WO2003029508A1 - Metallische komponente mit schutzbeschichtung - Google Patents

Metallische komponente mit schutzbeschichtung Download PDF

Info

Publication number
WO2003029508A1
WO2003029508A1 PCT/IB2002/004032 IB0204032W WO03029508A1 WO 2003029508 A1 WO2003029508 A1 WO 2003029508A1 IB 0204032 W IB0204032 W IB 0204032W WO 03029508 A1 WO03029508 A1 WO 03029508A1
Authority
WO
WIPO (PCT)
Prior art keywords
metallic component
base
layer
base layer
coating
Prior art date
Application number
PCT/IB2002/004032
Other languages
English (en)
French (fr)
Inventor
Reinhard Knödler
Richard Brendon Scarlin
Original Assignee
Alstom Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Technology Ltd filed Critical Alstom Technology Ltd
Priority to JP2003532719A priority Critical patent/JP2005529231A/ja
Priority to DE10294477T priority patent/DE10294477D2/de
Publication of WO2003029508A1 publication Critical patent/WO2003029508A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/021Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/021Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
    • C23C28/022Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer with at least one MCrAlX layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/922Static electricity metal bleed-off metallic stock
    • Y10S428/923Physical dimension
    • Y10S428/924Composite
    • Y10S428/925Relative dimension specified
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/922Static electricity metal bleed-off metallic stock
    • Y10S428/923Physical dimension
    • Y10S428/924Composite
    • Y10S428/926Thickness of individual layer specified
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/922Static electricity metal bleed-off metallic stock
    • Y10S428/9335Product by special process
    • Y10S428/934Electrical process
    • Y10S428/935Electroplating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/922Static electricity metal bleed-off metallic stock
    • Y10S428/9335Product by special process
    • Y10S428/936Chemical deposition, e.g. electroless plating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/922Static electricity metal bleed-off metallic stock
    • Y10S428/9335Product by special process
    • Y10S428/937Sprayed metal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12458All metal or with adjacent metals having composition, density, or hardness gradient
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12639Adjacent, identical composition, components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12639Adjacent, identical composition, components
    • Y10T428/12646Group VIII or IB metal-base
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12736Al-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12736Al-base component
    • Y10T428/1275Next to Group VIII or IB metal-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12736Al-base component
    • Y10T428/1275Next to Group VIII or IB metal-base component
    • Y10T428/12757Fe
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12778Alternative base metals from diverse categories
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12806Refractory [Group IVB, VB, or VIB] metal-base component
    • Y10T428/12826Group VIB metal-base component
    • Y10T428/12847Cr-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12806Refractory [Group IVB, VB, or VIB] metal-base component
    • Y10T428/12826Group VIB metal-base component
    • Y10T428/12847Cr-base component
    • Y10T428/12854Next to Co-, Fe-, or Ni-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12931Co-, Fe-, or Ni-base components, alternative to each other
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12937Co- or Ni-base component next to Fe-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12944Ni-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • Y10T428/12972Containing 0.01-1.7% carbon [i.e., steel]
    • Y10T428/12979Containing more than 10% nonferrous elements [e.g., high alloy, stainless]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12986Adjacent functionally defined components

Definitions

  • the invention relates to metallic components with a coating that are resistant to high-temperature steam oxidation and / or corrosion, and a method for applying the coating to the metallic component.
  • Oxide layers on components of steam power plants can cause various problems. For example, on heated components, such as boiler tubes, the growth of oxide layers reduces the thermal conductivity from the outside or fire side to the inside or steam side of the tube walls. This leads to an increase in the wall temperature, which in turn leads to a creep failure below the
  • the oxidation resistance of components is also improved by applying protective coatings.
  • the components can be manufactured using relatively inexpensive materials and coated with very thin layers at only low cost.
  • Various coatings are known for application to components of steam power plants.
  • Turbine components are known from US Pat. No. 5,595,831 which are coated with nickel metal and are protected against corrosion with a protective layer which essentially consists of nickel and zinc. To prevent the zinc from diffusing into the component material, the component surface is pre-coated
  • a pipe which is used for example for the superheating of steam in a boiler of a steam power plant.
  • the tube has on its inner surface a coating consisting of a nickel-phosphorus alloy.
  • the Coating ensures high resistance to oxidation and temperature.
  • a metallic component which comprises a coating consisting essentially of aluminum and is applied to the component surface by diffusion.
  • the coating ensures high resistance to high-temperature steam oxidation.
  • the object of the invention is to provide a metallic component which is resistant to high temperature steam oxidation over a long period of time.
  • no cracks should develop in the metallic component, as are observed in components according to the prior art, in which the base material of the component can oxidize after a certain contact time.
  • the component should continue to be mechanical Resistant to stress, such as the impact of hard solid particles resulting from oxidation and flaking of oxide particles.
  • the metallic component should still have the above-mentioned properties even if it has a complex shape.
  • the component is said to be relatively inexpensive compared to the disclosed prior art components.
  • Another object of the invention is to provide a method for producing and applying the coating on the surface of the metallic component.
  • a metallic component according to the invention is described in claim 1.
  • a metallic component that is exposed to high temperature steam is provided with a coating that protects the surface of the metallic component from oxidation and / or corrosion.
  • the coating on the surface of the metallic component comprises one or more thin, oxidation-resistant base layers which have a high deformability and are free from cracks and pores.
  • the coating further comprises one or more oxidation-resistant cover layers with less deformability, which are applied to the one or more base layers and protect the base layers from mechanical damage and have an overall greater thickness than the base layers.
  • the at least one base layer deposited directly on the surface of the base material of the metallic component consists of an oxidation-resistant material and has a high deformability.
  • the high deformability of the material results in a Layer that is dense and remains free of any defects such as cracks, pores or voids over a long period of time during which it is exposed to high temperature steam. Due to the crack-free base layer, no oxidizing steam can reach the base material of the component and thus there is an oxidation resistance.
  • Such crack-free materials are usually very expensive, which is why the base layer is deposited as a thin layer in order to minimize the amount of material required.
  • a thin layer is more susceptible to mechanical damage, such as particle impact, than a thick layer.
  • a thicker, oxidation-resistant top layer is applied to the base layer in order to provide mechanical protection. Since the greater thickness of the cover layer requires more material, a less expensive material is chosen for it, so that the overall component costs remain low.
  • Layers of inexpensive material are usually more fragile and will tear after a period of time when exposed to high temperature steam. Such cracks can penetrate oxidizing steam through the cover layer.
  • the crack-free base layer prevents it from reaching the surface of the base material of the component, since it is mainly the base layer that provides the oxidation resistance.
  • the combination of base layer and cover layer according to the invention provides the necessary oxidation resistance and also the resistance to mechanical damage over a long contact time.
  • the choice of materials and their thickness also results in a relatively inexpensive protective coating.
  • the at least one base layer consists of a superalloy, such as an alloy Nickel or cobalt base or a stellite alloy.
  • the superalloy consists of MCrAlY, where the M denotes a metal such as Ni, Co or Fe.
  • the base layer is applied in a layer with a thickness of at most 30 micrometers.
  • the base layer is approximately 5 microns thick.
  • the cover layer consists of a Ni-P alloy, an Al or Al-Si alloy or a Cr alloy>. These are inexpensive materials known for their resistance to oxidation. They are easily applied in larger thicknesses. Because of their fragility, however, they form cracks that can extend through the entire layer to the surface of the top layer.
  • the thickness of the cover layer is in the range from 30 to 100 micrometers. This thickness ensures that the base layer is protected against mechanical damage and chemical degradation.
  • the cover layer has a thickness in the range from 30 to 70 micrometers.
  • a method of applying the protective coating to a metallic component as described above comprises the following steps.
  • the thermal spray process is, for example, an HVOF process (High Velocity Oxygen Flame) and immersion or contact with an aqueous electrolyte can be carried out with or without the application of an electrical potential.
  • HVOF process High Velocity Oxygen Flame
  • the coating layers are subjected to a heat treatment after the application of the base and top layers. This allows interdiffusion between the elements of the layers, which increases the adhesion between the layers and the base material of the metallic component. This measure largely prevents flaking when the layers are exposed to high temperature steam.
  • the only Figure 1 shows a cross section through the surface part of a metallic component with a protective coating according to the invention.
  • the metallic component can be any component that is exposed to high temperature steam, such as a heat exchanger pipe in a boiler of a steam power plant, a turbine blade, part of the turbine housing or rotor, part of the pipe system for the high temperature steam, etc.
  • the metallic one Component 1 consists of a base material 2 and a protective coating with two layers.
  • the base material consists of ferritic, martensitic or ferritic-martensitic steel with a suitable creep limit for the Order such as a low alloy steel with 1% Cr or a high alloy steel with 13% Cr. In this example, this base material consists of a steel with 9% Cr.
  • the coating has a first layer or base layer 3, which consists of an alloy based on nickel, such as NiCrAlY.
  • This layer has a thickness of 5 micrometers, for example.
  • NiCrAlY is known for its high basic AI content that it has a high oxidation resistance in a high temperature steam environment. The yttrium content ensures good adhesion to the base material. It is particularly important that the alloy has a high ductility and as such a very high long-term strength against cracking in a high temperature steam environment.
  • the NiCrAlY is an expensive material. In order to keep the coating inexpensive, the thickness of the NiCrAlY layer is chosen to be relatively small, in the range between 5 and 30 micrometers. This reduces the cost of the shift.
  • the thin base layer is susceptible to mechanical damage and chemical degradation. Because of its small thickness, it could easily be damaged by particles hitting it. For this reason the coating comprises a second or top layer 4.
  • the top layer consists of Ni-P with a phosphorus content of about 12%. This layer is much thicker than the base layer 3 with a thickness in the range from 30 to 100 micrometers. It protects the base layer from chemical degradation and mechanical damage from impacting particles.
  • Ni-P alloys with a sufficiently high P content of 12% ensure good oxidation resistance. Either during. during the application process or after a certain contact time with high-temperature steam, they tend to develop microcracks. For the multilayer coating according to the invention, however, such microcracks have no consequences for the Total component oxidation resistance. Since the top layer provides mechanical protection as well as a certain resistance to oxidation, the base layer provides the high long-term resistance to oxidation since it does not develop any cracks either during application or as a result of contact with high-temperature steam.
  • the base layer of the coating is applied by thermal spraying, for example using an HVOF process (High Velocity Oxygen Flame).
  • HVOF process High Velocity Oxygen Flame
  • This process is particularly suitable for producing a dense, defect-free layer within a short period of time with a high degree of binding to the substrate. It also has the advantage that it can be sprayed in a normal atmosphere.
  • the alternative process of plasma spraying can be carried out in air or in a vacuum chamber. In the latter case, however, the size of the components that can be placed in the chamber is limited.
  • the top coat is then applied by an electroless process, such as spraying or dipping in an aqueous solution containing NiP.
  • an electroless process such as spraying or dipping in an aqueous solution containing NiP.
  • the metallic component with the protective coating can also be subjected to a heat treatment which is carried out at temperatures in the range from 650 to 750 ° C. This promotes the interdiffusion of the elements of the individual layers. It also improves the adhesion between the individual coating layers and between the coating and the base material of the component.
  • a second example of a metallic component according to the invention comprises a base material made of 2.25% Cr steel.
  • a base layer comprising a stellite alloy or a hard coating material such as WC-Co is applied to the surface of the component. Analogous to the base layer in the first example, this base layer is applied by thermal spraying or plasma spraying and with a thickness of approximately 5 micrometers.
  • the stellite alloy ensures a very high oxidation resistance and resists the formation of microcracks on contact with high-temperature steam. Because of its high cost, the material is only applied with a small thickness.
  • the thin base layer is then coated with a thicker cover layer, which consists of an aluminum or aluminum-silicon layer. This cover layer in turn provides protection against mechanical damage from the impact of particles and against chemical degradation. Like Ni-P, it also tends to develop cracks through which oxidizing steam can reach the base layer.
  • the WC-Co-Primer provides high oxidation resistance. It resists micro-cracking and ensures that the component remains intact even in the event of a cracked top layer.
  • the stellite alloy base layer is suitably applied by thermal spraying, such as HVOF spraying or plasma spraying.
  • the Al or Al-Si top layer is preferably applied by brushing on a slip or spraying an aqueous solution which contains, together with other elements such as Si or Cr Al-containing particles.
  • the coating thickness is preferably 30 to 100 micrometers. Generally, protection against oxidation increases with the thickness of the coating. A heat treatment at 650 to 750 ° C further increases the adhesive strength of the stellite alloy and WC-Co layers.
  • metallic components with protective coatings according to the invention comprise more than one base layer or more than one cover layer made of the above-mentioned materials. These can further improve the protective properties of the coating.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Laminated Bodies (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

Eine Hochtemperaturdampf ausgesetzte metallische Komponente wird mit einer Beschichtung versehen, die aus einer auf der Oberfläche der metallischen Komponente aufgetragenen Grundschicht und einer dickeren Deckschicht auf der Grundschicht besteht. Die Grundschicht besteht aus einem oxidationsfesten Material mit hoher Verformbarkeit derart, daß sie über einen langen Kontaktzeitraum von etwaigen Defekten frei bleibt. Die Deckschicht besteht aus einem oxidationsfesten, und preiswerten Material mit geringerer Verformbarkeit. Sie beschützt die dünne Grundschicht vor mechanischer Beschädigung und chemischem Abbau. Die Grundschicht schützt das Basismaterial der metallischen Komponente vor oxidierendem Dampf, der durch Risse in der Deckschicht dringen kann. Aufgrund einer Wahl von geeigneten Beschichtungsmaterialien und Dicken der Schichten ist die Beschichtung preiswert.

Description

Metallische Komponente mit Schutzbeschichtung
Erfindungsgebiet
Die Erfindung betrifft metallische Komponenten mit einer Beschichtung, die gegenüber Hochtemperatur- dampfoxidation und/oder Korrosion widerstandsfähig sind, und ein Verfahren zum Auftragen der Beschichtung auf die metallische Komponente.
Allgemeiner Stand der Technik
Es ist wohlbekannt, daß Hochtemperaturdampf ausgesetzte metallische Komponenten oxidieren und/oder korrodieren und beschädigt werden können, wenn Oberflächenoxid- schichten abblättern. Derartige, auf Hochtemperaturdampfoxidation zurückgehende Schäden werden beispielsweise an Komponenten in Dampfkraftwerken beobachtet . Diese Komponenten sind Dampf mit Temperaturen von über 550 °C ausgesetzt, wie etwa
Dampftemperaturen, die erforderlich sind, um den Wirkungsgrad des Kraftwerks zu erhöhen.
Oxidschichten an Komponenten von Dampfkraftwerken können verschiedene Probleme hervorrufen. Beispielsweise wird an erhitzten Komponenten, wie etwa Kesselrohren, durch das Wachstum von Oxidschichten die Wärmeleitfähigkeit von der Außenseite oder Feuerseite zu der Innenseite oder Dampfseite der Rohrwände reduziert. Dies führt zum Anstieg der Wandtemperatur, was wiederum zu einem Kriechausfall unter der
Innendruckbelastung führen kann. Sowohl von erhitzten wie auch nichterhitzten Komponenten, die Hochtemperaturdampf ausgesetzt sind, können die Oxidschichten abblättern, was zu der Bildung von harten Oxidteilchen führen kann. Derartige Teilchen können an anderen Teilen des Kraftwerks, wie etwa Kesselteilen, Turbinenschaufeln und -leitschaufeln, dem Rotor, Rohrleitungen oder Gehäusekomponenten zu Erosion führen. Sie können auch die Funktionsfähigkeit von Einrichtungen beeinträchtigen, beispielsweise durch Blockieren von Ventilkomponenten. Die Lebensdauer der Komponenten wird dadurch drastisch reduziert .
Stähle mit einer modifizierten Zusammensetzung, beispielsweise mit zusätzlichem Chrom oder Cobalt, zeigen eine größere Oxidationsfestigkeit , und die Haltbarkeit und Lebensdauer der Komponenten ist stark verbessert . Der Vorteil der guten Oxidationsfestigkeit wird jedoch durch hohe Kosten und im Fall von zusätzlichem Chrom durch eine Herabsetzung der Zeitstandfestigkeit, die bei Hochtemperaturanwendungen erforderlich ist, neutralisiert. '
Die Oxidationsfestigkeit von Komponenten wird auch durch das Auftragen von SchutzbeSchichtungen verbessert. Die Komponenten können unter Einsatz relativ preiswerter Materialien hergestellt und unter nur geringen Kosten mit sehr dünnen Schichten beschichtet werden. Es sind verschiedene Beschichtungen für das Auftragen auf Komponenten von Dampfkraftwerken bekannt .
Aus dem US-Patent 5,595,831 sind Turbinenkomponenten bekannt, die mit Nickelmetall überzogen und mit einer Schutzschicht, die im wesentlichen aus Nickel und Zink besteht, vor Korrosion geschützt sind. Um das Diffundieren des Zinks in das Komponentenmaterial zu verhindern, wird die Komponentenoberfläche vor dem
Auftragen der Nickel-Zink-Beschichtung mit einem Nickelmetall plattiert.
Aus DE 19728054 ist ein Rohr bekannt, das beispielsweise für das Überhitzen von Dampf in einem Kessel eines Dampfkraftwerks verwendet wird. Das Rohr umfaßt auf seiner inneren Oberfläche eine aus einer Nickel-Phosphor-Legierung bestehende Beschichtung. Die Beschichtung sorgt für eine hohe Oxidations- und Temperaturfestigkeit .
Aus WO 00/70190 ist eine metallische Komponente bekannt, die eine im wesentlichen aus Aluminium bestehende Beschichtung umfaßt und durch Diffusion auf die Komponentenoberfläche aufgetragen wird. Die Beschichtung sorgt für eine hohe Festigkeit gegenüber Hochtemperaturdampfoxidation.
Bei Tests hat sich gezeigt, daß Beschichtungen dieser oben beschriebenen Arten im allgemeinen darunter leiden, daß sie entweder während des Auftragens oder während der Berührung der Komponente mit dem Hochtemperaturdampf reißen. Durch das Reißen kann schließlich Dampf durch die Beschichtung zu der Komponentenoberfläche durchdringen, und es kann zur Oxidation kommen. Selbst bei Diffundieren des Beschichtungsmaterials in das Substratmaterial sind Risse über die Diffusionstiefe hinaus beobachtet worden und bewirken eine Oxidation in dem Komponentenbasis- material .
Darstellung der Erfindung
Angesichts der Probleme, die in Verbindung mit der Entwicklung von metallischen Komponenten offenbart werden, die gegenüber Hochtemperaturdampfoxidation beständig sind, besteht die Aufgabe der Erfindung in der Bereitstellung einer metallischen Komponente, die über einen langen Zeitraum hinweg gegenüber Hochtemperaturdampfoxidation beständig ist. Insbesondere sollen sich in der metallischen Komponente keine Risse entwickeln, wie sie in Komponenten nach dem Stand der Technik beobachtet werden, bei denen es zu einer Oxidation des Basismaterials der Komponente nach einer bestimmten Kontaktzeit kommen kann. Die Komponente soll weiterhin gegenüber einer mechanischen Belastung beständig sein, wie etwa dem Aufprall harter massiver Teilchen, die aus Oxidation und dem Abblättern von Oxidteilchen resultieren. Die metallische Komponente soll weiterhin selbst dann die obenerwähnten Eigenschaften aufweisen, wenn sie eine komplexe Form hat. Die Komponente soll schließlich im Vergleich zu den offenbarten Komponenten des Stands der Technik relativ preiswert sein.
Eine weitere Aufgabe der Erfindung besteht in der Bereitstellung eines Verfahrens zum Herstellen und Auftragen der Beschichtung auf die Oberfläche der metallischen Komponente.
Eine metallische Komponente gemäß der Erfindung wird in Anspruch 1 beschrieben.
Ein Verfahren zum Herstellen dieser Komponente wird in Anspruch 11 beschrieben.
Eine metallische Komponente, die Hochtemperaturdampf ausgesetzt ist, ist mit einer Beschichtung ausgestattet, die die Oberfläche der metallischen Komponente vor Oxidation und/oder Korrosion schützt. Gemäß der Erfindung umfaßt die Beschichtung auf der Oberfläche der metallischen Komponente eine oder mehrere dünne, oxidationsfeste Grundschichten, die eine hohe Verformbarkeit aufweisen und frei von Rissen und Poren sind. Die Beschichtung umfaßt weiterhin eine oder mehrere oxidationsfeste Deckschichten mit geringerer Verformbarkeit, die auf der einen oder den mehreren Grundschichten aufgetragen sind und die Grundschichten vor mechanischer Beschädigung schützen und insgesamt eine größere Dicke als die Grundschichten aufweisen.
Die direkt auf der Oberfläche des Basismaterials der metallischen Komponente abgeschiedene mindestens eine Grundschicht besteht aus einem oxidationsfesten Material und weist eine hohe Verformbarkeit auf. Durch die hohe Verformbarkeit des Materials ergibt sich eine Schicht, die dicht ist und über einen langen Zeitraum hinweg, währenddessen sie Hochtemperaturdampf ausgesetzt wird, von etwaigen Defekten wie etwa Rissen, Poren oder Hohlräumen frei bleibt . Durch die rißfreie Grundschicht kann kein oxidierender Dampf das Basismaterial der Komponente erreichen und somit ergibt sich eine Oxidationsfestigkeit .
Derartige rißfreie Materialien sind in der Regel sehr teuer, weshalb die Grundschicht als eine dünne Schicht abgeschieden wird, um die Menge an erforderlichem Material zu minimieren. Eine dünne Schicht ist jedoch gegenüber mechanischer Beschädigung, wie etwa durch Auftreffen von Teilchen, anfälliger als eine dicke Schicht. Aus diesem Grund wird .eine 'dickere oxidationsfeste Deckschicht auf der Grundschicht aufgetragen, um für einen mechanischen Schutz zu sorgen. Da die größere Dicke der Deckschicht mehr Material erfordert, wird für sie ein weniger teures Material gewählt, so daß die Komponentengesamtkosten niedrig bleiben. Schichten aus preiswertem Material sind in der Regel brüchiger und reißen nach einer gewissen Zeit, wenn sie Hochtemperaturdampf ausgesetzt werden. Durch derartige Risse kann oxidierender Dampf durch die Deckschicht dringen. Die rißfreie Grundschicht verhindert jedoch, daß er die Oberfläche des Basismaterials der Komponente erreicht, da es hauptsächlich die Grundschicht ist, die für die Oxidationsfestigkeit sorgt. Die Kombination aus Grundschicht und Deckschicht gemäß der Erfindung stellt über eine große Kontaktzeit die notwendige Oxidationsfestigkeit und auch die Widerstandsfähigkeit gegenüber mechanischer Beschädigung bereit. Durch die Wahl der Materialien und ihrer Dicken ergibt sich zudem eine relativ preiswerte Schutzbeschichtung.
Bei einer ersten Ausführungsform der Erfindung besteht die mindestens eine Grundschicht aus einer Superlegierung, wie beispielsweise eine Legierung auf Nickel- oder Cobaltbasis oder eine Stellit-Legierung . Bei einer bevorzugten Ausführungsform besteht die Superlegierung aus MCrAlY, wobei das M ein Metall wie etwa Ni , Co oder Fe bezeichnet.
Bei einer weiteren Ausführungsform der Erfindung wird die Grundschicht in einer Schicht mit einer Dicke von höchstens 30 Mikrometern aufgetragen.
Bei einer bevorzugten Ausführungsform der Erfindung ist die Grundschicht ungefähr 5 Mikrometer dick.
Bei einer weiteren Ausführungsform der Erfindung besteht die Deckschicht aus einer Ni-P-Legierung, einer AI- oder AI-Si-Legierung oder einer Cr-Legierung>. Bei diesen handelt es sich um für ihre Oxidationsfestigkeit bekannte preiswerte Materialien. Sie werden leicht in größeren Dicken aufgetragen. Wegen ihrer Brüchigkeit bilden sie jedoch Risse, die durch die ganze Schicht bis zu der Oberfläche der Deckschicht reichen können.
Bei einer besonderen Ausführungsform der Erfindung liegt die Dicke der Deckschicht im Bereich von 30 bis 100 Mikrometern. Durch diese Dicke wird der Schutz der Grundschicht gegenüber mechanischer Beschädigung sowie chemischem Abbau gesichert.
Bei einer bevorzugten Ausführungsform der Erfindung weist die Deckschicht eine Dicke im Bereich von 30 bis 70 Mikrometern auf.
Ein Verfahren zum Auftragen der Schutzbeschichtung auf eine metallische Komponente wie oben beschrieben umfaßt die folgenden Schritte.
Auftragen der Grundschicht durch thermisches Sprühen und
Auftragen der Deckschicht durch Sprühen oder Streichen einer wäßrigen Lösung oder Eintauchen oder Kontaktieren mit einem wäßrigen Elektrolyten. Bei dem thermischen Sprühprozeß handelt es sich beispielsweise um einen HVOF-Prozeß (High Velocity Oxygen Flame) und das Eintauchen oder Kontaktieren mit einem wäßrigen Elektrolyten kann mit oder ohne Anlegung eines elektrischen Potentials durchgeführt werden.
Dieses Verfahren gestattet das Auftragen der
Beschichtungsschichten auf Komponenten mit komplizierter Form ohne zusätzlichen Aufwand und zusätzliche Herstellungskosten.
Bei einem weiteren Verfahren gemäß der Erfindung werden die Beschichtungsschichten nach dem Auftragen der Grund- und Deckschichten einer Wärmebehandlung unterzogen. Dies gestattet eine Interdiffusion zwischen den Elementen der Schichten, wodurch die Haftung zwischen den Schichten und dem Basismaterial der metallischen Komponente vergrößert wird. Durch diese Maßnahme wird das Abblättern der Schichten, wenn sie Hochtemperaturdampf ausgesetzt werden, größtenteils verhindert .
Ausführung der Erfindung
Die einzige Figur 1 zeigt einen Querschnitt durch den Oberflächenteil einer metallischen Komponente mit einer Schutzbeschichtung gemäß der Erfindung. Bei der metallischen Komponente kann es sich um eine beliebige Komponente handeln, die Hochtemperaturdampf ausgesetzt ist, wie etwa ein Wärmetauscherrohr in einem Kessel eines Dampfkraftwerks, eine Turbinenschaufel, ein Teil des Turbinengehäuses oder -rotors, ein Teil des Rohrsystems für den Hochtemperaturdampf usw. Die metallische Komponente 1 besteht aus einem Basismaterial 2 und einer Schutzbeschichtung mit zwei Schichten. Das Basismaterial besteht aus ferritischem, martensitischem oder ferritisch-martensitischem Stahl mit einer geeigneten Dauerstandkriechgrenze für den Auftrag, wie etwa einen niedriglegierten Stahl mit 1% Cr oder einem hochlegierten Stahl mit 13% Cr. Bei diesem Beispiel besteht dieses Basismaterial aus einem Stahl mit 9% Cr. Die Beschichtung weist eine erste Schicht oder Grundschicht 3 auf, die aus einer Legierung auf Nickelbasis besteht, wie etwa NiCrAlY. Diese Schicht weist beispielsweise eine Dicke von 5 Mikrometern auf. NiCrAlY ist wegen seines hohen Grund AI-Gehalts dafür bekannt, daß es in einer Hochtemperaturdampfumgebung eine hohe Oxidationsfestigkeit aufweist. Durch den Yttrium-Gehalt wird eine gute Haftung an dem Basismaterial sichergestellt. Besonders wichtig ist, daß die Legierung eine hohe Verformbarkeit und als solche eine sehr hohe Langzeitfestigkeit gegenüber Reißen in einer Hochtemperaturdampfumgebung aufweist. Das NiCrAlY ist ein teures Material. Um die Beschichtung preiswert zu halten, wird die Dicke der NiCrAlY-Schicht relativ klein gewählt, im Bereich zwischen 5 und 30 Mikrometern. Dadurch reduzieren sich die Kosten der Schicht. Die dünne Grundschicht ist jedoch gegenüber mechanischer Beschädigung und chemischem Abbau anfällig. Wegen ihrer geringen Dicke könnte sie durch auf sie aufprallende Teilchen leicht beschädigt werden. Aus diesem Grund umfaßt die Beschichtung eine zweite oder Deckschicht 4. Die Deckschicht besteht aus Ni-P mit einem Phosphor-Gehalt von etwa 12%. Diese Schicht ist im Vergleich mit der Grundschicht 3 mit einer Dicke im Bereich von 30 bis 100 Mikrometern wesentlich dicker. Sie schützt die Grundschicht vor chemischem Abbau und mechanischer Beschädigung durch aufprallende Teilchen. Ni-P-Legierungen mit einem ausreichend hohen P-Gehalt von 12% sorgen für eine gute Oxidationsfestigkeit . Entweder während . des Auftragungsprozesses oder nach einer bestimmten Kontaktzeit mit Hochtemperaturdampf neigen sie zur Entwicklung von Mikrorissen. Für die Mehrfachschichtbeschichtung gemäß der Erfindung sind derartige Mikrorisse jedoch ohne Konsequenzen für die Gesamtoxidationsfestigkeit der Komponente. Da die Deckschicht den mechanischen Schutz sowie eine gewisse Oxidationsfestigkeit liefert, liefert die Grundschicht die hohe Langzeitoxidationsfestigkeit , da sie weder während des Auftrags oder als Folge des Kontakts mit Hochtemperaturdampf irgendwelche Risse entwickelt.
Die Grundschicht der Beschichtung wird durch thermisches Sprühen aufgetragen, beispielsweise mit einem HVOF-Prozeß (High Velocity Oxygen Flame) . Dieser Prozeß eignet sich insbesondere zur Herstellung einer dichten, fehlerfreien Schicht innerhalb eines kurzen Zeitraums mit einem hohen Bindungsgrad an das Substrat . Er hat außerdem den Vorteil, daß in Normalatmosphäre gesprüht werden kann. Der alternative Prozeß des Plasmasprühens kann in Luft oder in einer Vakuumkammer durchgeführt werden. Im letzteren Fall ist jedoch die Größe der Komponenten, die in der Kammer angeordnet werden können, begrenzt .
Die Deckschicht wird dann mit einem stromlosen Verfahren, wie etwa Sprühen oder Eintauchen in eine Ni- P enthaltende wäßrige Lösung, aufgetragen. Bei diesem Prozeß handelt es sich nicht nur um ein preiswertes Verfahren, es eignet sich nämlich auch für verschiedene Formen von Komponenten, einschließlich sehr komplexe Formen .
Die metallische Komponente mit der Schutzbeschichtung kann weiterhin einer Wärmebehandlung unterzogen werden, die bei Temperaturen im Bereich von 650 bis 750°C durchgeführt wird. Dies fördert die Interdiffusion der Elemente der einzelnen Schichten. Es verbessert auch die Haftung zwischen den einzelnen Beschichtungs- schichten sowie zwischen der Beschichtung und dem Basismaterial der Komponente. Ein zweites Beispiel einer metallischen Komponente gemäß der Erfindung umfaßt ein Basismaterial, das aus Stahl mit 2,25% Cr besteht. Auf der Oberfläche der Komponente wird eine Grundschicht aufgetragen, die eine StellitfLegierung oder ein hartes Beschichtungs- material, wie etwa WC-Co, umfaßt. Analog zu der Grundschicht in dem ersten Beispiel wird diese Grundschicht durch thermisches Sprühen oder Plasmasprühen und mit einer Dicke von etwa 5 Mikrometern aufgetragen. Die Stellit-Legierung sorgt für eine sehr hohe Oxidations- festigkeit und widersteht der Bildung von Mikrorissen bei Kontakt mit Hochtemperaturdampf . Das Material wird wegen seiner hohen Kosten nur mit einer geringen Dicke aufgetragen. Die dünne Grundschicht wird dann mit einer dickeren Deckschicht beschichtet, die aus einer Aluminium- oder Aluminium-Silizium-Schicht besteht. Diese Deckschicht sorgt wiederum für Schutz vor mechanischer Beschädigung durch den Aufprall von Teilchen sowie vor chemischem Abbau. Sie neigt, wie das Ni-P, ebenfalls dazu, Risse zu entwickeln, durch die oxidierender Dampf die Grundschicht erreichen kann. Eine hohe Oxidationsfestigkeit wird jedoch durch den WC-Co-Primer bereitgestellt. Er widersteht einer Mikro- rißbildung und stellt sicher, daß die Komponente selbst im Fall einer gerissenen Deckschicht intakt bleibt.
Die Stellit-Legierungs-Grundschicht wird geeigneterweise durch thermisches Sprühen aufgetragen, wie etwa HVOF-Sprühen oder Plasmasprühen. Die AI- oder AI-Si-Deckschicht wird bevorzugt durch Aufstreichen eines Schlickers oder Sprühen einer wäßrigen Lösung, die zusammen mit anderen Elementen wie etwa Si oder Cr AI-haltige Teilchen enthält, aufgetragen. Die Beschichtungsdicke beträgt bevorzugt 30 bis 100 Mikro- meter. Allgemein nimmt der Schutz vor Oxidation mit der Dicke der Beschichtung zu. Durch eine Wärmebehandlung bei 650 bis 750 °C wird die Haftungsstärke der Stellit-Legierungs- und WC-Co- Schichten weiter erhöht .
Weitere Beispiele metallischer Komponenten mit Schutz- beschichtungen gemäß der Erfindung umfassen mehr als eine Grundschicht oder mehr als eine Deckschicht aus den obenerwähnten Materialien. Diese können die Schutzeigenschaf en der Beschichtung weiter verbessern.

Claims

Ansprüche
1. Eine metallische Komponente, die Hochtemperaturdampf ausgesetzt ist, mit einer Beschichtung, die die Oberfläche der metallischen Komponente vor Oxidation und/oder Korrosion schützt, ist gekennzeichnet dadurch, daß die Beschichtung auf der Oberfläche der metallischen Komponente eine oder mehrere dünne, oxidationsfeste Grundschichten umfaßt, die eine hohe Verformbarkeit aufweisen und frei von Defekten sind, und die Beschichtung weiterhin ein oder mehrere oxidationsfeste Deckschichten umfaßt, die auf der einen oder den mehreren Grundschichten aufgetragen sind, eine geringere Verformbarkeit aufweisen und insgesamt eine größere Dicke als die Grundschichten aufweisen.
2. Metallische Komponente nach Anspruch 1, dadurch gekennzeichnet, daß die mindestens eine Grundschicht jeweils eine Superlegierung umfaßt .
3. Metallische Komponente nach Anspruch 2, dadurch gekennzeichnet, daß es sich bei der Superlegierung um eine Legierung auf Nickel- oder Cobaltbasis oder eine Stellit -Legierung handelt oder sie aus
MCrAlY besteht, wobei M ein Metall wie etwa Ni , Co oder Fe bezeichnet.
4. Metallische Komponente nach Anspruch 2, dadurch gekennzeichnet, daß die Grundschicht eine Dicke von höchstens 30 Mikrometern aufweist .
5. Metallische Komponente nach Anspruch 2, dadurch gekennzeichnet, daß die Grundschicht eine Dicke von etwa 5 Mikrometern aufweist.
6. Metallische Komponente nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Deckschicht aus einer Ni-P-Legierung, einer AI- oder AI-Si-Legierung oder einer Cr- Legierung besteht.
7. Metallische Komponente nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Dicke der Deckschicht im Bereich von 30 bis 100 Mikrometern liegt.
8. Metallische Komponente nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Deckschicht eine Dicke im Bereich von 30 bis 70 Mikrometern aufweist.
9. Metallische Komponente nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Basismaterial der metallischen Komponente ' ein ferritischer, martensitischer oder ferritisch-martensitischer Stahl ist.
10. Metallische Komponente nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die metallische Komponente eine Komponente in einem Dampfkraftwerk ist.
11. Verfahren zur Herstellung einer metallischen Komponente nach Anspruch 1 , dadurch gekennzeichnet, daß die mindestens eine Grundschicht auf die Oberfläche des Basismaterials der metallischen Komponente durch thermisches oder Plasmasprühen aufgetragen wird und die mindestens eine Deckschicht auf der mindestens einen Grundschicht durch Sprühen oder Aufstreichen einer wäßrigen Lösung oder Eintauchen in oder Kontaktieren mit einem wäßrigen Elektrolyten aufgetragen wird.
12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, daß das Eintauchen oder die Kontaktierung mit einem wäßrigen Elektrolyten mit oder ohne
Anlegung eines elektrischen Potentials durchgeführt wird.
13. Verfahren nach Anspruch 11, dadurch gekennzeichnet, daß das thermische Sprühen ein HVOF- (High Velocity Oxygen Flame-) Sprüh- oder Plasmasprühprozeß ist .
14. Verfahren nach einem der Ansprüche 11 bis 13, dadurch gekennzeichnet, daß die metallische Komponente nach dem Auftrag der mindestens einen Grundschicht und der mindestens einen Deckschicht einer " Wärmebehandlung unterzogen wird, die eine Interdiffusion zwischen den Elementen der Deckschichten und Grundschichten und zwischen denen in den Grundschichten und dem Basismaterial der metallischen Komponente gestattet.
15. Verfahren nach Anspruch 14, dadurch gekennzeichnet, daß die Wärmebehandlung bei einer Temperatur im Bereich von 650 bis 750°C vorgenommen wird.
PCT/IB2002/004032 2001-10-01 2002-09-30 Metallische komponente mit schutzbeschichtung WO2003029508A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003532719A JP2005529231A (ja) 2001-10-01 2002-09-30 保護コーティングを有する金属構成成分
DE10294477T DE10294477D2 (de) 2001-10-01 2002-09-30 Metallische Komponente mit Schutzbeschichtung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/965,793 US6673467B2 (en) 2001-10-01 2001-10-01 Metallic component with protective coating
US09/965,793 2001-10-01

Publications (1)

Publication Number Publication Date
WO2003029508A1 true WO2003029508A1 (de) 2003-04-10

Family

ID=25510492

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2002/004032 WO2003029508A1 (de) 2001-10-01 2002-09-30 Metallische komponente mit schutzbeschichtung

Country Status (4)

Country Link
US (1) US6673467B2 (de)
JP (1) JP2005529231A (de)
DE (1) DE10294477D2 (de)
WO (1) WO2003029508A1 (de)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1493843A1 (de) * 2003-07-03 2005-01-05 ALSTOM Technology Ltd Beschichtetes Metallbauteil
US7759871B2 (en) * 2005-12-16 2010-07-20 General Electric Company High temperature seal for electric lamp
US20090286104A1 (en) * 2008-05-16 2009-11-19 General Electric Company Multi-layered nickel-phosphorous coatings and processes for forming the same
US7875200B2 (en) * 2008-05-20 2011-01-25 United Technologies Corporation Method for a repair process
US8609196B2 (en) 2009-06-10 2013-12-17 Kennametal Inc. Spallation-resistant multilayer thermal spray metal coatings
JP5469016B2 (ja) * 2010-08-24 2014-04-09 トーカロ株式会社 スートブロワ用噴射管、及びスートブロワ装置
US10266958B2 (en) 2013-12-24 2019-04-23 United Technologies Corporation Hot corrosion-protected articles and manufacture methods
PL3147389T3 (pl) 2015-09-25 2019-09-30 Macdermid Enthone Gmbh Wielokorozyjny system zabezpieczający dla części dekoracyjnych z wykończeniem chromowym
CN107034427B (zh) * 2017-04-12 2019-03-15 广州特种承压设备检测研究院 锅炉受热面耐高温腐蚀的合金涂层及其制备方法
KR101990067B1 (ko) * 2017-12-14 2019-06-17 (주)삼열에너지 내마모성이 우수한 롤의 제조방법
JP2020084249A (ja) * 2018-11-21 2020-06-04 株式会社東芝 金属部材の防食方法および防食性金属部材
WO2020194358A1 (en) * 2019-03-26 2020-10-01 Toscotec S.P.A. Yankee drier and method for manufacturing a yankee drier
EP3947812A1 (de) * 2019-03-26 2022-02-09 Toscotec S.p.a. Verfahren zur herstellung eines stahleinzylindertrockners und stahleinzylindertrockner

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0379751A (ja) * 1989-08-23 1991-04-04 Nippon Tungsten Co Ltd 超硬合金溶射皮膜の緻密化方法
JPH07173635A (ja) * 1993-12-20 1995-07-11 Suzuki Motor Corp 金属の表面処理方法
DE19728054A1 (de) * 1997-07-01 1999-01-07 Abb Research Ltd Rohr mit hoher Oxidations- und Temperaturbeständigkeit
WO2000070190A1 (de) * 1999-05-14 2000-11-23 Siemens Aktiengesellschaft Bauteil sowie verfahren zur herstellung einer schutzbeschichtung auf einem bauteil
EP1122329A1 (de) * 2000-02-07 2001-08-08 General Electric Company Verfahren zum Aufbringen einer Schutzschicht auf ein Metallsubstrat und daraus hergestellte Artikel

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3869779A (en) 1972-10-16 1975-03-11 Nasa Duplex aluminized coatings
US3849865A (en) 1972-10-16 1974-11-26 Nasa Method of protecting the surface of a substrate
US4198442A (en) * 1977-10-31 1980-04-15 Howmet Turbine Components Corporation Method for producing elevated temperature corrosion resistant articles
US4371570A (en) 1980-02-11 1983-02-01 United Technologies Corporation Hot corrosion resistant coatings
EP0186266A1 (de) 1984-11-19 1986-07-02 Avco Corporation Verschleissfestes Überzugssystem
US5595831A (en) 1994-01-28 1997-01-21 Clark; Eugene V. Cadium-free corrosion protection for turbines
WO1996034130A1 (en) 1995-04-27 1996-10-31 Siemens Aktiengesellschaft Metal component with a high-temperature protection coating system and a method of coating the component
DE19815473A1 (de) 1998-04-07 1999-10-14 Ghh Borsig Turbomaschinen Gmbh Heißgasführendes Gassammelrohr einer Gasturbine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0379751A (ja) * 1989-08-23 1991-04-04 Nippon Tungsten Co Ltd 超硬合金溶射皮膜の緻密化方法
JPH07173635A (ja) * 1993-12-20 1995-07-11 Suzuki Motor Corp 金属の表面処理方法
DE19728054A1 (de) * 1997-07-01 1999-01-07 Abb Research Ltd Rohr mit hoher Oxidations- und Temperaturbeständigkeit
WO2000070190A1 (de) * 1999-05-14 2000-11-23 Siemens Aktiengesellschaft Bauteil sowie verfahren zur herstellung einer schutzbeschichtung auf einem bauteil
EP1122329A1 (de) * 2000-02-07 2001-08-08 General Electric Company Verfahren zum Aufbringen einer Schutzschicht auf ein Metallsubstrat und daraus hergestellte Artikel

Also Published As

Publication number Publication date
US20030064244A1 (en) 2003-04-03
DE10294477D2 (de) 2004-11-04
US6673467B2 (en) 2004-01-06
JP2005529231A (ja) 2005-09-29

Similar Documents

Publication Publication Date Title
DE69615012T2 (de) Erosions-korrosionsschutzschicht für hochtemperaturbauteile
DE102009010110B4 (de) Erosionsschutz-Beschichtungssystem für Gasturbinenbauteile
EP1969156B1 (de) Verfahren zum beschichten einer schaufel und schaufel einer gasturbine
EP1082216B1 (de) Erzeugnis mit einer schutzschicht gegen korrosion sowie verfahren zur herstellung einer schutzschicht gegen korrosion
EP1616979B1 (de) Schutzschicht zum Aufbringen auf ein Substrat und Verfahren zur Herstellung einer Schutzschicht
DE19807636C1 (de) Verfahren zum Herstellen einer korrosions- und oxidationsbeständigen Schlickerschicht
DE69606708T2 (de) Bauteil aus superlegierung mit einem schutzschichtsystem
WO2003029508A1 (de) Metallische komponente mit schutzbeschichtung
DE102006009116A1 (de) Korrosionsbeständiges Substrat und Verfahren zu dessen Herstellung
WO2007054265A2 (de) Wärmedämmende schutzschicht für ein bauteil innerhalb des heissgasbereiches einer gasturbine
DE102006047060A1 (de) Mit einem Korrosionsschutzsystem versehenes Stahlblech und Verfahren zum Beschichten eines Stahlblechs mit einem solchen Korrosionsschutzsystem
DE112004001194T5 (de) Beschichtete Metallkomponente
DE69826606T2 (de) Durch hochtemperaturspritzen beschichtetes teil und verfahren zu dessen herstellung
DE69603183T2 (de) Metallisches bauelement mit hochtemperatur schutzbeschichtung und verfahren zum beschichten eines bauelementes
WO2005061856A1 (de) Turbinenbauteil mit wärmedämmschicht und erosionsschutzschicht
EP0840809B1 (de) Erzeugnis mit einem metallischen grundkörper mit kühlkanälen und dessen herstellung
EP1902160A1 (de) Keramische wärmedämmschicht
WO2008110607A1 (de) Turbinenbauteil mit wärmedämmschicht
DE10297178T5 (de) Korrosionsbeständige Beschichtungsfilmstruktur des nichtsechswertigen Chromtyps, die eine Kunstharzschicht und eine Metallschicht aufweis, die im Hinblick auf die Adhäsion an der Kunstharzschicht überlegen ist
WO2003060194A1 (de) Hochtemperatur-schutzschicht
WO2008110161A1 (de) Schichtsystem und verfahren zu dessen herstellung
DE112018002221T5 (de) Verfahren zur Bildung von Wärmedämmschicht, Wärmedämmschicht, und Hochtemperaturelement
DE202006020021U1 (de) Korrosionsbeständiges Substrat
EP2805021B1 (de) Verfahren zur herstellung einer keramischen schicht auf einer aus einer ni-basislegierung gebildeten oberfläche
WO2005052211A1 (de) Verfahren zum herstellen einer korrosionsbeständigen und oxidationsbeständigen beschichtung sowie bauteil mit einer solchen beschichtung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BY BZ CA CH CN CO CR CU CZ DE DM DZ EC EE ES FI GB GD GE GH HR HU ID IL IN IS JP KE KG KP KR LC LK LR LS LT LU LV MA MD MG MN MW MX MZ NO NZ OM PH PL PT RU SD SE SG SI SK SL TJ TM TN TR TZ UA UG US UZ VC VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ UG ZM ZW AM AZ BY KG KZ RU TJ TM AT BE BG CH CY CZ DK EE ES FI FR GB GR IE IT LU MC PT SE SK TR BF BJ CF CG CI GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003532719

Country of ref document: JP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

REF Corresponds to

Ref document number: 10294477

Country of ref document: DE

Date of ref document: 20041104

Kind code of ref document: P

WWE Wipo information: entry into national phase

Ref document number: 10294477

Country of ref document: DE

122 Ep: pct application non-entry in european phase
REG Reference to national code

Ref country code: DE

Ref legal event code: 8607