WO2003035836A2 - Modulation of immunostimulatory properties of oligonucleotide-based compounds by optimal presentation of 5' ends - Google Patents

Modulation of immunostimulatory properties of oligonucleotide-based compounds by optimal presentation of 5' ends Download PDF

Info

Publication number
WO2003035836A2
WO2003035836A2 PCT/US2002/033756 US0233756W WO03035836A2 WO 2003035836 A2 WO2003035836 A2 WO 2003035836A2 US 0233756 W US0233756 W US 0233756W WO 03035836 A2 WO03035836 A2 WO 03035836A2
Authority
WO
WIPO (PCT)
Prior art keywords
immunomer
group
linker
deoxy
nucleoside
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/US2002/033756
Other languages
English (en)
French (fr)
Inventor
Sudhir Agrawal
Ekambar R. Kandimalla
Dong Yu
Lakshmi Bhagat
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aceragen Inc
Original Assignee
Hybridon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hybridon Inc filed Critical Hybridon Inc
Publication of WO2003035836A2 publication Critical patent/WO2003035836A2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/117Nucleic acids having immunomodulatory properties, e.g. containing CpG-motifs
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/39Medicinal preparations containing antigens or antibodies characterised by the immunostimulating additives, e.g. chemical adjuvants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/06Antiasthmatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/08Antiallergic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55561CpG containing adjuvants; Oligonucleotide containing adjuvants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/18Type of nucleic acid acting by a non-sequence specific mechanism
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/31Chemical structure of the backbone
    • C12N2310/315Phosphorothioates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/31Chemical structure of the backbone
    • C12N2310/318Chemical structure of the backbone where the PO2 is completely replaced, e.g. MMI or formacetal
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/31Chemical structure of the backbone
    • C12N2310/318Chemical structure of the backbone where the PO2 is completely replaced, e.g. MMI or formacetal
    • C12N2310/3183Diol linkers, e.g. glycols or propanediols
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/33Chemical structure of the base
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/50Physical structure
    • C12N2310/52Physical structure branched

Definitions

  • the invention relates to immunology and immunotherapy applications using oligonucleotides as immunostimulatory agents.
  • Oligonucleotides have become indispensable tools in modern molecular biology, being used in a wide variety of techniques, ranging from diagnostic probing methods to PCR to antisense inhibition of gene expression and immunotherapy applications. This widespread use of oligonucleotides has led to an increasing demand for rapid, inexpensive and efficient methods for synthesizing oligonucleotides.
  • oligonucleotides for antisense and diagnostic applications can now be routinely accomplished. See, e.g., Methods in Molecular Biology, Vol. 20: Protocols for Oligonucleotides and Analogs pp. 165-189 (S. Agrawal, ed., Humana Press, 1993); Oligonucleotides and Analogues, A Practical Approach, pp. 87-108 (F. Eckstein, ed., 1 91); and Uhlmann and Peyman, supra; Agrawal and Iyer, Curr. Op. in Biotech. 6:12 (1995); and Antisense Research and Applications (Crooke and Lebleu, eds., CRC Press, Boca Raton, 1993).
  • phosphodiester oligonucleotides containing a palindrome that includes a CpG dinucleotide can induce interferon-alpha and gamma synthesis and enhance natural killer activity.
  • Krieg et al, Nature 371:546-549 (1995) discloses that phosphorothioate CpG-containing oligonucleotides are immunostimulatory.
  • Liang et al, J. Clin. Invest. 98:1119-1129 (1996) discloses that such oligonucleotides activate human B cells.
  • the invention provides methods for enhancing the immune response caused by oligonucleotide compounds.
  • the methods according to the invention enable increasing the immunostimulatory effect of immunostimulatory oligonucleotides for immunotherapy applications.
  • the present inventors have surprisingly discovered that modification of an immunostimulatory oligonucleotide to optimally present its 5' end dramatically enhances its immunostimulatory capability.
  • Such an oligonucleotide is referred to herein as an "immunomer.”
  • the invention provides immunomers comprising at least two oligonucleotides linked at their 3' ends, an internuceotide linkage, or a functionalized nucleobase or sugar via a non-nucleotidic linker, at least one of the oligonucleotides being an immunostimulatory oligonucleotide and having an accessible 5' end.
  • the immunomer comprises an immunostimulatory dinucleotide of formula 5'-Pyr-Pur-3', wherein Pyr is a natural or non-natural pyrimidine nucleoside and Pur is a natural or non-natural purine nucleoside.
  • the immunomer comprises an immunostimulatory dinucleotide selected from the group consisting of CpG, C*pG, CpG*, and C*pG*, wherein C is cytidine or 2-deoxycytidine, C* is 2'-deoxythymidine.
  • G is guanosine or 2'-deoxyguanosine
  • G* is 2' deoxy- 7-deazaguanosine, 2'-deoxy-6-thioguanosine, arabinoguanosine, 2'-deoxy- 2'substituted-arabinoguanosine, 2'-O-substituted-arabinoguanosine, or other non- natural purine nucleoside
  • p is an internucleoside linkage selected from the group consisting of phosphodiester, phosphorothioate, and phosphorodithioate.
  • Y is cytidine, 2'-deoxythymidine, 2' deoxycytidine, arabinocytidine, 2'- deoxythymidine, 2'-deoxy-2'-substitutedarabinocytidine, 2'-O- substitutedarabinocytidine, 2'-deoxy-5-hydroxycytidine, 2'-deoxy-N4-alkyl-cytidine, 2'-deoxy-4-thiouridine or other non-natural pyrimidine nucleoside;
  • Z is guanosine or 2'-deoxyguanosine
  • G* is 2' deoxy-7-deazaguanosine, 2'- deoxy-6-thioguanosine, arabinoguanosine, 2'-deoxy-2'substituted-arabinoguanosine, 2'-O-substituted-arabinoguanosine, 2'- deoxyinosine, or other non-natural purine nucleoside
  • N 1 is preferably a naturally occurring or a synthetic nucleoside or an immunostimulatory moiety selected from the group consisting of abasic nucleosides, arabinonucleosides, 2 -deoxyuridine, ⁇ -deoxyribonucleosides, ⁇ -L-deoxyribonucleosides, and nucleosides linked by a phosphodiester or modified internucleoside linkage to the adjacent nucleoside on the 3' side, the modified internucleotide linkage being selected from, without limitation, a linker having a length of from about 2 angstroms to about 200 angstroms, C2-C18 alkyl linker, poly(ethylene glycol) linker, 2-aminobutyl-l,3-propanediol linker, glyceryl linker, 2'- 5' internucleoside linkage, and phosphorothioate, phosphorodithioate, or methylphosphon
  • Nn is a naturally occurring nucleoside or an immunostimulatory moiety, preferably selected from the group consisting of abasic nucleosides, arabinonucleosides, 2'-deoxyuridine, ⁇ -deoxyribonucleosides, 2'-O- substituted ribonucleosides, and nucleosides linked by a modified internucleoside linkage to the adjacent nucleoside on the 3' side, the modified intemucleotide linkage being selected from the group consisting of amino linker, 2'-5' internucleoside linkage, and methylphosphonate internucleoside linkage;
  • Nl or Nn is an immunostimulatory moiety
  • n is a number from 0-30;
  • an intemucleotide linkage, or a functionalized nucleobase or sugar is linked directly or via a non-nucleotidic linker to another oligonucleotide, which may or may not be immunostimulatory.
  • the invention provides immunomer conjugates, comprising an immunomer, as described above, and an antigen conjugated to the immunomer at a position other than the accessible 5' end.
  • the invention provides pharmaceutical formulation comprising an immunomer or an immunomer conjugate according to the invention and a physiologically acceptable carrier.
  • the invention provides methods for generating an immune response in a vertebrate, such methods comprising administering to the vertebrate an immunomer or immunomer conjugate according to the invention.
  • the vertebrate is a mammal.
  • the invention provides methods for therapeutically treating a patient having a disease or disorder, such methods comprising administering to the patient an immunomer or immunomer conjugate according to the invention.
  • the disease or disorder to be treated is cancer, an autoimmune disorder, airway inflammation, asthma, allergy, or a disease caused by a pathogen.
  • Figure 1 is a schematic representation of representative immunomers of the invention.
  • FIG. 2 depicts several representative immunomers of the invention.
  • Figure 3 depicts a group of representative small molecule linkers suitable for linear synthesis of immumomers of the invention.
  • Figure 4 depicts a group of representative small molecule linkers suitable for parallel synthesis of immunomers of the invention.
  • Figure 5 is a synthetic scheme for the linear synthesis of immunomers of the invention.
  • DMTr 4,4 -dimethoxytrityl
  • CE cyanoethyl.
  • Figure 6 is a synthetic scheme for the parallel synthesis of immunomers of the invention.
  • DMTr 4,4'-dimethoxytrityl
  • CE cyanoethyl.
  • Figure 7A is a graphic representation of the induction of IL-12 by immunomers 1-3 in BALB/c mouse spleen cell cultures.
  • Figure 7B is a graphic representation of the induction of IL-6 (top to bottom, respectively) by Immunomers 1-3 in BALB/c mouse spleen cells cultures.
  • Figure 7C is a graphic representation of the induction of IL-10 by Immunomers 1-3 (top to bottom, respectively) in BALB/c mouse spleen cell cultures.
  • Figure 8A is a graphic representation of the induction of BALB/c mouse spleen cell proliferation in cell cultures by different concentrations of Immunomers 5 and 6, which have inaccessible and accessible 5 '-ends, respectively.
  • Figure 8B is a graphic representation of BALB/c mouse spleen enlargement by Immunomers 4-6, which have an immunogenic chemical modification in the 5'- flanking sequence of the CpG motif. Again, the immunomer, which has accessible 5 '-ends (6), has a greater ability to increase spleen enlargement compared with Immunomer 5, which does not have accessible 5'-end and with monomeric Oligo 4.
  • Figure 9A is a graphic representation of induction of IL-12 by different concentrations of Oligo 4 and Immunomers 7 and 8 in BALB/c mouse spleen cell cultures.
  • Figure 9B is a graphic representation of induction of IL-6 by different concentrations of Oligo 4 and Immunomers 7 and 8 in BALB/c mouse spleen cell cultures.
  • Figure 9C is a graphic representation of induction of IL- 10 by different concentrations of Oligo 4 and Immunomers 7 and 8 in BALB/c mouse spleen cell cultures.
  • Figure 10A is a graphic representation of the induction of cell proliferation by Immunomers 14, 15, and 16 in BALB/c mouse spleen cell cultures.
  • Figure 1 OB is a graphic representation of the induction of cell proliferation by
  • IL-12 by different concentrations of Immunomers 14 and 16 in BALB/c mouse spleen cell cultures.
  • Figure IOC is a graphic representation of the induction of cell proliferation by IL-6 by different concentrations of Immunomers 14 and 16 in BALB/c mouse spleen cell cultures.
  • Figure 1 1 A is a graphic representation of the induction of cell proliferation by Oligo 4 and 17 and Immunomers 19 and 20 in BALB/c mouse spleen cell cultures.
  • Figure 1 IB is a graphic representation of the induction of cell proliferation IL- 12 by different concentrations of Oligo 4 and 17 and Immunomers 19 and 20 in BALB/c mouse spleen cell cultures.
  • Figure 1 IC is a graphic representation of the induction of cell proliferation IL- 6 by different concentrations of Oligo 4 and 17 and Immunomers 19 and 20 in BALB/c mouse spleen cell cultures.
  • Figure 12 is a graphic representation of BALB/c mouse spleen enlargement using oligonucleotides 4 and immunomers 14, 23, and 24.
  • Figure 13 is a schematic representation of the 3-terminal nucleoside of an oligonucleotide, showing that a non-nucleotide linkage can be attached to the nucleoside at the nucleobase, the 3' position, or at the 2' position.
  • Figure 14 shows the chemical substitutions used in Example 13.
  • Figure 15 shows cytokine profiles obtained using the modified oligonucleotides of Example 13.
  • Figure 16 shows relative cytokine induction for glycerol linkers compared with amino linkers.
  • Figure 17 shows relative cytokine induction for various linkers and linker combinations.
  • Figures 18 A-E shows relative nuclease resistance for various PS and PO immunomers and oligonucleotides.
  • Figure 19 shows relative cytokine induction for PO immunomers compared with PS immunomers in BALB/c mouse spleen cell cultures.
  • Figure 20 shows relative cytokine induction for PO immunomers compared with PS immunomers in C3H/Hej mouse spleen cell cultures.
  • Figure 21 shows relative cytokine induction for PO immunomers compared with PS immunomers in C3H/Hej mouse spleen cell cultures at high concentrations of immunomers.
  • the invention relates to the therapeutic use of oligonucleotides as immunostimulatory agents for immunotherapy applications.
  • the issued patents, patent applications, and references that are cited herein are hereby incorporated by reference to the same extent as if each was specifically and individually indicated to be incorporated by reference. In the event of inconsistencies between any teaching of any reference cited herein and the present specification, the latter shall prevail for purposes of the invention.
  • the invention provides methods for enhancing the immune response caused by immunostimulatory compounds used for immunotherapy applications such as, but not limited to, treatment of cancer, autoimmune disorders, asthma, respiratory allergies, food allergies, and bacteria, parasitic, and viral infections in adult and pediatric human and veterinary applications.
  • the invention further provides compounds having optimal levels of immunostimulatory effect for immunotherapy and methods for making and using such compounds.
  • immunomers of the invention are useful as adjuvants in combination with DNA vaccines, antibodies, allergens, chemotherapeutic agents, and antisense oligonucleotides.
  • an immunostimulatory oligonucleotide is referred to herein as an "immunomer.”
  • the invention provides immunomers comprising at least two oligonucleotides linked at their 3' ends, or an internucleoside linkage or a functionalized nucleobase or sugar to a non-nucleotidic linker, at least one of the oligonucleotides being an immunostimulatory oligonucleotide and having an accessible 5 1 end.
  • accessible 5' end means that the 5' end of the oligonucleotide is sufficiently available such that the factors that recognize and bind to immunomers and stimulate the immune system have access to it.
  • the 5' OH position of the terminal sugar is not covalently linked to more than two nucleoside residues.
  • the 5' OH can be linked to a phosphate, phosphorothioate, or phosphorodithioate moiety, an aromatic or aliphatic linker, cholesterol, or another entity which does not interfere with accessibility.
  • the term "immunomer” refers to any compound comprising at least two oligonucleotides linked at their 3' ends or internucleoside linkages, or functionalized nucleobase or sugar directly or via a non-nucleotidic linker, at least one of the oligonucleotides (in the context of the immunomer) being an immunostimulatory oligonucleotide and having an accessible 5' end, wherein the compound induces an immune response when administered to a vertebrate.
  • the vertebrate is a mammal, including a human.
  • the immunomer comprises two or more immunostimulatory oligonucleotides, (in the context of the immunomer) which may be the same or different.
  • each such immunostimulatory oligonucleotide has at least one accessible 5 1 end.
  • the immunomer in addition to the immunostimulatory oligonucleotide(s), also comprises at least one oligonucleotide that is complementary to a gene.
  • the term “complementary to” means that the oligonucleotide hybridizes under physiological conditions to a region of the gene.
  • the oligonucleotide downregulates expression of a gene.
  • Such downregulatory oligonucleotides preferably are selected from the group consisting of antisense oligonucleotides, ribozyme oligonucleotides, small inhibitory RNAs and decoy oligonucleotides.
  • the term “downregulate a gene” means to inhibit the transcription of a gene or translation of a gene product.
  • the immunomers according to these embodiments of the invention can be used to target one or more specific disease targets, while also stimulating the immune system.
  • the immunomer includes a ribozyme or a decoy oligonucleotide.
  • ribozyme refers to an oligonucleotide that possesses catalytic activity.
  • the ribozyme binds to a specific nucleic acid target and cleaves the target.
  • the term "decoy oligonucleotide” refers to an oligonucleotide that binds to a transcription factor in a sequence-specific manner and arrests transcription activity.
  • the ribozyme or decoy oligonucleotide exhibits secondary structure, including, without limitation, stem-loop or hairpin structures.
  • at least one set of Nn includes a string of 3 to 10 dGs and/or Gs or 2 '-substituted ribo or arabino Gs.
  • oligonucleotide refers to a polynucleoside formed from a plurality of linked nucleoside units. Such oligonucleotides can be obtained from existing nucleic acid sources, including genomic or cDNA, but are preferably produced by synthetic methods.
  • each nucleoside unit includes a heterocyclic base and a pentofuranosyl, trehalose, arabinose, 2'-deoxy-2'-substitutedarabinose, 2'-O-substitutedarabinose or hexose sugar group.
  • the nucleoside residues can be coupled to each other by any of the numerous known internucleoside linkages.
  • internucleoside linkages include, without limitation, phosphodiester, phosphorothioate, phosphorodithioate, alkylphosphonate, alkylphosphonothioate, phosphotriester, phosphoramidate, siloxane, carbonate, carboalkoxy, acetamidate, carbamate, morpholino, borano, thioether, bridged phosphoramidate, bridged methylene phosphonate, bridged phosphorothioate, and sulfone internucleoside linkages.
  • oligonucleotide also encompasses polynucleosides having one or more stereospecific internucleoside linkage (e.g., (Rp)- or (S/>)-phosphorothioate, alkylphosphonate, or phosphotriester linkages).
  • the terms "oligonucleotide” and “dinucleotide” are expressly intended to include polynucleosides and dinucleosides having any such internucleoside linkage, whether or not the linkage comprises a phosphate group.
  • these internucleoside linkages may be phosphodiester, phosphorothioate, or phosphorodithioate linkages, or combinations thereof.
  • the oligonucleotides each have from about 3 to about 35 nucleoside residues, preferably from about 4 to about 30 nucleoside residues, more preferably from about 4 to about 20 nucleoside residues. In some embodiments, the oligonucleotides have from about 5 to about 18, or from about 5 to about 14, nucleoside residues. As used herein, the term "about” implies that the exact number is not critical. Thus, the number of nucleoside residues in the oligonucleotides is not critical, and oligonucleotides having one or two fewer nucleoside residues, or from one to several additional nucleoside residues are contemplated as equivalents of each of the embodiments described above. In some embodiments, one or more of the oligonucleotides have 1 1 nucleotides.
  • oligonucleotide also encompasses polynucleosides having additional substituents including, without limitation, protein groups, lipophilic groups, intercalating agents, diamines, folic acid, cholesterol and adamantane.
  • oligonucleotide also encompasses any other nucleobase containing polymer, including, without limitation, peptide nucleic acids (PNA), peptide nucleic acids with phosphate groups (PHONA), locked nucleic acids (LNA), morpholino-backbone oligonucleotides , and oligonucleotides having backbone sections with alkyl linkers or amino linkers.
  • PNA peptide nucleic acids
  • PONA peptide nucleic acids with phosphate groups
  • LNA locked nucleic acids
  • morpholino-backbone oligonucleotides oligonucleotides having backbone sections with alkyl linkers or amino linkers.
  • the oligonucleotides of the invention can include naturally occurring nucleosides, modified nucleosides, or mixtures thereof.
  • modified nucleoside is a nucleoside that includes a modified heterocyclic base, a modified sugar moiety, or a combination thereof.
  • the modified nucleoside is a non-natural pyrimidine or purine nucleoside, as herein described.
  • the modified nucleoside is a 2'-substituted ribonucleoside an arabinonucleoside or a 2'-deoxy-2'-fluoroarabinoside.
  • the term "2 '-substituted ribonucleoside” includes ribonucleosides in which the hydroxyl group at the 2' position of the pentose moiety is substituted to produce a 2'-O-substituted ribonucleoside.
  • substitution is with a lower alkyl group containing 1 -6 saturated or unsaturated carbon atoms, or with an aryl group having 6-10 carbon atoms, wherein such alkyl, or aryl group may be unsubstituted or may be substituted, e.g., with halo, hydroxy, trifluoromethyl, cyano, nitro, acyl, acyloxy, alkoxy, carboxyl, carboalkoxy, or amino groups.
  • 2'-O-substituted ribonucleosides include, without limitation 2'-O-methylribonucleosides and 2'-O-methoxyethylribonucleosides.
  • 2'-substituted ribonucleoside also includes ribonucleosides in which the 2-hydroxyl group is replaced with a lower alkyl group containing 1-6 saturated or unsaturated carbon atoms, or with an amino or halo group.
  • Examples of such 2'-substituted ribonucleosides include, without limitation, 2'-amino, 2'-fluoro, 2'-allyl, and 2'-propargyl ribonucleosides.
  • oligonucleotide includes hybrid and chimeric oligonucleotides.
  • chimeric oligonucleotide is an oligonucleotide having more than one type of internucleoside linkage.
  • One preferred example of such a chimeric oligonucleotide is a chimeric oligonucleotide comprising a phosphorothioate, phosphodiester or phosphorodithioate region and non-ionic linkages such as alkylphosphonate or alkylphosphonothioate linkages (see e.g., Pederson et al. U.S. Patent Nos. 5,635,377 and 5,366,878).
  • hybrid oligonucleotide is an oligonucleotide having more than one type of nucleoside.
  • One preferred example of such a hybrid oligonucleotide comprises a ribonucleotide or 2'-substituted ribonucleotide region, and a deoxyribonucleotide region (see, e.g., Metelev and Agrawal, U.S. Patent No. 5,652,355, 6,346,614 and 6,143,881).
  • the term “immunostimulatory oligonucleotide” refers to an oligonucleotide as described above that induces an immune response when administered to a vertebrate, such as a fish, fowl, or mammal.
  • a vertebrate such as a fish, fowl, or mammal.
  • mammal includes, without limitation rats, mice, cats, dogs, horses, cattle, cows, pigs, rabbits, non-human primates, and humans.
  • immunostimulatory oligonucleotides can be found described in Agrawal et al, WO 98/49288, published November 5, 1998; WO 01/12804, published February 22, 2001 ; WO 01/55370, published August 2, 2001 ; PCT/US01/13682, filed April 30, 2001 ; and PCT/US01/30137, filed September 26, 2001.
  • the immunostimulatory oligonucleotide comprises at least one phosphodiester, phosphorothioate, or phosphordithioate internucleoside linkage.
  • the immunostimulatory oligonucleotide comprises an immunostimulatory dinucleotide of formula 5'-Pyr-Pur-3', wherein Pyr is a natural or synthetic pyrimidine nucleoside and Pur is a natural or synthetic purine nucleoside.
  • pyrimidine nucleoside refers to a nucleoside wherein the base component of the nucleoside is a pyrimidine base.
  • purine nucleoside refers to a nucleoside wherein the base component of the nucleoside is a purine base.
  • a "synthetic" pyrimidine or purine nucleoside includes a non-naturally occurring pyrimidine or purine base, a non- naturally occurring sugar moiety, or a combination thereof.
  • Preferred pyrimidine nucleosides according to the invention have the structure (I):
  • D is a hydrogen bond donor
  • D' is selected from the group consisting of hydrogen, hydrogen bond donor, hydrogen bond acceptor, hydrophilic group, hydrophobic group, electron withdrawing group and electron donating group;
  • A is a hydrogen bond acceptor or a hydrophilic group
  • A' is selected from the group consisting of hydrogen bond acceptor, hydrophilic group, hydrophobic group, electron withdrawing group and electron donating group;
  • X is carbon or nitrogen
  • S' is a pentose or hexose sugar ring, or a non-naturally occurring sugar.
  • the sugar ring is derivatized with a phosphate moiety, modified phosphate moiety, or other linker moiety suitable for linking the pyrimidine nucleoside to another nucleoside or nucleoside analog.
  • Preferred hydrogen bond donors include, without limitation, -NH-, -NH 2 , -SH and -OH.
  • the base moiety in (I) is a non-naturally occurring pyrimidine base.
  • non-naturally occurring pyrimidine bases include, without limitation, 5-hydroxycytosine, 5-hydroxymethylcytosine, N4-alkylcytosine, preferably N4-ethylcytosine, and 4-thiouracil.
  • 5-bromocytosine is specifically excluded.
  • the sugar moiety S' in (I) is a non-naturally occurring sugar moiety.
  • a "naturally occurring sugar moiety” is a sugar moiety that occurs naturally as part of nucleic acid, e.g., ribose and 2'-deoxyribose
  • a "non-naturally occurring sugar moiety” is any sugar that does not occur naturally as part of a nucleic acid, but which can be used in the backbone for an oligonucleotide, e.g, hexose.
  • Arabinose and arabinose derivatives are examples of a preferred sugar moieties.
  • Preferred purine nucleoside analogs according to the invention have the structure (II):
  • D is a hydrogen bond donor
  • D' is selected from the group consisting of hydrogen, hydrogen bond donor, and hydrophilic group
  • A is a hydrogen bond acceptor or a hydrophilic group
  • X is carbon or nitrogen
  • L is an atom selected from the group consisting of C, O, N and S;
  • S' is a pentose or hexose sugar ring, or a non-naturally occurring sugar.
  • the sugar ring is derivatized with a phosphate moiety, modified phosphate moiety, or other linker moiety suitable for linking the pyrimidine nucleoside to another nucleoside or nucleoside analog.
  • Preferred hydrogen bond donors include, without limitation, -NH-, -NH 2 , -SH and -OH.
  • the base moiety in (II) is a non-naturally occurring purine base.
  • examples of preferred non-naturally occurring purine bases include, without limitation, 6-thioguanine and 7-deazaguanine.
  • the sugar moiety S' in (II) is a naturally occurring sugar moiety, as described above for structure (I).
  • the immunostimulatory dinucleotide is selected from the group consisting of CpG, C*pG, CpG*, and C*pG*, wherein C is cytidine or 2'-deoxycytidine, C* is 2'-deoxythymidine, arabinocytidine, 2'-deoxythymidine, 2'- deoxy-2'-substitutedarabinocytidine, 2'-O-substitutedarabinocytidine, 2'-deoxy-5- hydroxycytidine, 2'-deoxy-N4-alkyl-cytidine, 2'-deoxy-4-thiouridine or other non- natural pyrimidine nucleoside, G is guanosine or 2'-deoxyguanosine, G* is 2' deoxy- 7-deazaguanosine, 2'-deoxy-6-thioguanosine, arabinoguanosine, 2'-deoxy-
  • the immunostimulatory dinucleotide is not CpG.
  • the immunostimulatory oligonucleotides may include immunostimulatory moieties on one or both sides of the immunostimulatory dinucleotide.
  • the immunostimulatory oligonucleotide comprises in immunostimulatory domain of structure (III):
  • Y is cytidine, 2'deoxythymidine, 2' deoxycytidine arabinocytidine, 2'-deoxy- 2'-substitutedarabinocytidine, 2'-deoxythymidine, 2'-O-substitutedarabinocytidine, 2'-deoxy-5-hydroxycytidine, 2'-deoxy-N4-alkyl-cytidine, 2'-deoxy-4-thiouridine or other non-natural pyrimidine nucleoside;
  • Z is guanosine or 2'-deoxyguanosine
  • G* is 2' deoxy-7-deazaguanosine, 2'- deoxy-6-th ioguanosine, arabinoguanosine, 2 ' -deoxy-2 ' substituted-arab i noguanosi ne, 2'-O-substituted-arabinoguanosine, 2'deoxyinosine, or other non-natural purine nucleoside;
  • N 1 is preferably a naturally occurring or a synthetic nucleoside or an immunostimulatory moiety selected from the group consisting of abasic nucleosides, arabinonucleosides, 2'-deoxyuridine, ⁇ -deoxyribonucleosides, ⁇ -L-deoxyribonucleosides, and nucleosides linked by a phosphodiester or modified internucleoside linkage to the adjacent nucleoside on the 3' side, the modified intemucleotide linkage being selected from, without limitation, a linker having a length of from about 2 angstroms to about 200 angstroms, C2-C 18 alkyl linker, poly(ethylene glycol) linker, 2-aminobutyl-l,3-propanediol linker, glyceryl linker, 2'- 5' internucleoside linkage, and phosphorothioate, phosphorodithioate, or methylphosphorothioate,
  • Nn is preferably a naturally occurring nucleoside or an immunostimulatory moiety selected from the group consisting of abasic nucleosides, arabinonucleosides, 2'-deoxyuridine, ⁇ -deoxyribonucleosides, 2'-O-substituted ribonucleosides, and nucleosides linked by a modified internucleoside linkage to the adjacent nucleoside on the 3' side, the modified intemucleotide linkage preferably being selected from the group consisting of amino linker, 2'-5' internucleoside linkage, and methylphosphonate internucleoside linkage;
  • Nl or Nn is an immunostimulatory moiety
  • n is a number from 0 to 30; and wherein the 3 'end, an internucleoside linker, or a derivatized nucleobase or sugar is linked directly or via a non-nucleotidic linker to another oligonucleotide, which may or may not be immunostimulatory.
  • YZ is arabinocytidine or 2'-deoxy-2'- substituted arabinocytidine and arabinoguanosine or 2 'deoxy-2' -substituted arabinoguanosine.
  • Preferred immunostimulatory moieties include modifications in the phosphate backbones, including, without limitation, methylphosphonates, methylphosphonothioates, phosphotriesters, phosphothiotriesters, phosphorothioates, phosphorodithioates, triester prodrugs, sulfones, sulfonamides, sulfamates, formacetal, N-methylhydroxylamine, carbonate, carbamate, morpholino, boranophosphonate, phosphoramidates, especially 'primary amino-phosphoramidates, N3. phosphoramidates and N5 phosphoramidates, and stereospecific linkages (e.g., (Rp)- or (Sp)-phosphorothioate, alkylphosphonate, or phosphotriester linkages).
  • modifications in the phosphate backbones including, without limitation, methylphosphonates, methylphosphonothioates, phosphotriesters, phosphothiotriesters, phospho
  • Preferred immunostimulatory moieties according to the invention further include nucleosides having sugar modifications, including, without limitation, 2 '-substituted pentose sugars including, without limitation, 2'-O-methylribose, 2'-O-methoxyethylribose, 2'-O-propargylribose, and 2'-deoxy-2'-fluororibose; 3 '-substituted pentose sugars, including, without limitation, 3'-O-methylribose; l',2'-dideoxyribose; arabinose; substituted arabinose sugars, including, without limitation, l'-methylarabinose, 3'-hydroxymethylarabinose, 4'-hydroxymethyl- arabinose, and 2' -substituted arabinose sugars; hexose sugars, including, without limitation, 1 ,5-anhydrohexitol; and alpha-anomers.
  • the immunostimulatory moiety is attached to the adjacent nucleoside by way of a 2'-5' internucleoside linkage.
  • Preferred immunostimulatory moieties according to the invention further include oligonucleotides having other carbohydrate backbone modifications and replacements, including peptide nucleic acids (PNA), peptide nucleic acids with phosphate groups (PHONA), locked nucleic acids (LNA), morpholino backbone oligonucleotides, and oligonucleotides having backbone linker sections having a length of from about 2 angstroms to about 200 angstroms, including without limitation, alkyl linkers or amino linkers.
  • the alkyl linker may be branched or unbranched, substituted or unsubstituted, and chirally pure or a racemic mixture.
  • alkyl linkers have from about 2 to about 18 carbon atoms. In some preferred embodiments such alkyl linkers have from about 3 to about 9 carbon atoms.
  • Some alkyl linkers include one or more functional groups selected from the group consisting of hydroxy, amino, thiol, thioether, ether, amide, thioamide, ester, urea, and thioether.
  • Some other functionalized alkyl linkers are peptides or amino acids.
  • Preferred immunostimulatory moieties according to the invention further include DNA isoforms, including, without limitation, ⁇ -L-deoxyribonucleosides and ⁇ -deoxyribonucleosides.
  • Preferred immunostimulatory moieties according to the invention incorporate 3' modifications, and further include nucleosides having unnatural internucleoside linkage positions, including, without limitation, 2'-5 ⁇ 2'-2', 3'-3' and 5'-5' linkages.
  • Preferred immunostimulatory moieties according to the invention further include nucleosides having modified heterocyclic bases, including, without limitation, 5-hydroxycytosine, 5-hydroxymethylcytosine, N4-alkylcytosine, preferably N4-ethylcytosine, 4-thiouracil, 6-thioguanine, 7-deazaguanine, inosine, nitropyrrole, C5-propynylpyrimidine, and diaminopurines, including, without limitation, 2,6-diaminopurine.
  • modified heterocyclic bases including, without limitation, 5-hydroxycytosine, 5-hydroxymethylcytosine, N4-alkylcytosine, preferably N4-ethylcytosine, 4-thiouracil, 6-thioguanine, 7-deazaguanine, inosine, nitropyrrole, C5-propynylpyrimidine, and diaminopurines, including, without limitation, 2,6-diaminopurine.
  • a methylphosphonate internucleoside linkage at position Nl or Nn is an immunostimulatory moiety
  • a linker having a length of from about 2 angstroms to about 200 angstroms C2-C 18 alkyl linker at position XI is an immunostimulatory moiety
  • a ⁇ -L-deoxyribonucleoside at position XI is an immunostimulatory moiety. See Table 1 below for representative positions and structures of immunostimulatory moieties.
  • reference to a linker as the immunostimulatory moiety at a specified position means that the nucleoside residue at that position is substituted at its 3'-hydroxyl with the indicated linker, thereby creating a modified internucleoside linkage between that nucleoside residue and the adjacent nucleoside on the 3' side.
  • reference to a modified internucleoside linkage as the immunostimulatory moiety at a specified position means that the nucleoside residue at that position is linked to the adjacent nucleoside on the 3' side by way of the recited linkage.
  • Table 2 shows representative positions and structures of immunostimulatory moieties within an immunostimulatory oligonucleotide having an upstream potentiation domain.
  • Spacer 9 refers to a poly(ethylene glycol) linker of formula -O-(CH 2 CH 2 -O) ceremoni-, wherein n is 3.
  • Spacer 18 refers to a polyethylene glycol) linker of formula -O-(CH 2 CH 2 -O) justify-, wherein n is 6.
  • C2-C18 alkyl linker refers to a linker of formula -O-(CH 2 ) ? -O-, where q is an integer from 2 to 18.
  • C3-linker and C3-alkyl linker refer to a linker of formula -O-(CH 2 ) 3 -O-.
  • the linker is connected to the adjacent nucleosides by way of phosphodiester, phosphorothioate, or phosphorodithioate linkages.
  • Table 3 shows representative positions and structures of immunostimulatory moieties within an immunostimulatory oligonucleotide having a downstream potentiation domain.
  • the immunomers according to the invention comprise at least two oligonucleotides linked at their 3' ends or internucleoside linkage or a functionalized nucleobase or sugar via a non-nucleotidic linker.
  • a "non-nucleotidic linker” is any moiety that can be linked to the oligonucleotides by way of covalent or non-covalent linkages.
  • linker is from about 2 angstroms to about 200 angstroms in length.
  • Non-covalent linkages include, but are not limited to, electrostatic interaction, hydrophobic interactions, ⁇ -stacking interactions, and hydrogen bonding.
  • non-nucleotidic linker is not meant to refer to an internucleoside linkage, as described above, e.g., a phosphodiester, phosphorothioate, or phosphorodithioate functional group, that directly connects the 3'-hydroxyl groups of two nucleosides.
  • a direct 3'-3' linkage is considered to be a "nucleotidic linkage.”
  • the non-nucleotidic linker is a metal, including, without limitation, gold particles. In some other embodiments, the non-nucleotidic linker is a soluble or insoluble biodegradable polymer bead.
  • the non-nucleotidic linker is an organic moiety having functional groups that permit attachment to the oligonucleotide. Such attachment preferably is by any stable covalent linkage.
  • the linker may be attached to any suitable position on the nucleoside, as illustrated in Figure 13.
  • the linker is attached to the 3'-hydroxyl.
  • the linker preferably comprises a hydroxyl functional group, which preferably is attached to the 3'-hydroxyl by means of a phosphodiester, phosphorothioate, phosphorodithioate or non-phosphate-based linkages.
  • the non-nucleotidic linker is a biomolecule, including, without limitation, polypeptides, antibodies, lipids, antigens, allergens, and oligosaccharides.
  • the non-nucleotidic linker is a small molecule.
  • a small molecule is an organic moiety having a molecular weight of less than 1,000 Da. In some embodiments, the small molecule has a molecular weight of less than 750 Da.
  • the small molecule is an aliphatic or aromatic hydrocarbon, either of which optionally can include, either in the linear chain connecting the oligonucleotides or appended to it, one or more functional groups selected from the group consisting of hydroxy, amino, thiol, thioether, ether, amide, thioamide, ester, urea, and thiourea.
  • the small molecule can be cyclic or acyclic.
  • Examples of small molecule linkers include, but are not limited to, amino acids, carbohydrates, cyclodextrins, adamantane, cholesterol, haptens and antibiotics. However, for purposes of describing the non-nucleotidic linker, the term "small molecule" is not intended to include a nucleoside.
  • the small molecule linker is glycerol or a glycerol homolog of the formula HO-(CH 2 ) 0 -CH(OH)-(CH 2 ) p -OH, wherein o and;? independently are integers from 1 to about 6, from 1 to about 4, or from 1 to about 3. In some other embodiments, the small molecule linker is a derivative of 1 ,3-diamino- 2-hydroxypropane.
  • Some such derivatives have the formula HO-(CH 2 ) m -C(O)NH-CH 2 -CH(OH)-CH 2 -NHC(O)-(CH 2 ) m -OH, wherein m is an integer from 0 to about 10, from 0 to about 6, from 2 to about 6, or from 2 to about 4.
  • Some non-nucleotidic linkers according to the invention permit attachment of more than two oligonucleotides, as schematically depicted in Figure 1.
  • the small molecule linker glycerol has three hydroxyl groups to which oligonucleotides may be covalently attached.
  • Some immunomers according to the invention therefore, comprise more than two oligonucleotides linked at their 3* ends to a non-nucleotidic linker. Some such immunomers comprise at least two immunostimulatory oligonucleotides, each having an accessible 5' end.
  • the immunomers of the invention may conveniently be synthesized using an automated synthesizer and phosphoramidite approach as schematically depicted in Figures 5 and 6, and further described in the Examples.
  • the immunomers are synthesized by a linear synthesis approach (see Figure 5).
  • linear synthesis refers to a synthesis that starts at one end of the immunomer and progresses linearly to the other end. Linear synthesis permits incorporation of either identical or un-identical (in terms of length, base composition and/or chemical modifications inco ⁇ orated) monomeric units into the immunomers.
  • An alternative mode of synthesis is "parallel synthesis", in which synthesis proceeds outward from a central linker moiety (see Figure 6).
  • a solid support attached linker can be used for parallel synthesis, as is described in U.S. Patent No. 5,912,332.
  • a universal solid support such as phosphate attached controlled pore glass support can be used.
  • Parallel synthesis of immunomers has several advantages over linear synthesis: (1) parallel synthesis permits the incorporation of identical monomeric units; (2) unlike in linear synthesis, both (or all) the monomeric units are synthesized at the same time, thereby the number of synthetic steps and the time required for the synthesis is the same as that of a monomeric unit; and (3) the reduction in synthetic steps improves purity and yield of the final immunomer product.
  • the immunomers may conveniently be deprotected with concentrated ammonia solution or as recommended by the phosphoramidite supplier, if a modified nucleoside is inco ⁇ orated.
  • the product immunomer is preferably purified by reversed phase HPLC, detritylated, desalted and dialyzed.
  • Table 4 shows representative immunomers according to the invention. Additional immunomers are found described in the Examples.
  • the invention provides immunomer conjugates, comprising an immunomer, as described above, and an antigen conjugated to the immunomer at a position other than the accessible 5' end.
  • the non-nucleotidic linker comprises an antigen, which is conjugated to the oligonucleotide.
  • the antigen is conjugated to the oligonucleotide at a position other than its 3' end.
  • the antigen produces a vaccine effect.
  • the antigen is preferably selected from the group consisting of antigens associated with a pathogen, antigens associated with a cancer, antigens associated with an auto-immune disorder, and antigens associated with other diseases such as, but not limited to, veterinary or pediatric diseases.
  • the term "associated with” means that the antigen is present when the pathogen, cancer, auto-immune disorder, food allergy, respiratory allergy, asthma or other disease is present, but either is not present, or is present in reduced amounts, when the pathogen, cancer, auto-immune disorder, food allergy, respiratory allergy, or disease is absent.
  • the immunomer is covalently linked to the antigen, or it is otherwise operatively associated with the antigen.
  • the term "operatively associated with” refers to any association that maintains the activity of both immunomer and antigen. Nonlimiting examples of such operative associations include being part of the same liposome or other such delivery vehicle or reagent.
  • such covalent linkage preferably is at any position on the immunomer other than an accessible 5' end of an immunostimulatory oligonucleotide.
  • the antigen may be attached at an internucleoside linkage or may be attached to the non- nucleotidic linker. Alternatively, the antigen may itself be the non-nucleotidic linker.
  • the invention provides pharmaceutical formulations comprising an immunomer or immunomer conjugate according to the invention and a physiologically acceptable carrier.
  • physiologically acceptable refers to a material that does not interfere with the effectiveness of the immunomer and is compatible with a biological system such as a cell, cell culture, tissue, or organism.
  • the biological system is a living organism, such as a vertebrate.
  • carrier encompasses any excipient, diluent, filler, salt, buffer, stabilizer, solubilizer, lipid, or other material well known in the art for use in pharmaceutical formulations. It will be understood that the characteristics of the carrier, excipient, or diluent will depend on the route of administration for a particular application. The preparation of pharmaceutically acceptable formulations containing these materials is described in, e.g., Remington 's Pharmaceutical Sciences, 18th Edition, ed. A. Gennaro, Mack Publishing Co., Easton, PA, 1990.
  • the invention provides methods for generating an immune response in a vertebrate, such methods comprising administering to the vertebrate an immunomer or immunomer conjugate according to the invention.
  • the vertebrate is a mammal.
  • the term "mammal" is expressly intended to include humans.
  • the immunomer or immunomer conjugate is administered to a vertebrate in need of immunostimulation.
  • administration of immunomers can be by any suitable route, including, without limitation, parenteral, oral, sublingual, transdermal, topical, intranasal, aerosol, intraocular, intratracheal, intrarectal, vaginal, by gene gun, dermal patch or in eye drop or mouthwash form.
  • Administration of the therapeutic compositions of immunomers can be carried out using known procedures at dosages and for periods of time effective to reduce symptoms or surrogate markers of the disease.
  • the therapeutic composition is preferably administered at a sufficient dosage to attain a blood level of immunomer from about 0.0001 micromolar to about 10 micromolar. For localized administration, much lower concentrations than this may be effective, and much higher concentrations may be tolerated.
  • a total dosage of immunomer ranges from about 0.001 mg per patient per day to about 200 mg per kg body weight per day. It may be desirable to administer simultaneously, or sequentially a therapeutically effective amount of one or more of the therapeutic compositions of the invention to an individual as a single treatment episode.
  • immunomers according to the invention are administered in combination with vaccines, antibodies, cytotoxic agents, allergens, antibiotics, antisense oligonucleotides, peptides, proteins, gene therapy vectors, DNA vaccines and/or adjuvants to enhance the specificity or magnitude of the immune response.
  • the immunomers of the invention can variously act as adjuvants and/or produce direct immunostimulatory effects.
  • Either the immunomer or the vaccine, or both, may optionally be linked to an immunogenic protein, such as keyhole limpet hemocyanin (KLH), cholera toxin B subunit, or any other immunogenic carrier protein.
  • an immunogenic protein such as keyhole limpet hemocyanin (KLH), cholera toxin B subunit, or any other immunogenic carrier protein.
  • KLH keyhole limpet hemocyanin
  • MPL monophosphoryl lipid A
  • alum and saponins, including QS-21, imiquimod, R848, or combinations thereof.
  • the term "in combination with” means in the course of treating the same disease in the same patient, and includes administering the immunomer and/or the vaccine and/or the adjuvant in any order, including simultaneous administration, as well as temporally spaced order of up to several days apart.
  • Such combination treatment may also include more than a single administration of the immunomer, and/or independently the vaccine, and/or independently the adjuvant.
  • the administration of the immunomer and/or vaccine and/or adjuvant may be by the same or different routes.
  • the methods according to this aspect of the invention are useful for model studies of the immune system.
  • the methods are also useful for the prophylactic or therapeutic treatment of human or animal disease.
  • the methods are useful for pediatric and veterinary vaccine applications.
  • the invention provides methods for therapeutically treating a patient having a disease or disorder, such methods comprising administering to the patient an immunomer or immunomer conjugate according to the invention.
  • the disease or disorder to be treated is cancer, an autoimmune disorder, airway inflammation, inflammatory disorders, allergy, asthma or a disease caused by a pathogen.
  • Pathogens include bacteria, parasites, fungi, viruses, viroids and prions.
  • Administration is carried out as described for the fourth aspect of the invention.
  • allergy includes, without limitation, food allergies and respiratory allergies.
  • airway inflammation includes, without limitation, asthma.
  • autoimmune disorder refers to disorders in which "self proteins undergo attack by the immune system. Such term includes autoimmune asthma.
  • the immunomer or immunomer conjugate can be administered in combination with any other agent useful for treating the disease or condition that does not diminish the immunostimulatory effect of the immunomer.
  • the immunomer or immunomer conjugate may be administered in combination with a chemotherapeutic compound.
  • Oligonucleotides were synthesized on a 1 ⁇ mol scale using an automated DNA synthesizer (Expedite 8909; PerSeptive Biosystems, Framingham, MA), following the linear synthesis or parallel synthesis procedures outlined in Figures 5 and 6.
  • Deoxyribonucleoside phosphoramidites were obtained from Applied Biosystems (Foster City, CA). 1 ',2'-dideoxyribose phosphoramidite, propyl- 1 - phosphoramidite, 2-deoxyuridine phosphoramidite, l,3-bis-[5-(4,4'- dimethoxytrityl)pentylamidyl]-2-propanol phosphoramidite and methyl phosponamidite were obtained from Glen Research (Sterling, VA).
  • ⁇ -L-2'- deoxyribonucleoside phosphoramidite, ⁇ -2'-deoxyribonucleoside phosphoramidite, mono-DMT-glycerol phosphoramidite and di-DMT-glycerol phosphoramidite were obtained from ChemGenes (Ashland, MA). (4-Aminobutyl)-l,3-propanediol phosphoramidite was obtained from Clontech (Palo Alto, CA). Arabinocytidine phosphoramidite, arabinoguanosine, arabinothymidine and arabinouridine were obtained from Reliable Pharmaceutical (St. Louis, MO).
  • Arabinoguanosine phosphoramidite, arabinothymidine phosphoramidite and arabinouridine phosphoramidite were synthesized at Hybridon, Inc. (Cambridge, MA) (Noronha et al. (2000) Biochem., 39:7050-7062).
  • nucleoside phosphoramidites were characterized by 31 P and ⁇ NMR spectra. Modified nucleosides were inco ⁇ orated at specific sites using normal coupling cycles. After synthesis, oligonucleotides were deprotected using concentrated ammonium hydroxide and purified by reverse phase HPLC, followed by dialysis. Purified oligonucleotides as sodium salt form were lyophilized prior to use. Purity was tested by CGE and MALDI-TOF MS.
  • mice were administered to mice and the degree of splenomegaly was measured as an indicator of the level of immunostimulatory activity.
  • a single dose of 5 mg/kg was administered to BALB/c mice (female, 4-6 weeks old, Harlan Sprague Dawley Inc, Baltic, CT) intraperitoneal ly.
  • the mice were sacrificed 72 hours after oligonucleotide administration, and spleens were harvested and weighed.
  • Figure 8B These results demonstrate that Immunomer 6, having two accessible 5' ends, has a far greater immunostimulatory effect than do Oligonucleotide 4 or Immunomer 5.
  • IL-12 and IL-6 in vertebrate cells preferably BALB/c mouse spleen cells or human PBMC
  • the required reagents including cytokine antibodies and cytokine standards were purchased form PharMingen, San Diego, CA.
  • ELISA plates (Costar) were incubated with appropriate antibodies at 5 ⁇ g/mL in PBSN buffer (PBS/0.05% sodium azide, pH 9.6) overnight at 4°C and then blocked with PBS/1% BSA at 37 °C for 30 minutes.
  • Ceil culture supernatants and cytokine standards were appropriately diluted with PBS/10% FBS, added to the plates in triplicate, and incubated at 25 °C for 2 hours.
  • PBMCs Human peripheral blood mononuclear cells
  • the resulting cell pellet was then resuspended in RPMI 1640 medium containing L-glutamine (MediaTech, Inc., Herndon, VA) and supplemented with 10% heat inactivated FCS and penicillin-streptomycin (lOOU/ml). Cells were cultured in 24 well plates for different time periods at 1 X 10 6 cells/ml/well in the presence or absence of oligonucleotides.
  • the levels of IL-12 and IL-6 in the cell culture supernatants were calculated from the standard curve constructed under the same experimental conditions for IL-12 and IL-6, respectively.
  • the levels of IL-10, IFN-gamma and TNF- ⁇ in the cell culture supernatants were calculated from the standard curve constructed under the same experimental conditions for IL-10, IFN-gamma and TNF- ⁇ , respectively.
  • D1 and D2 are donors 1 and 2.
  • Normal phase represents a phosphorothioate linkage
  • Italic phase represents a phosphodiester linkage
  • immunostimulatory oligonucleotides that contain natural phosphodiester backbones are less immunostimulatory than are the same length oligonucleotides with a phosphorothioate backbones.
  • This lower degree of immunostimulatory activity could be due in part to the rapid degradation of phosphodiester oligonucleotides under experimental conditions.
  • Degradation of oligonucleotides is primarily the result of 3'-exonucleases, which digest the oligonucleotides from the 3' end.
  • the immunomers of this example do not contain a free 3' end.
  • immunomers with phosphodiester backbones should have a longer half life under experimental conditions than the corresponding monomeric oligonucleotides, and should therefore exhibit improved immunostimulatory activity.
  • the results presented in Table 13 demonstrate this effect, with Immunomers 84 and 85 exhibiting immunostimulatory activity as determined by cytokine induction in BALB/c mouse spleen cell cultures.
  • Oligonucleotides were synthesized on 1 ⁇ mol scale using an automated DNA synthesizer (Expedite 8909 PerSeptive Biosystems). Deoxynucleoside phosphoramidites were obtained from Applied Biosystems (Foster City, CA). 7- Deaza-2'-deoxyguanosine phosphoramidite was obtained from Glen Research (Sterling Virginia). 1,3-Bis-DMT-glycerol-CPG was obtained from ChemGenes (Ashland, MA). Modified nucleosides were incorporated into the oligonucleotides at specific site using normal coupling cycles.
  • oligonucleotides were deprotected using concentrated ammonium hydroxide and purified by reversed-phase HPLC, followed by dialysis. Purified oligonucleotides as sodium salt form were lyophilized prior to use. Purity of oligonucleotides was checked by CGE and MALDI- TOF MS (Bruker Proflex III MALDI-TOF Mass spectrometer).
  • Oligonucleotides were incubated in PBS containing 10% bovine serum at 37 °
  • spleen cells were cultured in RPMI complete medium.
  • Murine macrophage-like cells J774 (American Type Culture Collection, Rockville, MD) were cultured in Dulbecco's modified Eagle's medium supplemented with 10% (v/v) FCS and antibiotics (100 IU/mL of penicillin G/streptomycin). All other culture reagents were purchased from Mediatech (Gaithersburg, MD).
  • ELISAsfor IL-12 and IL-6 BALB/c mouse spleen or J774 cells were plated in 24-well dishes at a density of 5xl0 6 or IxlO 6 cells/mL, respectively.
  • the CpG DNA dissolved in TE buffer (10 mM Tris-HCl, pH 7.5, 1 mM EDTA) was added to a final concentration of 0.03, 0.1, 0.3, 1.0, 3.0, or 10.0 ⁇ g/mL to mouse spleen cell cultures and 1.0, 3.0, or 10.0 ⁇ g/mL to J774 cell cultures.
  • the cells were then incubated at 37 °C for 24 hr and the supernatants were collected for ELISA assays.
  • the experiments were performed two or three times for each CpG DNA in triplicate for each concentration.
  • IL-12 and IL-6 The secretion of IL-12 and IL-6 was measured by sandwich ELISA.
  • the required reagents, including cytokine antibodies and standards were purchased from PharMingen.
  • ELISA plates (Costar) were incubated with appropriate antibodies at 5 ⁇ g/mL in PBSN buffer (PBS/0.05% sodium azide, pH 9.6) overnight at 4 °C and then blocked with PBS/1 % BSA at 37 °C for 30 min.
  • Cell culture supernatants and cytokine standards were appropriately diluted with PBS/1% BSA, added to the plates in triplicate, and incubated at 25 °C for 2 hr.
  • Table 15 Phosphorothioate CpG DNA sequences and modifications used in the study a
  • conjugation of large molecules such as vaccines or mAbs at the 5'-end of a CpG DNA could lead to suboptimal immunostimulatory activity of CpG DNA.
  • the conjugation of functional ligands at the 3 '-end of CpG DNA not only contributes to increased nuclease stability but also increased immunostimulatory potency of CpG DNA in vivo.
  • oligonucleotides were synthesized for this study. Each of these modified oligonucleotides can be incorporated into an immunomer.
  • the CpG DNAs which contained C2- (1), C3- (2), and C4-linkers (3), induced secretion of IL-12 production similar to that of the parent CpG DNA 4.
  • the CpG DNA that contained C6 and C9-linkers (4 and 5) at the fifth nucleotide position from CpG dinucleotide in the 5 '-flanking sequence induced lower levels of IL-12 secretion than did the parent CpG DNA (Fig. 15), suggesting that substitution of linkers longer than a C4-linker results in the induction of lower levels of IL-12. All five CpG DNAs, which had linkers, induced two to three times higher IL-6 secretion than did the parent CpG DNA.
  • CpG DNAs 137 and 138 in which a triethyleneglycol-linker (6) is incorporated at the fifth nucleotide position in the 5'- and at the fourth nucleotide position in the 3 '-flanking sequences to the CpG dinucleotide, respectively.
  • CpG DNAs 139 and 140 contained a hexaethyleneglycol-linker (7) in the 5'- or the 3 '-flanking sequence to the CpG dinucleotide, respectively.
  • CpG DNAs 137-140 All four modified CpG DNAs (137-140) were tested in BALB/c mouse spleen cell cultures for cytokine induction (IL-12, IL-6, and IL-10) in comparison with parent CpG DNA 4. All CpG DNAs induced concentration-dependent cytokine production over the concentration range tested (0.03-10.0 ⁇ g/mL) (data not shown). The levels of cytokines induced at 0.3 ⁇ g/mL concentration of CpG DNAs 137-140 are shown in Table 18.
  • CpG DNAs 137 and 139 which had an ethyleneglycol-linker in the 5'-flanking sequence induced higher levels of IL-12 (2106 ⁇ 143 and 2066 ⁇ 153 pg/mL) and IL-6 (2362 ⁇ 166 and 2507 ⁇ 66 pg/mL) secretion than did parent CpG DNA 4 (Table 18).
  • 137 and 139 induced slightly lower levels of IL-10 secretion than did the parent CpG DNA (Table 18).
  • CpG DNA 138 which had a shorter ethyleneglycol-linker (6) in the 3'- flanking sequence induced IL-12 secretion similar to that of the parent CpG DNA, but significantly lower levels of IL-6 and IL-10 (Table 18).
  • CpG DNA 140 which had a longer ethyleneglycol-linker (7) induced significantly lower levels of all three cytokines tested compared with the parent CpG DNA (Table 18).
  • CpG DNA containing branched alkyl-linkers Two branched alkyl-linkers containing a hydroxyl (8) or an amine (9) functional group were incorporated in parent CpG DNA 4 and the effects on immunostimulatory activity of the resulting modified CpG DNAs (150-154-Table 19) were examined.
  • the data obtained with CpG DNAs 150-154, containing amino-linker 9 at different nucleotide positions, in BALB/c mouse spleen cell cultures (proliferation) and in vivo (splenomegaly) are shown in Table 19.
  • Table 19 Spleen cell proliferation induced by CpG DNA containing an aminobutyryl propanediol-linker in BALB/c mice spleen cell cultures and splenomegaly in BALB/c mice.
  • Parent CpG DNA 4 showed a proliferation index of 3.7 ⁇ 0.8 at a concentration of 0.1 ⁇ g/mL.
  • modified CpG DNAs 151-154 containing amino-linker 9 at different positions caused higher spleen cell proliferation than did the parent CpG DNA (Table 19).
  • a lower proliferation index was noted compared with parent CpG DNA (Table 19), further confirming that the placement of a linker substitution adjacent to CpG dinucleotide has a detrimental effect on immunostimulatory activity.
  • CpG DNAs 145 and 152 which had substitution in the 5'- flanking sequence and assayed their ability to induce cytokines IL-12 and IL-6 secretion in BALB/c mouse spleen cell cultures. Both CpG DNAs 145 and 152 induced concentration-dependent cytokine secretion.
  • Figure 4 shows the levels of IL-12 and IL-6 induced by 145 and 152 in mouse spleen cell cultures at 0.3 ⁇ g/mL concentration compared with parent CpG DNA 4. Both CpG DNAs induced higher levels of IL-12 and IL-6 than did parent CpG DNA 4.
  • Modified CpG DNAs were studied for their ability to induce cytokine production in BALB/c mouse spleen cell cultures in comparison with parent CpG DNA 4. All CpG DNAs induced concentration-dependent cytokine production. The data obtained at 1.0 ⁇ g/mL concentration of CpG DNAs is shown in Table 20. In this assay, parent CpG DNA 4 induced 967 ⁇ 28 pg/mL of IL-12, 1593 ⁇ 94 pg/mL of IL-6, and 14 ⁇ 6 pg/mL of IL-10 secretion at 1 ⁇ g/mL of concentration. The data presented in Table 20 suggest that as the number of linker substitutions decreased IL-12 induction decreased.
  • CpG DNA 127 The substitution of the fourth and fifth nucleosides with C4-linker 3 (CpG DNA 127) had an insignificant effect on cytokine secretion compared with parent CpG DNA 4, suggesting that the nucleobase and sugar ring at these positions are not required for receptor recognition and/or binding.
  • the substitution of two C ⁇ -linkers (4) resulted in IL-12 secretion lower than and IL-6 secretion similar to that induced by parent CpG DNA 4.
  • the 5 '-truncated CpG DNA 132 induced higher cytokine secretion than did CpG DNA 131.
  • the CpG DNAs 135 and 136 which had two C9-linkers (5), induced insignificant cytokine secretion, confirming the results obtained with mono-substituted CpG DNA containing the same linker as described above.
  • PS-CpG DNA 4 (Table 21) was found to induce an immune response in mice (data not shown) with PO-CpG DNA 155 serving as a control.
  • PO-immunomers 156 and 157 each contain two identical, truncated copies of the parent CpG DNA 155 joined through their 3 '-ends via a glyceryl linker, X (Table 21). While 156 and 157 each contain the same oligonucleotide segments of 14 bases, the 5'-ends of 157 were modified by the addition of two C3-linkers, Y (Table 21). All oligonucleotides 4, 155-157 contain a 'GACGTT hexameric motif known to activate the mouse immune system.
  • Figure 18 A-D shows the nuclease digestion profiles of CpG DNAs 4, 155-157 incubated in 10% FBS for 24 hr. The amount of full-length CpG DNA remaining at each time point is shown in Figure 18 E.
  • the parent PS-CpG DNA 4 is the most resistant to serum nucleases. About 55% of 18-mer 4 remained undegraded after 48 hr incubation.
  • CpG DNAs The immunostimulatory activity of CpG DNAs was studied in BALB/c and C3H/HeJ mice spleen cell cultures by measuring levels of cytokines IL-12 and IL-6 secreted. All CpG DNAs induced a concentration-dependent cytokine secretion in BALB/c mouse spleen cell cultures (Fig. 19). At 3 ⁇ g/mL, PS-CpG DNA 4 induced 2656 ⁇ 256 and 12234 ⁇ 1180 pg/mL of IL-12 and IL-6 respectively. The parent PO-CpG DNA 155 did not raise cytokine levels above background except at a concentration of 10 ⁇ g/mL. This observation is consistent with the nuclease stability assay results. In contrast, PO-immunomers 156 and 157 induced both IL-12 and IL-6 secretion in BALB/c mouse spleen cell cultures.
  • PS-CpG DNAs have been shown to induce potent antitumor activity in vivo. Since PO-CpG DNAs exhibited greater nuclease stability and induced higher levels of IL-12 and IFN- ⁇ secretion in in vitro assays, we were interested to see if these desirable properties of PO-immunomers improve the antitumor activity in vivo.
  • PO-immunomer 157 subcutaneously at a dose of 0.5 mg/kg every other day to nude mice bearing tumor xenografts of MCF-7 breast cancer cells that express wild-type p53, or DU-145 prostate cancer cells that express mutated p53.
  • PO- immunomer 157 gave 57% growth inhibition of MCF-7 tumors on day 15 compared with the saline control (Fig. 21 A). It also produced 52% growth inhibition of DU-145 tumors on day 34 (Fig. 2 IB). These antitumor studies suggest that PO-immunomers of the proposed design exhibit potent antitumor activity in vivo.
  • Example 22 Short immunomers To test the effects of short immunomers on cytokine induction, the following immunomers were used. These results show that immunomers as short as 5 nucleotides per segment are effective in inducing cytokine production.
  • Normal phase represents a phosphorothioate linkage.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Immunology (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Pulmonology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Mycology (AREA)
  • Epidemiology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Saccharide Compounds (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
PCT/US2002/033756 2001-10-24 2002-10-22 Modulation of immunostimulatory properties of oligonucleotide-based compounds by optimal presentation of 5' ends Ceased WO2003035836A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US34476701P 2001-10-24 2001-10-24
US60/344,767 2001-10-24

Publications (1)

Publication Number Publication Date
WO2003035836A2 true WO2003035836A2 (en) 2003-05-01

Family

ID=23351942

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/US2002/033756 Ceased WO2003035836A2 (en) 2001-10-24 2002-10-22 Modulation of immunostimulatory properties of oligonucleotide-based compounds by optimal presentation of 5' ends
PCT/US2002/034247 Ceased WO2003057822A2 (en) 2001-10-24 2002-10-24 Modulation of immunostimulatory properties of oligonucleotide-based compounds by optimal presentation of 5' ends

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/US2002/034247 Ceased WO2003057822A2 (en) 2001-10-24 2002-10-24 Modulation of immunostimulatory properties of oligonucleotide-based compounds by optimal presentation of 5' ends

Country Status (5)

Country Link
JP (1) JP5005878B2 (enExample)
KR (1) KR100945104B1 (enExample)
AU (1) AU2002365141C1 (enExample)
CA (1) CA2463798C (enExample)
WO (2) WO2003035836A2 (enExample)

Cited By (106)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1393745A1 (en) * 2002-07-29 2004-03-03 Hybridon, Inc. Modulation of immunostimulatory properties of oligonucleotide-based compounds by optimal presentation of 5'ends
WO2004092360A2 (en) 2003-04-10 2004-10-28 Chiron Corporation The severe acute respiratory syndrome coronavirus
WO2004103301A3 (en) * 2003-05-16 2005-11-03 Hybridon Inc Synergistic treatment of cancer using immunomers in conjunction with chemotherapeutic agents
US7255868B2 (en) 2001-06-21 2007-08-14 Dynavax Technologies Corporation Chimeric immunomodulatory compounds and methods of using the same—I
US7276489B2 (en) 2002-10-24 2007-10-02 Idera Pharmaceuticals, Inc. Modulation of immunostimulatory properties of oligonucleotide-based compounds by optimal presentation of 5′ ends
WO2008020335A2 (en) 2006-06-09 2008-02-21 Novartis Ag Immunogenic compositions for streptococcus agalactiae
EP1725266A4 (en) * 2004-02-20 2008-05-07 Hybridon Inc POWERFUL MUCOSAL IMMUNE RESPONSE INDUCED BY MODIFIED IMMUNOMODULATORY OLIGONUCLEOTIDES
WO2009034473A2 (en) 2007-09-12 2009-03-19 Novartis Ag Gas57 mutant antigens and gas57 antibodies
US7566703B2 (en) * 2004-10-20 2009-07-28 Coley Pharmaceutical Group, Inc. Semi-soft C-class immunostimulatory oligonucleotides
EP2108374A1 (en) 2004-04-30 2009-10-14 Novartis Vaccines and Diagnostics S.r.l. Combined meningococcal conjugates with common carrier protein
US7615539B2 (en) 2003-09-25 2009-11-10 Coley Pharmaceutical Group, Inc. Nucleic acid-lipophilic conjugates
US7723500B2 (en) 1994-07-15 2010-05-25 University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
EP2193810A1 (en) 2005-01-14 2010-06-09 Novartis Vaccines and Diagnostics S.r.l. Meningococcal conjugate vaccination
WO2010079464A1 (en) 2009-01-12 2010-07-15 Novartis Ag Cna_b domain antigens in vaccines against gram positive bacteria
WO2010100632A2 (en) 2009-03-06 2010-09-10 Novartis Ag Chlamydia antigens
WO2010146414A1 (en) 2009-06-15 2010-12-23 National University Of Singapore Influenza vaccine, composition, and methods of use
EP2267036A1 (en) 2003-10-02 2010-12-29 Novartis Vaccines and Diagnostics S.r.l. Hypo- and Hyper-Acetylated Meningococcal Capsular Saccharides
EP2272531A2 (en) 2004-04-30 2011-01-12 Novartis Vaccines and Diagnostics S.r.l. Integration of meningococcal conjugate vaccination
WO2011004263A2 (en) 2009-07-07 2011-01-13 Novartis Ag Conserved escherichia coli immunogens
WO2011008974A2 (en) 2009-07-15 2011-01-20 Novartis Ag Rsv f protein compositions and methods for making same
WO2011007257A1 (en) 2009-07-16 2011-01-20 Novartis Ag Detoxified escherichia coli immunogens
EP2277538A1 (en) 2003-10-02 2011-01-26 Novartis Vaccines and Diagnostics S.r.l. Combined meningitis vaccines
EP2279747A1 (en) 2004-10-29 2011-02-02 Novartis Vaccines and Diagnostics S.r.l. Immunogenic bacterial vesicles with outer membrane proteins
EP2289546A2 (en) 2003-01-30 2011-03-02 Novartis Vaccines and Diagnostics S.r.l. Injectable vaccines against multiple meningococcal serogroups
WO2011024072A2 (en) 2009-08-27 2011-03-03 Novartis Ag Hybrid polypeptides including meningococcal fhbp sequences
WO2011030218A1 (en) 2009-09-10 2011-03-17 Novartis Ag Combination vaccines against respiratory tract diseases
EP2298795A1 (en) 2005-02-18 2011-03-23 Novartis Vaccines and Diagnostics, Inc. Immunogens from uropathogenic escherichia coli
WO2011036564A2 (en) 2009-09-28 2011-03-31 Novartis Vaccines Institute For Global Health Srl Hyperblebbing shigella strains
WO2011036562A1 (en) 2009-09-28 2011-03-31 Novartis Vaccines Institute For Global Health Srl Purification of bacterial vesicles
WO2011039631A2 (en) 2009-09-30 2011-04-07 Novartis Ag Expression of meningococcal fhbp polypeptides
WO2011048561A1 (en) 2009-10-20 2011-04-28 Novartis Ag Diagnostic and therapeutic methods for rheumatic heart disease based upon group a streptococcus markers
WO2011051893A1 (en) 2009-10-27 2011-05-05 Novartis Ag Modified meningococcal fhbp polypeptides
WO2011058302A1 (en) 2009-11-10 2011-05-19 Guy's And St Thomas's Nhs Foundation Trust Bacteremia-associated antigen from staphylococcus aureus
US7956043B2 (en) 2002-12-11 2011-06-07 Coley Pharmaceutical Group, Inc. 5′ CpG nucleic acids and methods of use
EP2329843A2 (en) 2005-04-18 2011-06-08 Novartis Vaccines and Diagnostics, Inc. Expressing Hepatitis B Virus surface antigen for vaccine preparation
US20110158937A1 (en) * 2003-07-15 2011-06-30 Idera Pharmaceuticals, Inc. Synergistic stimulation of the immune system using immunostimulatory oligonucleotides and/or immunomer compounds in conjunction with cytokines and/or chemotherapeutic agents or radiation therapy
EP2341069A1 (en) 2004-05-14 2011-07-06 Novartis Vaccines and Diagnostics S.r.l. Polypeptides from non-typeable haemophilus influenzae
WO2011080595A2 (en) 2009-12-30 2011-07-07 Novartis Ag Polysaccharide immunogens conjugated to e. coli carrier proteins
EP2351772A1 (en) 2005-02-18 2011-08-03 Novartis Vaccines and Diagnostics, Inc. Proteins and nucleic acids from meningitis/sepsis-associated Escherichia coli
EP2351579A1 (en) 2002-10-11 2011-08-03 Novartis Vaccines and Diagnostics S.r.l. Polypeptide vaccines for broad protection against hypervirulent meningococcal lineages
US7998492B2 (en) 2002-10-29 2011-08-16 Coley Pharmaceutical Group, Inc. Methods and products related to treatment and prevention of hepatitis C virus infection
EP2357184A1 (en) 2006-03-23 2011-08-17 Novartis AG Imidazoquinoxaline compounds as immunomodulators
EP2357000A1 (en) 2005-10-18 2011-08-17 Novartis Vaccines and Diagnostics, Inc. Mucosal and systemic immunizations with alphavirus replicon particles
EP2360175A2 (en) 2005-11-22 2011-08-24 Novartis Vaccines and Diagnostics, Inc. Norovirus and Sapovirus virus-like particles (VLPs)
WO2011104632A1 (en) 2010-02-26 2011-09-01 Novartis Ag Immunogenic proteins and compositions
EP2368573A2 (en) 2005-11-04 2011-09-28 Novartis Vaccines and Diagnostics S.r.l. Influenza vaccines including combinations of particulate adjuvants and immunopotentiators
EP2368572A2 (en) 2005-11-04 2011-09-28 Novartis Vaccines and Diagnostics S.r.l. Adjuvanted vaccines with non-virion antigens prepared from influenza viruses grown in cell culture
WO2011121576A2 (en) 2010-04-01 2011-10-06 Novartis Ag Immunogenic proteins and compositions
WO2011127316A1 (en) 2010-04-07 2011-10-13 Novartis Ag Method for generating a parvovirus b19 virus-like particle
EP2377552A2 (en) 2005-11-04 2011-10-19 Novartis Vaccines and Diagnostics S.r.l. Influenza vaccines with reduced amount of emulsion adjuvant
EP2377551A2 (en) 2005-11-04 2011-10-19 Novartis Vaccines and Diagnostics S.r.l. Adjuvanted influenza vaccines including cytokine-inducing agents
WO2011130379A1 (en) 2010-04-13 2011-10-20 Novartis Ag Benzonapthyridine compositions and uses thereof
EP2382987A1 (en) 2006-03-24 2011-11-02 Novartis Vaccines and Diagnostics GmbH Storage of influenza vaccines without refrigeration
EP2382988A1 (en) 2006-03-31 2011-11-02 Novartis AG Combined mucosal and parenteral immunization against HIV
EP2385127A1 (en) 2005-11-25 2011-11-09 Novartis Vaccines and Diagnostics S.r.l. Chimeric, hybrid and tandem polypeptides of meningococcal NMB1870
WO2011138636A1 (en) 2009-09-30 2011-11-10 Novartis Ag Conjugation of staphylococcus aureus type 5 and type 8 capsular polysaccharides
WO2011149564A1 (en) 2010-05-28 2011-12-01 Tetris Online, Inc. Interactive hybrid asynchronous computer game infrastructure
WO2011161551A2 (en) 2010-06-11 2011-12-29 Novartis Ag Omv vaccines
WO2012006293A1 (en) 2010-07-06 2012-01-12 Novartis Ag Norovirus derived immunogenic compositions and methods
WO2012006359A1 (en) 2010-07-06 2012-01-12 Novartis Ag Delivery of self-replicating rna using biodegradable polymer particles
WO2012035519A1 (en) 2010-09-16 2012-03-22 Novartis Ag Immunogenic compositions
WO2012049662A1 (en) 2010-10-15 2012-04-19 Novartis Vaccines Institute For Global Health Srl Hyperblebbing salmonella strains
WO2012072769A1 (en) 2010-12-01 2012-06-07 Novartis Ag Pneumococcal rrgb epitopes and clade combinations
WO2012085668A2 (en) 2010-12-24 2012-06-28 Novartis Ag Compounds
EP2478916A1 (en) 2006-01-27 2012-07-25 Novartis Vaccines and Diagnostics GmbH Influenza vaccines containing hemagglutinin and matrix proteins
WO2012103361A1 (en) 2011-01-26 2012-08-02 Novartis Ag Rsv immunization regimen
EP2484377A1 (en) 2007-06-27 2012-08-08 Novartis AG Low-additive influenza vaccines
EP2497495A2 (en) 2006-09-11 2012-09-12 Novartis AG Making influenza virus vaccines without using eggs
US8283328B2 (en) 2002-08-19 2012-10-09 Coley Pharmaceutical Group, Inc. Immunostimulatory nucleic acids
EP2510947A1 (en) 2009-04-14 2012-10-17 Novartis AG Compositions for immunising against Staphylococcus aureus
EP2514437A1 (en) 2006-07-20 2012-10-24 Novartis AG Frozen stockpiling of influenza vaccines
WO2012158613A1 (en) 2011-05-13 2012-11-22 Novartis Ag Pre-fusion rsv f antigens
EP2532362A1 (en) 2006-12-06 2012-12-12 Novartis AG Vaccines including antigen from four strains of influenza virus
EP2537857A2 (en) 2007-12-21 2012-12-26 Novartis AG Mutant forms of streptolysin O
WO2013006842A2 (en) 2011-07-06 2013-01-10 Novartis Ag Immunogenic compositions and uses thereof
WO2013006838A1 (en) 2011-07-06 2013-01-10 Novartis Ag Immunogenic combination compositions and uses thereof
EP2548895A1 (en) 2007-01-11 2013-01-23 Novartis AG Modified saccharides
WO2013016460A1 (en) 2011-07-25 2013-01-31 Novartis Ag Compositions and methods for assessing functional immunogenicity of parvovirus vaccines
WO2013038375A2 (en) 2011-09-14 2013-03-21 Novartis Ag Methods for making saccharide-protein glycoconjugates
EP2572726A1 (en) 2007-08-01 2013-03-27 Novartis AG Compositions comprising pneumococcal antigens
EP2586790A2 (en) 2006-08-16 2013-05-01 Novartis AG Immunogens from uropathogenic Escherichia coli
WO2013068949A1 (en) 2011-11-07 2013-05-16 Novartis Ag Carrier molecule comprising a spr0096 and a spr2021 antigen
EP2612679A1 (en) 2004-07-29 2013-07-10 Novartis Vaccines and Diagnostics, Inc. Immunogenic compositions for gram positive bacteria such as streptococcus agalactiae
EP2614835A1 (en) 2007-11-26 2013-07-17 Novartis AG Vaccination with multiple clades of H5 influenza A virus
EP2614709A1 (en) 2005-07-18 2013-07-17 Novartis AG Small animal model for HCV replication
WO2013108272A2 (en) 2012-01-20 2013-07-25 International Centre For Genetic Engineering And Biotechnology Blood stage malaria vaccine
EP2659912A2 (en) 2007-07-17 2013-11-06 Novartis AG Conjugate purification
DE202005022108U1 (de) 2004-03-09 2013-11-12 Novartis Vaccines And Diagnostics, Inc. Influenza-Virus-Impfstoffe
US8580268B2 (en) 2006-09-27 2013-11-12 Coley Pharmaceutical Gmbh CpG oligonucleotide analogs containing hydrophobic T analogs with enhanced immunostimulatory activity
WO2013174832A1 (en) 2012-05-22 2013-11-28 Novartis Ag Meningococcus serogroup x conjugate
WO2014005958A1 (en) 2012-07-06 2014-01-09 Novartis Ag Immunogenic compositions and uses thereof
WO2014053521A2 (en) 2012-10-02 2014-04-10 Novartis Ag Nonlinear saccharide conjugates
WO2014053607A1 (en) 2012-10-03 2014-04-10 Novartis Ag Immunogenic compositions
EP2811027A1 (en) 2004-05-21 2014-12-10 Novartis Vaccines and Diagnostics, Inc. Alphavirus vectors for RSV and PIV vaccines
WO2015068129A1 (en) 2013-11-08 2015-05-14 Novartis Ag Salmonella conjugate vaccines
EP2886551A2 (en) 2008-02-21 2015-06-24 Novartis AG Meningococcal fhbp polypeptides
EP2889042A2 (en) 2008-03-18 2015-07-01 Novartis AG Improvements in preparation of influenza virus vaccine antigens
EP2891498A1 (en) 2007-12-20 2015-07-08 Novartis AG Fermentation processes for cultivating streptococci and purification processes for obtaining CPS therefrom
US20160201060A1 (en) * 2013-01-08 2016-07-14 Idera Pharmaceuticals, Inc. Immune regulatory oligonucleotide (iro) compounds to modulate toll-like receptor based immune response
WO2016207853A2 (en) 2015-06-26 2016-12-29 Seqirus UK Limited Antigenically matched influenza vaccines
US9764027B2 (en) 2012-09-18 2017-09-19 Glaxosmithkline Biologicals Sa Outer membrane vesicles
EP3498302A1 (en) 2005-02-01 2019-06-19 Novartis Vaccines and Diagnostics S.r.l. Conjugation of streptococcal capsular saccharides to carrier proteins
EP3639850A1 (en) 2014-03-26 2020-04-22 GlaxoSmithKline Biologicals S.A. Mutant staphylococcal antigens
WO2023201109A1 (en) 2022-04-15 2023-10-19 Yale University Exatecan formulation
US12018063B2 (en) 2020-02-26 2024-06-25 Versitech Limited PD-1-based vaccines against coronavirus infection
US12156910B2 (en) 2018-11-16 2024-12-03 Versitech Limited Live attenuated influenza B virus compositions methods of making and using thereof

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006516099A (ja) * 2002-12-23 2006-06-22 ダイナバックス テクノロジーズ コーポレイション 分枝状の免疫調節化合物及び該化合物の使用方法
US7354907B2 (en) * 2003-02-07 2008-04-08 Idera Pharmaceuticals, Inc. Short immunomodulatory oligonucleotides
BRPI0416079A (pt) 2003-10-30 2007-01-02 Coley Pharm Gmbh análogos de oligonucleotìdeos de classe c com uma potência imunoestimuladora aumentada
EP1699814A4 (en) 2003-12-08 2009-01-14 Hybridon Inc MODULATION OF IMMUNOSTIMULATORY PROPERTIES OF COMPOUNDS FORMED FROM SMALL OLIGONUCLEOTIDES
JP4817599B2 (ja) * 2003-12-25 2011-11-16 独立行政法人科学技術振興機構 免疫活性増強剤とこれを用いた免疫活性の増強方法
JP2008501807A (ja) * 2004-06-08 2008-01-24 コーリー ファーマシューティカル ゲーエムベーハー 抗原ならびに免疫活性化アゴニストおよび免疫活性化アンタゴニストのための担体基本骨格としての無塩基オリゴヌクレオチド
HUE036894T2 (hu) 2004-06-15 2018-08-28 Idera Pharmaceuticals Inc Immunstimuláló oligonukleotid multimerek
JP2009514525A (ja) * 2005-11-07 2009-04-09 イデラ ファーマシューティカルズ インコーポレイテッド 修飾された免疫刺激性ジヌクレオチドを含む、オリゴヌクレオチドに基づく化合物の免疫刺激特性
EP1942945B1 (en) * 2005-11-07 2011-10-19 Idera Pharmaceuticals Immunostimulatory properties of oligonucleotide-based compounds comprising modified immunostimulatory dinucleotides
PL3017827T3 (pl) 2005-12-22 2019-04-30 Glaxosmithkline Biologicals Sa Szczepionka z koniugatem polisacharydu pneumokokowego
KR101541383B1 (ko) 2006-03-30 2015-08-03 글락소스미스클라인 바이오로지칼즈 에스.에이. 면역원성 조성물
JP2010507361A (ja) 2006-07-31 2010-03-11 キュアバック ゲーエムベーハー 具体的には免疫刺激剤/アジュバントとしての、一般式(I):GlXmGn、または一般式(II):ClXmCnで表される核酸
US8110407B2 (en) 2006-09-14 2012-02-07 Konica Minolta Medical & Graphic, Inc. Fluorescent semiconductor microparticle assembly, fluorescent labeling agent assembly for biological substance, and bioimaging method and biological substance analysis method using the assemblies
US20090035360A1 (en) 2007-05-24 2009-02-05 Dominique Ingrid Lemoine Lyophilised antigen composition
US9610339B2 (en) 2007-06-26 2017-04-04 Glaxosmithkline Biologicals, S.A. Vaccine comprising Streptococcus pneumoniae capsular polysaccharide conjugates
WO2009030254A1 (en) 2007-09-04 2009-03-12 Curevac Gmbh Complexes of rna and cationic peptides for transfection and for immunostimulation
MX2010008468A (es) 2008-01-31 2010-08-30 Curevac Gmbh Acidos nucleicos de la formula (i) (nug1xmgnnv)a y derivados de los mismos como un agente/adyuvante inmunoestimulante.
WO2010037408A1 (en) 2008-09-30 2010-04-08 Curevac Gmbh Composition comprising a complexed (m)rna and a naked mrna for providing or enhancing an immunostimulatory response in a mammal and uses thereof
KR20110071108A (ko) * 2008-10-06 2011-06-28 이데라 파마슈티칼즈, 인코포레이티드 고콜레스테롤혈증 및 고지혈증 및 이에 관련된 질병의 예방 및 치료에서 톨-유사 수용체의 저해제의 용도
GB0913681D0 (en) 2009-08-05 2009-09-16 Glaxosmithkline Biolog Sa Immunogenic composition
GB0913680D0 (en) 2009-08-05 2009-09-16 Glaxosmithkline Biolog Sa Immunogenic composition
HRP20150566T1 (hr) * 2009-08-27 2015-07-17 Idera Pharmaceuticals, Inc. Kompozicija za inhibiciju ekspresije gena i njegova upotreba
US20110053829A1 (en) 2009-09-03 2011-03-03 Curevac Gmbh Disulfide-linked polyethyleneglycol/peptide conjugates for the transfection of nucleic acids
GB201003924D0 (en) 2010-03-09 2010-04-21 Glaxosmithkline Biolog Sa Immunogenic composition
CA2801523C (en) 2010-07-30 2021-08-03 Curevac Gmbh Complexation of nucleic acids with disulfide-crosslinked cationic components for transfection and immunostimulation
GB201021867D0 (en) 2010-12-23 2011-02-02 Mologen Ag Non-coding immunomodulatory DNA construct
TW201302779A (zh) 2011-04-13 2013-01-16 Glaxosmithkline Biolog Sa 融合蛋白質及組合疫苗
WO2013113326A1 (en) 2012-01-31 2013-08-08 Curevac Gmbh Pharmaceutical composition comprising a polymeric carrier cargo complex and at least one protein or peptide antigen
ES2747762T3 (es) 2013-08-21 2020-03-11 Curevac Ag Vacuna contra el virus respiratorio sincitial (RSV)
TW201620927A (zh) 2014-02-24 2016-06-16 葛蘭素史密斯克藍生物品公司 Uspa2蛋白質構築體及其用途
WO2015149944A2 (en) 2014-04-01 2015-10-08 Curevac Gmbh Polymeric carrier cargo complex for use as an immunostimulating agent or as an adjuvant
US20170281744A1 (en) 2014-12-10 2017-10-05 Glaxosmithkline Biologicals Sa Method of treatment
TW201639583A (zh) * 2015-03-20 2016-11-16 國立研究開發法人醫藥基盤 健康 營養研究所 具有免疫賦活活性之含有CpG-間隔基-寡核苷酸複合體及其用途
LU92821B1 (en) 2015-09-09 2017-03-20 Mologen Ag Combination comprising immunostimulatory oligonucleotides
GB2542425A (en) 2015-09-21 2017-03-22 Mologen Ag Means for the treatment of HIV
WO2018178265A1 (en) 2017-03-31 2018-10-04 Glaxosmithkline Intellectual Property Development Limited Immunogenic composition, use and method of treatment
CN110662557A (zh) 2017-03-31 2020-01-07 葛兰素史克知识产权开发有限公司 免疫原性组合物、用途和治疗方法
JP2020530478A (ja) 2017-08-14 2020-10-22 グラクソスミスクライン バイオロジカルズ ソシエテ アノニム 免疫応答を強化する方法
WO2020212461A1 (en) 2019-04-18 2020-10-22 Glaxosmithkline Biologicals Sa Antigen binding proteins and assays

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6172208B1 (en) * 1992-07-06 2001-01-09 Genzyme Corporation Oligonucleotides modified with conjugate groups
JP2000506384A (ja) * 1996-02-15 2000-05-30 ナショナル インスティチューツ オブ ヘルス RNase L アクチベーター及びRSV感染の治療に有効なアンチセンスオリゴヌクレオチド
US5856462A (en) * 1996-09-10 1999-01-05 Hybridon Incorporated Oligonucleotides having modified CpG dinucleosides
ES2284247T3 (es) * 1998-04-03 2007-11-01 University Of Iowa Research Foundation Metodos y productos para estimular el sistema inmunitario usando oligonucleotidos y citoquinas inmunoterapeuticos.
AU9475001A (en) * 2000-09-26 2002-04-08 Hybridon Inc Modulation of immunostimulatory activity of immunostimulatory oligonucleotide analogs by positional chemical changes
AU2002345847B2 (en) * 2001-06-21 2008-05-29 Dynavax Technologies Corporation Chimeric immunomodulatory compounds and methods of using the same

Cited By (158)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7723500B2 (en) 1994-07-15 2010-05-25 University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
US7255868B2 (en) 2001-06-21 2007-08-14 Dynavax Technologies Corporation Chimeric immunomodulatory compounds and methods of using the same—I
US9028845B2 (en) 2001-06-21 2015-05-12 Dynavax Technologies Corporation Chimeric immunomodulatory compounds and methods of using the same-IV
US7517862B2 (en) 2001-10-24 2009-04-14 Idera Pharmaceuticals, Inc. Modulation of immunostimulatory properties of oligonucleotide-based compounds by optimal presentation of 5′ ends
US20110229456A1 (en) * 2001-10-24 2011-09-22 Idera Pharmaceuticals, Inc. Modulation of immunostimulatory properties of oligonucleotide-based compounds by optimal presentation of 5' ends
US7407944B2 (en) 2001-10-24 2008-08-05 Idera Pharmaceuticals, Inc. Modulation of immunostimulatory properties of oligonucleotide-based compounds by optimal presentation of 5′ ends
US8202850B2 (en) * 2001-10-24 2012-06-19 Idera Pharmaceuticals, Inc. Modulation of immunostimulatory properties of oligonucleotide-based compounds by optimal presentation of 5′ ends
US7812000B2 (en) 2001-10-24 2010-10-12 Idera Pharmaceuticals, Inc. Modulation of immunostimulatory properties of oligonucleotide-based compounds by optimal presentation of 5′ ends
US7749975B2 (en) 2001-10-24 2010-07-06 Idera Pharmaceuticals, Inc. Modulation of immunostimulatory properties of oligonucleotide-based compounds by optimal presentation of 5′ ends
EP1393745A1 (en) * 2002-07-29 2004-03-03 Hybridon, Inc. Modulation of immunostimulatory properties of oligonucleotide-based compounds by optimal presentation of 5'ends
US8283328B2 (en) 2002-08-19 2012-10-09 Coley Pharmaceutical Group, Inc. Immunostimulatory nucleic acids
US8304396B2 (en) * 2002-08-19 2012-11-06 Coley Pharmaceutical Group, Inc. Immunostimulatory nucleic acids
EP2353608A1 (en) 2002-10-11 2011-08-10 Novartis Vaccines and Diagnostics S.r.l. Polypeptide-vaccines for broad protection against hypervirulent meningococcal lineages
EP2351579A1 (en) 2002-10-11 2011-08-03 Novartis Vaccines and Diagnostics S.r.l. Polypeptide vaccines for broad protection against hypervirulent meningococcal lineages
US7276489B2 (en) 2002-10-24 2007-10-02 Idera Pharmaceuticals, Inc. Modulation of immunostimulatory properties of oligonucleotide-based compounds by optimal presentation of 5′ ends
US7998492B2 (en) 2002-10-29 2011-08-16 Coley Pharmaceutical Group, Inc. Methods and products related to treatment and prevention of hepatitis C virus infection
US7956043B2 (en) 2002-12-11 2011-06-07 Coley Pharmaceutical Group, Inc. 5′ CpG nucleic acids and methods of use
EP2289546A2 (en) 2003-01-30 2011-03-02 Novartis Vaccines and Diagnostics S.r.l. Injectable vaccines against multiple meningococcal serogroups
WO2004092360A2 (en) 2003-04-10 2004-10-28 Chiron Corporation The severe acute respiratory syndrome coronavirus
US7875594B2 (en) 2003-05-16 2011-01-25 Idera Pharmaceuticals, Inc. Synergistic treatment of cancer using immunomers in conjunction with chemotherapeutic agents
WO2004103301A3 (en) * 2003-05-16 2005-11-03 Hybridon Inc Synergistic treatment of cancer using immunomers in conjunction with chemotherapeutic agents
US7569554B2 (en) 2003-05-16 2009-08-04 Idera Pharmaceuticals, Inc. Synergistic treatment of cancer using immunomers in conjunction with therapeutic agents
US20110158937A1 (en) * 2003-07-15 2011-06-30 Idera Pharmaceuticals, Inc. Synergistic stimulation of the immune system using immunostimulatory oligonucleotides and/or immunomer compounds in conjunction with cytokines and/or chemotherapeutic agents or radiation therapy
US7615539B2 (en) 2003-09-25 2009-11-10 Coley Pharmaceutical Group, Inc. Nucleic acid-lipophilic conjugates
EP2277538A1 (en) 2003-10-02 2011-01-26 Novartis Vaccines and Diagnostics S.r.l. Combined meningitis vaccines
EP2267036A1 (en) 2003-10-02 2010-12-29 Novartis Vaccines and Diagnostics S.r.l. Hypo- and Hyper-Acetylated Meningococcal Capsular Saccharides
AU2005216075B2 (en) * 2004-02-20 2011-03-10 Idera Pharmaceuticals, Inc. Potent mucosal immune response induced by modified immunomodulatory oligonucleotides
EP1725266A4 (en) * 2004-02-20 2008-05-07 Hybridon Inc POWERFUL MUCOSAL IMMUNE RESPONSE INDUCED BY MODIFIED IMMUNOMODULATORY OLIGONUCLEOTIDES
DE202005022108U1 (de) 2004-03-09 2013-11-12 Novartis Vaccines And Diagnostics, Inc. Influenza-Virus-Impfstoffe
EP2108374A1 (en) 2004-04-30 2009-10-14 Novartis Vaccines and Diagnostics S.r.l. Combined meningococcal conjugates with common carrier protein
EP2272531A2 (en) 2004-04-30 2011-01-12 Novartis Vaccines and Diagnostics S.r.l. Integration of meningococcal conjugate vaccination
EP2351774A1 (en) 2004-05-14 2011-08-03 Novartis Vaccines and Diagnostics S.r.l. Polypeptides from non-typeable haemophilus influenzae
EP2343313A1 (en) 2004-05-14 2011-07-13 Novartis Vaccines and Diagnostics S.r.l. Polypeptides from non-typeable haemophilus influenzae
EP2341069A1 (en) 2004-05-14 2011-07-06 Novartis Vaccines and Diagnostics S.r.l. Polypeptides from non-typeable haemophilus influenzae
EP2351773A1 (en) 2004-05-14 2011-08-03 Novartis Vaccines and Diagnostics S.r.l. Polypeptides from non-typeable haemophilus influenzae
EP2848692A1 (en) 2004-05-21 2015-03-18 Novartis Vaccines and Diagnostics, Inc. Alphavirus vectors for influenza virus vaccines
EP2811027A1 (en) 2004-05-21 2014-12-10 Novartis Vaccines and Diagnostics, Inc. Alphavirus vectors for RSV and PIV vaccines
EP2612679A1 (en) 2004-07-29 2013-07-10 Novartis Vaccines and Diagnostics, Inc. Immunogenic compositions for gram positive bacteria such as streptococcus agalactiae
US7795235B2 (en) 2004-10-20 2010-09-14 Coley Pharmaceutical Gmbh Semi-soft c-class immunostimulatory oligonucleotides
US7566703B2 (en) * 2004-10-20 2009-07-28 Coley Pharmaceutical Group, Inc. Semi-soft C-class immunostimulatory oligonucleotides
EP2279747A1 (en) 2004-10-29 2011-02-02 Novartis Vaccines and Diagnostics S.r.l. Immunogenic bacterial vesicles with outer membrane proteins
EP2193810A1 (en) 2005-01-14 2010-06-09 Novartis Vaccines and Diagnostics S.r.l. Meningococcal conjugate vaccination
EP3498302A1 (en) 2005-02-01 2019-06-19 Novartis Vaccines and Diagnostics S.r.l. Conjugation of streptococcal capsular saccharides to carrier proteins
EP2351772A1 (en) 2005-02-18 2011-08-03 Novartis Vaccines and Diagnostics, Inc. Proteins and nucleic acids from meningitis/sepsis-associated Escherichia coli
EP2298795A1 (en) 2005-02-18 2011-03-23 Novartis Vaccines and Diagnostics, Inc. Immunogens from uropathogenic escherichia coli
EP2329843A2 (en) 2005-04-18 2011-06-08 Novartis Vaccines and Diagnostics, Inc. Expressing Hepatitis B Virus surface antigen for vaccine preparation
EP2614709A1 (en) 2005-07-18 2013-07-17 Novartis AG Small animal model for HCV replication
EP2357000A1 (en) 2005-10-18 2011-08-17 Novartis Vaccines and Diagnostics, Inc. Mucosal and systemic immunizations with alphavirus replicon particles
EP2368572A2 (en) 2005-11-04 2011-09-28 Novartis Vaccines and Diagnostics S.r.l. Adjuvanted vaccines with non-virion antigens prepared from influenza viruses grown in cell culture
EP2377552A2 (en) 2005-11-04 2011-10-19 Novartis Vaccines and Diagnostics S.r.l. Influenza vaccines with reduced amount of emulsion adjuvant
EP3714900A1 (en) 2005-11-04 2020-09-30 Seqirus UK Limited Adjuvanted vaccines with non-virion antigens prepared from influenza viruses grown in cell culture
EP2368573A2 (en) 2005-11-04 2011-09-28 Novartis Vaccines and Diagnostics S.r.l. Influenza vaccines including combinations of particulate adjuvants and immunopotentiators
EP2377551A2 (en) 2005-11-04 2011-10-19 Novartis Vaccines and Diagnostics S.r.l. Adjuvanted influenza vaccines including cytokine-inducing agents
EP2360175A2 (en) 2005-11-22 2011-08-24 Novartis Vaccines and Diagnostics, Inc. Norovirus and Sapovirus virus-like particles (VLPs)
EP3346009A1 (en) 2005-11-25 2018-07-11 GlaxoSmithKline Biologicals S.A. Chimeric, hybrid and tandem polypeptides of meningococcal nmb1870
EP2385126A1 (en) 2005-11-25 2011-11-09 Novartis Vaccines and Diagnostics S.r.l. Chimeric, hybrid and tandem polypeptides of meningococcal NMB1870
EP2385127A1 (en) 2005-11-25 2011-11-09 Novartis Vaccines and Diagnostics S.r.l. Chimeric, hybrid and tandem polypeptides of meningococcal NMB1870
EP2478916A1 (en) 2006-01-27 2012-07-25 Novartis Vaccines and Diagnostics GmbH Influenza vaccines containing hemagglutinin and matrix proteins
EP3753574A1 (en) 2006-01-27 2020-12-23 Seqirus UK Limited Influenza vaccines containing hemagglutinin and matrix proteins
EP2357184A1 (en) 2006-03-23 2011-08-17 Novartis AG Imidazoquinoxaline compounds as immunomodulators
EP2382987A1 (en) 2006-03-24 2011-11-02 Novartis Vaccines and Diagnostics GmbH Storage of influenza vaccines without refrigeration
EP2382988A1 (en) 2006-03-31 2011-11-02 Novartis AG Combined mucosal and parenteral immunization against HIV
WO2008020335A2 (en) 2006-06-09 2008-02-21 Novartis Ag Immunogenic compositions for streptococcus agalactiae
EP2514437A1 (en) 2006-07-20 2012-10-24 Novartis AG Frozen stockpiling of influenza vaccines
EP2586790A2 (en) 2006-08-16 2013-05-01 Novartis AG Immunogens from uropathogenic Escherichia coli
EP3456348A1 (en) 2006-09-11 2019-03-20 Seqirus UK Limited Making influenza virus vaccines without using eggs
EP2497495A2 (en) 2006-09-11 2012-09-12 Novartis AG Making influenza virus vaccines without using eggs
US8580268B2 (en) 2006-09-27 2013-11-12 Coley Pharmaceutical Gmbh CpG oligonucleotide analogs containing hydrophobic T analogs with enhanced immunostimulatory activity
US10260071B2 (en) 2006-09-27 2019-04-16 Coley Pharmaceutical Gmbh CpG oligonucleotide analogs containing hydrophobic T analogs with enhanced immunostimulatory activity
US9382545B2 (en) 2006-09-27 2016-07-05 Coley Pharmaceutical Gmbh CpG oligonucleotide analogs containing hydrophobic T analogs with enhanced immunostimulatory activity
EP2532362A1 (en) 2006-12-06 2012-12-12 Novartis AG Vaccines including antigen from four strains of influenza virus
EP2679240A1 (en) 2006-12-06 2014-01-01 Novartis AG Vaccines including antigen from four strains of influenza virus
EP2548895A1 (en) 2007-01-11 2013-01-23 Novartis AG Modified saccharides
EP2484377A1 (en) 2007-06-27 2012-08-08 Novartis AG Low-additive influenza vaccines
US9463250B2 (en) 2007-07-17 2016-10-11 Glaxosmithkline Biologicals Sa Conjugate purification
EP2659912A2 (en) 2007-07-17 2013-11-06 Novartis AG Conjugate purification
EP2572726A1 (en) 2007-08-01 2013-03-27 Novartis AG Compositions comprising pneumococcal antigens
WO2009034473A2 (en) 2007-09-12 2009-03-19 Novartis Ag Gas57 mutant antigens and gas57 antibodies
EP2614835A1 (en) 2007-11-26 2013-07-17 Novartis AG Vaccination with multiple clades of H5 influenza A virus
EP2891498A1 (en) 2007-12-20 2015-07-08 Novartis AG Fermentation processes for cultivating streptococci and purification processes for obtaining CPS therefrom
EP2537857A2 (en) 2007-12-21 2012-12-26 Novartis AG Mutant forms of streptolysin O
EP2886551A2 (en) 2008-02-21 2015-06-24 Novartis AG Meningococcal fhbp polypeptides
EP3263591A1 (en) 2008-02-21 2018-01-03 GlaxoSmithKline Biologicals S.A. Meningococcal fhbp polypeptides
EP2889042A2 (en) 2008-03-18 2015-07-01 Novartis AG Improvements in preparation of influenza virus vaccine antigens
EP3459563A1 (en) 2008-03-18 2019-03-27 Seqirus UK Limited Improvements in preparation of influenza virus vaccine antigens
WO2010079464A1 (en) 2009-01-12 2010-07-15 Novartis Ag Cna_b domain antigens in vaccines against gram positive bacteria
WO2010100632A2 (en) 2009-03-06 2010-09-10 Novartis Ag Chlamydia antigens
EP3549602A1 (en) 2009-03-06 2019-10-09 GlaxoSmithKline Biologicals S.A. Chlamydia antigens
EP3263128A2 (en) 2009-04-14 2018-01-03 GlaxoSmithKline Biologicals S.A. Compositions for immunising against staphylococcus aureus
EP2510947A1 (en) 2009-04-14 2012-10-17 Novartis AG Compositions for immunising against Staphylococcus aureus
WO2010146414A1 (en) 2009-06-15 2010-12-23 National University Of Singapore Influenza vaccine, composition, and methods of use
EP2944320A1 (en) 2009-06-15 2015-11-18 National University of Singapore Influenza vaccine, composition, and methods of use
WO2011004263A2 (en) 2009-07-07 2011-01-13 Novartis Ag Conserved escherichia coli immunogens
EP3178490A2 (en) 2009-07-15 2017-06-14 GlaxoSmithKline Biologicals S.A. Rsv f protein compositions and methods for making same
WO2011008974A2 (en) 2009-07-15 2011-01-20 Novartis Ag Rsv f protein compositions and methods for making same
WO2011007257A1 (en) 2009-07-16 2011-01-20 Novartis Ag Detoxified escherichia coli immunogens
EP2837386A1 (en) 2009-07-16 2015-02-18 Novartis AG Detoxified Escherichia coli immunogens
EP3017828A1 (en) 2009-08-27 2016-05-11 GlaxoSmithKline Biologicals SA Hybrid polypeptides including meningococcal fhbp sequences
WO2011024072A2 (en) 2009-08-27 2011-03-03 Novartis Ag Hybrid polypeptides including meningococcal fhbp sequences
WO2011030218A1 (en) 2009-09-10 2011-03-17 Novartis Ag Combination vaccines against respiratory tract diseases
WO2011036562A1 (en) 2009-09-28 2011-03-31 Novartis Vaccines Institute For Global Health Srl Purification of bacterial vesicles
WO2011036564A2 (en) 2009-09-28 2011-03-31 Novartis Vaccines Institute For Global Health Srl Hyperblebbing shigella strains
EP3279313A2 (en) 2009-09-28 2018-02-07 GlaxoSmithKline Biologicals S.A. Hyperblebbing shigella strains
US11339367B2 (en) 2009-09-28 2022-05-24 Glaxosmithkline Biologicals Sa Hyperblebbing Shigella strains
WO2011138636A1 (en) 2009-09-30 2011-11-10 Novartis Ag Conjugation of staphylococcus aureus type 5 and type 8 capsular polysaccharides
WO2011039631A2 (en) 2009-09-30 2011-04-07 Novartis Ag Expression of meningococcal fhbp polypeptides
WO2011048561A1 (en) 2009-10-20 2011-04-28 Novartis Ag Diagnostic and therapeutic methods for rheumatic heart disease based upon group a streptococcus markers
WO2011051893A1 (en) 2009-10-27 2011-05-05 Novartis Ag Modified meningococcal fhbp polypeptides
WO2011058302A1 (en) 2009-11-10 2011-05-19 Guy's And St Thomas's Nhs Foundation Trust Bacteremia-associated antigen from staphylococcus aureus
WO2011080595A2 (en) 2009-12-30 2011-07-07 Novartis Ag Polysaccharide immunogens conjugated to e. coli carrier proteins
WO2011104632A1 (en) 2010-02-26 2011-09-01 Novartis Ag Immunogenic proteins and compositions
WO2011121576A2 (en) 2010-04-01 2011-10-06 Novartis Ag Immunogenic proteins and compositions
WO2011127316A1 (en) 2010-04-07 2011-10-13 Novartis Ag Method for generating a parvovirus b19 virus-like particle
WO2011130379A1 (en) 2010-04-13 2011-10-20 Novartis Ag Benzonapthyridine compositions and uses thereof
WO2011149564A1 (en) 2010-05-28 2011-12-01 Tetris Online, Inc. Interactive hybrid asynchronous computer game infrastructure
WO2011161551A2 (en) 2010-06-11 2011-12-29 Novartis Ag Omv vaccines
EP3399021A1 (en) 2010-06-11 2018-11-07 GlaxoSmithKline Biologicals S.A. Omv vaccines
EP3611269A1 (en) 2010-07-06 2020-02-19 GlaxoSmithKline Biologicals SA Delivery of self-replicating rna using biodegradable polymer particles
WO2012006293A1 (en) 2010-07-06 2012-01-12 Novartis Ag Norovirus derived immunogenic compositions and methods
EP3153578A1 (en) 2010-07-06 2017-04-12 Novartis Ag Norovirus derived immunogenic compositions and methods
WO2012006359A1 (en) 2010-07-06 2012-01-12 Novartis Ag Delivery of self-replicating rna using biodegradable polymer particles
WO2012035519A1 (en) 2010-09-16 2012-03-22 Novartis Ag Immunogenic compositions
WO2012049662A1 (en) 2010-10-15 2012-04-19 Novartis Vaccines Institute For Global Health Srl Hyperblebbing salmonella strains
WO2012072769A1 (en) 2010-12-01 2012-06-07 Novartis Ag Pneumococcal rrgb epitopes and clade combinations
WO2012085668A2 (en) 2010-12-24 2012-06-28 Novartis Ag Compounds
WO2012103361A1 (en) 2011-01-26 2012-08-02 Novartis Ag Rsv immunization regimen
EP4144368A1 (en) 2011-01-26 2023-03-08 GlaxoSmithKline Biologicals S.A. Rsv immunization regimen
EP4159232A1 (en) 2011-01-26 2023-04-05 GlaxoSmithKline Biologicals S.A. Rsv immunization regimen
EP3527224A1 (en) 2011-01-26 2019-08-21 GlaxoSmithKline Biologicals S.A. Rsv immunization regimen
EP3275892A2 (en) 2011-05-13 2018-01-31 GlaxoSmithKline Biologicals S.A. Pre-fusion rsv f antigens
WO2012158613A1 (en) 2011-05-13 2012-11-22 Novartis Ag Pre-fusion rsv f antigens
WO2013006842A2 (en) 2011-07-06 2013-01-10 Novartis Ag Immunogenic compositions and uses thereof
WO2013006838A1 (en) 2011-07-06 2013-01-10 Novartis Ag Immunogenic combination compositions and uses thereof
EP3854413A1 (en) 2011-07-06 2021-07-28 GlaxoSmithKline Biologicals SA Immunogenic combination compositions and uses thereof
EP3332802A1 (en) 2011-07-06 2018-06-13 GlaxoSmithKline Biologicals SA Immunogenic combination compositions and uses thereof
WO2013016460A1 (en) 2011-07-25 2013-01-31 Novartis Ag Compositions and methods for assessing functional immunogenicity of parvovirus vaccines
WO2013038375A2 (en) 2011-09-14 2013-03-21 Novartis Ag Methods for making saccharide-protein glycoconjugates
WO2013068949A1 (en) 2011-11-07 2013-05-16 Novartis Ag Carrier molecule comprising a spr0096 and a spr2021 antigen
WO2013108272A2 (en) 2012-01-20 2013-07-25 International Centre For Genetic Engineering And Biotechnology Blood stage malaria vaccine
US10124051B2 (en) 2012-05-22 2018-11-13 Glaxosmithkline Biologicals Sa Meningococcus serogroup X conjugate
WO2013174832A1 (en) 2012-05-22 2013-11-28 Novartis Ag Meningococcus serogroup x conjugate
WO2014005958A1 (en) 2012-07-06 2014-01-09 Novartis Ag Immunogenic compositions and uses thereof
EP3400960A1 (en) 2012-09-18 2018-11-14 GlaxoSmithKline Biologicals S.A. Outer membrane vesicles
US9764027B2 (en) 2012-09-18 2017-09-19 Glaxosmithkline Biologicals Sa Outer membrane vesicles
WO2014053521A2 (en) 2012-10-02 2014-04-10 Novartis Ag Nonlinear saccharide conjugates
WO2014053607A1 (en) 2012-10-03 2014-04-10 Novartis Ag Immunogenic compositions
WO2014053612A1 (en) 2012-10-03 2014-04-10 Novartis Ag Immunogenic composition
EP3482770A1 (en) 2012-10-03 2019-05-15 GlaxoSmithKline Biologicals S.A. Immunogenic compositions
US20160312225A1 (en) * 2013-01-08 2016-10-27 Idera Pharmaceuticals, Inc. Immune regulatory oligonucleotide (iro) compounds to modulate toll-like receptor based immune response
US10066230B2 (en) * 2013-01-08 2018-09-04 Idera Pharmaceuticals, Inc. Immune regulatory oligonucleotide (IRO) compounds to modulate toll-like receptor based immune response
US10041076B2 (en) * 2013-01-08 2018-08-07 Idera Pharmaceuticals, Inc. Immune regulatory oligonucleotide (IRO) compounds to modulate toll-like receptor based immune response
US20160201060A1 (en) * 2013-01-08 2016-07-14 Idera Pharmaceuticals, Inc. Immune regulatory oligonucleotide (iro) compounds to modulate toll-like receptor based immune response
WO2015068129A1 (en) 2013-11-08 2015-05-14 Novartis Ag Salmonella conjugate vaccines
EP3639850A1 (en) 2014-03-26 2020-04-22 GlaxoSmithKline Biologicals S.A. Mutant staphylococcal antigens
WO2016207853A2 (en) 2015-06-26 2016-12-29 Seqirus UK Limited Antigenically matched influenza vaccines
US12156910B2 (en) 2018-11-16 2024-12-03 Versitech Limited Live attenuated influenza B virus compositions methods of making and using thereof
US12018063B2 (en) 2020-02-26 2024-06-25 Versitech Limited PD-1-based vaccines against coronavirus infection
WO2023201109A1 (en) 2022-04-15 2023-10-19 Yale University Exatecan formulation

Also Published As

Publication number Publication date
JP2005518402A (ja) 2005-06-23
WO2003057822A2 (en) 2003-07-17
KR100945104B1 (ko) 2010-03-02
AU2002365141A1 (en) 2003-07-24
CA2463798A1 (en) 2003-07-17
AU2002365141B2 (en) 2007-06-14
CA2463798C (en) 2015-02-03
KR20040047969A (ko) 2004-06-05
AU2002365141C1 (en) 2008-07-24
JP5005878B2 (ja) 2012-08-22
WO2003057822A9 (en) 2004-07-01
WO2003057822A3 (en) 2004-02-26

Similar Documents

Publication Publication Date Title
CA2463798C (en) Modulation of immunostimulatory properties of oligonucleotide-based compounds by optimal presentation of 5' ends
US7749975B2 (en) Modulation of immunostimulatory properties of oligonucleotide-based compounds by optimal presentation of 5′ ends
EP1393745A1 (en) Modulation of immunostimulatory properties of oligonucleotide-based compounds by optimal presentation of 5'ends
AU2010210016B2 (en) Modulation of immunostimulatory properties of oligonucleotide-based compounds by utilizing modified immunostimulatory dinucleotides
EP2371956A2 (en) Immunostimulatory properties of oligonucleotide-based compounds comprising modified immunostimulatory dinucleotides
WO2007055682A2 (en) Immunostimulatory properties of oligonucleotide-based compounds comprising modified immunostimulatory dinucleotides

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG UZ VC VN YU ZA ZM ZW

WA Withdrawal of international application
NENP Non-entry into the national phase

Ref country code: JP