WO2003060194A1 - Hochtemperatur-schutzschicht - Google Patents

Hochtemperatur-schutzschicht Download PDF

Info

Publication number
WO2003060194A1
WO2003060194A1 PCT/CH2003/000023 CH0300023W WO03060194A1 WO 2003060194 A1 WO2003060194 A1 WO 2003060194A1 CH 0300023 W CH0300023 W CH 0300023W WO 03060194 A1 WO03060194 A1 WO 03060194A1
Authority
WO
WIPO (PCT)
Prior art keywords
protective layer
temperature
temperature protective
layer according
coating
Prior art date
Application number
PCT/CH2003/000023
Other languages
English (en)
French (fr)
Inventor
Dietrich Eckardt
Klaus Erich Schneider
Christoph Toennes
Hans-Peter Bossmann
Original Assignee
Alstom Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Technology Ltd filed Critical Alstom Technology Ltd
Priority to JP2003560271A priority Critical patent/JP4217626B2/ja
Priority to EP03700010A priority patent/EP1466037B1/de
Priority to DE50300758T priority patent/DE50300758D1/de
Priority to CA2473565A priority patent/CA2473565C/en
Priority to BRPI0306989-3A priority patent/BR0306989B1/pt
Priority to AT03700010T priority patent/ATE299536T1/de
Priority to AU2003200835A priority patent/AU2003200835A1/en
Publication of WO2003060194A1 publication Critical patent/WO2003060194A1/de
Priority to US10/893,326 priority patent/US7052782B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/073Metallic material containing MCrAl or MCrAlY alloys, where M is nickel, cobalt or iron, with or without non-metal elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12611Oxide-containing component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12937Co- or Ni-base component next to Fe-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12944Ni-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension

Definitions

  • the invention relates to a high temperature protective layer according to the independent claim.
  • Such high-temperature protective layers are used above all where the base material of components made of heat-resistant steels and / or alloys that are used at temperatures above 600 S C is to be protected.
  • high-temperature protective layers are intended to slow down or completely prevent the effects of high-temperature corrosion, especially of sulfur, oil ash, oxygen, alkaline earths and vanadium.
  • Such high-temperature protective layers are designed so that they can be applied directly to the base material of the component to be protected.
  • High-temperature protective layers are of particular importance for components of gas turbines. They are mainly applied to rotor blades and guide vanes as well as to heat accumulation segments in gas turbines.
  • An austenitic material based on nickel, cobalt or iron is preferably used to manufacture these components.
  • nickel superalloys in particular are used as the base material.
  • the layers differ in the concentration of the "family elements" nickel, cobalt, chromium, aluminum and yttrium and in the addition of other elements.
  • the composition of the layer decisively determines the behavior at high temperature in an oxidizing or corrosive atmosphere, with temperature changes and with mechanical stress.
  • the composition of the layer determines the material and manufacturing costs.
  • Many known layers only show excellent properties in some aspects.Although widely used worldwide, the addition of cobalt has, according to our own investigations, negatively influenced both the corrosion resistance and the costs.
  • the invention is based on the object of creating a high-temperature protective layer which is inexpensive, oxidation-resistant, corrosion-resistant and resistant to temperature changes.
  • composition of this alloy according to the invention has (% by weight) 23 to 27% chromium, 4 to 7% aluminum, 0.1 to 3% silicon, 0.1 to 3% tantalum, 0.2 to 2% yttrium, 0.001 to 0.01% boron, 0.001 to 0.01% magnesium and 0.001 to 0.01% calcium. All weights refer to the total weight of the respective alloy. The rest of the alloy consists of nickel and unavoidable impurities. The Al content is preferably in a range from over 5 to 6% by weight.
  • the protective layer according to the invention is a NiCrAlY alloy. It shows a significant improvement in the resistance to oxidation and corrosion compared to the already known high-temperature protective layers.
  • the high-temperature protective layer according to the invention it can be ascertained that at high temperatures (depending on the version above 800 ° C.) it has aluminum-containing ⁇ and ⁇ ' phases with a volume fraction of at least 50%, which enables the formation of an aluminum oxide-containing protective layer, at low temperatures and at medium temperatures (depending on the version below 900 ° C.) has chromium-containing ⁇ -Cr phases (referred to as BCC in FIG. 1) of more than 5%, which enables the formation of a chromium oxide-containing protective layer.
  • BCC chromium-containing ⁇ -Cr phases
  • the adhesion of the aluminum oxide-containing cover layer at high temperature improves, which significantly increases the protection of the high-temperature protective layer and the component located underneath.
  • magnesium Calcium and calcium are primarily bound to the impurities that are naturally present in the production process, thereby increasing the corrosion resistance for temperatures below 850-950 ° C.
  • the quantity ratio of chromium to aluminum is limited to 3.6 to 6.5 in order to prevent the formation of brittle ß phases.
  • the quantity ratio of nickel to chromium is limited to 2.3 to 3.0 in order to prevent brittle ⁇ phases, which improves the resistance to temperature changes.
  • the firm and permanent adhesion of the protective layer and its cover layer with frequent changes in temperature is achieved by the percentage of yttrium specifically determined for the alloy.
  • composition chosen here shows no or only small proportions by volume of ⁇ -phase or ß-NiAI-phase (FIG. 1), so that significant advantages can be expected under thermal cycling.
  • the comparative alloy from FIG. 2 shows a similar composition for some elements, but due to the differences in other elements, a very different microstructure is shown, which, based on our experience, will not have sufficient resistance to thermal shock for turbines and also due to the beginning melting above 900 ° C cannot be used.
  • the production-related, inherent contamination of sulfur which can typically reach a concentration of less than 10 ppm, but in some cases up to 50ppm, leads to reduced resistance to oxidation and corrosion.
  • the trace elements Mg and Ca which absorb sulfur, are added during the production of the coating.
  • the alloy is applied directly to the base material of the component or to an intermediate layer consisting of a third composition.
  • the layer thicknesses vary between 0.03 mm and 1.5 mm.
  • Fig. 1 shows the phase balance (molar fraction ⁇ [%] vs. temperature [ 9 C]) according to the composition given here
  • Fig. 2 shows the phase balance (molar fraction ⁇ [%] vs. temperature [ Q C]) according to that in the US patent -A-4,973,445 specified composition.
  • the invention is explained in more detail using an exemplary embodiment which describes the production of a coated gas turbine component or another component of a thermal turbomachine.
  • the gas turbine component to be coated is made of an austenitic material, in particular a nickel superalloy. Before coating, the component is first chemically cleaned and then roughened using a blasting process. The component is coated under vacuum, under protective gas or in air by means of thermal spray processes (LPPS, VPS, APS), high-speed spraying (HVOF), electrochemical processes, physical / chemical evaporation (PVD, CVD) or another known from the prior art coating process.
  • LPPS thermal spray processes
  • VPS high-speed spraying
  • PVD physical / chemical evaporation
  • CVD chemical evaporation
  • a NiCrAlY alloy is used for the coating, which according to the invention (% by weight) contains 23 to 27% by weight chromium, 4 to 7% by weight aluminum, 0.1 to 3% by weight silicon, 0.1 to 3% by weight. % Tantalum, 0.2 to 2% by weight yttrium, 0.001 to 0.01% by weight boron, 0.001 to 0.01% by weight magnesium and 0.001 to 0.01% by weight calcium.
  • the rest of the alloy consists of nickel and unavoidable impurities.
  • the Al content is preferably in a range from over 5 to 6% by weight. All weights refer to the total weight of the alloy used.
  • the alloy according to the invention has a significant improvement in the oxidation and corrosion resistance compared to the already known high-temperature protective layers.
  • the high-temperature protective layer according to the invention it can be established that it is at high temperatures (depending on the design above 800 ° C) has aluminum-containing ⁇ and ⁇ ' phases with a volume fraction of at least 50%, which enables the formation of an aluminum oxide-containing protective layer, at low and at medium temperatures (depending on the version below 900 ° C) chromium-containing ⁇ -Cr phases of more than 5%, which enables the formation of a protective layer containing chromium oxide.
  • the composition selected here shows no or only small proportions by volume of ⁇ -phase or ⁇ -NiAI phase or boride phases (referred to in FIG. 1 as M2B_ORTH), so that there are clear advantages under thermal cycling are to be expected.
  • the comparative alloy (Fig. 2) shows a similar composition for some elements, but due to the differences in other elements, a very different microstructure is shown which, based on our experience, will not have sufficient resistance to temperature changes for turbines and also due to the beginning melting above 900 ° C cannot be used.
  • silicon and boron are added to the base material that forms the high temperature protective layer. This significantly increases the protection of the high-temperature protective layer and the component located underneath.
  • the production-related, inherent contamination of sulfur which can typically reach a concentration of less than 10 ppm, but in some cases also 50 ppm, leads to reduced oxidation and corrosion resistance.
  • the Spu 'renetti Mg and Ca added in the preparation of the coating to absorb the sulfur and thereby increases in temperatures below 850 to 950 ° C the corrosion resistance.
  • the quantity ratio of chromium to aluminum is limited to 3.6 to 6.5 in order to prevent the formation of brittle ß phases.
  • the quantity ratio of nickel to chromium is limited to 2.3 to 3.0 to prevent brittle ⁇ phases, which improves the resistance to temperature changes.
  • the firm and permanent adhesion of the protective layer and its cover layer with frequent changes in temperature is achieved by the percentage of yttrium specifically determined for the alloy.
  • the material forming the alloy is in powder form for the thermal spraying processes and preferably has a grain size of 5 to 90 ⁇ m.
  • the alloy is produced as a target or as a suspension.
  • the alloy is applied directly to the base material of the component or to an intermediate layer consisting of a third composition. Depending on the coating process, the layer thicknesses vary between 0.03 mm and 1.5 mm.
  • the component is subjected to a heat treatment. This takes place at a temperature of 1000 to 1200 ° C. for about 10 minutes to 24 hours.

Abstract

Offenbart ist eine Hochtemperatur-Schutzschicht, welche (Gew.-%) 23 bis 27 % Cr, 4 bis 7 % Al, 0.1 bis 3 % Si, 0.1 bis 3 % Ta, 0.2 bis 2 % Y, 0.001 bis 0.01 % B, 0.001 bis 0.01 % Mg und 0.001 bis 0.01 % Ca, Rest Ni und unvermeidbare Verunreinigungen enthält. Vorzugsweise liegt der Al-Gehalt in einem Bereich von über 5 bis 6 Gew.-%.

Description

Hochtemperatur-Schutzschicht
Technisches Gebiet
Die Erfindung bezieht sich auf eine HoQhtemperatur-Schutzschicht gemäss dem unabhängigen Patentanspruch.
Stand der Technik
Solche Hochtemperatur-Schutzschichten kommen vor allem dort zur Anwendung, wo das Grundmaterial von Bauelementen aus warmfesten Stählen und/oder Legierungen zu schützen ist, die bei Temperaturen über 600 SC verwendet werden.
Durch diese Hochtemperatur-Schutzschichten soll die Wirkung von Hochtemperaturkorrosionen vor allem von Schwefel, Ölaschen, Sauerstoff, Erdalkalien und Vanadium verlangsamt bzw. vollständig unterbunden werden. Solche Hochtemperatur- Schutzschichten sind so ausgebildet, dass sie direkt auf das Grundmaterial des zu schützenden Bauelementes aufgetragen werden können.
Bei Bauelementen von Gasturbinen sind Hochtemperatur-Schutzschichten von besonderer Bedeutung. Sie werden vor allem auf Lauf- und Leitschaufeln sowie auf Wärmestausegmenten von Gasturbinen aufgetragen. Für die Fertigung dieser Bauelemente wird vorzugsweise ein austenitisches Material auf der Basis von Nickel, Kobalt oder Eisen verwendet. Bei der Herstellung von Gasturbinenbauteilen kommen vor allem Nickel-Superlegierungen als Grundmaterial zur Anwendung.
Bis jetzt ist es üblich, Bauelemente, die für Gasturbinen bestimmt sind, mit Schutzschichten zu versehen, die durch Legierungen gebildet werden, deren wesentliche Bestandteile Nickel, Chrom, Aluminium und Yttrium sind. Solche Hochtemperatur- Schutzschichten weisen eine Matrix auf, in die eine aluminiumhaltige Phase eingelagert ist.
Die meisten der Beschichtungen für Hochtemperaturanwendungen stammen aus den Familien der NiCrAIY, CoCrAIY oder NiCoCrAlY. Die Schichten unterscheiden sich durch die Konzentration der „Familenelemente" Nickel, Kobalt, Chrom, Aluminium und Yttrium und durch Zugabe weiterer Elemente. Die Zusammensetzung der Schicht bestimmt massgeblich das Verhalten bei Hochtemperatur in oxidierender bzw. korrodierender Atmosphäre, bei Temperaturwechsel und bei mechanischer Belastung. Zudem bestimmt die Zusammensetzung der Schicht die Material- und Herstellungskosten. Viele bekannte Schichten zeigen nur bei Teilaspekten hervorragende Eigenschaften. Obwohl weltweit vielfach benutzt, werden durch Zugabe von Kobalt gemäss eigenen Untersuchungen sowohl die Korrosionsbeständigkeit als auch die Kosten negativ be- einflusst.
Aus den Dokumenten JP-A-53-085736, US-A-3,620,693, US-A-4,477,538, US-A- 4,537,744, US-A-3,754,903, US-A-4,013,424, US-A-4,022,587 und -US-A-4,743,514 sind zahlreiche Legierungen der Familie „kobald-freier NiCrAIY" bekannt geworden. Die thermodynamische Modellierung für den Temperaturbereich 800°C bis 1050°C des Phasenbestandes dieser Legierungen hat gezeigt, dass die spezifizierten Zu¬ sammensetzungen zu MikroStrukturen mit unerwünschten Phasen bzw. thermisch aktivierten Phasenübergängen führen, namentlich σ- und/oder ß-NiAl in nachteilig gro- ssen Volumenanteilen. Darstellung der Erfindung
Der Erfindung liegt ausgehend von dem eingangs genannten Stand der Technik die Aufgabe zugrunde, eine Hochtemperatur-Schutzschicht zu schaffen, die kostengünstig, oxidationsbeständig, korrosionsbeständig und temperaturwechselbeständig ist.
Diese Aufgabe wird erfindungsgemäss durch die Merkmale des Patentanspruches 1 gelöst.
Die erfindungsgemässe Zusammensetzung dieser Legierung weist (Gew.-%) 23 bis 27% Chrom, 4 bis 7% Aluminium, 0.1 bis 3% Silizium, 0.1 bis 3% Tantal, 0.2 bis 2% Yttrium, 0.001 bis 0.01% Bor, 0.001 bis 0.01 % Magnesium und 0.001 bis 0.01 % Kalzium auf. Alle Gewichtsangaben beziehen sich auf das Gesamtgewicht der jeweiligen Legierung. Der übrige Anteil der Legierung besteht aus Nickel und unvermeidbaren Verunreinigungen. Vorzugsweise liegt der AI-Gehalt in einem Bereich von über 5 bis 6 Gew.-%.
Bei der erfindungsgemässen Schutzschicht handelt es sich um eine NiCrAlY- Legierung. Sie weist eine deutliche Verbesserung der Oxidation- und Korrosionsbeständigkeit gegenüber den bereits bekannten Hochtemperatur-Schutzschichten auf. Bei der erfindungsgemässen Hochtemperatur-Schutzschicht ist festzustellen, dass sie bei hohen Temperaturen (je nach Ausführung oberhalb von 800°C) aluminiumhaltige γ und γ'-Phasen mit einem Volumenanteil von mindestens 50% aufweist, welche die Ausbildung einer aluminiumoxidhaltigen Schutzschicht ermöglicht, bei niedrigen und bei mittleren Temperaturen (je nach Ausführung unterhalb von 900°C) chromhaltige α- Cr-Phasen (in Fig. 1 als BCC bezeichnet) von mehr als 5% aufweist, welche die Ausbildung einer chromoxidhaltigen Schutzschicht ermöglicht.
Wird der Legierung, die die Hochtemperatur-Schutzschicht bildet, Silizium und Bor zugegeben, so verbessert sich die Haftung der aluminiumoxidhaltigen Deckschicht bei Hochtemperatur, welche den Schutz der Hochtemperatur-Schutzschicht und des darunter befindlichen Bauelementes wesentlich erhöht. Mit einem Zusatz von Magnesium und Kalzium werden vor allem die bei der Herstellung natürlich vorhandenen Verunreinigungen gebunden und dadurch für Temperaturen unterhalb von 850-950°C die Korrosionsbeständigkeit erhöht. Das Mengenverhältnis von Chrom zu Aluminium ist auf 3.6 bis 6.5 begrenzt, um die Ausbildung spröder ß-Phasen zu verhindern. Das Mengenverhältnis von Nickel zu Chrom ist auf 2.3 bis 3.0 begrenzt, um spröde σ- Phasen zu verhindern, was die Temperaturwechselbeständigkeit verbessert. Die feste und die beständige Haftung der Schutzschicht und ihrer Deckschicht bei häufigen Temperaturwechsel wird durch den speziell für die Legierung festgelegten Anteil an Yttrium erreicht.
Die hier gewählte Zusammensetzung zeigt keine bzw. nur geringe Volumenanteile von σ-Phase bzw. ß-NiAI-Phase (Fig. 1), so dass unter Temperaturwechselbeanspruchung deutlich Vorteile zu erwarten sind. Die Vergleichslegierung aus Fig. 2 zeigt eine ähnliche Zusammensetzung bei einigen Elementen, aber aufgrund der Unterschiede anderer Elemente zeigt sich doch eine sehr verschiedene MikroStruktur, die basierend auf unserer Erfahrung keine ausreichende Temperaturwechselbeständigkeit für Turbine haben wird und zudem durch das beginnende Aufschmelzen über 900 °C nicht einsetzbar ist.
Die produktionsbedingte, inhärente Verunreinigung von Schwefel, die typischerweise im Konzentration kleiner 10 ppm, in einzelnen Fällen aber auch bis zu 50ppm erreichen kann, führt zu reduzierter Oxidation- und Korrosionsbeständigkeit. Erfindungs- gemäss werden bei der Herstellung der Beschichtung die Spurenelemente Mg und Ca zugegeben, die Schwefel absorbieren.
Die Legierung wird direkt auf das Grundmaterial des Bauelementes oder auf eine Zwischenlage, bestehend aus einer dritten Zusammensetzung, aufgetragen. Die Schichtdicken variieren je nach Beschichtungsverfahren zwischen 0.03 mm bis 1.5 mm.
KURZE BESCHREIBUNG DER ZEICHNUNGEN
Die Erfindung wird an Hand der beiliegenden Zeichnungen erläutert, in denen Fig. 1 das Phasengleichgewicht (Molanteil Φ [%] vs. Temperatur [9 C]) gemäss der hier angegebenen Zusammensetzung zeigt, Fig. 2 das Phasengleichgewicht (Molanteil Φ [%] vs. Temperatur [Q C]) gemäss der im Patent US-A-4,973,445 angegebenen Zusammensetzung darstellt.
Es sind nur die für die Erfindung wesentlichen Elemente dargestellt.
Wege zur Ausführung der Erfindung
Anhand eines Ausführungsbeispiels, das die Herstellung eines beschichteten Gasturbinenbauteils oder eines anderen Bauelements einer thermischen Turbomaschine beschreibt, wird die Erfindung näher erläutert. Das zu beschichtende Gasturbinenbauteil ist aus einem austenitischen Material, insbesondere einer Nickel-Superlegierung gefertigt. Vor der Beschichtung wird das Bauteil zunächst chemisch gereinigt und dann mit einem Strahlprozess aufgerauht. Die Beschichtung des Bauelementes erfolgt unter Vakuum, unter Schutzgas oder in Luft mittels thermischen Spritzverfahren (LPPS, VPS, APS), Hochgeschwindigkeitsspritzen (HVOF), elektrochemischen Verfahren, physikalischen/chemischer Verdampfung (PVD, CVD) oder einem anderen aus dem Stand der Technik bekannten Beschichtungsverfahren.
Für die Beschichtung wird eine NiCrAlY-Legierung verwendet, die erfindungsgemäss (Gew.-%) 23 bis 27 Gew.-% Chrom, 4 bis 7 Gew.-% Aluminium, 0.1 bis 3 Gew.-% Silizium, 0.1 bis 3 Gew.-% Tantal, 0.2 bis 2 Gew.-% Yttrium, 0.001 bis 0.01 Gew-% Bor, 0.001 bis 0.01 Gew-% Magnesium und 0.001 bis 0.01 Gew-% Kalzium aufweist. Der übrige Anteil der Legierung besteht aus Nickel und unvermeidbaren Verunreinigungen. Vorzugsweise liegt der AI-Gehalt in einem Bereich von über 5 bis 6 Gew.-%. Alle Gewichtsangaben beziehen sich auf das Gesamtgewicht der verwendeten Legierung.
Die erfindungsgemässe Legierung weist eine deutliche Verbesserung der Oxidation- und Korrosionsbeständigkeit gegenüber den bereits bekannten Hochtemperatur- Schutzschichten auf. Bei der erfindungsgemässen Hochtemperatur-Schutzschicht ist festzustellen, dass sie bei hohen Temperaturen (je nach Ausführung oberhalb von 800 °C) aluminiumhaltige γ und γ'-Phasen mit einem Volumenanteil von mindestens 50% aufweist, welche die Ausbildung einer aluminiumoxidhaltigen Schutzschicht ermöglicht, bei niedrigen und bei mittleren Temperaturen (je nach Ausführung unterhalb von 900°C) chromhaltige α-Cr-Phasen von mehr als 5% aufweist, welche die Ausbildung einer chromoxidhaltigen Schutzschicht ermöglicht.
Wie aus der Fig. 1 ersichtlich, zeigt die hier gewählte Zusammensetzung keine bzw. nur geringe Volumenanteile von σ-Phase bzw. ß-NiAI-Phase oder Borid-Phasen (in Fig. 1 als M2B_ORTH bezeichnet), so dass unter Temperaturwechselbeanspruchung deutliche Vorteile zu erwarten sind. Die Vergleichslegierung (Fig. 2) zeigt eine ähnliche Zusammensetzung bei einigen Elementen, aber aufgrund der Unterschiede anderer Elemente zeigt sich doch eine sehr verschiedene MikroStruktur, die basierend auf unserer Erfahrung keine ausreichende Temperaturwechselbeständigkeit für Turbine haben wird und zudem durch das beginnende Aufschmelzen über 900 °C nicht einsetzbar ist.
Um die Haftung der aluminiumoxidhaltigen Deckschicht bei Hochtemperatur zu verbessern, wird dem Basiswerkstoff, der die Hochtemperatur-Schutzschicht bildet, Silizium und Bor zulegiert. Dadurch erhöht sich der Schutz der Hochtemperatur- Schutzschicht und des darunter befindlichen Bauelementes wesentlich.
Die produktionsbedingte, inhärente Verunreinigung von Schwefel, die typischerweise in einer Konzentration von kleiner als 10 ppm, in einzelnen Fällen aber auch 50ppm erreichen kann, führt zu reduzierter Oxidation- und Korrosionsbeständigkeit. Erfin- dungsgemäss werden bei der Herstellung der Beschichtung die Spu'renelemente Mg und Ca zugegeben, die Schwefel absorbieren und dadurch im für Temperaturen unterhalb von 850 bis 950 °C die Korrosionsbeständigkeit erhöht.
Das Mengenverhältnis von Chrom zu Aluminium ist auf 3.6 bis 6.5 begrenzt, um die Ausbildung spröder ß-Phasen zu verhindern. Das Mengenverhältnis von Nickel zu Chrom ist auf 2.3 bis 3.0 begrenzt, um spröde σ-Phasen zu verhindern, was die Temperaturwechselbeständigkeit verbessert. Die feste und die beständige Haftung der Schutzschicht und ihrer Deckschicht bei häufigen Temperaturwechsel wird durch den speziell für die Legierung festgelegten Anteil an Yttrium erreicht.
Das die Legierung bildende Material liegt für die thermischen Spritzprozesse in Pulverform vor und weist vorzugsweise eine Korngrösse von 5 bis 90 μm auf. Bei den anderen o.a. Verfahren wird die Legierung als Target bzw. als Suspension hergestellt. Die Legierung wird direkt auf das Grundmaterial des Bauelementes oder auf eine Zwischenlage, bestehend aus einer dritten Zusammensetzung, aufgetragen. Die Schichtdicken variieren je nach Beschichtungsverfahren zwischen 0.03 mm bis 1.5 mm. Nach dem Aufbringen der Legierung wird das Bauelement einer Wärmebehandlung unterzogen. Diese erfolgt bei einer Temperatur von 1000 bis 1200 QC für etwa 10 Minuten bis 24 h Stunden.

Claims

Patentansprüche
1. Hochtemperatur-Schutzschicht für ein Bauelement, dadurch gekennzeichnet, dass diese (Gew.-%) 23 bis 27% Cr, 4 bis 7% AI, 0.1 bis 3% Si, 0.1 bis 3% Ta, 0.2 bis 2% Y, 0.001 bis 0.01 % B, 0.001 bis 0.01% Mg und 0.001 bis 0.01% Ca, Rest Ni und unvermeidbare Verunreinigungen enthält.
2. Hochtemperatur-Schutzschicht nach Anspruch 1 , dadurch gekennzeichnet, dass die Schutzschicht (Gew.-%) über 5% bis 6% AI enthält.
3. Hochtemperatur-Schutzschicht nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Mengenverhältnis von Cr zu AI in einem Bereich von 3.6 bis 6.5 ist.
4. Hochtemperatur-Schutzschicht nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Mengenverhältnis von Ni zu Cr in einem Bereich von 2.3 bis 3.0 ist.
5. Hochtemperatur-Schutzschicht nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Summe der Volumenanteile der beiden Phasen γ (gamma) und γ' (gamma pri- me) im Temperaturbereich von 800°C bis 1050°C mehr als 50% beträgt.
6. Hochtemperatur-Schutzschicht nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Volumenanteil der α-Cr-Phasen im Temperaturbereich von 800°C bis 900°C mehr als 5% beträgt.
7. Hochtemperatur-Schutzschicht nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Beschichtung unter Vakuum, unter Schutzgas oder in Luft mittels thermischen Spritzverfahren (LPPS, VPS, APS), Hochgeschwindigkeitsspritzen (HVOF), elektrochemischen Abscheidung, physikalischer/chemischer Verdampfung (PVD, CVD) oder einem anderem, aus dem Stand der Technik bekannten Beschichtungsverfah- ren hergestellt wird.
8. Hochtemperatur-Schutzschicht nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass diese eine Beschichtung von Bauelementen von thermischen Turbomaschinen ist.
9. Hochtemperatur-Schutzschicht nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Schichtdicke zwischen 0.03 mm und 1.5 mm direkt auf dem Grundwerkstoff des Bauteils oder auf eine Zwischenlage aufgebracht ist.
10. Hochtemperatur-Schutzschicht nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Beschichtung unterhalb einer Wärmedämmschicht als Haftvermittlerschicht eingesetzt ist.
PCT/CH2003/000023 2002-01-18 2003-01-16 Hochtemperatur-schutzschicht WO2003060194A1 (de)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2003560271A JP4217626B2 (ja) 2002-01-18 2003-01-16 高温保護層
EP03700010A EP1466037B1 (de) 2002-01-18 2003-01-16 Hochtemperatur-schutzschicht
DE50300758T DE50300758D1 (de) 2002-01-18 2003-01-16 Hochtemperatur-schutzschicht
CA2473565A CA2473565C (en) 2002-01-18 2003-01-16 High-temperature protection layer
BRPI0306989-3A BR0306989B1 (pt) 2002-01-18 2003-01-16 camada de proteÇço contra temperaturas elevadas para um componente.
AT03700010T ATE299536T1 (de) 2002-01-18 2003-01-16 Hochtemperatur-schutzschicht
AU2003200835A AU2003200835A1 (en) 2002-01-18 2003-01-16 High-temperature protective coating
US10/893,326 US7052782B2 (en) 2002-01-18 2004-07-19 High-temperature protection layer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10202012.4 2002-01-18
DE10202012 2002-01-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/893,326 Continuation US7052782B2 (en) 2002-01-18 2004-07-19 High-temperature protection layer

Publications (1)

Publication Number Publication Date
WO2003060194A1 true WO2003060194A1 (de) 2003-07-24

Family

ID=7712588

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CH2003/000023 WO2003060194A1 (de) 2002-01-18 2003-01-16 Hochtemperatur-schutzschicht

Country Status (12)

Country Link
US (1) US7052782B2 (de)
EP (1) EP1466037B1 (de)
JP (1) JP4217626B2 (de)
CN (1) CN100350075C (de)
AT (1) ATE299536T1 (de)
AU (1) AU2003200835A1 (de)
BR (1) BR0306989B1 (de)
CA (1) CA2473565C (de)
DE (1) DE50300758D1 (de)
ES (1) ES2244914T3 (de)
RU (1) RU2301284C2 (de)
WO (1) WO2003060194A1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1652964A1 (de) * 2004-10-29 2006-05-03 General Electric Company Werstück auf Superlegierungsbasis mit einer gammaprime Nickel-Aluminid-Beschichtung
US7052782B2 (en) 2002-01-18 2006-05-30 Alstom Technology Ltd. High-temperature protection layer
US20110059323A1 (en) * 2008-03-04 2011-03-10 Friedhelm Schmitz Alloy, high-temperature corrosion protection layer and layer system
DE102010021691A1 (de) * 2010-05-27 2011-12-01 Leibniz-Institut Für Neue Materialien Gemeinnützige Gmbh Schichtverbund mit einer eindimensionalen Kompositstruktur
EP3118345A1 (de) 2015-07-17 2017-01-18 General Electric Technology GmbH Hochtemperaturschutzbeschichtung
EP3935199A4 (de) * 2019-03-07 2022-10-12 Oerlikon Metco (US) Inc. Verbesserte bindungschichtmaterialien für tbc mit verbesserter beständigkeit gegen thermische zyklische ermüdung und sulfidierung

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7364801B1 (en) * 2006-12-06 2008-04-29 General Electric Company Turbine component protected with environmental coating
EP2351870B1 (de) 2007-06-25 2018-08-08 Oerlikon Surface Solutions AG, Pfäffikon Schichtsystem zur Bildung einer Oberflächenschicht auf einer Oberfläche eines Substrats
IL191822A0 (en) * 2007-06-25 2009-02-11 Sulzer Metaplas Gmbh Layer system for the formation of a surface layer on a surface of a substrate and also are vaporization source for the manufacture of a layer system
EP2474413A1 (de) * 2011-01-06 2012-07-11 Siemens Aktiengesellschaft Legierung, Schutzschicht und Bauteil
US9359669B2 (en) * 2011-12-09 2016-06-07 United Technologies Corporation Method for improved cathodic arc coating process
CN105419409A (zh) * 2015-11-23 2016-03-23 沈阳黎明航空发动机(集团)有限责任公司 一种抗高温燃气冲刷涂料及其制备方法和应用
CN108165902A (zh) * 2017-12-27 2018-06-15 宁波市江北吉铭汽车配件有限公司 一种贮油桶
CN111485205A (zh) * 2020-05-25 2020-08-04 中国科学院宁波材料技术与工程研究所 一种NiMAlY/Al2O3复合涂层及其制备方法与应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999002745A1 (en) * 1997-07-10 1999-01-21 Turbocoating S.P.A. Alloy for corrosion-resistant coatings or surface coatings
EP1001055A1 (de) * 1998-11-10 2000-05-17 Abb Research Ltd. Gasturbineteil

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3620693A (en) * 1969-04-22 1971-11-16 Gte Electric Inc Ductile, high-temperature oxidation-resistant composites and processes for producing same
US3754903A (en) * 1970-09-15 1973-08-28 United Aircraft Corp High temperature oxidation resistant coating alloy
US4013424A (en) * 1971-06-19 1977-03-22 Rolls-Royce (1971) Limited Composite articles
US3837894A (en) * 1972-05-22 1974-09-24 Union Carbide Corp Process for producing a corrosion resistant duplex coating
US4022587A (en) * 1974-04-24 1977-05-10 Cabot Corporation Protective nickel base alloy coatings
US4088479A (en) * 1976-01-16 1978-05-09 Westinghouse Electric Corp. Hot corrosion resistant fabricable alloy
US4095003A (en) * 1976-09-09 1978-06-13 Union Carbide Corporation Duplex coating for thermal and corrosion protection
JPS5385736A (en) * 1977-01-06 1978-07-28 Mitsubishi Heavy Ind Ltd Surface treatment method of metallic body
US4477538A (en) * 1981-02-17 1984-10-16 The United States Of America As Represented By The Secretary Of The Navy Platinum underlayers and overlayers for coatings
DE3246507A1 (de) * 1982-12-16 1984-06-20 BBC Aktiengesellschaft Brown, Boveri & Cie., Baden, Aargau Hochtemperatur-schutzschicht
US4743514A (en) * 1983-06-29 1988-05-10 Allied-Signal Inc. Oxidation resistant protective coating system for gas turbine components, and process for preparation of coated components
DE3740478C1 (de) * 1987-11-28 1989-01-19 Asea Brown Boveri Hochtemperatur-Schutzschicht
KR100372482B1 (ko) * 1999-06-30 2003-02-17 스미토모 긴조쿠 고교 가부시키가이샤 니켈 베이스 내열합금
JP3952861B2 (ja) * 2001-06-19 2007-08-01 住友金属工業株式会社 耐メタルダスティング性を有する金属材料
AU2003200835A1 (en) 2002-01-18 2003-07-30 Alstom Technology Ltd High-temperature protective coating

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999002745A1 (en) * 1997-07-10 1999-01-21 Turbocoating S.P.A. Alloy for corrosion-resistant coatings or surface coatings
EP1001055A1 (de) * 1998-11-10 2000-05-17 Abb Research Ltd. Gasturbineteil

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7052782B2 (en) 2002-01-18 2006-05-30 Alstom Technology Ltd. High-temperature protection layer
EP1652964A1 (de) * 2004-10-29 2006-05-03 General Electric Company Werstück auf Superlegierungsbasis mit einer gammaprime Nickel-Aluminid-Beschichtung
US20110059323A1 (en) * 2008-03-04 2011-03-10 Friedhelm Schmitz Alloy, high-temperature corrosion protection layer and layer system
DE102010021691A1 (de) * 2010-05-27 2011-12-01 Leibniz-Institut Für Neue Materialien Gemeinnützige Gmbh Schichtverbund mit einer eindimensionalen Kompositstruktur
EP3118345A1 (de) 2015-07-17 2017-01-18 General Electric Technology GmbH Hochtemperaturschutzbeschichtung
EP3935199A4 (de) * 2019-03-07 2022-10-12 Oerlikon Metco (US) Inc. Verbesserte bindungschichtmaterialien für tbc mit verbesserter beständigkeit gegen thermische zyklische ermüdung und sulfidierung

Also Published As

Publication number Publication date
ATE299536T1 (de) 2005-07-15
CN100350075C (zh) 2007-11-21
EP1466037A1 (de) 2004-10-13
JP2005514525A (ja) 2005-05-19
AU2003200835A1 (en) 2003-07-30
US20050042474A1 (en) 2005-02-24
CN1617951A (zh) 2005-05-18
RU2301284C2 (ru) 2007-06-20
CA2473565C (en) 2010-12-07
BR0306989A (pt) 2004-12-14
JP4217626B2 (ja) 2009-02-04
RU2004125154A (ru) 2005-07-20
BR0306989B1 (pt) 2012-03-06
CA2473565A1 (en) 2003-07-24
EP1466037B1 (de) 2005-07-13
ES2244914T3 (es) 2005-12-16
DE50300758D1 (de) 2005-08-18
US7052782B2 (en) 2006-05-30

Similar Documents

Publication Publication Date Title
DE60305329T2 (de) Hochoxidationsbeständige komponente
DE69732046T2 (de) Schutzbeschichtung für hochtemperatur
DE2657288C2 (de) Überzogener Superlegierungsgegenstand und seine Verwendung
US5154885A (en) Highly corrosion and/or oxidation-resistant protective coating containing rhenium
EP1082216B1 (de) Erzeugnis mit einer schutzschicht gegen korrosion sowie verfahren zur herstellung einer schutzschicht gegen korrosion
US5273712A (en) Highly corrosion and/or oxidation-resistant protective coating containing rhenium
DE60038715T2 (de) Wärmedämmendes Beschichtungssystem für ein Turbinenmotorbauteil
EP1466037B1 (de) Hochtemperatur-schutzschicht
EP1902160B1 (de) Keramische wärmedämmschicht
EP1306454A1 (de) Rhenium enthaltende Schutzschicht zum Schutz eines Bauteils gegen Korrosion und Oxidation bei hohen Temperaturen
US9873936B2 (en) Superalloy component and slurry composition
US5268238A (en) Highly corrosion and/or oxidation-resistant protective coating containing rhenium applied to gas turbine component surface and method thereof
DE112008003460T5 (de) Überzogene Superlegierungs-Gegenstände
DE60022300T2 (de) Gegenstände mit korrosionsbeständigen Beschichtungen
WO2000037713A1 (de) Verschleissschutzschicht
DE3740478C1 (de) Hochtemperatur-Schutzschicht
EP1029100B1 (de) Erzeugnis mit einem schichtsystem zum schutz gegen ein heisses aggressives gas
EP0241807B1 (de) Hochtemperatur-Schutzschicht
DE60209661T2 (de) Hafnium enthaltende Nickelaluminid-Beschichtung und daraus hergestellte Beschichtungssysteme
EP1970461A1 (de) Turbinenbauteil mit Wärmedämmschicht
DE102007056315A1 (de) Beschichtungssysteme mit Schichten auf Rhodiumaluminid-Grundlage
DE112008003454T5 (de) Wärmesperren-Überzugssysteme
WO2007051755A1 (de) Legierung, schutzschicht zum schutz eines bauteils gegen korrosion und/oder oxidation bei hohen temperaturen und bauteil
DE3842301C2 (de)
EP2537959B1 (de) Mehrfache Verschleißschutzbeschichtung und Verfahren zu Ihrer Herstellung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003700010

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2473565

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 20038023121

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 10893326

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2003560271

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2004125154

Country of ref document: RU

WWP Wipo information: published in national office

Ref document number: 2003700010

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 2003700010

Country of ref document: EP