WO2003038261A1 - Dispositif de commande de moteur - Google Patents

Dispositif de commande de moteur Download PDF

Info

Publication number
WO2003038261A1
WO2003038261A1 PCT/JP2002/010945 JP0210945W WO03038261A1 WO 2003038261 A1 WO2003038261 A1 WO 2003038261A1 JP 0210945 W JP0210945 W JP 0210945W WO 03038261 A1 WO03038261 A1 WO 03038261A1
Authority
WO
WIPO (PCT)
Prior art keywords
intake
fuel
engine
state
intake pressure
Prior art date
Application number
PCT/JP2002/010945
Other languages
English (en)
French (fr)
Inventor
Michihisa Nakamura
Original Assignee
Yamaha Hatsudoki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Hatsudoki Kabushiki Kaisha filed Critical Yamaha Hatsudoki Kabushiki Kaisha
Priority to DE60239954T priority Critical patent/DE60239954D1/de
Priority to EP02777921A priority patent/EP1447550B1/en
Priority to AT02777921T priority patent/ATE508269T1/de
Priority to CNB028157249A priority patent/CN100334341C/zh
Priority to US10/493,290 priority patent/US6983738B2/en
Priority to JP2003540508A priority patent/JP3976322B2/ja
Priority to BRPI0211218-3A priority patent/BRPI0211218B1/pt
Publication of WO2003038261A1 publication Critical patent/WO2003038261A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/08Throttle valves specially adapted therefor; Arrangements of such valves in conduits
    • F02D9/10Throttle valves specially adapted therefor; Arrangements of such valves in conduits having pivotally-mounted flaps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/045Detection of accelerating or decelerating state
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0406Intake manifold pressure

Definitions

  • the present invention relates to an engine control device for controlling an engine, and is particularly suitable for controlling an engine having a fuel injection device for injecting fuel.
  • injectors In recent years, with the spread of fuel injectors called injectors, it has become easier to control the amount of fuel injected, that is, the amount of injected fuel, that is, the air-fuel ratio, and to achieve higher output, lower fuel consumption, and cleaner exhaust gas. Can be promoted.
  • the timing of fuel injection it is generally strictly to detect the state of the intake valve, that is, generally the phase state of the camshaft, and to inject fuel in accordance with the detected phase.
  • a so-called cam sensor for detecting the phase state of the camshaft is expensive, and cannot be adopted particularly in a motorcycle or the like due to a problem such as an increase in the size of a cylinder head. For this reason, for example, Japanese Patent Application Laid-Open No.
  • H10-2-27252 proposes an engine control device that detects a phase state of a crankshaft and an intake pressure, and detects a stroke state of a cylinder therefrom. Therefore, by using this conventional technique, the stroke state can be detected without detecting the phase of the camshaft, and it becomes possible to control the fuel injection timing and the like in accordance with the stroke state. .
  • a target air-fuel ratio is set in accordance with the engine speed and the throttle opening, and the actual intake air amount is detected. By multiplying the inverse ratio of the air-fuel ratio, the target fuel injection amount can be calculated.
  • a wire-type airflow sensor and a Kalman eddy current sensor are used as sensors for measuring a mass flow rate and a volume flow rate, respectively.
  • a wire-type airflow sensor and a Kalman eddy current sensor are used as sensors for measuring a mass flow rate and a volume flow rate, respectively.
  • most motorcycle engines have a so-called independent intake system for each cylinder, or the engine itself is a single-cylinder engine, and these requirements cannot be fully satisfied.
  • the amount of intake air cannot be accurately detected.
  • the intake air amount is detected at the end of the intake stroke or at the beginning of the compression stroke.Since fuel has already been injected, air-fuel ratio control using this intake air amount can be performed only in the next cycle. Absent. This means that, until the next cycle, for example, the driver tried to open the throttle and accelerated, but the air-fuel ratio was controlled at the target air-fuel ratio before that, so it was worth the acceleration. It is uncomfortable that torque and output cannot be obtained and sufficient acceleration cannot be obtained.
  • the driver's intention to accelerate may be detected by using a throttle valve sensor or a throttle position sensor that detects a throttle state. These sensors are too large or expensive to be adopted, and the problem is still unsolved.
  • the present invention has been developed to solve the above-mentioned problems, and detects the driver's intention to accelerate and controls the air-fuel ratio without using a throttle valve sensor throttle position sensor. Provide an engine control device that is considered to be sufficiently accelerated. Disclosure of the invention
  • the engine control device of the present invention includes a phase detection unit that detects a phase of a crankshaft of a four-stroke engine, and detects an intake pressure in an intake passage of the engine downstream of a throttle valve. And a load of the engine based on the crankshaft phase detected by the phase detection means and the intake pressure detected by the intake pressure detection means.
  • An engine control means for controlling an operating state of the engine based on the engine, and a capacity from the throttle valve to the intake port of the engine is set to be equal to or less than a cylinder stroke capacity.
  • FIG. 1 is a schematic configuration diagram of a motorcycle engine and its control device.
  • FIG. 2 is an explanatory diagram of the principle of transmitting a crank pulse in the engine of FIG.
  • FIG. 3 is a block diagram showing an embodiment of the engine control device of the present invention.
  • Fig. 4 is an explanatory diagram for detecting the stroke state from the phase of the crankshaft and the intake pressure.o
  • FIG. 5 is a block diagram of the intake air amount calculation unit.
  • Figure 6 is a control map that determines the mass flow rate of intake air from the intake pressure.
  • FIG. 7 is a block diagram of the fuel injection amount calculation unit and the fuel behavior model.
  • FIG. 8 is a flowchart showing a calculation process for detecting the acceleration state and calculating the fuel injection amount during acceleration.
  • FIG. 9 is a timing chart showing the operation of the arithmetic processing of FIG.
  • FIG. 7 is an explanatory diagram of an intake air amount with respect to an intake pressure when a volume ratio of a throttle downstream volume to a cylinder stroke volume is changed.
  • FIG. 11 is an explanatory diagram of a throttle valve, a cylinder, and an intake pipe pressure sensor.
  • FIG. 12 is an explanatory diagram of the intake pipe pressure detected by the intake pipe pressure sensor when the throttle valve comes off the cylinder.
  • FIG. 1 is a schematic configuration showing an example of a motor cycle engine and its control device, for example.
  • the engine 1 is a single-cylinder four-stroke engine with a relatively small displacement, and includes a cylinder body 2, a crankshaft 3, a piston 4, a combustion chamber 5, an intake pipe 6, an intake valve 7, an exhaust pipe 8, and an exhaust valve 9. , A spark plug 10 and an ignition coil 11.
  • a throttle valve 12 that opens and closes in accordance with the accelerator opening is provided in the intake pipe 6.
  • An intake pipe (intake passage) 6 downstream of the throttle valve 12 is provided with a fuel injection device.
  • An injector 13 is provided. This injector 13 is equipped with a fuel tank 18, a fuel pump 17 and a pressure control Connected to valve 16.
  • the operating state of the engine 1 is controlled by the engine control unit 15.
  • the crank angle sensor 20 for detecting the rotation angle of the crankshaft 3, that is, the phase
  • the cylinder Cooling water temperature sensor 21 that detects the temperature of the body 2 or cooling water, that is, the temperature of the engine body
  • exhaust air-fuel ratio sensor 22 that detects the air-fuel ratio in the exhaust pipe 8
  • intake pressure in the intake pipe 6 And an intake air temperature sensor 25 for detecting the temperature in the intake pipe 6, that is, the intake air temperature.
  • the engine control unit 15 receives the detection signals of these sensors and outputs control signals to the fuel pump 17, pressure control valve 16, injector 13, and ignition coil 11. .
  • crank angle signal output from the crank angle sensor 20 will be described.
  • a plurality of teeth 23 are protruded at substantially equal intervals on the outer periphery of the crankshaft 3, and the approach is detected by a crank angle sensor 20 such as a magnetic sensor. Then, a pulse signal is sent out by performing appropriate electrical processing.
  • the circumferential pitch between each tooth 23 is 30 ° in terms of the phase (rotation angle) of the crankshaft 3, and the circumferential width of each tooth 23 is the phase (rotation angle) of the crankshaft 3. (Rotation angle) is set to 10 °.
  • FIG. 2A shows the state at the time of compression top dead center (the form of exhaust top dead center is the same).
  • the pulse signal immediately before the compression top dead center is shown as "0" in the figure.
  • the next pulse signal is numbered “1”, the next pulse signal is numbered "2”, and so on.
  • Next to the tooth 23 corresponding to the pulse signal of "4" in the figure is a tooth missing portion, so it is counted as one tooth extra as if it is assumed that a tooth exists, and the pulse signal of the next tooth 23 is Numbering "6" as shown. By repeating this, this time, the tooth signal follows the pulse signal "16" shown in the figure.
  • the pulse signal of the next tooth 23 is numbered "18" in the figure.
  • the crankshaft 3 makes two rotations, the cycle of all four strokes is completed. After the numbering is completed up to “23” in the figure, the pulse signal of the next tooth 23 is numbered again as “0” in the figure.
  • the compression top dead center should be immediately after the pulse signal of the tooth 23 labeled "0" in the figure.
  • the detected pulse signal train or a single pulse signal thereof is defined as a crank pulse.
  • the crank timing can be detected. Note that the teeth 23 are exactly the same even if they are provided on the outer periphery of a member that rotates synchronously with the crankshaft 3.
  • FIG. 3 is a block diagram showing an embodiment of the engine control arithmetic processing performed by the microcomputer in the engine control unit 15.
  • an engine speed calculating section 26 for calculating the engine speed from the crank angle signal, and crank timing information that is, a crank timing detecting section for detecting the stroke state from the crank angle signal and the intake pressure signal.
  • an intake air amount calculation unit 28 that reads crank timing information detected by the crank timing detection unit 27, and calculates an intake air amount from the intake air temperature signal and the intake air pressure signal; By setting the target air-fuel ratio based on the engine speed calculated by the number calculation unit 26 and the intake air amount calculated by the intake air amount calculation unit 28, or by detecting the acceleration state, A fuel injection amount setting unit 29 for calculating and setting a fuel injection amount and a fuel injection timing; and a crank time detected by the crank timing detection unit 27.
  • An injection pulse output unit 30 that reads injection information to the injector 13 according to the fuel injection amount and fuel injection timing set by the fuel injection amount setting unit 29, and the crank.
  • the crank timing information detected by the timing detection unit 27 is read, and ignition is performed based on the engine speed calculated by the engine speed calculation unit 26 and the fuel injection amount set by the fuel injection amount setting unit 29.
  • the ignition timing setting unit 31 for setting the timing and the crank timing information detected by the crank timing detection unit 27 are read, and the ignition timing setting unit 3 And an ignition pulse output section 32 for outputting an ignition pulse corresponding to the ignition timing set in 1 to the ignition coil 11.
  • the engine speed calculation unit 26 calculates the rotation speed of the crankshaft, which is the output shaft of the engine, as the engine speed from the time change rate of the crank angle signal. Specifically, the instantaneous value of the engine speed obtained by dividing the phase between the adjacent teeth 23 by the required crank pulse detection time, and the average value of the engine speed based on the moving average value are calculated. I do.
  • the crank timing detecting section 27 has a configuration similar to that of the stroke discriminating apparatus described in the above-mentioned Japanese Patent Laid-Open Publication No. H10-22752, and thereby, for example, as shown in FIG. detecting the stroke state of each cylinder, c that is output as crank timing information, the 4-cycle engine, shown from the crankshaft and Kamushafu Bok continues to rotate constantly at a predetermined phase difference, for example, in FIG As described above, when the crank pulse is being read, the fourth illustrated "9" or "21" crankless stroke from the toothless portion is either the exhaust stroke or the compression stroke. As is well known, in the exhaust stroke, the exhaust valve is closed, and the intake valve is closed, so the intake pressure is high.
  • the intake pressure is low because the intake valve is still open, or the intake pressure is low. Even if the valve is closed, the intake pressure is low during the preceding intake stroke. Accordingly, when the intake pressure is low, the crank pulse of "21" shown in the drawing indicates that it is in the compression stroke, and immediately after the crank pulse of "0" shown is obtained, the compression top dead center is obtained. In this way, if any of the stroke states can be detected, the current stroke state can be detected more finely by interpolating between the strokes with the rotational speed of the crankshaft.
  • the intake air amount calculation unit 28 detects an intake pressure detection unit 281, which detects intake pressure from the intake pressure signal and crank timing information, and a mass flow rate of intake air from the intake pressure.
  • a mass flow rate map storage section 282 that stores a map for detection, a mass flow rate calculation section 283 that calculates a mass flow rate according to the intake pressure detected using the mass flow rate map,
  • An intake air temperature detector 284 detecting the intake air temperature from the intake air temperature signal; a mass flow rate of the intake air calculated by the mass flow calculator 283; and an intake air temperature detected by the intake air temperature detector 284.
  • a mass flow rate correction unit 285 for correcting the mass flow rate of the intake air. That is, the mass flow rate The map is created based on the mass flow rate when the intake air temperature is 20 ° C, for example, and this is corrected with the actual intake air temperature (absolute temperature ratio) to calculate the intake air volume.
  • the intake air amount is calculated using the intake pressure value between the bottom dead center in the compression stroke and the intake valve closing timing. That is, when the intake valve is open, the intake pressure and the cylinder pressure are substantially equal, so that the cylinder air mass can be obtained if the intake pressure, the cylinder volume, and the intake temperature are known.
  • the intake knob is still open for a while after the start of the compression stroke, air flows in and out between the cylinder and the intake pipe during this time, and the intake air volume calculated from the intake pressure before bottom dead center is actually May differ from the amount of air drawn into the cylinder. Therefore, even when the intake valve is open, the intake air amount is calculated using the intake pressure in the compression stroke in which no air flows between the cylinder and the intake pipe.
  • the mass flow map for calculating the intake air amount has a relatively linear relationship with the intake pressure as shown in FIG. This is because the required air mass is based on Boyle-Charles' law ( ⁇ V2nR ⁇ ).
  • the fuel injection amount setting unit 29 calculates a steady-state target air-fuel ratio based on the engine speed 26 and the intake pressure signal detected by the engine speed calculating unit 26.
  • the steady-state fuel injection amount calculator 34 calculates the steady-state fuel injection amount and the fuel injection timing, and the steady-state fuel injection amount calculator 34 calculates the steady-state fuel injection amount and the fuel injection timing.
  • the fuel behavior model 35 is substantially integrated with the steady-state fuel injection amount calculation unit 34. In other words, without the fuel behavior model 35, accurate calculation and setting of the fuel injection amount and fuel injection timing cannot be performed in the present embodiment in which the injection in the intake pipe is performed.
  • the fuel behavior model 35 requires the intake air temperature signal, the engine speed, and the coolant temperature signal.
  • the steady-state fuel injection amount calculation unit 34 and the fuel behavior model 35 are configured, for example, as shown in the work diagram of FIG.
  • the fuel injection amount injected from the injector 13 into the intake pipe 6 is M F - IN
  • the fuel adhesion rate adhering to the wall of the intake pipe 6 is X
  • the fuel injection amount M F - IN among "adhesion amount direct flow Iriryou be directly injected into the cylinder to adhere to ((1-X) XMP- I NJ)
  • the fuel removal amount M F — BUF is defined as the carry-out rate that is taken away by the intake air flow.
  • the steady-state fuel injection amount calculation unit 34 first calculates the cooling water temperature correction coefficient K W using the cooling water temperature T W power and the cooling water temperature correction coefficient table. Meanwhile, the inhalation air amount M A - MAN to, for example, fuel with a cutlet and line fuel Katsutoru one Chin to Bok , then the intake air temperature T A temperature correction when the throttle opening is zero The calculated air inflow amount M A is calculated, and the target air-fuel ratio AF is added to the calculated air inflow amount M A. Of multiplying the inverse ratio, further calculates the cooling water temperature correction factor K W required fuel inflow amount M F multiplied by.
  • the carry-out rate r is calculated from M AN using a carry-out rate map.
  • the fuel residual quantity M F obtained in the previous operation - by multiplying the Te said carry-off ratio fuel carried-off amount M F to BUF - calculates TA, the fuel subtracting it from the required fuel inflow amount M F to calculate the direct inflow M F _ DIR.
  • the fuel direct inflow quantity M F - DIR the fuel injection amount M F - since it is (1 one X) times u, here is divided by (1 one X) steady-state fuel injection calculating the INJ - amount M F. Also, the amount of fuel remaining in the intake pipe until the previous time
  • the intake air amount calculated by the intake air amount calculation unit 28 is detected at the end of the intake stroke of the cycle immediately before the intake stroke that enters the explosion (expansion) stroke or at the beginning of the subsequent compression stroke.
  • the steady-state fuel injection amount and the fuel injection timing calculated and set by the steady-state fuel injection amount calculation unit 34 are also the results of the previous cycle according to the intake air amount. .
  • the acceleration state detection section 41 has an acceleration state threshold value table. This is, as will be described later, a difference value between the intake pressure at the same stroke and the same crank angle and the current intake pressure in the intake pressure signal, and comparing the value with a predetermined value. This is a threshold value for detecting that the vehicle is in an acceleration state, and specifically differs for each crank angle. Therefore, the detection of the acceleration state is performed by comparing a difference value of the intake pressure with the previous value with a predetermined value different at each crank angle.
  • the acceleration state detection section 41 and the acceleration fuel injection amount calculation section 42 are substantially collectively performed by the arithmetic processing shown in FIG. This calculation process is executed every time the crank pulse is input. It should be noted that, although no particular communication step is provided in the arithmetic processing, information obtained in the arithmetic processing is stored in the storage device as needed, and information necessary for the arithmetic processing is read from the storage device as needed.
  • step S1 the intake pressure P A -MAN from the intake pressure signal is input to the ITC.
  • step S2 the crank angle ACS is read from the crank angle signal.
  • step S 3 reads the engine Rotation speed N E from the engine speed calculating section 2 6.
  • step S4 the process proceeds to step S4 to detect a stroke state from the crank timing information output from the crank timing detecting section 27.
  • step S5 it is determined whether or not the current stroke is the exhaust stroke or the intake stroke. If the current stroke is the exhaust stroke or the intake stroke, the process proceeds to step S6. If not, the process proceeds to step S7.
  • step S6 the acceleration fuel injection prohibition counter n allows the fuel injection during acceleration to be permitted. Allowed predetermined value n. It is determined whether or not the above is satisfied, and the acceleration fuel injection prohibition counter n is set to a predetermined value n. If so, the process proceeds to step S8; otherwise, the process proceeds to step S9.
  • step S8 the intake pressure P A - MAN is read two crankshaft revolutions before, that is, the previous intake pressure at the same crank angle A cs in the same previous stroke (hereinafter also referred to as the previous intake pressure). Move to 0.
  • step S 1 wherein the step intake pressure S 1 is read by the current P A - MAN from the intake pressure last value PA- MAN 4 to reduce an intake pressure difference delta P A - Sutedzupu after calculating the MAN Shift to S11.
  • step S11 the acceleration state intake pressure difference threshold ⁇ P A - MAN of the same crank angle A cs is obtained from the acceleration state threshold table. Is read and then the process proceeds to step S12. C In step S12, the fuel injection prohibition counter during acceleration n is cleared, and then the process proceeds to step S13.
  • step S 1 3 wherein the step S 1 0 intake pressure difference computed in ⁇ ⁇ - ⁇ is accelerating state intake air pressure Sa ⁇ value I read in the step S 1 1 the crank angle A cs ⁇ ⁇ ⁇ - ⁇ To determine at either or, the intake pressure difference ⁇ ⁇ ⁇ - ⁇ accelerating state intake air pressure differential threshold ⁇ ⁇ _ ⁇ . If so, the process proceeds to step S14; otherwise, the process proceeds to step S7.
  • step S9 the acceleration fuel injection inhibition force counter ⁇ is incremented, and then the process proceeds to step S7.
  • step S 1 4 wherein the step S 1 the intake pressure difference computed in 0 ⁇ ⁇ ⁇ - ⁇ and tertiary a read elaborate engine rotational speed N during acceleration fuel injection quantity M F -ACC corresponding to E in step S 3
  • step S15 After calculating from the original map, the process proceeds to step S15.
  • step S 7 the acceleration fuel injection quantity M F - shifts ACC from set to "0" in the step S 1 5.
  • step S 1 5 wherein the step S 1 4 or step acceleration time fuel ⁇ dimensions amount set in S 7 M F - returns to the main program from the output of the ACC.
  • the fuel injection timing at the time of acceleration is determined when the acceleration state is detected by the acceleration state detection unit 41, that is, at the step S13 of the calculation processing in FIG.
  • the ignition timing setting unit 31 calculates a basic ignition timing based on the engine speed calculated by the engine speed calculation unit 26 and the target air-fuel ratio calculated by the target air-fuel ratio calculation unit 33.
  • the basic ignition timing calculated by the basic ignition timing calculation unit 36 is corrected based on the basic ignition timing calculation unit 36 to be calculated and the fuel injection amount at acceleration calculated by the fuel injection amount at acceleration calculation unit 42.
  • an ignition timing correction unit 38 that performs the control.
  • the basic ignition timing calculation unit 36 obtains the ignition timing at which the generated torque becomes the largest based on the current engine speed and the target air-fuel ratio at that time by searching a map or the like, and calculates the ignition timing as the basic ignition timing. That is, the basic ignition timing calculated by the basic ignition timing calculation unit 36 is based on the result of the intake stroke of the immediately preceding cycle, as in the steady-state fuel injection amount calculation unit 34. Further, the ignition timing correction unit 38 adjusts the fuel injection amount during acceleration to the above-described steady-state fuel injection amount in accordance with the fuel injection amount during acceleration calculated by the fuel injection amount during acceleration / output unit 42.
  • the in-cylinder air-fuel ratio at the time of the addition is determined, and when the in-cylinder air-fuel ratio is significantly different from the target air-fuel ratio set by the steady-state target air-fuel ratio calculator 33, the in-cylinder air-fuel ratio and the engine speed are determined.
  • the ignition timing is corrected by setting a new ignition timing using the intake pressure.
  • the time t is constant until 6 and the time t. Throttle a relatively short time from 6 to time t 1 5 is opened linearly, then it was again throttle constant.
  • the intake valve is set to be opened from slightly before the exhaust top dead center to slightly after the compression bottom dead center.
  • the curve with a diamond-shaped plot shown in the figure is the intake pressure, and the waveform on the pulse shown at the lower end of the figure is the fuel injection amount.
  • the stroke in which the intake pressure rapidly decreases is the intake stroke, and then the cycle is repeated in the order of the compression stroke, the expansion (explosion) stroke, and the exhaust stroke.
  • the diamond-shaped plot of this intake pressure curve shows the crank pulse at every 30 °, and the crank angle position (240 °) surrounded by ' ⁇ corresponds to the engine speed.
  • the steady-state fuel injection amount and fuel injection timing are set using the intake pressure detected at that time. In this timing chart, the time t
  • the fuel of the steady-state fuel injection amount set in 02 is time t. 3 in the injection, as well as below, set in the time t 05, the time t. 7 the injection, set at time t 09, injected at time t 10, and set at time tn, the injection at time t 12, set at time t 13, injected at time t 14, set at time t 17, It is injected at time t 18.
  • time t for example, time t.
  • the steady-state fuel injection amount injected in to and time t 10 set at 9 is generally set in the compression stroke and the steady-state fuel injection timing is in the exhaust stroke.
  • the intention to accelerate is not reflected in the real time. That is, the time t.
  • the throttle starts to open at 6 , but then at time t.
  • the steady-state fuel injection amount injected at 7 is at time t earlier than time to 6. Because it is set at 5 , only a small amount is injected against the will to accelerate.
  • the intake pressure P A — MAN at the same crank angle in the previous cycle is obtained from the exhaust stroke to the intake stroke, and the hollow diamond-shaped crank angle shown in FIG. comparing issues calculate the difference value as the intake pressure difference delta PA- MAN, it threshold delta P a MAN.
  • the difference integral value of the previous value ie the intake pressure difference delta [rho Alpha — MAN is small.
  • time t when the throttle opening becomes large is compared to the intake pressure difference delta
  • the intake pressure P A -MAN ( 3. deg ) at a crank angle of 300 ° of 8 is the previous cycle, that is, the time t when the throttle opening is still small. 4 , crank angle of 300.
  • the intake pressure of P A MA N OOO d. G) is larger. Therefore, this time t.
  • the intake pressure difference ⁇ A obtained by subtracting the intake pressure P A - MAN ( 300 deg ) at the crank angle 300 ° at the time t 04 from the intake pressure P A — MAN (3. deg ) at the crank angle 300 ° at 8
  • the intake pressure curve shows a steep, so-called peaky characteristic, and a deviation occurs between the detected crank angle and the intake pressure.
  • the calculated intake pressure difference may be shifted. Therefore, the detection range of the acceleration state is extended to the exhaust stroke where the intake pressure curve is relatively gentle, and the acceleration state is detected by the intake pressure difference in both strokes.
  • the acceleration state may be detected only in one of the strokes.
  • the exhaust stroke and the intake stroke are performed only once every two crankshaft revolutions. Therefore, even if only the crank angle is detected, it is difficult to know that the strokes are in the case of a motorcycle engine having no cam sensor as in the present embodiment. Therefore, the stroke state based on the crank timing information detected by the crank timing detection section 27 is read, and after determining that the stroke is the stroke, the acceleration state is detected based on the intake pressure difference ⁇ ⁇ - ⁇ . . This enables more accurate detection of the acceleration state.
  • the crank angle mentioned above is 300.
  • the in is not Tsukirishi deg
  • MAN 36 deg
  • the intake pressure difference ⁇ P A — MAN which is the difference value from the previous value, at each crank angle is different. Accordingly, the acceleration state intake air pressure differential threshold ⁇ ⁇ - ⁇ . Must be changed for each crank angle A cs .
  • the acceleration state suction pressure difference threshold ⁇ P A -MAN0 is tabulated and stored for each crank angle A cs , and the table is stored for each crank angle Acs. read Nde on, the intake pressure difference delta P a - is compared with MAN. This enables more accurate detection of the acceleration state.
  • the engine rotational speed N epsilon and the intake pressure difference [Delta] [rho] Alpha - acceleration fuel injection quantity M F corresponding to Myuarufanyu - the ACC, injected immediately ing.
  • Acceleration fuel injection quantity M F - ACC to be set according to the engine rotational speed N E PT / JP02 / 10945 is very common, and the fuel injection amount is usually set smaller as the engine speed increases.
  • the intake pressure difference ⁇ ⁇ ⁇ — MAN is equivalent to the amount of change in the throttle opening, the larger the intake pressure difference, the larger the fuel injection amount.
  • the acceleration fuel injection inhibition force counter n is set to a predetermined value for permitting the acceleration fuel injection. The value n.
  • a smooth intake pressure change according to the stroke as shown in FIG. 3 is required, for example.
  • the intake air amount from the intake pressure which also means the engine load, when calculating this intake air amount, a certain degree of real intake pressure change according to the stroke is required. Required.
  • Figure 10 shows the change in the ratio (hereinafter also referred to as volume ratio) of the volume from the throttle valve to the intake port (hereinafter also referred to as the throttle downstream volume) with respect to the cylinder stroke volume, which is generally referred to as the displacement per cylinder.
  • volume ratio the ratio of the volume from the throttle valve to the intake port (hereinafter also referred to as the throttle downstream volume) with respect to the cylinder stroke volume, which is generally referred to as the displacement per cylinder.
  • the volume ratio of the throttle downstream volume to the cylinder stroke volume is set to "1" or less, that is, the throttle downstream volume is set to the cylinder stroke volume or less, so that the intake air amount sufficient for engine operation control is reduced. Calculated. This also enables more accurate detection of the acceleration state.
  • the throttle valve 12 and the engine body, that is, the cylinder 2 are separate bodies.
  • the throttle valve 12 includes a throttle valve body 12a and a valve body 12b.
  • the throttle valve 12 is affected by the vibration of the engine body.
  • a cushioning material is interposed between the cylinder 2 and the throttle body 12a so as not to receive much noise.
  • the throttle valve 12 and the cylinder 2 are separate bodies, and they are connected using individual connecting tools such as bolts and bands.
  • a pressure guide tube 14 is attached to the throttle body 12a on the throttle valve 12 side, and the intake pipe pressure sensor 24 is attached to a tip of the pressure guide tube. This is to prevent the fuel from being directly applied to the intake pipe pressure sensor 24.
  • Figure 1 2 & is time 1 :. Is the detected intake pipe pressure when the throttle valve 12 comes off the cylinder 2.
  • the intake pipe pressure 24 is released to the atmosphere and only the atmospheric pressure is detected. Therefore, the atmospheric pressure is constant after the time to. Therefore, when the engine continues to rotate from the crank pulse and the detected intake pipe pressure is constant at atmospheric pressure, the engine stops. It is determined that the rottle valve is disconnected, and appropriate fail-safe can be performed accordingly.
  • the intake pipe pressure sensor was mounted on the cylinder side, and at the same time. Indicates the detected intake pipe pressure when the throttle valve is released. As is evident from the figure, the intake pipe on the cylinder side should have been released to the atmosphere due to the release of the throttle valve.However, the pulsation of the intake pipe pressure was substantially the same as before. Therefore, the above-described method cannot detect the disengagement of the throttle valve, and therefore cannot perform reliable fail-safe.
  • the in-pipe injection engine is described in detail.
  • the engine control device of the present invention can be similarly applied to a direct injection engine.
  • fuel does not adhere to the intake pipe, so there is no need to consider this, and the air-fuel ratio can be calculated by substituting the total amount of injected fuel.
  • the single-cylinder engine has been described in detail, but the engine control device of the present invention can be similarly applied to a so-called multi-cylinder engine having two or more cylinders.
  • engine control unit can be replaced with various arithmetic circuits instead of the microcomputer.
  • the engine load is detected based on the detected crankshaft phase and intake pressure, and the operation of the engine is determined based on the detected engine load. Since the state is controlled, for example, the difference between the intake pressure at the same crankshaft phase during the same stroke the previous time and the current intake pressure is detected as an acceleration state when the force is equal to or greater than a predetermined value. If, for example, fuel is injected immediately when an acceleration state is detected, acceleration can be considered + minutes according to the driver's will, and the volume from the throttle valve to the engine intake port can be reduced. By setting the cylinder stroke volume or less, load detection such as calculation of the intake air amount and detection of the acceleration state by comparison of the intake pressure is made more accurate. Door can be.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Valve Device For Special Equipments (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Description

明細書 エンジン制御装置 技術分野
本発明は、エンジンを制御するエンジン制御装置に関するものであり、特に燃料 を噴射する燃料噴射装置を備えたエンジンの制御に好適なものである。 背景技術
近年、ィンジェクタと呼ばれる燃料噴射装置が普及するにつれて、燃料を噴射す る夕イミングゃ噴射燃料量、つまり空燃比などの制御が容易になり、高出力化、低 燃費化、排ガスのクリーン化などを促進することができるようになった。このうち、 特に燃料を噴射するタイミングについては、厳密には吸気バルブの状態、つまり一 般的にはカムシャフ卜の位相状態を検出し、それに合わせて燃料を噴射するのがー 般的である。 しかしながら、カムシャフ卜の位相状態を検出するための所謂カムセ ンサは高価であり、特に二輪車両などではシリンダへッ ドが大型化するなどの問題 があって採用できないことが多い。そのため、例えば特開平 1 0— 2 2 7 2 5 2号 公報では、クランクシャフ卜の位相状態及び吸気圧力を検出し、それらから気筒の 行程状態を検出するエンジン制御装置が提案されている。従って、この従来技術を 用いることにより、カムシャフ卜の位相を検出することなく、行程状態を検出する ことができるので、その行程状態に合わせて燃料の噴射夕イミングなどを制御する ことが可能となる。
ところで、前述したような燃料噴射装置から噴射する燃料噴射量を制御するには、 例えばエンジン回転数やスロットル開度に応じた目標空燃比を設定し、実際の吸入 空気量を検出して、目標空燃比の逆比に乗ずれば、目標燃料噴射量を算出すること ができる。
この吸入空気量の検出には、一般的にホヅ トワイャ式ェアフロ一センサゃカルマ ン渦流センサが、それぞれ質量流量及び体積流量を測定するセンサとして使用され ているが、逆流する空気による誤差要因を排除するため、圧力脈動を抑制する容積 体(サージタンク)を必要としたり、逆流した空気が侵入しない位置への取付けを 必要としたりする。 しかしながら、多くの二輪車のェンジンは各気筒毎への所謂独 立吸気系となっている力、、若しくはエンジンそのものが単気筒ェンジンであり、こ れらの必要条件を十分に満足することができないことが多〈、これらの流量センサ を用いても吸入空気量を正確に検出することができない。
また、 吸入空気量の検出は、 吸気行程の終盤か若しくは圧縮行程の初期であり、 既に燃料は噴射されているため、この吸入空気量を用いた空燃比制御は、次のサイ クルでしか行えない。 このことは、次のサイクルまでの間に、例えば運転者がス口 ッ トルを開いて加速しょうとしたにもかかわらず、それ以前の目標空燃比で空燃比 制御を行ったために、加速に見合う トルクや出力を得ることができず、十分な加速 感が得られないという違和感となる。このような問題を解決するためには、スロッ トルの状態を検出するスロヅ トルバルブセンサやスロヅ トルポジションセンサを 用いて運転者の加速の意思を検出すればよいが、特に二輪車の場合には、これらの センサが大型であったり高価であったりするために採用できず、問題未解決という のが現状である。
本発明は前記諸問題を解決すベく開発されたものであり、スロッ卜ルバルブセン サゃスロウ トルポジションセンサを用いることなく、運転者の加速の意思を検出し て空燃比を制御することにより、十分な加速考えられるエンジン制御装置を提供す る。 発明の開示
上記諸問題を解決するため、本発明のエンジン制御装置は、 4サイクルエンジン のクランクシャフ卜の位相を検出する位相検出手段と、スロッ トルバルブの下流側 で前記ェンジンの吸気通路内の吸気圧力を検出する吸気圧力検出手段と、前記位相 検出手段で検出されたクランクシャフ卜の位相及び前記吸気圧力検出手段で検出 された吸気圧力に基づいて前記エンジンの負荷を検出し、この検出されたエンジン 負荷に基づいて当該エンジンの運転状態を制御するエンジン制御手段とを備え、前 記スロッ トルバルブからエンジンの吸気ポー卜までの容積をシリンダ行程容積以 下としたことを特^ {とするものである。 図面の簡単な説明
図 1は、 モータサイクル用のエンジン及びその制御装置の概略構成図である。 図 2は、 図 1のエンジンでクランクパルスを送出する原理の説明図である。 図 3は、 本発明のエンジン制御装置の一実施形態を示すブロック図である。 図 4は、クランクシャフトの位相と吸気圧力から行程状態を検出する説明図であ る o
図 5は、 吸入空気量算出部のブロック図である。
図 6は、 吸気圧力から吸入空気の質量流量を求める制御マップである。
図 7は、 燃料噴射量算出部及び燃料挙動モデルのプロック図である。
図 8は、加速状態検出及び加速時燃料噴射量算出のための演算処理を示すフ口一 チヤ一卜である。
図 9は、 図 1 1の演算処理の作用を示すタイミングチャートである。
図 1 0は。シリンダ行程容積に対するスロッ卜ル下流容積の容積比を変化させた ときの吸気圧力に対する吸入空気量の説明図である。
図 1 1スロヅ トルバルブ、 シリンダ、 吸気管圧力センサの説明図である。
図 1 2は、スロヅトルバルブがシリンダから外れたときに吸気管圧力センサで検 出される吸気管圧力の説明図である。 発明を実施するための最良の形態
以下、 本発明の実施の形態について説明する。
図 1は、例えばモ一夕サイクル用のエンジン及びその制御装置の一例を示す概略 構成である。このエンジン 1は、比較的小排気量の単気筒 4サイクルエンジンであ り、 シリンダボディ 2、 クランクシャフト 3、 ピストン 4、燃焼室 5、 吸気管 6、 吸気バルブ 7、排気管 8、排気バルブ 9、点火プラグ 1 0、点火コイル 1 1を備え ている。また、吸気管 6内には、アクセル開度に応じて開閉されるスロットルバル ブ 1 2が設けられ、このスロッ トルバルブ 1 2の下流側の吸気管(吸気通路) 6に、 燃料噴射装置としてのインジェクタ 1 3が設けられている。このインジェク夕 1 3 は、燃料タンク 1 9内に配設されているフィル夕 1 8、燃料ポンプ 1 7、圧力制御 バルブ 1 6に接続されている。
このエンジン 1の運転状態は、エンジンコントロールュニヅ ト 1 5によって制御 される。そして、 このエンジンコントロールュニヅ卜 1 5の制御入力、つまりェン ジン 1の運転状態を検出する手段として、クランクシャフト 3の回転角度、つまり 位相を検出するためのクランク角度センサ 2 0、シリンダボディ 2の温度又は冷却 水温度、即ちエンジン本体の温度を検出する冷却水温度センサ 2 1、排気管 8内の 空燃比を検出する排気空燃比センサ 2 2、吸気管 6内の吸気圧力を検出するための 吸気圧力センサ 2 4、吸気管 6内の温度、即ち吸気温度を検出する吸気温度センサ 2 5が設けられている。そして、前記エンジンコン卜ロールュニッ卜 1 5は、 これ らのセンサの検出信号を入力し、前記燃料ポンプ 1 7、圧力制御バルブ 1 6、 イン ジェクタ 1 3、 点火コイル 1 1に制御信号を出力する。
ここで、前記クランク角度センサ 2 0から出力されるクランク角度信号の原理に ついて説明する。本実施形態では、図 2 aに示すように、 クランクシャフ卜 3の外 周に、略等間隔で複数の歯 2 3を突設し、その接近を磁気センサ等のクランク角度 センサ 2 0で検出して、適宜電気的処理を施してパルス信号を送出する。各歯 2 3 間の周方向へのピッチは、クランクシャフ卜 3の位相(回転角度)にして 3 0 ° で あり、各歯 2 3の周方向への幅は、 クランクシャフ卜 3の位相(回転角度) にして 1 0 ° としている。但し、一箇所だけ、 このピッチに従っておらず、 その他の歯 2 3のピッチに対して二倍のピヅチになっている箇所がある。それは、図 2 aに二点 鎖線で示すように、本来、歯のある部分に齒がない、特殊な設定になっており、 こ の部分が不等間隔に相当する。 以下、 この部分を歯抜け部とも記す。
従って、クランクシャフ卜 3が等速回転しているときの各歯 2 3のパルス信号列 は図 2 bのように表れる。そして、図 2 aは圧縮上死点時の状態を示している (排 気上死点も形態としては同じである)が、この圧縮上死点時の直前のパルス信号を 図示" 0 "とし、その次のパルス信号に図示" 1 "、次のパルス信号に図示" 2 "、 といった順で図示 " 4 " までナンバリング(番号付け) する。 この図示 " 4 "のパ ルス信号に相当する齒 2 3の次は齒抜け部なので、それを、あたかも歯が存在する と考えて 1歯余分にカウン卜し、次の歯 2 3のパルス信号には図示 " 6 "とナンパ リングする。 これを繰り返してゆくと、今度は図示 " 1 6 "のパルス信号の次に歯 抜け部が接近するので、前述と同様に 1歯余分に力ゥン卜し、次の歯 2 3のパルス 信号には図示 " 1 8 " とナンバリングする。 クランクシャフト 3が二回転すると、 4つの行程のサイクルが全て完了するので、図示 " 2 3 "までナンバリングが済ん だら、次の歯 2 3のパルス信号には再び図示" 0 "とナンバリングする。原則的に、 この図示" 0 "とナンバリングされた歯 2 3のパルス信号の直後が圧縮上死点にな つているはずである。このように、検出されたパルス信号列、又はその単体のパル ス信号をクランクパルスと定義する。そして、 このクランクパルスに基づいて、後 述のようにして行程検出を行うと、 クランクタイミングを検出することができる。 なお、 前記歯 2 3は、 クランクシャフト 3と同期回転する部材の外周に設けても、 全く同じである。
—方、前記エンジンコントロールュニッ 卜 1 5は、図示されないマイクロコンビ ユー夕などによって構成されている。図 3は、このエンジンコントロールュニヅ 卜 1 5内のマイクロコンピュータで行われるェンジン制御演算処理の実施形態を示 すブロック図である。この演算処理では、前記クランク角度信号からエンジン回転 数を算出するエンジン回転数算出部 2 6と、同じくクランク角度信号及び前記吸気 圧力信号からクランクタイミング情報、即ち行程状態を検出するクランクタイミン グ検出部 2 7と、このクランクタイミング検出部 2 7で検出されたクランクタイミ ング情報を読込み、前記吸気温度信号及び前記吸気圧力信号から吸入空気量を算出 する吸入空気量算出部 2 8と、前記エンジン回転数算出部 2 6で算出されたェンジ ン回転数及び前記吸入空気量算出部 2 8で算出された吸入空気量に基づいて目標 空燃比を設定したり、加速状態を検出したりすることにより、燃料噴射量と燃料噴 射時期を算出設定する燃料噴射量設定部 2 9と、前記クランクタイミング検出部 2 7で検出されたクランクタイミング情報を読込み、前記燃料噴射量設定部 2 9で設 定された燃料噴射量及び燃料噴射時期に応じた噴射パルスを前記ィンジェクタ 1 3に向けて出力する噴射パルス出力部 3 0と、前記クランクタイミング検出部 2 7 で検出されたクランクタイミング情報を読込み、前記ェンジン回転数算出部 2 6で 算出されたエンジン回転数及び前記燃料噴射量設定部 2 9で設定された燃料噴射 量に基づいて点火時期を設定する点火時期設定部 3 1 と、前記クランクタイミング 検出部 2 7で検出されたクランクタイミング情報を読込み、前記点火時期設定部 3 1で設定された点火時期に応じた点火パルスを前記点火コイル 1 1に向けて出力 する点火パルス出力部 3 2とを備えて構成される。
.前記エンジン回転数算出部 2 6は、前記クランク角度信号の時間変化率から、ェ ンジンの出力軸であるクランクシャフ卜の回転速度をエンジン回転数として算出 する。具体的には、前記隣合う歯 2 3間の位相を、対応するクランクパルス検出所 要時間で除したエンジン回転数の瞬間値と、その移動平均値からなるエンジン回転 数の平均値とを算出する。
前記クランクタイミング検出部 2 7は、前述した特開平 1 0— 2 2 7 2 5 2号公 報に記載される行程判別装置と同様の構成を有し、これにより例えば図 4に示すよ うに各気筒毎の行程状態を検出し、それをクランクタイミング情報として出力する c 即ち、 4サイクルエンジンにおいて、クランクシャフトとカムシャフ卜とは所定の 位相差で常時回転し続けているから、例えば図 4に示すようにクランクパルスが読 込まれているとき、前述した歯抜け部から四番目の図示 " 9 "又は " 2 1 "のクラ ンク ) レスは排気行程か又は圧縮行程の何れかである。周知のように、排気行程で は排気バルブが閉じ、吸気バルブが閉じているので吸気圧力が高〈、圧縮行程の初 期は、未だ吸気バルブが開いているために吸気圧力が低く、若しくは吸気バルブが 閉じていても、先行する吸気行程で吸気圧力が低くなつている。従って、吸気圧力 が低いときの図示 " 2 1 " のクランクパルスは圧縮行程にあることを示しており、 図示" 0 "のクランクパルスが得られた直後が圧縮上死点になる。このようにして、 何れかの行程状態が検出できたら、この行程の間を、クランクシャフ卜の回転速度 で補間すれば、 現在の行程状態を更に細かく検出することができる。
前記吸入空気量算出部 2 8は、図 5に示すように、前記吸気圧力信号及びクラン クタイミング情報から吸気圧力を検出する吸気圧力検出部 2 8 1 と、吸気圧力から 吸入空気の質量流量を検出するためのマツプを記憶している質量流量マップ記憶 部 2 8 2と、この質量流量マップを用いて検出された吸気圧力に応じた質量流量を 算出する質量流量算出部 2 8 3と、前記吸気温度信号から吸気温度を検出する吸気 温度検出部 2 8 4と、前記質量流量算出部 2 8 3で算出された吸入空気の質量流量 と前記吸気温度検出部 2 8 4で検出された吸気温度とから吸入空気の質量流量を 補正する質量流量補正部 2 8 5とを備えて構成されている。つまり、前記質量流量 マップは、例えば吸気温度 2 0 °Cのときの質量流量で作成されているため、実際の 吸気温度 (絶対温度比) でこれを補正して吸入空気量を算出する。
本実施形態では、圧縮行程における下死点から吸気バルブ閉じタイミング間の吸 気圧力値を用いて吸入空気量を算出する。即ち、吸気バルブ開放時は吸気圧力と気 筒内圧力とがほぼ同等となるため、吸気圧力と気筒内容積及び吸気温度が分かれば 気筒内空気質量を求めることができる。しかしながら、吸気ノ レブは圧縮行程開始 後もしばらく開いているため、この間に気筒内と吸気管との間で空気が出入りして、 下死点以前の吸気圧力から求めた吸入空気量は、実際に気筒内に吸入された空気量 と異なる可能性がある。そのため、同じ吸気バルブ開放時でも、気筒内と吸気管と の間で空気の出入りがない圧縮行程の吸気圧力を用いて吸入空気量を算出する。な お、更に厳密を期すために、既燃ガス分圧の影響を考慮して、それと相関の高いェ ンジン回転数を用し、て、実験で求めたェンジン回転数に応じた補正を施してもよい また、独立吸気系である本実施形態では、吸入空気量算出のための質量流量マツ プは、図 6に示すように、吸気圧力と比較的リニアな関係のものを用いている。 こ れは、求める空気質量がボイルシャルルの法則(Ρ V二 n R Τ )に基づいているた めである。これに対して、吸気管が全ての気筒で連結されている場合には、他の気 筒の圧力の影響により、吸気圧力 =気筒内圧力という前提が成り立たないため、図 に破線で示すようなマツプを用いなければならない。
前記燃料噴射量設定部 2 9は、図 3に示すように、前記エンジン回転数算出部 2 6で箅出されたエンジン回転数 2 6及び前記吸気圧力信号に基づいて定常時目標 空燃比を算出する定常時目標空燃比算出部 3 3と、この定常時目標空燃比算出部 3 3で算出された定常時目標空燃比及び前記吸入空気量算出部 2 8で算出された吸 入空気量に基づいて定常時燃料噴射量及び燃料噴射時期を算出する定常時燃料噴 射量算出部 3 4と、この定常時燃料噴射量算出部 3 4で定常時燃料噴射量及び燃料 噴射時期を算出するのに用いられる燃料挙動モデル 3 5と、前記クランク角度信号 及び吸気圧力信号及びクランクダイミング検出部 2 7で検出されたクランクタイ ミング情報に基づいて加速状態を検出する加速状態検出手段 4 1 と、この加速状態 検出手段 4 1で検出された加速状態に応じて、前記エンジン回転数算出部 2 6で箅 出されたェンジン回転数に応じた加速時燃料噴射量及び燃料噴射時期を算出する 加速時燃料噴射量算出部 42とを備えている。前記燃料挙動モデル 3 5は、実質的 に、前記定常時燃料噴射量算出部 34と一体のものである。即ち、燃料挙動モデル 3 5がなければ、吸気管内噴射を行う本実施形態では、正確な燃料噴射量や燃料噴 射時期の算出設定ができないのである。なお、燃料挙動モデル 35は、前記吸気温 度信号及びェンジン回転数及び冷却水温度信号を必要とする。
前記定常時燃料噴射量算出部 34と燃料挙動モデル 3 5とは、例えば図 7のプロ ヅク図のように構成されている。ここでは、前記インジェクタ 1 3から吸気管 6内 に噴射される燃料噴射量を MF-IN」 、 そのうち吸気管 6壁に付着する燃料付着率 を Xとすると、前記燃料噴射量 MF-IN」 のうち、 気筒内に直接噴射される直接流 入量は ( ( 1—X) XMP-INJ ) となり、 吸気管壁に付着する付着量は (XxMF
-i N J ) となる。 この付着した燃料のうちの幾らかは吸気管壁に沿って気筒内に流 れ込む。 その残量を燃料残留量 MFBUF とすると、 この燃料残留量 MFBUF のう ち、吸気流れによつて持ち去られる持ち去り率をてとすると、持ち去られて気筒内 に流入量は (て XMFBUF ) となる。
そこで、この定常時燃料噴射量算出部 34では、まず前記冷却水温度 TW 力、ら冷 却水温補正係数テーブルを用いて冷却水温補正係数 KW を算出する。一方、前記吸 入空気量 MA-MAN に対し、 例えばスロットル開度が零であるときに燃料をカツ卜 する燃料カツトル一チンを行し、、次に吸入空気温度 TA を用いて温度補正された空 気流入量 MA を算出し、これに前記目標空燃比 A F。 の逆比を乗じ、更に前記冷却 水温補正係数 KW を乗じて要求燃料流入量 MF を算出する。これに対して、前記ェ ンジン回転数 NE 及び吸気管内圧力 PA— MAN から燃料付着率マップを用いて前記 燃料付着率 Xを求めると共に、 同じ〈エンジン回転数 NE 及び吸気管内圧力 PA-M AN から持ち去り率マップを用いて前記持ち去り率 rを算出する。 そして、 前回の 演算時に求めた燃料残留量 M F-BUF に前記持ち去り率てを乗じて燃料持ち去り量 MF-TAを算出し、 これを前記要求燃料流入量 MF から減じて前記燃料直接流入量 MF_DIR を算出する。前述のように、 この燃料直接流入量 MFDIR は、 前記燃料 噴射量 MF— u の (1 一 X) 倍であるから、 ここでは ( 1 一 X) で除して定常時 燃料噴射量 MF-INJ を算出する。 また、 前回までに吸気管に残留した燃料残留量
MF-BUF のうち、 ( (1 —て) XMF-BUF ) が今回も残留するため、 これに前記 燃料付着量 (X x M FI N J ) を和して、 今回の燃料残留量 M FB U F とする。
なお、前記吸入空気量算出部 2 8で算出される吸入空気量が、 これから爆発(膨 張)行程に入る吸気行程の一つ前のサイクルの吸気行程の終盤又はそれに続く圧縮 行程の初期で検出されたものであるため、この定常時燃料噴射量算出部 3 4で算出 設定される定常時燃料噴射量及び燃料噴射時期も、その吸入空気量に応じた、一つ 前のサイクルの結果である。
また、前記加速状態検出部 4 1は、加速状態閾値テーブルを有している。これは、 後述するように、前記吸気圧力信号のうち、現在と同じ行程で且つ同じクランク角 度での吸気圧力と現在の吸気圧力との差分値を求め、その値を所定の値と比較して 加速状態であることを検出するための閾値であり、具体的には各クランク角度毎に 異なる。従って、加速状態の検出には、前記吸気圧力の前回値との差分値を、各ク ランク角度で異なる所定値と比較して行う。
この加速状態検出部 4 1 と前記加速時燃料噴射量算出部 4 2とは、実質的に図 8 の演算処理で一括に行われる。この演算処理は、前記クランクパルスが入力される 毎に実行される。なお、 この演算処理では、特に通信のためのステップを設けてい ないが、演算処理で得られた情報は随時記憶装置に記憶され、また演算処理に必要 な情報は随時記憶装置から読込まれる。
この演算処理では、 まずステップ S 1で前記吸気圧力信号から吸気圧力 P A -MA N を ITC込む。
次にステップ S 2に移行して、前記クランク角度信号からクランク角度 A C Sを読 込む。
次にステップ S 3に移行して、前記エンジン回転数算出部 2 6からのエンジン回 転数 N E を読込む。
次にステヅプ S 4に移行して、前記クランクタイミング検出部 2 7から出力され ているクランクタイミング情報から行程状態を検出する。
次にステップ S 5に移行して、現在の行程が排気行程か又は吸気行程か否かを判 定し、現在の行程が排気行程か又は吸気行程である場合にはステップ S 6に移行し、 そうでない場合にはステップ S 7に移行する。
前記ステップ S 6では、加速時燃料噴射禁止カウンタ nが、加速時燃料噴射を許 可する所定値 n。 以上であるか否かを判定し、当該加速時燃料噴射禁止カウンタ n が所定値 n。 以上である場合にはステップ S 8に移行し、そうでない場合にはステ ップ S 9に移行する。
前記ステップ S 8では、クランクシャフ卜 2回転前、つまり前回の同じ行程にお ける同じクランク角度 Acsの吸気圧力 (以下、 吸気圧力前回値とも記す) PA- MAN を読込んでからステップ S 1 0に移行する。
前記ステップ S 1 0では、 前記ステップ S 1で読込んだ現在の吸気圧力 PAMAN から前記吸気圧力前回値 PA- MAN4 を減じて吸気圧力差 Δ PA- MAN を算出して からステヅプ S 1 1に移行する。
前記ステップ S 1 1では、 前記加速状態閾値テーブルから同クランク角度 Acs の加速状態吸気圧力差閾値 Δ PA-MAN。を読込んでからステップ S 1 2に移行する c 前記ステップ S 1 2では、前記加速時燃料噴射禁止カウンタ nをクリアしてから ステップ S 1 3に移行する。
前記ステップ S 1 3では、 前記ステップ S 1 0で算出した吸気圧力差 ΔΡΑ-ΜΑΝ が、 前記ステップ S 1 1で読込んだ同クランク角度 Acsの加速状態吸気圧力差閾 値 Δ ΡΑ-ΜΑΝ。以上であるか否かを判定し、 当該吸気圧力差 Δ ΡΑΜΑΝ が加速状態 吸気圧力差閾値 ΔΡΑ_ΜΑΝ。以上である場合にはステップ S 1 4に移行し、 そうで ない場合には前記ステップ S 7に移行する。
—方、前記ステップ S 9では、前記加速時燃料噴射禁止力ゥンタ ηをインクリメ ン卜してから前記ステップ S 7に移行する。
前記ステップ S 1 4では、 前記ステップ S 1 0で算出した吸気圧力差 Δ ΡΑΜΑΝ 及びステップ S 3で読込んだエンジン回転数 NE に応じた加速時燃料噴射量 MF -ACC を三次元マヅプから算出してからステップ S 1 5に移行する。
また、 前記ステップ S 7では、 前記加速時燃料噴射量 MFACC を "0" に設定 してから前記ステップ S 1 5に移行する。
前記ステップ S 1 5では、前記ステップ S 1 4又はステップ S 7で設定された加 速時燃料噴身寸量 MFACC を出力してからメインプログラムに復帰する。
なお、この実施形態では加速時燃料噴射時期を、前記加速状態検出部 41で加速 状態が検出されたとき、つまり前記図 8の演算処理のステップ S 1 3で、吸気圧力 差 Δ Ρ ΑMA N が加速状態吸気圧力差閾値 Δ Ρ Α-ΜΑ Ν。以上であると判定されたら、 即座に燃料噴射する、換言すれば加速状態であると判定されたときに加速時燃料を 噴射するものとする。
また、前記点火時期設定部 3 1は、前記エンジン回転数算出部 2 6で算出された エンジン回転数及び目標空燃比算出部 3 3で箅出された目標空燃比に基づいて基 本点火時期を算出する基本点火時期算出部 3 6と、前記加速時燃料噴射量算出部 4 2で算出された加速時燃料噴射量に基づいて前記基本点火時期算出部 3 6で算出 された基本点火時期を補正する点火時期補正部 3 8とを備えて構成される。
前記基本点火時期算出部 3 6は、現在のエンジン回転数と、そのときの目標空燃 比で、最も発生トルクが大きくなる点火時期をマップ検索などにより求め、基本点 火時期として算出する。つまり、この基本点火時期算出部 3 6で算出される基本点 火時期は、前記定常時燃料噴射量算出部 3 4と同様に、一つ前のサイクルの吸気行 程の結果に基づいている。また、前記点火時期補正部 3 8では、前記加速時燃料噴 射量箅出部 4 2で算出された加速時燃料噴射量に応じ、この加速時燃料噴射量が前 記定常時燃料噴射量に加算されたときの気筒内空燃比を求め、その気筒内空燃比が 前記定常時目標空燃比算出部 3 3で設定された目標空燃比と大きく異なるときに、 当該気筒内空燃比、エンジン回転数、吸気圧力を用いて新たな点火時期を設定する ことで点火時期を補正するものである。
次に、前記図 8の演算処理の作用を図 9のタイミングチャートに従って説明する c このタイミングチャートでは、 時刻 t。6までスロヅ トル一定であり、 その時刻 t。 6から時刻 t 1 5まで比較的短い時間にスロットルがリニアに開かれ、 その後、再び スロットル一定となった。この実施形態では、排気上死点より少し前から圧縮下死 点より少し後まで、吸気バルブが解放されるように設定されている。図中に示す菱 形のプロットを伴う曲線が吸気圧力であり、図の下端部に示されるパルス上の波形 が燃料噴射量である。前述したように、吸気圧力が急速に減少する行程が吸気行程 であり、 それに続いて圧縮行程、膨張(爆発)行程、排気行程の順でサイクルが繰 り返される。
この吸気圧力曲線の菱形のプロットは、前言己 3 0 ° 毎のクランクパルスを示してお り、そのうちの '〇で囲んだクランク角度位置(2 4 0 ° )で、エンジン回転数に応 じた目標空燃比を設定すると共に、そのときに検出した吸気圧力を用いて前記定常 時燃料噴射量及び燃料噴射時期を設定する。このタイミングチヤ一卜では、時刻 t
02で設定した定常時燃料噴射量の燃料を時刻 t。3で噴射、 以下同様に、 時刻 t05 で設定し、 時刻 t。7で噴射、 時刻 t09で設定し、 時刻 t 10で噴射、 時刻 t nで設 定し、時刻 t12で噴射、時刻 t13で設定し、時刻 t14で噴射、時刻 t17で設定し、 時刻 t 18で噴射している。 このうち、 例えば時刻 t。9で設定され且つ時刻 t10で 噴射される定常時燃料噴射量は、それ以前の定常時燃料噴射量に比して、既に吸気 圧力が高く、その結果、大きな吸入空気量が算出されているために、多く設定され ているが、定常時燃料噴射量を設定するのは凡そ圧縮行程、定常時燃料噴射時期は 排気行程であるため、定常時燃料噴射量には、そのときの運転者の加速意思がリァ ルタイ厶に反映されているわけではない。即ち、前記時刻 t。6でスロットルが開け 始められているが、 その後の時刻 t。7で噴射される定常時燃料噴射量は、 時刻 to 6より早い前記時刻 t。5で設定されているため、 加速意志に反して少量しか噴射さ れていない。
一方、本実施形態では、前記図 8の演算処理によって、前記排気行程から吸気行 程、図 9に示す白抜きの菱形のクランク角度で、前のサイクルにおける同クランク 角度の吸気圧力 P AMAN を比較し、 その差分値を吸気圧力差 Δ PA-MAN として算 出し、 それを閾値 Δ PA MAN。と比較する。 例えば、 スロッ トル開度が一定である 時刻 tenと時刻 t。4、 或いは時刻 t 16と時刻 t19におけるクランク角度 300 ° の吸気圧力 PA MAN (300 deg) 同士を比較すると、 夫々殆ど同じで、 前回値との差 分値、 つまり吸気圧力差 Δ ΡΑMAN は小さい。 ところが、 スロヅ トル開度が大き くなる時刻 t。8のクランク角度 300° の吸気圧力 PA- MAN (3。。deg) は、 その前 のサイクル、つまり未だスロッ トル開度が小さいときの前記時刻 t。4のクランク角 度 300。 の吸気圧力 PA MA N O O O d . g) に対して、 大きくなつている。 従って、 この時刻 t。8のクランク角度 300° の吸気圧力 PAMAN (3。。deg) から前記時刻 t04のクランク角度 300° の吸気圧力 PA- MAN (300deg) を減じた吸気圧力差 Δ
P A-MAN (300 d e g) を閾 ί¾Δ ΡΑ - MA N 0 (300d e g)と比較し、当該吸気圧力差△ PA- MA N (300 d e g, が閾値厶 PA-MAN。 (300d e g)より大きければ、加速状態にあると検出でき る。 ちなみに、 この吸気圧力差 ΔΡΑMAN による加速状態検出は、 吸気行程の方が 顕著である。例えば、 吸気行程におけるクランク角度 1 20° の吸気圧力差 ΔΡΑ
-MA N ( 1 20d e g) は明瞭に表れやすい。 しかしながら、 エンジンの特性によっては、 例えば図 9に二点鎖線で示すように、吸気圧力曲線が急峻な、所謂ピーキーな特性 を示し、検出されるクランク角度と吸気圧力とにずれが生じ、その結果、算出する 吸気圧力差にずれが生じる恐れがある。そのため、吸気圧力曲線が比較的緩やかな 排気行程まで加速状態の検出範囲を伸ばし、両方の行程で吸気圧力差による加速状 態検出を行う。勿論、エンジンの特性によっては、何れか一方の行程でのみ、加速 状態検出を行うようにしてもよい。
なお、本実施形態のような 4サイクルエンジンでは、排気行程も吸気行程も、ク ランクシャフト 2回転に一度しか行われない。従って、単に前記クランク角度だけ 検出しても、カムセンサを備えていない本実施形態のような二輪車用エンジンでは、 それらの行程であることが分からない。そこで、前記クランクタイミング検出部 2 7で検出されたクランクタイミング情報に基づく行程状態を読込み、それらの行程 であることを判定してから、 前記吸気圧力差 ΔΡΑ-ΜΑΝ による加速状態検出を行 う。 これにより、 より正確な加速状態検出が可能となる。
また、 前述のクランク角度が 300。 の吸気圧力差△ PA_MAN (3。。deg) と、 ク ランク角度が 1 20° の吸気圧力差厶 PA-MAN2deg) とでははつきりしないが、 例えば図 9に示すクランク角度が 360° の吸気圧力差 Δ PA-MAN (36deg) と比 較すれば明瞭なように、同等のスロッ トル開状態でも、各クランク角度で前回値と の差分値である吸気圧力差 Δ PAMAN は異なる。 従って、 前記加速状態吸気圧力 差閾値 ΔΡΑΜΑΝ。は、各クランク角度 Acs毎に変更しなければならない。そこで、 本実施形態では、加速状態を検出するために、各クランク角度 Acs毎に加速状態吸 気圧力差閾値 Δ PA-MAN0をテーブル化して記憶しておき、 それを各クランク角度 Acs毎に読込んで、 前記吸気圧力差 Δ PA-MAN との比較を行う。 これにより、 よ り正確な加速状態の検出が可能となる。
そして、本実施形態では、加速状態が検出された時刻 tQ8で、エンジン回転数 N ε 及び前記吸気圧力差 ΔΡΑ-ΜΑΝ に応じた加速時燃料噴射量 MFACC を、 即座に 噴射している。 加速時燃料噴射量 MFACC をエンジン回転数 NE に応じて設定す P T/JP02/10945 るのは極めて一般的であり、通常は、エンジン回転数が大きいほど燃料噴射量を小 さく設定する。 また、 吸気圧力差 Δ Ρ ΑM A N は、 スロッ トル開度の変化量と同等 であることから、吸気圧力差が大きいほど燃料噴射量を大きく設定する。実質的に、 これだけの燃料噴射量の燃料を噴射しても、既に吸気圧力は高く、次の吸気行程で は、より多くの吸入空気量が吸入されるはずであるから、気筒内空燃比が小さくな りすぎて、 ノッキングを起こすようなことはない。 そして、本実施形態では、加速 状態検出時に即座に加速時燃料を噴射するようにしているため、これから爆発行程 に移行する気筒内空燃比を加速状態に適した空燃比に制御することができると共 に、 加速時燃料噴射量をエンジン回転数及び吸気圧力差に応じて設定することで、 運転者の意図した加速感を得ることができる。
また、本実施形態では、加速状態を検出し、且つ加速時燃料噴射量が燃料噴射装 置から噴射された後、前記加速時燃料噴射禁止力ゥンタ nが、加速時燃料噴射を許 可する所定値 n。 以上となるまでは、加速状態が検出されても加速時燃料噴射を行 わない構成としたため、加速時燃料噴射が繰り返されて、気筒内空燃比が才一バリ ッチな状態になるのを抑制防止することができる。
また、クランクシャフトの位相から行程状態を検出することにより、高価で大が かりなカムセンサをなくすことができる。
このように吸気圧力から加速状態、つまりエンジン負荷を検出する本実施形態で は、例えば前記図 3に示すような、行程に応じた滑らかな吸気圧力変化が必要とな る。また、前述のように吸気圧力から吸入空気量、 これもエンジン負荷を意味して いるが、 この吸入空気量を算出する場合には、或る程度、行程に応じたリアルな吸 気圧力変化が必要となる。
図 1 0は、一般に 1気筒毎の排気量と称されるシリンダ行程容積に対するスロッ トルバルブから吸気ポートまでの容積(以下、スロッ トル下流容積とも記す)の比 (以下、容積比とも記す)を変えて、吸気圧力に対する前記吸入空気量の変化を計 測したものである。同図から明らかなように、容積比が小さいほど、吸気圧力の変 化に対する吸入空気量の変化が小さい。換言すれば、容積比が小さいほど、吸気圧 力に対する吸入空気量の変化率が小さいことになる。これは、吸気圧力の検出精度、 即ち分解能に対して吸入空気量の変化が小さいほど、吸入空気量の検出精度が向上 することを意味するから、前記シリンダ行程容積に対するスロットル下流容積の容 積比は小さいほど良好であることになる。これは、シリンダ行程容積に対するス口 ットル下流容積の容積比が大きいぽど、スロヅトルバルブから吸気ポー卜までの空 間がダンバ効果を発揮し、吸気行程における吸気圧力変化の応答性が悪化するため である。 これと同様のことは、 前記加速状態の検出にも当てはまる。
実質的に、 シリンダ行程容積に対するス口ッ トル下流容積の容積比が " 1 "を超 える領域では、吸気圧力から、エンジンの運転制御に足る吸入空気量の算出は困難 である。そこで、本実施形態では、シリンダ行程容積に対するスロヅトル下流容積 の容積比を " 1 "以下とする、即ちスロッ トル下流容積をシリンダ行程容積以下と することにより、 エンジンの運転制御に足る吸入空気量を算出できるようにした。 また、 これによりより正確な加速状態の検出も可能となる。
また、前述のように、一般的な二輪車両では、スロヅトルバルブ 1 2とエンジン 本体、即ちシリンダ 2とは別体である。スロットルバルブ 1 2は、図 1 1に示すよ うにス口ヅ卜ルポディ 1 2 aとバルブ本体 1 2 bとで構成されており、一般に、ス 口ヅ 卜ルバルブ 1 2がエンジン本体の振動の影響をあまり受けないように、シリン ダ 2とスロッ 卜ルボディ 1 2 aとの間には緩衝材等を介装する。こうした構成上の 制約からスロヅトルバルブ 1 2とシリンダ 2とは別体であり、ボルトやバンド等の 個別の連結具を用いて両者を連結する。そして、本実施形態では、スロッ トルバル ブ 1 2側のスロヅトルボディ 1 2 aに導圧管 1 4を取付け、この導圧管の先端に前 記吸気管圧力センサ 2 4を取付けている。これは、吸気管圧力センサ 2 4に燃料が 直接かかったりしないようにするためである。
前述のようにカムセンサを用いない本実施形態では、吸気管圧力とクランク角度 だけが実質的な制御入力である。従って、万が一、スロッ トルバルブ 1 2がシリン ダ 2から外れたときには、吸気管圧力の検出異常からフェイルセーフを行う必要が ある。図 1 2 &は、時刻1:。 でスロットルバルブ 1 2がシリンダ 2から外れたとき の検出吸気管圧力である。スロヅ トルバルブ 1 2がシリンダ 2から外れると、前記 吸気管圧力 2 4は大気開放され、 大気圧を検出するのみであるから、 前記時刻 t o 以降は大気圧一定である。従って、前記クランクパルスからエンジンが回転し続 けており、にもかかわらず検出される吸気管圧力が大気圧一定であるときには、ス ロットルバルブが外れていると判定し、それに応じた適切なフェイルセーフを施す ことができる。
これに対し、図 1 2 bは、前記吸気管圧力センサをシリンダ側に取付け、同じく 時刻で。 でスロッ トルバルブが外れたときの検出吸気管圧力を示している。同図か ら明らかなように、スロットルバルブが外れたことにより、シリンダ側の吸気管も 大気開放されているはずであるが、実質的にはそれまでと同じような吸気管圧力の 脈動が検出されてしまうので、前述した手法では、スロットルバルブの外れを検出 できず、 従って確実なフェイルセーフを行うことができない。
なお、前記実施形態では、吸気管内噴射型エンジンについて詳述したが、本発明 のエンジン制御装置は、直噴型エンジンにも同様に展開できる。但し、直噴型ェン ジンでは、 吸気管に燃料が付着することはないから、 それを考慮する必要はなく、 空燃比の算出には噴射される燃料量総量を代入すればよい。
また、前記実施形態では、単気筒エンジンについて詳述したが、本発明のェンジ ン制御装置は、気筒数が 2気筒以上の、所謂マルチシリンダ型エンジンについても 同様に展開できる。
また、エンジンコン卜ロールュニヅトは、マイクロコンピュータに代えて各種の 演算回路で代用することも可能である。 産業上の利用の可能性
以上説明したように、本発明のエンジン制御装置によれば、検出されたクランク シャフ卜の位相及び吸気圧力に基づいてエンジンの負荷を検出し、この検出された エンジン負荷に基づいて当該エンジンの運転状態を制御する構成としたため、例え ば前回の同じ行程の同じクランクシャフ卜位相のときの吸気圧力と現在の吸気圧 力との差分値力所定値以上であるときに加速状態であると検出し、加速状態が検出 されたときに、例えば即座に燃料を噴射するなどすれば、運転者の意志に応じた + 分な加速考えられると共に、前記スロットルバルブからエンジンの吸気ポ一卜まで の容積をシリンダ行程容積以下としたことにより、前記吸入空気量の算出や吸気圧 力の比較による加速状態の検出といった負荷の検出をより一層正確なものとする ことができる。

Claims

請求の範囲
1 . 4サイクルエンジンのクランクシャフトの位相を検出する位相検出手段と、 スロッ トルバルブの下流側で前記エンジンの吸気通路内の吸気圧力を検出する吸 気圧力検出手段と、前記位相検出手段で検出されたクランクシャフトの位相及び前 記吸気圧力検出手段で検出された吸気圧力に基づいて前記エンジンの負荷を検出 し、この検出されたエンジン負荷に基づいて当該エンジンの運転状態を制御するェ ンジン制御手段とを備え、前記スロッ トルバルブからエンジンの吸気ポートまでの 容積をシリンダ行程容積以下としたことを特徴とするエンジン制御装置。
PCT/JP2002/010945 2001-10-29 2002-10-22 Dispositif de commande de moteur WO2003038261A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
DE60239954T DE60239954D1 (de) 2001-10-29 2002-10-22 Motorsteuervorrichtung
EP02777921A EP1447550B1 (en) 2001-10-29 2002-10-22 Engine control device
AT02777921T ATE508269T1 (de) 2001-10-29 2002-10-22 Motorsteuervorrichtung
CNB028157249A CN100334341C (zh) 2001-10-29 2002-10-22 发动机控制装置
US10/493,290 US6983738B2 (en) 2001-10-29 2002-10-22 Engine control system
JP2003540508A JP3976322B2 (ja) 2001-10-29 2002-10-22 エンジン制御装置
BRPI0211218-3A BRPI0211218B1 (pt) 2001-10-29 2002-10-22 Sistema de controle de motor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2001-331529 2001-10-29
JP2001331529 2001-10-29
JP2001-335479 2001-10-31
JP2001335479 2001-10-31

Publications (1)

Publication Number Publication Date
WO2003038261A1 true WO2003038261A1 (fr) 2003-05-08

Family

ID=26624176

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/010945 WO2003038261A1 (fr) 2001-10-29 2002-10-22 Dispositif de commande de moteur

Country Status (9)

Country Link
US (1) US6983738B2 (ja)
EP (1) EP1447550B1 (ja)
JP (1) JP3976322B2 (ja)
CN (1) CN100334341C (ja)
AT (1) ATE508269T1 (ja)
BR (1) BRPI0211218B1 (ja)
DE (1) DE60239954D1 (ja)
TW (1) TWI221881B (ja)
WO (1) WO2003038261A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10316900A1 (de) * 2003-04-12 2004-11-04 Audi Ag Verfahren zur Überprüfung der Funktionstüchtigkeit einer Vorrichtung zum Einstellen des Hubes der Gaswechselventile einer fremdgezündeteten Brennkraftmaschine
DE102015014406A1 (de) 2014-11-06 2016-05-12 Suzuki Motor Corporation Kraftstoffeinspritzvorrichtung

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070163243A1 (en) * 2006-01-17 2007-07-19 Arvin Technologies, Inc. Exhaust system with cam-operated valve assembly and associated method
JP4650321B2 (ja) * 2006-03-28 2011-03-16 トヨタ自動車株式会社 制御装置
EP2481907B1 (en) * 2009-09-24 2015-01-21 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine
CN102235258A (zh) * 2010-04-29 2011-11-09 光阳工业股份有限公司 双缸喷射引擎的行程判定方法
DE102010063380A1 (de) * 2010-12-17 2012-06-21 Robert Bosch Gmbh Verfahren zum Betreiben einer Brennkraftmaschine
CN103133165A (zh) * 2011-11-25 2013-06-05 上海汽车集团股份有限公司 基于线性氧传感器判断发动机故障的方法和装置
JP2013209945A (ja) * 2012-03-30 2013-10-10 Honda Motor Co Ltd 内燃機関の燃料噴射制御装置
GB2527998B (en) * 2013-04-08 2020-08-19 Centega Services Llc Reciprocating machinery monitoring system and method
US9528445B2 (en) * 2015-02-04 2016-12-27 General Electric Company System and method for model based and map based throttle position derivation and monitoring
JP2018053834A (ja) 2016-09-30 2018-04-05 本田技研工業株式会社 内燃機関
EP3477090B1 (en) * 2017-10-25 2021-02-24 Honda Motor Co., Ltd. Internal combustion engine
JP6856504B2 (ja) * 2017-11-29 2021-04-07 本田技研工業株式会社 吸気圧検知装置および電子制御式燃料供給装置
JP6806952B1 (ja) * 2019-07-18 2021-01-06 三菱電機株式会社 内燃機関の制御装置および制御方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4658787A (en) * 1984-02-01 1987-04-21 Nissan Motor Company, Limited Method and apparatus for engine control
US5635634A (en) * 1993-08-02 1997-06-03 Robert Bosch Gmbh Method for calculating the air charge for an internal combustion engine with variable valve timing
JPH10184438A (ja) * 1996-12-25 1998-07-14 Nissan Motor Co Ltd エンジンの空気量検出装置
JPH10227252A (ja) 1997-02-13 1998-08-25 Honda Motor Co Ltd 4サイクルエンジンの行程判別装置
JPH1136969A (ja) * 1997-07-18 1999-02-09 Nissan Motor Co Ltd 内燃機関の空気量検出装置
JP2002188536A (ja) * 2000-12-22 2002-07-05 Mitsubishi Motors Corp 過給機付き内燃機関

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6060223A (ja) * 1983-09-12 1985-04-06 Nissan Motor Co Ltd 自動車用エンジン
JPH04128527A (ja) * 1990-09-19 1992-04-30 Nissan Motor Co Ltd 内燃機関の燃料供給装置
JP3421731B2 (ja) * 1994-05-31 2003-06-30 ヤマハ発動機株式会社 エンジンの吸気制御装置
JPH10212980A (ja) * 1997-01-31 1998-08-11 Yamaha Motor Co Ltd 4サイクルエンジン
US6202626B1 (en) * 1997-01-31 2001-03-20 Yamaha Hatsudoki Kabushiki Kaisha Engine having combustion control system
JPH11200918A (ja) * 1997-11-17 1999-07-27 Denso Corp 内燃機関の燃料噴射制御装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4658787A (en) * 1984-02-01 1987-04-21 Nissan Motor Company, Limited Method and apparatus for engine control
US5635634A (en) * 1993-08-02 1997-06-03 Robert Bosch Gmbh Method for calculating the air charge for an internal combustion engine with variable valve timing
JPH10184438A (ja) * 1996-12-25 1998-07-14 Nissan Motor Co Ltd エンジンの空気量検出装置
JPH10227252A (ja) 1997-02-13 1998-08-25 Honda Motor Co Ltd 4サイクルエンジンの行程判別装置
JPH1136969A (ja) * 1997-07-18 1999-02-09 Nissan Motor Co Ltd 内燃機関の空気量検出装置
JP2002188536A (ja) * 2000-12-22 2002-07-05 Mitsubishi Motors Corp 過給機付き内燃機関

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10316900A1 (de) * 2003-04-12 2004-11-04 Audi Ag Verfahren zur Überprüfung der Funktionstüchtigkeit einer Vorrichtung zum Einstellen des Hubes der Gaswechselventile einer fremdgezündeteten Brennkraftmaschine
DE10316900B4 (de) * 2003-04-12 2009-01-15 Audi Ag Verfahren zur Überprüfung der Funktionstüchtigkeit einer Vorrichtung zum Einstellen des Hubes der Gaswechselventile einer fremdgezündeteten Brennkraftmaschine
DE102015014406A1 (de) 2014-11-06 2016-05-12 Suzuki Motor Corporation Kraftstoffeinspritzvorrichtung
US9897032B2 (en) 2014-11-06 2018-02-20 Suzuki Motor Corporation Fuel injection device
DE102015014406B4 (de) 2014-11-06 2019-03-21 Suzuki Motor Corporation Kraftstoffeinspritzvorrichtung

Also Published As

Publication number Publication date
JP3976322B2 (ja) 2007-09-19
JPWO2003038261A1 (ja) 2005-02-24
TWI221881B (en) 2004-10-11
US6983738B2 (en) 2006-01-10
EP1447550A1 (en) 2004-08-18
BR0211218A (pt) 2004-07-13
EP1447550B1 (en) 2011-05-04
ATE508269T1 (de) 2011-05-15
BRPI0211218B1 (pt) 2021-07-06
CN100334341C (zh) 2007-08-29
EP1447550A4 (en) 2009-07-29
US20040244773A1 (en) 2004-12-09
DE60239954D1 (de) 2011-06-16
CN1541303A (zh) 2004-10-27

Similar Documents

Publication Publication Date Title
JP3839119B2 (ja) 4サイクルエンジンの行程判別装置
WO2003038261A1 (fr) Dispositif de commande de moteur
US6990405B2 (en) Engine control device
JP3978679B2 (ja) エンジン制御装置
JPH09170471A (ja) 多気筒エンジンの空燃比制御方法
EP1837510B1 (en) Controller of internal combustion engine
EP1844227A1 (en) Control device for internal combustion engine
JP4027892B2 (ja) エンジン制御装置
US6983646B2 (en) Atmospheric pressure detection device of four-stroke engine and method of detecting atmospheric pressure
JP3823643B2 (ja) エンジンの燃料噴射制御装置
JP2002147269A (ja) エンジン制御装置
JP4027893B2 (ja) エンジン制御装置
US7380444B2 (en) Acceleration/deceleration detection device and method for four-cycle engines
JP2000170582A (ja) 内燃機関の吸入空気量の計測装置
US6705288B2 (en) Starting control apparatus for internal combustion engine
US11193433B2 (en) Engine controller, engine control method, and memory medium
JP2005069045A (ja) 内燃機関の燃料噴射制御装置
WO2004013477A1 (ja) エンジン制御装置
JP2002276451A (ja) 内燃機関の大気圧検出装置
JP2551396B2 (ja) 内燃機関の燃料噴射量制御方法
JP2006057516A (ja) 内燃機関の制御装置
JPH0323330A (ja) 内燃機関の燃料噴射量制御装置
JP2002155844A (ja) エンジン制御装置
WO2004013478A1 (ja) エンジン制御装置
JP2008057547A (ja) エンジン制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 1200400339

Country of ref document: VN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 46/KOLNP/2004

Country of ref document: IN

Ref document number: 00046/KOLNP/2004

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 20028157249

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2003540508

Country of ref document: JP

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 10493290

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2002777921

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2002777921

Country of ref document: EP