection increases or decreases depending on the rotational position of the plunger 26.
  • Fig. 3 shows an enlarged part of the plunger 26 provided in the plunger barrel 25.
  • the injection pump element 2 is an important component capable of increasing the pressure of the DME fuel and increasing or decreasing the injection amount. Therefore, the sliding parts of the plunger 26 and the delivery valve 23 are super-precisely finished.
  • a suction / discharge rotor 251 which communicates the oil reservoir 11 with the hydraulic chamber 25a, is formed.
  • the plunger 26 has a notch 26 2 formed therein. Cutout The recessed portion 26 2 is a groove which is obliquely cut out as shown in the outer peripheral surface of the plunger 26, and the groove portion communicates with a hole 2 63 formed in the center of the plunger 26. .
  • FIG. 4 is a front view of a main part showing a cross section of the injection pump element 2 according to the present invention, showing a suction process in an injection state (during operation of the diesel engine 200).
  • FIG. 5 shows the start of injection in the injection step in the injection state
  • FIG. 6 shows the end of injection in the injection step in the injection state.
  • the plunger 26 descends (in the direction of the arrow indicated by the symbol E), and when the upper end surface 26 4 of the plunger 26 reaches the suction and discharge port 25 1 of the plunger barrel 25, The DME fuel in the oil reservoir 11 is sent from the suction / discharge unit 25 1 into the hydraulic chamber 25 a. Then, at the bottom dead center of the cam 13, the suction of the DME fuel ends (the suction process).
  • the plunger 26 also rises, and when the upper end surface 26 4 of the plunger 26 blocks the suction / discharge port 25 1, the oil sump chamber 1 1 and the hydraulic chamber 25 a Communication is cut off (start of injection in the injection process).
  • the DME fuel pushes up and opens the delivery valve, and is fed through the injection pipe 3 to the injection nozzle of the diesel engine 200.
  • the notch 26 of the plunger 26 reaches the suction / discharge section 251
  • the DME fuel in the hydraulic chamber 25a flows from the hole 26 4 of the plunger 26 to the notch 26. 2.
  • the fluid flows into the oil reservoir 11 via the suction / discharge port 25 1 due to its hydraulic pressure.
  • the stroke of the plunger 26 from the start of the injection (FIG. 5) to the end of the injection (FIG. 6) is called an effective stroke. Pumping of DME fuel is performed only during this effective stroke, and by changing the length of the effective stroke, the amount of pumped DME fuel is increased or decreased. Since the notch 26 is formed obliquely in the circumferential direction as shown in the figure, the plunger 26 is changed by changing the position of the control opening 14 (FIG. 2) as described above. By rotating the plunger 26 in the circumferential direction, the position at which the cutout portion 26 2 of the plunger 26 reaches the suction / discharge portion 25 1 can be changed. In this way, the effective stroke length can be changed.
  • FIG. 7 is a main part front view showing a cross section of the injection pump element 2 according to the present invention, showing a state in which no injection is performed (when the diesel engine 200 is stopped).
  • FIG. 8 is a front view showing a cross section of the injection pump element 2 according to the present invention.
  • a purge passageway 24 is formed in the delivery pulp sheet 24.
  • One side of the purge passage 24 is in communication with the fuel liquid outlet 21, and the other side thereof is in communication with a purge passage 25 formed in the plunger barrel 25.
  • the purge passage 25 2 communicates with a purge port 25 3 communicating with the inner peripheral surface of the plunger barrel 25.
  • the injection pump element 2 is formed with a communication path in which the injection pipe 3 connected to the fuel liquid outlet 211 and the inner peripheral surface of the plunger barrel 25 are formed. I have.
  • FIG. 9 is a plan view of the injection pump element 2 according to the present invention shown in FIG. 8, taken along the line X--X.
  • FIG. 9 (a) shows the injection state, and FIG. Each of the injection states is shown.
  • the plunger 26 In the injection state shown in FIG. 9 (a), that is, in the rotational position of the plunger 26 where an effective stroke capable of pumping a predetermined DME fuel is obtained, the plunger 26 is formed in the axial direction of the outer peripheral surface.
  • the purge groove 265 has a positional relationship such that the purge groove 265 is not in communication with the purge port 253 formed on the inner peripheral surface of the plunger barrel 25.
  • the plunger 26 rotates in the circumferential direction, and a purge groove 26 5 formed on the outer peripheral surface of the plunger 26 and an inner peripheral surface of the plunger barrel 25.
  • the rotational position is such that the purge port 253 formed at the end communicates. Since the purge groove 26 5 is formed up to the upper end surface 26 4 of the plunger 26, the purge groove 26 5 is formed through the hole 26 3 and the cutout 26 2 so that the oil reservoir 1 1 In communication with In other words, in the non-injection state, the injection pie valve is closed even when the delivery valve 23 is closed.
  • the pump 3 includes a purge passage 242, a purge passage 252, a purge port 253, a purge groove 265, a hole 263, and a cut-out portion 262. It will communicate with 1. Therefore, the DME fuel in the injection pipe 3 communicating with the oil reservoir 11 is purged by collecting the DME fuel in the oil reservoir 11 at the aspirator 7 in the non-injection state. It can be recovered via a passage.
  • FIG. 10 shows a governor diagram and a plunger effective stroke diagram for the rack position of the governor 15 in the injection pump 1 according to the present invention, and FIG. 10 (a) shows the plunger.
  • the effective stroke diagram, Figure 10 (b), is the governor diagram.
  • the plunger effective stroke diagram shown in Fig. 10 shows the control rack 14 (Fig. 2) where the rack position is adjusted by the governor 15 (Fig. 1), and the control rack 14 It shows the relationship with the fuel injection amount of the injection pump element 2 which increases or decreases according to the rotational position of the rotating plunger 26 (reference L1). Further, the rack positions of the control rack 14 are a full rack position FR, an idle rack position IR, a non-injection rack position NR, and a purge rack position PR.
  • the governor diagram shown in FIG. 10 (b) is a control curve of the governor 15 showing the position of the control rack 14 relative to the rotation speed of the diesel engine 200.
  • the governor 15 adjusts the rack position of the control rack 14 according to the control curve indicated by reference numeral L2 during high-speed operation, and controls the control curve indicated by reference numeral L3 during low-speed operation or in an idling state. Adjust the rack position of trolley rack 14.
  • the region indicated by reference numeral L4 indicates a non-control region where no injection is performed.
  • the purge rack position PR is below the non-injection rack position NR. Area). After the control rack 14 moves to the non-injection rack position NR and the injection pump element 2 enters the non-injection state and the diesel engine 200 stops, the remaining DME fuel When recovering the wastewater, the governor 15 moves the control rack 14 further in the non-injection direction, and moves the rack position to the purge rack position PR. When the control stroke 14 moves to the purge stroke position PR, the rotational position of the plunger 26 is changed to the purge groove 26 5 formed on the outer peripheral surface of the plunger 26 and the inner peripheral surface of the plunger barrel 25. The rotation position is such that the purge port 25 formed in the hole is communicated with the purge port 25.
  • the control rack 14 The rack position can be set to the non-injection rack position NR so that the purge passage is not configured in the non-injection state. Further, by setting such a purge rack position PR, in the adjustment work of the injection pump element 2 and the governor 15, the rotational position of the plunger 26 forming the purge passage and the control position are controlled. It is possible to easily and surely adjust the rack position of the rack 14. Furthermore, since the purge rack position PR is set within the movement range of the control rack 14 on the non-injection state side from the non-injection rack position NR, there is no possibility that the purge passage is formed during the injection state.
  • the rack position of the control rack 14 is set to the purge rack. Position PR), even if the delivery valve 23 is closed, Since the Eve 3 and the oil reservoir 11 communicate with each other, the diesel engine 200 stops, and when the DME fuel in the oil reservoir 11 is recovered by the aspirator 7, the injection pipe 3 DME fuel remaining inside can be recovered. As a result, it is possible to prevent the diesel engine 200 from starting up normally and generating large vibrations and noise due to abnormal combustion such as the above-described knocking.
  • the injection pump according to the present invention can be suitably used as an injection pump for a DME fuel supply device for a diesel engine. Further, the DME fuel supply device according to the present invention can be suitably used as a DME fuel supply device for a diesel engine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Description

明 細 書 インジェクションポンプ、 及び該ィンジェクシヨンポンプを備えたディ ーゼルエンジンの D ME燃料供給装置
技 丁分野
本発明は、 ディ一ゼルエンジンの DM E燃料供給装置のィンジェクシ ョンポンプ、 及び該ィンジヱクションポンプを備えたディ一ゼルェンジ ンの DM E燃料供給装置に関する。 背景技術
ディーゼルエンジンによる大気汚染対策として、 軽油の代わりに排気 がク リーンな DME (ジメチルェ一テル) を燃料とするものが注目され ている。 DME燃料は、 従来の燃料である軽油と違って液化ガス燃料で ある。 つまり、 軽油と比較して沸点温度が低く、 大気圧下で軽油が常温 において液体であるのに対して、 DMEは、 常温において気体となる性 質を有している。 そのため、 従来のディーゼルエンジンに DME燃料を 使用する際には、 インジェクションポンプへの供給圧力が低いと、 DM E燃料が気化してしまう。 よって、 液体の DME燃料をインジヱクショ ンポンプへ供給するためには、 軽油燃料よりインジェクションポンプへ の供給圧力を高くする必要がある。
したがって、 従来のディ一ゼルエンジンに DM E燃料を使用すると、 そのィンジェクションポンプへの高い供給圧力によって、 エンジンの燃 料噴射ノズルに D ME燃料を送出するィンジェクシヨンポンプのプラン ジャバレルとプランジャとの間の隙間から、 インジェクションポンプの カム室に漏れる燃料の量が、 軽油燃料を使用した場合より多くなつてし まう という問題が生じる。 また、 D M Eは、 軽油と比較して低粘度であ るので、 隙間から漏れやすくなり、 さらにその量は多くなつてしまう。 そして、 プランジャバレルとプランジャとの間の隙間から漏れた D M E 燃料が、 インジェクションポンプのカム室に流れ込んで気化し、 気化し た D M E燃料がエンジンのクランク室に侵入して引火する虞がある。
また、 エンジン停止後に噴射系内に残留している D M E燃料が、 燃料 噴射ノズルのノズルシート部からエンジンのシリンダ内に漏れて気化し、 シリンダ内に気化した D M E燃料が充満することによって、 エンジンを 始動する際にノッキング等の異常燃焼が生じて、 エンジン始動が正常に 行えず大きな振動や騒音が発生する虞がある。
これらの課題を解決する従来技術の一例としては、 上述のプランジャ バレルとブランジャとの間の隙間を小さく し、 イ ンジェクションポンプ のカム室に漏れる D M E燃料の量を低減させた D M E燃料供給装置が、 特閧平 1 0— 2 8 1 0 3 0号公報に開示されている。 しかし、 上記従来 技術は、 D M E燃料の漏れ量を低減させただけに過ぎず、 漏れた D M E 燃料による問題を解決するものではない。
一方、 漏れた D M E燃料がエンジンのクランク室の潤滑油に侵入する のを防止すべく、 D M E燃料供給装置のィンジェクシヨンポンプのカム 室と、 エンジンのクランク室とを分離した構造とし、 かつプランジャバ レルとプランジャとの間の隙間からィンジェクションポンプのカム室に 漏れた D M E燃料、 及びエンジン停止後に噴射系内に残留している D M E燃料を電動コンプレッサ一等でタンクに回収する D M E燃料供給装置 が公知のものとなっている。
このように、 D M E燃料供給装置のィンジ工クシヨンポンプのカム室 と、 エンジンのクランク室とを分離した構造であり、 かつプランジャバ レルとプランジャとの間の隙間からィンジヱクションポンプのカム室に 漏れた D M E燃料を、 電動コンプレッサ一等で燃料夕ンクに回収するの で、 気化した D M E燃料がエンジンのクランク室に侵入することを防止 することができる。 また、 エンジン停止後に噴射系内に残留している D M E燃料を電動コンプレッサーで夕ンクに回収するので、 エンジン停止 後に噴射系内に残留している D M E燃料によって、 エンジンを始動する 際にノッキング等の異常燃焼が生じることを防止することができる。
しかしながら、 ェンジン停止後に噴射系内に残留している D M E燃料 を電動コンプレッサ一でタンクに回収しても、 無噴射状態時にはィンジ ェクシヨンポンプエレメン トのバルブが閉じた状態であるため、 噴射系 内において、 イ ンジェクションポンプエレメン トの出口側と燃料噴射ノ ズルの入口側との間の燃料流路に残留している D M E燃料を回収するこ とができない。 そのため、 噴射系内の D M E燃料を完全に回収すること ができず、 依然としてエンジンを始動する際にノッキング等の異常燃焼 が生じる虞が残るという問題があった。
本発明は、 このような状況に鑑み成されたものであり、 その課題は、 ェンジン停止後にインジェクションポンプエレメン トと燃料噴射ノズル との間に残留している D M E燃料を回収することが可能なディーゼルェ ンジンの D M E燃料供給装置を提供することにある。 発明の開示
上記課題を達成するため、 本発明の第 1の態様は、 燃料タンク内の D M E燃料を所定の圧力に加圧し、 フィードパイプへ送出するフイードポ ンプと、 ディーゼルエンジンの駆動軸の回転が伝達されて回転するカム シャフ トと係合するプランジャの上下動で開閉可能なデリバリバルブに よって、 前記フィードパイプを経由して送出された前記 D M E燃料が流 れる油溜室の該 D M E燃料を、 所定のタイ ミ ングで所定の量だけ前記デ ィ一ゼルエンジンの燃料噴射ノズルに連通しているィ ンジェクシヨンパ ィプへ送出するィ ンジェクションポンプエレメン トを有するィンジェク ションポンプと、 前記燃料噴射ノズルからオーバーフローした前記 D M E燃料、 及び前記ィンジェクションポンプからオーバ一フローした前記 D M E燃料を、 前記燃料タンクへ戻すためのオーバ一フロー燃料パイプ と、 前記ディーゼルエンジン停止後、 前記油溜室内、 及び前記オーバー フロー燃料パイプ内に残留している前記 D M E燃料を、 前記燃料タンク へ回収可能な残留燃料回収手段とを備えた前記ディーゼルエンジンの D M E燃料供給装置の前記ィンジヱクシヨンポンプであって、 前記力ムシ ャフ トのカムによってデリバリバルブが開閉する噴射状態と、 前記力ム によって前記プランジャが上下動しても前記デリバリパルブが開閉しな い無噴射状態とを切り換える噴射状態切換手段を有し、 前記ィンジェク シヨンポンプエレメン トは、 前記無噴射状態の時にのみ、 前記デリバリ バルブが閉じた状態でも前記ィンジェクションパイプと前記油溜室とが 連通する構成を成している、 ことを特徴としたインジヱクシヨンポンプ である。
このように、 エンジン停止後、 噴射状態切換手段によって無噴射状態 に切り換えられた状態において、 デリバリバルブが閉じた状態でも、 ィ ンジェクションパイプと油溜室とが連通する構成を成しているので、 ェ ンジン停止後、 残留燃料回収手段によって油溜室の D M E燃料を回収す る際に、 インジェクションパイプ内に残留している D M E燃料を回収す ることができる。
これにより、 本発明の第 1の態様に係るィンジェクシヨンポンプによ れば、 エンジン停止後、 残留燃料回収手段によって油溜室の D M E燃料 を回収する際に、 インジェクションパイプ内に残留している D M E燃料 を回収することができるので、 ェンジン停止後にィンジェクシヨンボン プエレメン トと燃料噴射ノズルとの間に残留している D M E燃料を回収 することが可能になり、 前述したノ ッキング等の異常燃焼によって、 ェ ンジン始動が正常に行えず大きな振動や騒音が発生することを防止する ことができるという作用効果が得られる。
本発明の第 2の態様は、 前記第 1の態様において、 前記インジェクシ ヨンポンプエレメン トは、 略円柱体形状を成す前記プランジャが、 前記 噴射状態切換手段によって前記プランジャバレル内で周方向に回転し、 該回転位置により前記 D M E燃料の噴射量が変化する構成を成しており、 前記噴射量が 0 となる前記プランジャの回転位置において無噴射状態と なり、 かつ前記ィ ンジェクシヨンパイプと前記油溜室とを連通させるパ —ジ通路が構成される、 ことを特徴としたィンジヱクションポンプであ る。
本発明の第 2の態様に係るィンジヱクションポンプによれば、 噴射状 態切換手段によってブランジャが周方向に回転し、 その回転位置により D M E燃料の噴射量が変化する構成を成しており、 その噴射量が 0とな るプランジャの回転位置において無噴射状態となって、 インジヱクショ ンパイプと油溜室とを連通させるパージ通路が構成されることによって、 本発明の第 1の態様による作用効果を得ることができるものである。
本発明の第 3の態様は、 前記第 2の態様において、 前記インジェクシ ヨンポンプエレメン トは、 前記ィンジェクシヨンパイプに連通している デリバリバルブ揷設孔を有するデリバリバルプホルダと、 前記デリバリ バルブ揷設孔に往復動可能に揷設されている前記デリバリバルブと、 前 記デリバリバルブホルダと一体に配設され、 前記デリノ、'リバルプのバル ブ部が当接した状態で、 前記ィ ンジェクションパイプと前記油溜室との 連通が遮断されて閉弁状態となるバルブシート部を有するデリバリバル ブシートと、 前記デリバリバルブを前記デリバリバルブシ一トに付勢す るデリノ リスプリングと、前記デリバリバルブシ一トと一体に配設され、 該デリバリパルプシ一トに連通している液圧室を有するプランジャバレ ルと、 前記液圧室に往復動可能に揷設され、 一端側が前記デリバリバル ブに面している前記プランジャと、 該プランジャを前記カム側に付勢す るプランジャスプリングとを備え、 前記噴射状態時には、 前記閉弁状態 から前記ブランジャが前記カムに押し上げられ、 前記液圧室と前記油溜 室との連通が遮断され、 前記液圧室内の前記 D M E燃料が前記デリバリ バルブを押し上げて閧弁状態となり、 開弁状態の前記デリバリバルブか ら前記液圧室内の前記 D M E燃料が前記ィンジェクシヨンパイプへ圧送 され、 前記プランジャの外周面に形成されている切り欠き部を介して前 記液圧室と前記油溜室とが再び連通し、 前記液圧室内の液圧が低下して 前記デリバリバルブが前記デリパリスプリングの付勢力によって閉弁し、 前記無噴射状態時には、 前記ブランジャの外周面に形成されているパー ジ溝と、 前記プランジャバレルの内周面に形成されているパ一ジポ一ト とが連通する回転位置となる如く、 前記噴射状態切換手段によって前記 プランジャが周方向に回転し、 前記パージポート、 前記パージ溝、 及び 前記デリバリバルブシ一トに形成され、 前記ィンジェクシヨンパイプと 前記パージポートとを連通させるパージ通路を介して前記ィンジヱクシ ョンパイプと前記油溜室とが連通する構成を成している、 ことを特徴と したインジェクションポンプである。
このように、噴射状態切換手段によってプランジャが周方向に回転し、 プランジャの外周面に形成されているパージ溝と、 プランジャバレルの 内周面に形成されているパージポートとが連通する回転位置まで回転し た時点で、 噴射状態が無噴射状態となる構成を成しているので、 デリバ リバルブシートに形成されているィ ンジェクションパイプとパ一ジポ一 トとを連通させるパージ通路を介してィンジヱクシヨンパイプと油溜室 とを連通させるパージ通路が構成され、 エンジン停止後、 残留燃料回収 手段によって油溜室の D M E燃料を回収する際に、 イ ンジェクションパ ィプ内に残留している D M E燃料を回収することができる。
これにより、 本発明の第 3の態様に係るィ ンジェクシヨンポンプによ れば、 噴射状態切換手段によってプランジャが周方向に回転し、 プラン ジャの外周面に形成されているパージ溝と、 プランジャバレルの内周面 に形成されているパージポートとが連通する回転位置まで回転した時点 で、 噴射状態が無噴射状態となる構成を成していることによって、 本発 明の第 2の態様による作用効果を得ることができるものである。
本発明の第 4の態様は、前記第 1〜第 3のいずれか一の態様において、 前記インジェクションポンプは、 前記カムシャフ トが配設され、 潤滑油 が貯留されているカム室が、 前記ディーゼルエンジンの潤滑系と分離さ れた専用潤滑系となっており、 前記カム室には、 前記 D M E燃料が混入 した前記潤滑油から該 D M E燃料を分離するオイルセパレー夕と、 前記 カムシャフ トのカムによって駆動され、 分離した前記 D M E燃料を加圧 して前記燃料タンクへ送出するコンプレッサ一とが配設されている、 こ とを特徴としたインジェクションポンプである。
このように、 カム室が、 ディーゼルエンジンの潤滑系と分離された専 用潤滑系になっているので、 インジェクションポンプエレメン トのプラ ンジャとブランジャバレルとの間の隙間からカム室に漏れた D M E燃料 が、 ディーゼルエンジンの潤滑系に侵入する虞がない。 また、 カム室に 配設されたオイルセパレ一夕によって、 D M E燃料が混入した潤滑油か ら D M E燃料を分離し、 分離された D M E燃料がコンプレッサーによつ て燃料タンクへ送出されるので、 D M E燃料の混入による潤滑油の潤滑 性能の低下等を防止することができる。 さらに、 コンプレッサーは、 力 ム室内のカムによって駆動されるので、 電動モー夕等のコンプレッサー を駆動させる駆動源が必要ない。
これにより、 本発明の第 4の態様に係るィンジェクションポンプによ れば、本発明の第 1〜第 3のいずれか一の態様による作用効果に加えて、 インジヱクシヨンポンプエレメントのプランジャとプランジャバレルと の間の隙間からカム室に漏れた D M E燃料が、 ディーゼルエンジンの潤 滑系に侵入する虞がないので、 ディーゼルエンジンの潤滑系に侵入した D M E燃料が気化し、 気化した D M E燃料がェンジンのクランク室に侵 入して引火するといつた虞をなくすことができるという作用効果が得ら れる。
また、 D M E燃料の混入による潤滑油の潤滑性能の低下等を防止する ことができるので、 潤滑油の潤滑性能の低下等によるィ ンジヱクシヨン ポンプの性能低下を防止することができ、 さらに、 電動モー夕等のコン プレヅサ一を駆動させる駆動源が必要ないので、 より省電力なィンジヱ クションポンプが可能になるという作用効果も得られる。
本発明の第 5の態様は、前記第 2〜第 4のいずれか一の態様において、 前記噴射状態切換手段は、 前記ブランジャと係合して前記ブランジャを 周方向に回転させる如く往復動可能に配設されたコン トロールラックと、 前記ディーゼルエンジンの回転数が許容最高回転数を超えないように前 記コントロールラックのラック位置を燃料減方向へ引き戻す高速制御手 段を有するガバナとを備え、 前記コン トロールラックは、 前記ガバナの 前記高速制御手段におけるフルラック位置と、 前記噴射状態から前記無 噴射状態へ切り換わる無噴射ラック位置との間の前記コン トロ一ルラッ クの移動範囲外にパージラック位置が設定されており、 前記ガバナは、 前記残留燃料回収手段によって、 前記ディーゼルエンジン停止後、 前記 油溜室内、 及び前記オーバーフロー燃料パイプ内に残留している前記 D M E燃料を前記燃料タンクへ回収する際に、 前記コン トロールラックの T JP02/11657
9
ラック位置を前記パージラック位置へ移動させ、 前記イ ンジェクション ポンプエレメン トは、 前記コントロールラヅクのラヅク位置が前記パ一 ジラック位置にある場合のみ、 前記パージ通路が構成された状態で前記 無噴射状態となる、 ことを特徴としたインジェクションポンプである。
インジヱクシヨンボンプェレメン トが無噴射状態となるコン ト口一ル ラックのラック位置範囲に、 パージラック位置が設定されており、 ガバ ナによって制御されるコン トロールラックのラック位置がパ一ジラック 位置にある場合にのみインジェクションポンプエレメン トのパージ通路 が構成される。 また、 残留燃料燃料回収手段は、 ディーゼルエンジン停 止後に油溜室等に残留している D M E燃料を回収する際に、 ガバナによ つてコン ト口一ルラックをパ一ジラック位置に移動させる。したがって、 ディ一ゼルエンジン停止後に油溜室等に残留している D M E燃料を回収 する際にのみ、 インジェクションポンプエレメントのパージ通路を構成 することができるので、 例えばアイ ドリングストップ等のディーゼルェ ンジン停止後に、 無噴射状態のまま油溜室等に残留している D M E燃料 を回収しない場合には、 無噴射状態のままパージ通路を構成しないよう にすることができる。
これにより、 本発明の第 5の態様に係るィンジヱクションポンプによ れば、 前記第 1〜第 4のいずれか一の態様による作用効果に加えて、 デ ィ一ゼルエンジン停止後に、 無噴射状態のまま油溜室等に残留している D M E燃料を回収しない場合には、 無噴射状態のままパージ通路を構成 しないようにすることができるという作用効果が得られる。
また、 このようなパージラヅク位置が設定されていることによって、 ィンジヱクションポンプエレメント及びガバナの調整作業において、 ノ、" —ジ通路が構成されるブランジャの回転位置と、 コン ト口一ルラヅクの ラック位置との調整を容易かつ確実に行うことが可能になるという作用 効果が得られる。
本発明の第 6の態様は、 前記第 5の態様において、 前記パージラック 位置は、 前記無噴射ラック位置より無噴射状態側の前記コントロ一ルラ ックの移動範囲内に設定されている、 ことを特徴としたインジェクショ ンポンプである。
本発明の第 6の態様に係るィンジヱクションポンプによれば、 前記第 5の態様による作用効果に加えて、 パージラック位置は、 無噴射ラック 位置より無噴射状態側のコントロールラックの移動範囲内に設定されて いるので、 噴射状態時にパージ通路が構成されてしまう虞をなくすこと ができるという作用効果が得られる。
本発明の第 7の態様は、 前記第 1〜第 6のいずれか一の態様のィンジ ェクシヨンポンプを備えたディーゼルエンジンの D M E燃料供給装置で める。
本発明の第 7の態様に係るディ一ゼルエンジンの D M E燃料供給装置 によれば、 ディーゼルエンジンの D M E燃料供給装置において、 前述し た本発明の第 1〜第 6のいずれか一の態様による作用効果を得ることが できる。
本発明の第 8の態様は、 前記第 7の態様において、 前記残留燃料回収 手段は、 前記フィ一ドパイプと前記オーバ一フロ一燃料パイプとの間に 配設されたァスビレー夕によって、 前記フィードポンプから送出された 前記 D M E燃料を、そのまま前記燃料タンクへ環流させ、前記油溜室内、 及び前記ォ一バーフロー燃料パイプ内に残留している前記 D M E燃料が、 環流する前記 D M E燃料に吸引されて、 前記燃料タンクへ回収される構 成を成している、 ことを特徴としたディーゼルエンジンの D M E燃料供 給装置である。
本発明の第 8の態様に係るディーゼルエンジンの D M E燃料供給装置 によれば、 前記第 7の態様による作用効果に加えて、 新たに残留燃料回 収用のポンプ等を設けずにフィ一ドポンプを駆動源として、 油溜室内及 びオーバ一フロー燃料パイプ内に残留している D ME燃料を燃料タンク に回収することができるという作用効果が得られる。
本発明の第 9の態様は、 前記第 7又は第 8の態様において、 前記フィ ―ドポンプは、 前記燃料タンクの前記 DM E燃料の送出口近傍に配設さ れ、 該送出口は、 前記燃料タンク内の前記 DME燃料の液面より下に位 置している、 ことを特徴としたディーゼルエンジンの DM E燃料供給装 置である。
軽油を燃料とした従来のディーゼルエンジンの燃料供給装置は、 ィン ジェクションポンプに配設されたフィ一ドポンプによって、 燃料タンク 内の燃料を吸引していた。 しかし、 前述したように、 DME燃料は、 常 温大気圧時には気化して気体になってしまう性質を有しているので、 ィ ンジェクシヨンポンプ側のフィードポンプによって燃料タンク内の DM E燃料を吸引すると、 燃料タンク内の圧力が低下して DM E燃料が気化 してしまう虞がある。
そこで、 燃料タンクの DME燃料送出口を、 燃料タンク内の DME燃 料の液面より下に設け、 フィードポンプを燃料タンクの D ME燃料の送 出口近傍に配設して、 D ME燃料をィンジヱクシヨンポンプへ送出する 構成とすることで、 フィ一ドポンプで DM E燃料を送出する際の燃料夕 ンク内の圧力の低下を少なくすることができる。
これにより、 本発明の第 9の態様に係るディ一ゼルエンジンの D ME 燃料供給装置によれば、 前記第 7又は第 8の態様による作用効果に加え て、 燃料タンク内の DME燃料をイ ンジェクションポンプへ送出する際 において、 燃料タンク内の圧力の低下を少なくすることができるので、 燃料タンク内の D ME燃料が燃料タンク内の圧力の低下によって気化し てしまう虞を少なくすることができるという作用効果が得られる。 図面の簡単な説明
図 1は、 本発明の好ましい実施形態に係るディーゼルエンジンの D M E燃料供給装置の概略構成を示したシステム構成図である。 図 2は、 本 発明の好ましい実施形態に係るィンジェクションポンプのィンジェクシ ヨンポンプエレメントの近傍を示した要部斜視図である。 図 3は、 前記 インジェクションポンプエレメントのプランジャバレルに揷設されてい るプランジャの一部を拡大して示した斜視図である。 図 4は、 前記イン ジェクシヨンポンプエレメン トの断面を示した要部正面図であり、 噴射 状態時における吸入工程を示したものである。 図 5は、 前記イ ンジェク ションポンプエレメントの断面を示した要部正面図であり、 噴射状態時 における噴射工程の噴射始めを示したものである。 図 6は、 前記インジ ェクシヨンポンプエレメントの断面を示した要部正面図であり、 噴射状 態時における噴射工程の噴射終わりを示したものである。 図 7は、 前記 インジェクションポンプエレメン 卜の断面を示した要部正面図であり、 無噴射状態時 (ディーゼルエンジンの停止時) を示したものである。 図 8は、 前記ィンジェクシヨンポンプエレメン トの断面を示した正面図で ある。 図 9は、 図 8に示したイ ンジェクションポンプエレメン トの X— X断面の平面図であり、 図 9 ( a ) は、 噴射状態、 図 9 ( b ) は、 無噴 射状態を、 それそれ示したものである。 図 1 0は、 本発明の好ましい実 施形態に係るィンジェクシヨンポンプにおいて、 ガバナのラック位置に 対するガバナ線図とブランジャ有効ス トローク線図とを示したものであ り、 図 1 0 ( a ) は、 プランジャ有効ス トローク線図、 図 1 0 ( b ) は、 ガバナ線図である。 発明を実施するための最良の形態
以下、 本発明の一実施の形態を図面に基づいて説明する。
まず、 ディーゼルエンジンの D M E燃料供給装置の概略構成について 説明する。
図 1は、 本発明に係るディーゼルエンジンの D M E燃料供給装置の概 略構成を示したシステム構成図である。
ディーゼルエンジン 2 0 0に D M E燃料を供給する; D M E燃料供給装 置 1 0 0は、 本発明に係るインジェクションポンプ 1を備えている。 ィ ンジェクシヨンポンプ 1は、 ディーゼルエンジン 2 0 0が有するシリン ダ 3 1の数と同じ数のインジェクションポンプエレメン ト 2を備えてい る。フィ一ドポンプ 5は、燃料夕ンク 4に貯留されている D M E燃料を、 所定の圧力に加圧してフイードパイプ 5 2へ送出する。 燃料夕ンク 4の D M E燃料送出口は、 燃料タンク 4内の D M E燃料の液面よ り下に設け られており、 フィードポンプ 5を燃料タンク 4の D M E燃料の送出口近 傍に配設されている。 フィードパイプ 5 2へ送出された D M E燃料は、 フィル夕 5 1でろ過され、 3方電磁弁 7 1を介してイ ンジ: クシヨンポ ンプ 1へ送出される。 3方電磁弁 7 1は、 噴射状態時 (ディーゼルェン ジン 2 0 0の運転時) には O N状態で、 符号 Aで示した矢印の方向に連 通している。
このように、 燃料タンク 4の D M E燃料送出口が、 燃料タンク 4内の D M E燃料の液面より下に設けられており、 フィードポンプ 5を燃料夕 ンク 4の D M E燃料の送出口近傍に配設して、 D M E燃料をィンジ工ク シヨンポンプ 1へ送出する構成となっているので、 燃料タンク 4内の圧 力の低下を少なくすることができる。 そして、 それによつて、 燃料タン ク 4内の D M E燃料が、 燃料夕ンク 4内の圧力の低下によって気化して しまう虞を少なくすることができる。 インジェクションポンプ 1内のカム室 (図示せず) は、 ディ一ゼルェ ンジン 2 0 0の潤滑系と分離された専用潤滑系となっており、 オイルセ パレ一夕 6は、 インジェクションポンプ 1内のカム室に漏れだした D M E燃料が混入したカム室内の潤滑油を、 D M E燃料と潤滑油とに分離し、 潤滑油をカム室に戻す。オイルセパレー夕 6で分離された D M E燃料は、 カム室内の圧力が大気圧以下になるのを防止するチェック弁 6 2を介し て、カム室内のカムによって駆動されるコンプレッサー 6 1へ送出され、 コンプレッサー 6 1で加圧された後、 チェック弁 6 3、 及びクーラ一 4 1を介して燃料タンク 4へ戻される。 チェック弁 6 3は、 ディーゼルェ ンジン 2 0 0の停止時に、 燃料タンク 4から D M E燃料がカム室へ逆流 するのを防止するために設けられている。
このように、 インジェクションポンプ 1のカム室が、 ディーゼルェン ジン 2 0 0の潤滑系と分離された専用潤滑系になっているので、 インジ ェクシヨンポンプエレメン ト 2からカム室に漏れた D M E燃料が、 ディ ーゼルエンジン 2 0 0の潤滑系に侵入する虞がない。 そして、 それによ つて、 ディーゼルエンジン 2 0 0の潤滑系に侵入した D M E燃料が気化 し、 気化した D M E燃料がェンジンのクランク室に侵入して引火すると いった虞をなくすことができる。
また、 カム室に配設されたオイルセパレ一夕 6によって、 D M E燃料 が混入した潤滑油から D M E燃料を分離し、 分離された D M E燃料がコ ンプレッサ一 6 1によって燃料タンク 4へ送出されるので、 D M E燃料 の混入による潤滑油の潤滑性能の低下等を防止することができる。 そし て、 それによつて、 潤滑油の潤滑性能の低下等によるインジヱクシヨン ポンプ 1の性能低下を防止することができる。
さらに、 コンプレッサー 6 1は、 カム室内のカムによって駆動される ので、 電動モ一夕等の駆動源が必要なく、 それによつて、 より省電力な インジェクションポンプ 1が可能になる。
燃料タンク 4からフィードポンプ 5によって所定の圧力に加圧されて 送出された D M E燃料は、 インジェクションポンプ 1の各インジェクシ ヨンポンプエレメント 2からインジェクションパイプ 3を経由して、 所 定のタイ ミングで所定の量だけディーゼルエンジン 2 0 0の各シリンダ 3 1に配設されている燃料噴射ノズル 3 2へ圧送される。 インジヱクシ ヨンポンプ 1からオーバ一フローした: D M E燃料は、 オーバーフロー燃 料パイプ 8を経由し、 オーバーフロー燃料の圧力を決めるチェック弁 9 1、 及びクーラ一 4 1を介して燃料タンク 4へ戻される。 また、 各燃料 噴射ノズル 3 2からオーバ一フ口一した D M E燃料は、 オーバ一フロー 燃料パイプ 9を経由し、 オーバ一フロ一燃料の圧力を決めるチヱヅク弁 9 1及びクーラー 4 1を介して燃料夕ンク 4へ戻される。
さらに、 D M E燃料供給装置 1 0 0は、ディーゼルエンジン停止時に、 イ ンジェクションポンプ 1内の油溜室(図示せず)、 オーバ一フロー燃料 パイプ 8、 及びオーバ一フロー燃料パイプ 9に残留している D M E燃料 を、 燃料タンク 4へ回収する 「残留燃料回収手段」 の構成要素として、 ァスビレー夕 7、 3方電磁弁 7 1、 及び 2方電磁弁 7 2を備えている。 ァスピレー夕 7は、入口 7 aと出口 7 bと吸入口 7 cとを有している。 入口 7 aと出口 7 bは真っ直ぐに連通しており、 吸入口 7 cは、 入口 7 aと出口 7 bとの間の連通路から、 略垂直方向に分岐している。 3方電 磁弁 7 1が 0 F Fの時に連通する連通路 (符号 Bの矢印で示した連通方 向) の出口側が入口 7 aに接続されており、 クーラー 4 1を介して燃料 タンク 4への経路へ出口 7 bが接続されている。 また、 吸引口 7 cは、 噴射状態時 (ディーゼルエンジン 2 0 0の運転時) には O F F状態とな つている 2方電磁弁 7 2に接続されている。
無噴射状態時 (ディーゼルエンジン 2 0 0の停止時) には、 3方電磁 16
弁 7 1を O F Fして符号 Bの矢印で示した方向の連通路を構成するとと もに、 2方電磁弁 7 2を 0 Nして、 オーバ一フロー燃料パイプ 8及びォ 一バ一フロー燃料パイプ 9 とァスピレ一夕 7.の吸入口 7 cとの間を連通 させる (符号 Cで示した矢印の方向)。 したがって、 フィードポンプ 5か ら送出された D M E燃料は、ィンジェクシヨンポンプ 1へ送出されずに、 ァスピレ一夕 7へ送出され、 入口 7 aから出口 7 bへ抜け、 ク一ラー 4 1を介して燃料タンク 4へ戻り、 再びフィードポンプ 5からァスピレ一 夕 7へ送出される。 つま り、 ァスピレ一夕 7を介して D M E燃料液が環 流する状態となる。 そして、 インジェクションポンプ 1内の油溜室、 ォ —バーフロー燃料パイプ 8、 及びオーバーフロー燃料パイプ 9に残留し ている D M E燃料は、 入口 7 aと出口 7 bを流れる D M E燃料液の流れ によって、 吸引口 7 cから吸引されて燃料タンク 4へ回収されることに なる。
このように、 残留燃料回収手段は、 フィードポンプ 5を駆動源として ァスピレー夕 7によって、 油溜室、 オーバ一フロー燃料パイプ 8、 及び ォ一バーフロー燃料パイプ 9の D M E燃料を吸引して燃料夕ンク 4へ回 収する構成を成しているので、 新たに残留燃料回収用のポンプ等を設け る必要がない。
次に、 本発明に係るイ ンジェクションポンプ 1を構成するインジェク シヨンポンプエレメント 2の概略構造について説明する。
図 2は、 本発明に係るインジェクションポンプ 1のイ ンジェクション ポンプエレメント 2の近傍を示した要部斜視図である。
デリパリバルブホルダ 2 1は、 デリノ リバルブ揷設孔 2 1 1を有する 形状を成しており、インジェクションポンプ 1の基体に固定されている。 デリバリバルブ挿設孔 2 1 1 と連通している燃料液送出口 2 1 2には、 イ ンジェクションパイプ 3が接続される。 デリバリノ ルブ揷設孔 2 1 1 には、 デリバリバルブ 2 3が往復動可能に揷設されており、 デリバリバ ルブ 2 3は、 デリバリスプリング 2 2によって、 デリノ、'リバルブホルダ 2 1 と一体に配設されているデリバリバルブシ一ト 2 4のバルブシート 部 2 4 aに、 バルブ部 2 3 1が当接する如く付勢されている。
プランジャバレル 2 5は、 デリノ 'リバルプシート 2 4と一体に配設さ れ、 デリバリパルブシ一ト 2 4に連通している液圧室 2 5 aを有してい る。液圧室 2 5 aには、プランジャ 2 6が往復動可能に揷設されており、 その一端側がデリパリノ"レブ 2 3に面している。 プランジャ 2 6は、 プ ランジャスプリング 2 7によって、 カム 1 3側に付勢されている。 プラ ンジャ 2 6は、 ディーゼルエンジン 2 0 0の駆動軸に連結され、 ディー ゼルエンジン 2 0 0の駆動力で回転するカムシャフ ト 1 2のカム 1 3に よって、 夕ぺヅ ト 2 8を介してデリバリバルブ 2 3側 (符号 Dの矢印で 示した方向) に押し上げられる。 プランジャ 2 6のつば部 2 6 1は、 コ ン ト口一ルラック 1 4 と係合して回転するピニオン 2 9 と一体の円筒状 の部材であるスリーブ 2 9 1 と係合しており、 ガバナ 1 5 (図 1 ) によ つて位置が調節されるコン ト口一ルラヅク 1 4の往復動によってピニォ ン 2 9が回転し、プランジャ 2 6が周方向に回転する構成を成しており、 このプランジャ 2 6の回転位置によって D M E燃料の噴射量が増減する c 図 3は、 プランジャバレル 2 5に揷設されているプランジャ 2 6の一 部を拡大して示した斜視図である。
インジェクションポンプ 1において、 インジェクションポンプエレメ ン ト 2は、 D M E燃料を高圧にし、 かつ噴射量を増減できる重要な部品 である。 そのため、 プランジャ 2 6 とデリバリバルブ 2 3の摺動部は、 超精密な仕上げが施されている。 プランジャバレル 2 5の側壁面には、 油溜室 1 1 と液圧室 2 5 aとを連通させる吸排ロ 2 5 1が形成されてい る。 プランジャ 2 6には、 切り欠き部 2 6 2が形成されている。 切り欠 き部 2 6 2は、 プランジャ 2 6の外周面に図示の如く斜めに切り欠かれ た溝であり、 溝部分は、 プランジャ 2 6の中央に形成されている孔 2 6 3に連通している。
ここで、 プランジャ 2 6の作動について、 図 4〜図 7を参照しながら 説明する。
図 4は、 本発明に係るィンジェクシヨンポンプエレメント 2の断面を 示した要部正面図であり、 噴射状態時 (ディーゼルエンジン 2 0 0の運 転時) における吸入工程を示したものである。 また、 図 5は、 噴射状態 時における噴射工程の噴射始めを示したものであり、 図 6は、 噴射状態 時における噴射工程の噴射終わりを示したものである。
カム 1 3の下降工程においてプランジャ 2 6が下降し (符号 Eで示し た矢印の方向)、プランジャ 2 6の上端面 2 6 4がブランジャバレル 2 5 の吸排ロ 2 5 1に覼く と、 油溜室 1 1内の D M E燃料が吸排ロ 2 5 1か ら液圧室 2 5 a内に送られてくる。 そして、 カム 1 3の下死点で D M E 燃料の吸引が終了する (吸入工程)。カム 1 3が上昇行程になるとブラン ジャ 2 6も上昇し、 プランジャ 2 6の上端面 2 6 4が吸排ロ 2 5 1を塞 いだとき、 油溜室 1 1と液圧室 2 5 aの連通が遮断される (噴射工程の 噴射始め)。カム 1 3の上昇につれて D M E燃料は、 デリバリバルブを押 し上げて開き、 インジェクションパイプ 3を介してディ一ゼルェンジン 2 0 0の噴射ノズルへ圧送されていく。 そして、 プランジャ 2 6の切り 欠き部 2 6 2が吸排ロ 2 5 1に到達したときに、 液圧室 2 5 a内の D M E燃料は、 プランジャ 2 6の孔 2 6 4から切り欠き部 2 6 2、 吸排ロ 2 5 1を介して、その液圧によって油溜室 1 1に流れ込む。それによつて、 液圧室 2 5 a内の D M E燃料の液圧は低下して、デリバリバルブ 2 3は、 デリバリスプリング 2 2の付勢力によって下降し、 バルブ部 2 3 2がデ リバリバルブシ一ト 2 4のバルプシ一ト部 2 4 aに当接した時点で閉弁 状態となる (噴射工程の噴射終わり)。
上述した噴射始め (図 5 ) から噴射終わり (図 6 ) までのプランジャ 2 6のス トロークを有効ス トロークと言う。 D M E燃料の圧送は、 この 有効ス トロークの間だけ行われ、 有効ス トロークの長さを変えることに よって、 圧送される D M E燃料の量の増減が行われる。 切り欠き部 2 6 2は、図示の如く周方向に斜めに形成されているので、前述したように、 コン ト口一ルラヅク 1 4 (図 2 ) の位置を変えることによって、 プラン ジャ 2 6を周方向に回転させることで、 プランジャ 2 6の切り欠き部 2 6 2が吸排ロ 2 5 1に到達する位置を変えることができる。 そして、 そ れによって、 有効ス トロ一クの長さを変えることができる構成となって いる。
ここで、 無噴射状態について説明する。
図 7は、 本発明に係るィ ンジェクシヨンポンプエレメント 2の断面を 示した要部正面図であり、 無噴射状態時 (ディーゼルエンジン 2 0 0の 停止時) を示したものである。
コン トロールラック 1 4の位置を、 圧送される D M E燃料の量が 0に なる位置、 つまり、 プランジャ 2 6の上端面 2 6 4が吸排ロ 2 5 1を塞 いだとき、同時に切り欠き部 2 6 2 も吸排ロ 2 5 1に到達しているので、 有効ス トロークは 0となり、 プランジャ 2 6が上昇しても液圧室 2 5 a と油溜室 1 1は連通した状態となる。 したがって、 カム 1 3によるブラ ンジャ 2 6の上下動によって、 圧送される D M E燃料が 0となり、 この 状態が無噴射状態である。 これによつて、 D M E燃料の圧送は行われな くなり、 ディーゼルエンジン 2 0 0への D M E燃料の供給がされなくな つてディーゼルエンジン 2 0 0が停止する。
図 8は、 本発明に係るイ ンジェクションポンプエレメント 2の断面を 示した正面図である。 デリバリパルプシ一ト 2 4には、パージ通路 2 4 2が形成されている。 パージ通路 2 4 2は、 その一方側が、 燃料液送出口 2 1 2 と連通してお り、 他方側は、 プランジャバレル 2 5に形成されているパージ通路 2 5 2に連通している。 パージ通路 2 5 2は、 プランジャバレル 2 5の内周 面へ連通しているパージポート 2 5 3 と連通している。 つまり、 インジ ェクシヨンポンプエレメン ト 2は、 燃料液送出口 2 1 2に接続されるィ ンジヱクションパイプ 3と、 プランジャバレル 2 5の内周面とが連通す る連通経路が形成されている。
つづいて、 無噴射状態時にァスピレ一夕 7によって、 インジェクショ ンパイプ 3に残留している D M E燃料を回収する際の回収経路について 説明する。
図 9は、 図 8に示した本発明に係るィンジェクシヨンポンプエレメン ト 2の X— X断面の平面図であり、 図 9 ( a ) は、 噴射状態、 図 9 ( b ) は、 無噴射状態を、 それぞれ示したものである。
図 9 ( a ) に示した噴射状態、 つまり所定の D M E燃料を圧送可能な 有効ス トロークが得られるプランジャ 2 6の回転位置においては、 プラ ンジャ 2 6の外周面の軸方向に形成されているパージ溝 2 6 5は、 プラ ンジャバレル 2 5の内周面に形成されているパージポ一ト 2 5 3 と非連 通状態となる位置関係となっている。
図 9 ( b ) に示した無噴射状態時には、 プランジャ 2 6が周方向に回 転し、 プランジャ 2 6の外周面に形成されているパージ溝 2 6 5 と、 プ ランジャバレル 2 5の内周面に形成されているパージポ一ト 2 5 3とが 連通する回転位置となる。 パージ溝 2 6 5は、 プランジャ 2 6の上端面 2 6 4まで形成されているので、 パージ溝 2 6 5は、 孔 2 6 3、 切り欠 き部 2 6 2を介して油溜室 1 1へ連通している。 つまり、 無噴射状態時 において、 デリバリバルプ 2 3が閉じた状態でもインジェクションパイ プ 3は、 パージ通路 242、 パージ通路 252、 パ一ジポ一ト 2 53、 パージ溝 2 6 5、 孔 263、 及び切り欠き部 262を介したパージ通路 が構成されることによって油溜室 1 1へ連通することになる。 したがつ て、 無噴射状態時にァスピレー夕 7で油溜室 1 1の DM E燃料を回収す ることによって、 油溜室 1 1と連通しているインジェクションパイプ 3 の DM E燃料を、 このパージ通路を介して回収することができる。
図 1 0は、 本発明に係るイ ンジェクションポンプ 1において、 ガバナ 1 5のラック位置に対するガバナ線図とプランジャ有効ス トローク線図 とを示したものであり、 図 1 0 (a) は、 プランジャ有効ス トロ一ク線 図、 図 1 0 (b) は、 ガバナ線図である。
図 1 0 (a) に示したプランジャ有効ス トローク線図は、 ガバナ 1 5 (図 1) によってラック位置が調節されるコントロールラック 14 (図 2 ) のラヅク位置と、 コン トロールラヅク 14と係合して回転するブラ ンジャ 2 6の回転位置によって増減するィンジェクションポンプエレメ ン ト 2の燃料噴射量との関係を示したものである (符号 L 1 )。 また、 コ ン トロ一ルラック 14のラック位置は、 符号 F Rがフルラック位置、 符 号 I Rがアイ ドルラック位置、 符号 N Rが無噴射ラック位置、 そして、 符号 P Rがパージラック位置である。
図 1 0 (b) に示したガバナ線図は、 ディーゼルエンジン 200の回 転数に対するコン トロールラック 14のラック位置を示したガバナ 1 5 の制御曲線である。 ガバナ 1 5は、 高速運転時には符号 L 2で示した制 御曲線でコン トロールラック 14のラック位置を調節し、 低速運転時又 はアイ ド リング状態においては符号 L 3で示した制御曲線でコン トロ一 ルラック 14のラック位置を調節する。 符号 L 4で示した領域は、 無噴 射状態となる非制御領域を示したものである。
パージラック位置 PRは、 無噴射ラック位置 NRより下側 (無噴射領 域側) に設定されている。 コン トロールラック 1 4が無噴射ラック位置 N Rまで移動してインジェクションポンプエレメン ト 2が無噴射状態と なり、 ディーゼルエンジン 2 0 0が停止した後、 前述した残留燃料回収 手段によって残留している D M E燃料を回収する際には、 ガバナ 1 5が コン トロールラック 1 4を、 さらに無噴射方向に移動させ、 ラック位置 をパージラヅク位置 P Rまで移動させる。 コントロールラヅク 1 4がパ ージラヅク位置 P Rに移動した時点で、 プランジャ 2 6の回転位置は、 プランジャ 2 6の外周面に形成されているパージ溝 2 6 5 と、 プランジ ャバレル 2 5の内周面に形成されているパージポート 2 5 3とが連通す る回転位置となる。
したがって、 ディーゼルエンジン 2 0 0停止後に、 無噴射状態のまま 油溜室 1 1等に残留している D M E燃料を回収しない場合には、つまり、 アイ ドリ ングス トヅプ状態等においては、 コントロールラック 1 4のラ ック位置を無噴射ラック位置 N Rとし、 無噴射状態のままパージ通路を 構成しないようにすることができる。 また、 このようなパージラック位 置 P Rが設定されていることによって、 インジェクションポンプエレメ ン ト 2及びガバナ 1 5の調整作業において、 パージ通路が構成されるプ ランジャ 2 6の回転位置と、 コン トロールラック 1 4のラック位置との 調整を容易かつ確実に行うことが可能になる。 さらに、 パージラック位 置 P Rは、 無噴射ラック位置 N Rより無噴射状態側のコントロールラッ ク 1 4の移動範囲内に設定されているので、 噴射状態時にパージ通路が 構成されてしまう虞がない。
このようにして、 本発明に係るディーゼルエンジンの D M E燃料供給 装置 1 0 0によれば、 ディ一ゼルエンジン 2 0 0停止時の無噴射状態時 には (コン トロールラヅク 1 4のラック位置がパージラック位置 P Rに ある場合)、 デリバリバルブ 2 3が閉じた状態でも、 ィンジェクシヨンパ イブ 3と油溜室 1 1とが連通する構成を成しているので、 ディーゼルェ ンジン 2 0 0停止後、 ァスピレー夕 7によって油溜室 1 1の D M E燃料 を回収する際に、 インジェクションパイプ 3内に残留している D M E燃 料を回収することができる。 そして、 それによつて、 前述したノ ヅキン グ等の異常燃焼によって、 ディーゼルエンジン 2 0 0の始動が正常に行 えず大きな振動や騒音が発生することを防止することができる。
尚、 本発明は上記実施例に限定されることなく、 特許請求の範囲に記 載した発明の範囲内で、 種々の変形が可能であり、 それらも本発明の範 囲内に含まれるものであることは言うまでもない。 産業上の利用可能性
本発明に係るィンジェクションポンプは、 ディーゼルエンジンの D M E燃料供給装置のィンジヱクションポンプとして好適に利用できる。 ま た、 本発明に係る D M E燃料供給装置は、 ディーゼルエンジンの D M E 燃料供給装置として好適に利用できる。

Claims

請求の範囲
1 . 燃料タンク内の D M E燃料を所定の圧力に加圧し、 フィードパ ィプへ送出するフィードポンプと、
ディ一ゼルエンジンの駆動軸の回転が伝達されて回転するカムシャフ トと係合するプランジャの上下動で開閉可能なデリバリバルブによって、 前記フィ一ドパイプを経由して送出された前記 D M E燃料が流れる油溜 室の該 D M E燃料を、 所定のタイ ミングで所定の量だけ前記ディーゼル エンジンの燃料噴射ノズルに連通しているィンジェクシヨンパイプへ送 出するインジェクションポンプエレメン トを有するインジェクションポ ンプと、
前記燃料噴射ノズルからオーバーフローした前記 D M E燃料、 及び前 記ィンジェクションポンプからオーバ一フローした前記 D M E燃料を、 前記燃料タンクへ戻すためのオーバ一フロー燃料パイプと、
前記ディーゼルエンジン停止後、 前記油溜室内、 及び前記オーバーフ ロー燃料パイプ内に残留している前記 D M E燃料を、 前記燃料タンクへ 回収可能な残留燃料回収手段とを備えた前記ディーゼルエンジンの D M E燃料供給装置の前記ィンジェクシヨンポンプであって、
前記力ムシャフ 卜のカムによってデリバリバルブが開閉する噴射状態 と、 前記カムによって前記ブランジャが上下動しても前記デリバリバル プが開閉しない無噴射状態とを切り換える噴射状態切換手段を有し、 前 記インジェクションポンプエレメントは、 前記無噴射状態の時にのみ、 前記デリバリバルブが閉じた状態でも前記ィンジェクションパイプと前 記油溜室とが連通する構成を成している、 ことを特徴としたインジェク ションポンプ。
2 . 請求の範囲第 1項において、 前記インジヱクシヨンポンプエレ メン トは、 略円柱体形状を成す前記プランジャが、 前記噴射状態切換手 段によって前記ブランジャバレル内で周方向に回転し、 該回転位置によ り前記 D M E燃料の噴射量が変化する構成を成しており、 前記噴射量が 0となる前記プランジャの回転位置において無噴射状態となり、 かつ前 記インジェクションパイプと前記油溜室とを連通させるパージ通路が構 成される、 ことを特徴としたインジヱクシヨンポンプ。
3 . 請求の範囲第 2項において、 前記インジェクションポンプエレ メントは、 前記ィンジェクシヨンパイプに連通しているデリバリバルブ 揷設孔を有するデリバリバルブホルダと、 前記デリバリバルブ揷設孔に 往復動可能に揷設されている前記デリバリバルブと、 前記デリバリパル プホルダと一体に配設され、 前記デリバリバルブのバルブ部が当接した 状態で、 前記ィンジェクシヨンパイプと前記油溜室との連通が遮断され て閉弁状態となるバルブシート部を有するデリバリバルブシー卜と、 前 記デリパリバルブを前記デリノ リバルブシートに付勢するデリバリスプ リングと、 前記デリバリバルブシートと一体に配設され、 該デリバリバ ルブシ一トに連通している液圧室を有するブランジャバレルと、 前記液 圧室に往復動可能に揷設され、 一端側が前記デリノ ^リバルブに面してい る前記プランジャと、 該プランジャを前記カム側に付勢するブランジャ スプリングとを備え、
前記噴射状態時には、 前記閉弁状態から前記ブランジャが前記カムに 押し上げられ、 前記液圧室と前記油溜室との連通が遮断され、 前記液圧 室内の前記 D M E燃料が前記デリバリパルブを押し上げて開弁状態とな り、 開弁状態の前記デリバリバルブから前記液圧室内の前記 D M E燃料 が前記ィンジェクションパイプへ圧送され、 前記ブランジャの外周面に 形成されている切り欠き部を介して前記液圧室と前記油溜室とが再び連 通し、 前記液圧室内の液圧が低下して前記デリバリパルブが前記デリバ リスプリングの付勢力によって閉弁し、
前記無噴射状態時には、 前記プランジャの外周面に形成されているパ —ジ溝と、 前記ブランジャバレルの内周面に形成されているパージポー トとが連通する回転位置となる如く、 前記噴射状態切換手段によって前 記プランジャが周方向に回転し、 前記パージポート、 前記パージ溝、 及 び前記デリバリバルプシ一トに形成され、 前記ィ ンジヱクションパイプ と前記パージポ一トとを連通させるパージ通路を介して前記ィンジェク シヨンパイプと前記油溜室とが連通する構成を成している、 ことを特徴 としたインジェクションポンプ。
4 . 請求の範囲第 1項〜第 3項のいずれか 1項において、 前記イ ン ジェクシヨンポンプは、 前記カムシャフ トが配設され、 潤滑油が貯留さ れているカム室が、 前記ディーゼルエンジンの潤滑系と分離された専用 潤滑系となっており、 前記カム室には、 前記 D M E燃料が混入した前記 潤滑油から該 D M E燃料を分離するオイルセパレー夕と、 前記カムシャ フ トのカムによって駆動され、 分離した前記 D M E燃料を加圧して前記 燃料タンクへ送出するコンプレッサーとが配設されている、 ことを特徴 としたインジェクションポンプ。
5 . 請求の範囲第 2項〜第 4項のいずれか 1項において、 前記噴射 状態切換手段は、 前記プランジャと係合して前記ブランジャを周方向に 回転させる如く往復動可能に配設されたコン トロールラックと、 前記デ ィ一ゼルエンジンの回転数が許容最高回転数を超えないように前記コン トロールラックのラック位置を燃料減方向へ引き戻す高速制御手段を有 するガバナとを備え、
前記コン ト口一ルラックは、 前記ガバナの前記高速制御手段における フルラック位置と、 前記噴射状態から前記無噴射状態へ切り換わる無噴 射ラヅク位置との間の前記コン ト口一ルラックの移動範囲外にパージラ ック位置が設定されており、
前記ガバナは、 前記残留燃料回収手段によって、 前記ディーゼルェン ジン停止後、 前記油溜室内、 及び前記オーバ一フロー燃料パイプ内に残 留している前記 D M E燃料を前記燃料タンクへ回収する際に、 前記コン トロールラックのラック位置を前記パージラック位置へ移動させ、 前記ィンジヱクシヨンポンプエレメン トは、 前記コントロールラック のラック位置が前記パ一ジラック位置にある場合のみ、 前記パージ通路 が構成された状態で前記無噴射状態となる、 ことを特徴としたィンジェ クシヨンポンプ。
6 . 請求の範囲第 5項において、 前記パージラック位置は、 前記無 噴射ラック位置より無噴射状態側の前記コントロールラックの移動範囲 内に設定されている、 ことを特徴としたインジェクションポンプ。
7 . 請求の範囲第 1項〜第 &項のいずれか 1項に記載のィンジェク シヨンポンプを備えたディーゼルエンジンの D M E燃料供給装置。
8 . 請求の範囲第 7項において、 前記残留燃料回収手段は、 前記フ イードパイプと前記オーバーフロー燃料パイプとの間に配設されたァス ピレ一夕によって、 前記フィードポンプから送出された前記 D M E燃料 を、 そのまま前記燃料タンクへ璟流させ、 前記油溜室内、 及び前記ォ一 バーフロー燃料パイプ内に残留している前記 D M E燃料が、 環流する前 記 D M E燃料に吸引されて、 前記燃料夕ンクへ回収される構成を成して いる、 ことを特徴としたディーゼルエンジンの D M E燃料供給装置。
9 . 請求の範囲第 7項又は第 8項において、前記フィードポンプは、 前記燃料タンクの前記 D M E燃料の送出口近傍に配設され、該送出口は、 前記燃料タンク内の前記 D M E燃料の液面より下に位置している、 こと を特徴としたディーゼルエンジンの D M E燃料供給装置。
PCT/JP2002/011657 2001-11-09 2002-11-08 Pompe a injection et dispositif d'alimentation en carburant dme de moteur diesel dote de la pompe a injection WO2003040549A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/495,057 US6955156B2 (en) 2001-11-09 2002-11-08 Injection pump and fuel DME feed device of diesel engine with the injection pump
EP02775510A EP1457666A1 (en) 2001-11-09 2002-11-08 Injection pump and dme fuel feed device of diesel engine with the injection pump

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2001344198 2001-11-09
JP2001-344198 2001-11-09
JP2002-288653 2002-10-01
JP2002288653A JP2003206824A (ja) 2001-11-09 2002-10-01 インジェクションポンプ、及び該インジェクションポンプを備えたディーゼルエンジンのdme燃料供給装置

Publications (1)

Publication Number Publication Date
WO2003040549A1 true WO2003040549A1 (fr) 2003-05-15

Family

ID=26624432

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/011657 WO2003040549A1 (fr) 2001-11-09 2002-11-08 Pompe a injection et dispositif d'alimentation en carburant dme de moteur diesel dote de la pompe a injection

Country Status (6)

Country Link
US (1) US6955156B2 (ja)
EP (1) EP1457666A1 (ja)
JP (1) JP2003206824A (ja)
KR (1) KR20050044358A (ja)
CN (1) CN1585855A (ja)
WO (1) WO2003040549A1 (ja)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003074862A1 (fr) * 2002-03-06 2003-09-12 Bosch Automotive Systems Corporation Dispositif d'alimentation en carburant dimethylether (dme) de moteur diesel
WO2004005696A1 (ja) * 2002-07-09 2004-01-15 Bosch Automotive Systems Corporation ディーゼルエンジンのdme燃料供給装置
JP4297907B2 (ja) * 2002-12-26 2009-07-15 ボッシュ株式会社 ディーゼルエンジンの液化ガス燃料供給装置
JP4119864B2 (ja) * 2004-03-31 2008-07-16 三菱重工業株式会社 内燃機関の燃料噴射装置
DE102005025601A1 (de) * 2005-06-03 2006-12-07 Man B & W Diesel Ag Einspritzpumpe für eine Brennkraftmaschine sowie Brennkraftmaschine
US7910283B2 (en) * 2005-11-21 2011-03-22 Shin-Etsu Chemical Co., Ltd. Silicon-containing antireflective coating forming composition, silicon-containing antireflective coating, substrate processing intermediate, and substrate processing method
US7678529B2 (en) * 2005-11-21 2010-03-16 Shin-Etsu Chemical Co., Ltd. Silicon-containing film forming composition, silicon-containing film serving as etching mask, substrate processing intermediate, and substrate processing method
DE602007000498D1 (de) * 2006-04-11 2009-03-12 Shinetsu Chemical Co Siliziumhaltige, folienbildende Zusammensetzung, siliziumhaltige Folie, siliziumhaltiges, folientragendes Substrat und Strukturierungsverfahren
US7855043B2 (en) * 2006-06-16 2010-12-21 Shin-Etsu Chemical Co., Ltd. Silicon-containing film-forming composition, silicon-containing film, silicon-containing film-bearing substrate, and patterning method
DE102006040465A1 (de) * 2006-08-29 2008-03-06 Man Diesel Se Einspritzpumpe für eine Brennkraftmaschine sowie Brennkraftmaschine
KR100861754B1 (ko) * 2007-07-10 2008-10-06 자동차부품연구원 차량의 고압 연료펌프용 누설 dme 연료의 재순환 장치
WO2009082280A1 (en) * 2007-12-20 2009-07-02 Volvo Technology Corporation Fuel-pumping system, method for operating a fuel-pumping system and fuel-injection system comprising a fuel-pumping system
DE102009028023A1 (de) * 2009-07-27 2011-02-03 Robert Bosch Gmbh Hochdruck-Einspritzsystem mit Kraftstoffkühlung aus Niederdruckbereich
CN101858290B (zh) * 2010-04-06 2011-11-16 武汉科技大学 一种用于内燃机低粘度燃料的喷嘴
CN103608575B (zh) * 2011-06-14 2016-08-24 沃尔沃拉斯特瓦格纳公司 燃料系统和减少从燃料系统的燃料泄漏的方法
CN102518539A (zh) * 2011-12-20 2012-06-27 余姚市舒春机械有限公司 一种中速柴油机喷油泵总成
CN102562279A (zh) * 2012-01-12 2012-07-11 江世椿 一种使用二甲醚的发动机
KR101365900B1 (ko) * 2012-11-14 2014-02-25 현대중공업 주식회사 엄브렐러 플런저 가이드가 구비된 연료 분사펌프
EP3040536B1 (en) * 2013-08-30 2019-11-27 Yanmar Co., Ltd. Diesel engine
CN103629029A (zh) * 2013-11-28 2014-03-12 江苏金銮油泵有限公司 新型q系列喷油泵总成
CN105275691B (zh) * 2015-11-12 2017-07-28 余姚市舒春机械有限公司 船用大马力环保型柴油机供油装置
KR102216495B1 (ko) * 2017-03-29 2021-02-16 바르실라 핀랜드 오이 내연 피스톤 기관에 연료를 공급하기 위한 연료 펌프
AT519880B1 (de) * 2017-07-05 2018-11-15 Avl List Gmbh Druckregeleinrichtung für ein Kraftstoffverbrauchsmesssystem und Kraftstoffverbrauchsmesssystem
DE102019116353B4 (de) * 2019-06-17 2020-12-24 Man Energy Solutions Se Kraftstoffpumpe
CN114270028A (zh) * 2019-08-29 2022-04-01 沃尔沃卡车集团 燃料喷射系统
CN114962106B (zh) * 2022-05-25 2022-12-06 安徽腾达汽车科技有限公司 一种阀门机构及油泵

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5179226U (ja) * 1974-12-19 1976-06-23
JPH10281030A (ja) * 1997-04-09 1998-10-20 Nkk Corp ジメチルエーテル用ディーゼル機関の燃料噴射ポンプ

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4222717A (en) * 1978-10-06 1980-09-16 Caterpillar Tractor Co. Fuel injection pump
US5485818A (en) * 1995-02-22 1996-01-23 Navistar International Transportation Corp. Dimethyl ether powered engine
AT408130B (de) * 1995-03-23 2001-09-25 Avl Verbrennungskraft Messtech Einspritzsystem für eine brennkraftmaschine
DE19611434B4 (de) * 1995-05-31 2004-02-26 AVL Gesellschaft für Verbrennungskraftmaschinen und Meßtechnik m.b.H. Prof. Dr. Dr.h.c. Hans List Einspritzsystem für eine Brennkraftmaschine
US5816228A (en) * 1997-02-19 1998-10-06 Avl Powertrain Engineering, Inc. Fuel injection system for clean low viscosity fuels
AT2958U3 (de) * 1998-06-05 2002-05-27 Avl List Gmbh Einspritzsystem
JP2000291509A (ja) * 1999-04-01 2000-10-17 Mitsubishi Electric Corp 直噴式ガソリンエンジン用燃料供給装置
JP4304887B2 (ja) * 2001-06-19 2009-07-29 株式会社デンソー 代替燃料用の燃料供給システム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5179226U (ja) * 1974-12-19 1976-06-23
JPH10281030A (ja) * 1997-04-09 1998-10-20 Nkk Corp ジメチルエーテル用ディーゼル機関の燃料噴射ポンプ

Also Published As

Publication number Publication date
EP1457666A1 (en) 2004-09-15
KR20050044358A (ko) 2005-05-12
US6955156B2 (en) 2005-10-18
CN1585855A (zh) 2005-02-23
US20050016499A1 (en) 2005-01-27
JP2003206824A (ja) 2003-07-25

Similar Documents

Publication Publication Date Title
WO2003040549A1 (fr) Pompe a injection et dispositif d'alimentation en carburant dme de moteur diesel dote de la pompe a injection
KR100935487B1 (ko) 디젤 엔진의 dme 연료 공급 장치
JP4253484B2 (ja) 内燃機関用の燃料噴射装置
JP4488069B2 (ja) 燃料供給装置
JP4138444B2 (ja) 内燃機関に用いられる燃料噴射装置
JP2007285125A (ja) 内燃機関の燃料供給装置
KR20020063005A (ko) 개선된 시동 특성을 갖는 내연 기관용 연료 분사 시스템
WO2012171593A1 (en) Fuel system and method for reducing fuel leakage from a fuel system
WO2004005696A1 (ja) ディーゼルエンジンのdme燃料供給装置
US6817841B2 (en) High-pressure fuel pump for internal combustion engine with improved partial-load performance
JP3819308B2 (ja) ディーゼルエンジンのdme燃料供給装置
EP1586762A1 (en) Liquefied gas-delivering device for diesel engine
JP2010007564A (ja) 燃料供給装置
KR20030074222A (ko) 인젝션 펌프 및 이 인젝션 펌프를 구비한 디젤 엔진의연료 공급 장치
JP2007046501A (ja) 高圧燃料供給装置
JP2006250136A (ja) シリンダ内燃料噴射エンジンの燃料供給装置
JP3922695B2 (ja) ディーゼルエンジンのdme燃料供給装置
JP2005180193A (ja) ディーゼルエンジンの液化ガス燃料供給装置
JP2003328875A (ja) ディーゼルエンジンのdme燃料供給装置
KR19980019112A (ko) 디젤엔진의 연료분사시기제어장치(fuel injection timing control system for diesel engine)
JP6015471B2 (ja) 燃料供給装置
JP2004044397A (ja) インジェクションポンプ、及び該インジェクションポンプを備えたディーゼルエンジンのdme燃料供給装置
JP2005016471A (ja) インジェクションポンプ、該インジェクションポンプを備えたディーゼルエンジンのdme燃料供給装置
JP2006090256A (ja) エンジンの燃料供給装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10495057

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020047006927

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2002822289X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2002775510

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2002775510

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2002775510

Country of ref document: EP