EP1902160B1 - Keramische wärmedämmschicht - Google Patents

Keramische wärmedämmschicht Download PDF

Info

Publication number
EP1902160B1
EP1902160B1 EP06764032A EP06764032A EP1902160B1 EP 1902160 B1 EP1902160 B1 EP 1902160B1 EP 06764032 A EP06764032 A EP 06764032A EP 06764032 A EP06764032 A EP 06764032A EP 1902160 B1 EP1902160 B1 EP 1902160B1
Authority
EP
European Patent Office
Prior art keywords
thermal barrier
coating
barrier coating
component
intermetallic compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP06764032A
Other languages
English (en)
French (fr)
Other versions
EP1902160A1 (de
Inventor
Mohamed Youssef Nazmy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Technology GmbH
Original Assignee
Alstom Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Technology AG filed Critical Alstom Technology AG
Publication of EP1902160A1 publication Critical patent/EP1902160A1/de
Application granted granted Critical
Publication of EP1902160B1 publication Critical patent/EP1902160B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/288Protective coatings for blades
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • C23C28/3215Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer at least one MCrAlX layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • C23C28/3455Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/36Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including layers graded in composition or physical properties
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material

Definitions

  • the invention relates to the field of materials technology. It relates to a ceramic thermal barrier coating, which for coating thermally highly stressed components such. As blades of a gas turbine, is used.
  • thermal barrier coatings thermal barrier coatings
  • TBC thermal barrier coatings
  • Y 2 O 3 yttria
  • ZrO 2 zirconia
  • adhesive layers of MCrAIY are often provided between the thermal barrier coating and the surface of the component, where M stands for metal, specifically for Ni, Fe, Co or combinations thereof.
  • Plasma spraying such as. As plasma spraying in air (Air Plasma Spraying APS), low pressure plasma spraying (LPPS), vacuum plasma spraying (VPS) or flame spraying, such. High Velocity Oxygen Fuel (HVOF), as well as Physical Vapor Deposition (PVD), e.g. B. by electron beam (Electron Beam Physical Vapor Deposition EP-PVD) known (see, eg. US 6,352,788 B2 . US 6,544,665 B2 ).
  • Air Plasma Spraying APS Air Plasma Spraying APS
  • LPPS low pressure plasma spraying
  • VPS vacuum plasma spraying
  • HVOF High Velocity Oxygen Fuel
  • PVD Physical Vapor Deposition
  • B. by electron beam Electro Beam Physical Vapor Deposition EP-PVD
  • APS-sprayed TBCs have e.g. B. a high degree of inhomogeneities and porosity, which advantageously reduces the heat transfer through the TBC.
  • B a high degree of inhomogeneities and porosity
  • One of these countermeasures is, for example, the spraying of thicker layers. This is disadvantageous on the one hand very expensive, on the other hand practically impossible in many cases.
  • Typical TBC layer thicknesses are approx. 250-300 ⁇ m.
  • Al 2 O 3 (at least 0.1-3 mol%) in the microstructure of a TBC bring.
  • the Al 2 O 3 does not combine with the matrix of the ceramic layer, but forms deposits and thus prevents grain growth. However, this does not have a positive influence on the voltage gradient and thus on the reduction of the danger of the TBC breaking away.
  • EP 0799 904 A1 are known graded TBC, in the microstructure also oxides, preferably Al 2 O 3 , which were previously mixed with metallic materials, preferably alloyed nickel aluminides and then evaporated, were introduced. This achieves improved corrosion resistance under thermal cycling.
  • a Ni or NiCo aluminide layer for example NiCrAlY
  • Y 2 O 3 yttrium oxide
  • ZrO 2 stabilized zirconia
  • Such layers lead to improved thermal fatigue behavior of the components and good high-temperature oxidation resistance with acceptable adhesive strength.
  • the aim of the invention is to avoid the mentioned disadvantages of the prior art.
  • the invention is based on the object to develop an improved ceramic thermal barrier coating based on yttria (Y 2 O 3 ) stabilized zirconia (ZrO 2 ) for coating a component of a nickel-base superalloy, which is characterized by a long service life and high Oxidation resistance and ductility distinguished.
  • this object is achieved in that the thermal barrier coating on the basis of yttria (Y 2 O 3 ) stabilized zirconia (ZrO 2 ) in addition to production-related impurities still at least one high-temperature and oxidation-resistant intermetallic compound whose volume fraction as a function of the distance from the Surface of the nickel-based superalloy continuously or stepwise, preferably in exponential or linear form, decreases, wherein the intermetallic compound YRh and / or Erlr.
  • Y 2 O 3 yttria
  • ZrO 2 stabilized zirconia
  • the advantage of the invention is that a gradual change in the composition of the thermal barrier coating as a function of the thickness of the thermal barrier coating produces a less steep gradient of stress. This leads to a higher elongation tolerance of the TBC layer and thus on the one hand to an increased life under thermal stress (no chipping) and on the other hand to the possibility to apply thicker thermal barrier coatings and thus to use the coated components at higher temperatures.
  • the intermetallic compounds YRh and Erlr used are oxidation-resistant and have sufficient ductility over a wide temperature range. Also have They have a low tendency to interdiffuse and have a high melting point.
  • Distributive is when the volume fraction of the intermetallic compound in the layer at the surface of the component about 80 vol .-% and at the free surface is about 5%.
  • the invention is applicable to all components which are exposed to high temperatures and oxidative / corrosive environmental influences, such. As blades, heat accumulation segments or parts of the combustion chambers of gas turbines.
  • Fig. 1 shows in perspective view as an example of such components 1, a blade of a gas turbine.
  • the blade 1 consists of a blade root 2, a platform 3 and an airfoil 4, in which cooling air channels are present, the openings in Fig. 1 are denoted by 5.
  • the blade 1 is anchored with its blade root 2 in circumferential grooves in the rotor of the gas turbine, not shown.
  • the blade 4 is subjected to hot combustion gases, so that the surface 7 of the airfoil 4 is exposed to both the hot combustion gases and attacks by oxidation, corrosion and erosion.
  • the blade 4 is therefore on its outer surface 7 with a metallic adhesive layer 6 (in Fig. 1 not visible), on which a ceramic thermal barrier coating 8 is sprayed.
  • the base material of the rotor blade 1 of the gas turbine for example, consists of a directionally solidified nickel base superalloy CM 247 with the following chemical composition (in wt .-%): 0.07 C, 8.1 Cr, 9.2 Cr, 0.5 Mo, 9.5 W, 3.2 Ta, 5.6 Al, 0.7 Ti, 0.015 B, 0.015 Zr, 1.4 Hf, balance Ni.
  • the turbine blade may preferably consist of a single crystal alloy, for example with the following chemical composition (in% by weight): 7.7-8.3 Cr, 5.0-5.25 Co, 2.0-2.1 Mo, 7.8-8.3 W, 5.8-6.1 Ta, 4.9-5.1 Al, 1.3-1.4 Ti, 0.11-0.15 Si, 0.11-0.15 Hf, 200-750 ppm C, 50-400 ppm B, balance nickel and manufacturing impurities.
  • These base materials are provided on their outer surface 7 with a metallic adhesive layer 6, preferably of the type MCrAIY, where M is metal (Ni, Co, Fe or combinations thereof). in the In this case, NiCrAlY was used for the adhesive layer 6.
  • the Alvers adhesive layers of this type form an Al 2 O 3 -Zdertik 9, which forms by thermal oxidation of the adhesive layer 6. This Al 2 O 3 layer 9 chemically bonds the ceramic thermal barrier coating to the adhesive layer 6 and the substrate (nickel-base superalloy).
  • the TBC 8 consists of yttria (Y 2 O 3 ) stabilized zirconia (ZrO 2 ) with about 7% yttria present.
  • the thermal barrier coating 8 is sprayed by means of known thermal spraying, for example by means of APS.
  • the ceramic powder is first mixed with powder of at least one intermetallic compound 12, in the present example of YRh, and then this powder mixture is thermally sprayed onto the adhesive layer 6.
  • the volume fraction of the intermetallic compound 12 is very high, here 80 vol .-%.
  • Fig. 3 This is in Fig. 3 1, where the schematic profile of the volume fractions of intermetallic compounds 12 or zirconium oxide (ZrO 2 ) stabilized with yttrium oxide (Y 2 O 3 ) in the thermal barrier coating 8 is shown as a function of the distance from the adhesive layer 6, ie, the thickness of the thermal barrier coating 8 becomes.
  • the volume fraction of intermetallic compound 12 decreases continuously here exponentially. In other examples, it may also be linear or stepwise decreasing.
  • the ceramic thermal barrier coatings produced by APS consist of individual grains and have a relatively large porosity.
  • Fig. 2 These grains are designated by the reference numeral 10 and the pores by the reference numeral 11.
  • the intermetallic compound 12, here YRh preferably deposits in these pores 11.
  • the intermetallic compounds, such as YRh or Erlr are resistant to oxidation and have sufficient ductility in a wide temperature range. In addition, they have little tendency for interdiffusion and have a high melting point. Due to the gradual change in the composition of the thermal barrier coating as a function of the thickness of the thermal barrier coating, a less steep stress gradient is advantageously generated in the layer. This leads to a higher elongation tolerance of the thermal barrier coating and thus on the one hand to increased life under thermal stress (no chipping) and on the other hand to the possibility to apply thicker thermal barrier coatings and thus use the coated components at higher temperatures.
  • layer thicknesses of approximately 250-300 ⁇ m could be sprayed by means of APS in the case of conventional yttria-stabilized zirconium oxide thermal barrier coatings, layer thicknesses of up to approximately 2 mm can easily be achieved in the present invention.
  • the invention is not limited to the example described.
  • the following intermetallic compound is also suitable for achieving the advantages according to the invention: Erlr, since these intermetallic compounds are resistant to oxidation, have good ductility in all temperature ranges, and have a low tendency to interdiffuse and have high melting points. Due to the gradual grading of the volume fraction of intermetallic compound a less steep voltage gradient is achieved, so that the thermal barrier coating substantially is more strain tolerant and thus has a longer life under thermal stress.
  • novel thermal barrier coatings can also be applied to other thermally highly loaded gas turbine components, such as heat shields or combustion chamber liner, wherein the base material of the component z.
  • B. Hastalloy or Haynes 230 may be and the adhesive layer z.
  • B. may be a NiCoCrAIY layer.
  • thermal spraying of the TBC according to the present invention also other spraying methods are suitable as APS, z. Eg EB-PVD.
  • the thermal barrier coatings produced are stalk-shaped.

Description

    Technisches Gebiet
  • Die Erfindung bezieht sich auf das Gebiet der Werkstofftechnik. Sie betrifft eine keramische Wärmedämmschicht, welche zum Beschichten thermisch hochbelasteter Bauteile, wie z. B. Laufschaufeln einer Gasturbine, eingesetzt wird.
  • Stand der Technik
  • Um die Effizienz von Gasturbinen zu erhöhen werden diese bei sehr hohen Betriebstemperaturen gefahren. Die den heissen Gasen ausgesetzten Bauteile, z. B. Leit- und Laufschaufeln oder Brennkammerelemente, werden daher bekanntermassen auf ihrer Oberfläche mit Wärmedämmschichten (Thermal Barrier Coatings, TBC) versehen, um höhere Betriebstemperaturen zu erreichen bzw. die Lebensdauer der Bauteile zu verlängern. Diese Wärmedämmschichten bestehen üblicherweise aus einem keramischen Material, meist aus mit Yttriumoxid (Y2O3) stabilisiertem Zirkonoxid (ZrO2), das auf die Oberfläche der oftmals aus Nickelbasis-Superlegierungen bestehenden Bauteile aufgebracht wird. Um die Haftung der keramischen Schicht auf dem Bauteil zu verbessern, werden zwischen der Wärmedämmschicht und der Oberfläche des Bauteiles oftmals Haftschichten aus MCrAIY vorgesehen, wobei M für Metall, und zwar für Ni, Fe, Co oder Kombinationen daraus, steht.
  • Es ist bekannter Stand der Technik, die TBC thermisch aufzuspritzen. Als mögliche Verfahren zum Aufbringen dieser Schichten sind Plasmaspritzen, wie z. B. Plasmaspritzen in Luft (Air Plasma Spraying APS), Niederdruck-Plasmaspritzen (Low Pressure Plasma Spraying LPPS), Vakuum-Plasmaspritzen (Vacuum Plasma Spraying VPS) oder Flammenspritzen, wie z. B. Hochgeschwindigkeitsflammenspritzen (High Velocity Oxygen Fuel HVOF), sowie physikalische Dampfabscheidung (Physical Vapour Deposition PVD), z. B. mittels Elektronenstrahl (Electron Beam Physical Vapour Deposition EP-PVD) bekannt (siehe z. B. US 6,352,788 B2 , US 6,544,665 B2 ).
  • Mit Hilfe des EP-PVD-Verfahren werden säulenartige Schichten erzeugt, die eine dehnungstolerante Kornstruktur aufweisen, die fähig ist sich bei unterschiedlicher Beanspruchung auszudehnen oder zusammenzuziehen, so dass keine Spannungen erzeugt werden, welche beispielsweise zum Abplatzen der Schichten führen würden. Nachteilig sind bei diesem Verfahren aber die hohen Kosten.
  • Im Gegensatz dazu haben APS-gespritze TBC z. B. einen hohen Grad an Inhomogenitäten und Porosität, was vorteilhaft den Wärmetransfer durch die TBC reduziert. Während des Betriebes einer Gasturbine erhöht aber sich durch Strukturveränderungen, z. B. Kornwachstum, die thermische Leitfähigkeit, so dass Gegenmassnahmen getroffen werden müssen um einen ausreichenden Wärmeschutz zu erreichen. Eine dieser Gegenmassnahmen ist beispielsweise das Spritzen dickerer Schichten. Dies ist nachteilig einerseits sehr teuer, andererseits praktisch oftmals nicht machbar. Übliche TBC-Schichtdicken sind ca. 250-300 µm.
  • Gemäss US 6,544,665 B2 wird deshalb vorgeschlagen, z. B. Al2O3 (mindestens 0.1-3 Mol-%) in die Mikrostruktur einer TBC einzubringen. Das Al2O3 verbindet sich nicht mit der Matrix der keramischen Schicht, sondern bildet Ablagerungen und verhindert damit das Kornwachstum. Einen positiven Einfluss auf den Spannungsgradienten und damit auf die Senkung der Abplatzgefahr der TBC hat dies aber nicht.
  • Aus EP 0799 904 A1 sind gradierte TBC bekannt, in deren Mikrostruktur ebenfalls Oxide, vorzugsweise Al2O3, welche vorgängig mit metallischen Materialien, vorzugsweise legierten Nickel-Aluminiden gemischt und dann verdampft worden sind, eingebracht wurden. Dadurch wird eine verbesserte Korrosionsbeständigkeit unter thermischer Wechselbeanspruchung erreicht.
  • Weiterhin ist bekannt (siehe beispielsweise Z.L.Dong et al: "Microstructure formation in plasma-sprayed functuonally graded NiCoCrAIY/yttria-stabilized zirconia coatings", Surface and Coatings Technology 114 (1999), S. 181-186 und Y.-S. Song et al: "High-temperature properties of plasma-prayed coatings of YSZ/NiCrAIY on Inconel substrate", Materials Science and Engineering A 332 (2002), S. 129-133), thermisch stark belastete Gasturbinenkomponenten mit funktional gradierten Schichten zu versehen. Diese Schichten bestehen aus einer Ni- oder NiCo-Aluminidschicht, beispielsweise NiCrAlY, als Haftschicht, welche auf der Oberfläche des metallischen Substrates aufgebracht ist (= unterste Schichtlage), aus einer äusseren TBC-Schicht (= oberste Schichtlage), bestehend aus mit Yttriumoxid (Y2O3) stabilisiertem Zirkonoxid (ZrO2), und aus mehreren Zwischenschichtlagen, bei denen jeweils das Haftschichtmaterial mit dem TBC-Material in unterschiedlichen Verhältnissen gemischt ist. Derartige Schichten führen zu einem verbesserten thermischen Ermüdungsverhalten der Bauteile und zu einer guten Hochtemperatur-Oxidationsbeständigkeit mit vertretbarer Haftfestigkeit.
  • Darstellung der Erfindung
  • Ziel der Erfindung ist es, die genannten Nachteile des Standes der Technik zu vermeiden. Der Erfindung liegt die Aufgabe zu Grunde, zur Beschichtung einer Komponente aus einer Nickelbasis-Superlegierung eine verbesserte keramische Wärmedämmschicht auf der Grundlage von mit Yttriumoxid (Y2O3) stabilisiertem Zirkonoxid (ZrO2) zu entwickeln, welche sich durch eine hohe Lebensdauer und hohe Oxidationsbeständigkeit und Duktilität auszeichnet.
  • Erfindungsgemäss wird diese Aufgabe dadurch gelöst, dass die Wärmedämmschicht auf der Grundlage von mit Yttriumoxid (Y2O3) stabilisiertem Zirkonoxid (ZrO2) neben herstellungsbedingten Verunreinigungen noch mindestens eine hochtemperatur- und oxidationsbeständige intermetallische Verbindung aufweist, deren Volumenanteil in Abhängigkeit vom Abstand von der Oberfläche der Nickel-Basis-Superlegierung kontinuierlich oder stufenweise, vorzugsweise in exponentieller oder linearer Form, abnimmt, wobei die intermetallische Verbindung YRh und/oder Erlr ist.
  • Der Vorteil der Erfindung besteht darin, dass durch die allmähliche Veränderung der Zusammensetzung der Wärmedämmschicht in Abhängigkeit von der Dicke der Wärmedämmschicht ein weniger steiler Spannungsgradient erzeugt wird. Dies führt zu einer höheren Dehnungstoleranz der TBC-Schicht und damit einerseits zu einer erhöhten Lebensdauer bei thermischer Beanspruchung (kein Abplatzen) und anderseits zur Möglichkeit, dickere Wärmedämmschichten aufzubringen und somit die beschichteten Bauteile bei höheren Temperaturen einzusetzen. Die verwendeten intermetallischen Verbindungen YRh und Erlr sind oxidationsbeständig und besitzen in einem grossen Temperaturbereich eine ausreichende Duktilität. Ausserdem haben sie nur eine geringe Tendenz zur Interdiffusion und besitzen einen hohen Schmelzpunkt.
  • Verteilhaft ist, wenn der Volumenanteil der intermetallischen Verbindung in der Schicht an der Oberfläche der Komponente ca. 80 Vol.-% und an der freien Oberfläche ca. 5 % beträgt.
  • Kurze Beschreibung der Zeichnung
  • In der Zeichnung ist ein Ausführungsbeispiel der Erfindung dargestellt.
  • Es zeigen.
  • Fig. 1
    eine perspektivische Darstellung einer Laufschaufel einer Gasturbine;
    Fig. 2
    einen Schnitt entlang der Linie II-II in Fig. 1 und
    Fig. 3
    einen schematischen Verlauf der Volumenanteile in der TBC in Abhängigkeit vom Abstand vom Grundsubstrat.
  • Es sind nur die für die Erfindung wesentlichen Merkmale dargestellt. Gleiche Elemente haben in unterschiedlichen Figuren gleiche Bezugszeichen.
  • Wege zur Ausführung der Erfindung
  • Nachfolgend wird die Erfindung anhand eines Ausführungsbeispieles näher erläutert.
  • Die Erfindung ist anwendbar für alle Komponenten, welche hohen Temperaturen und oxidativen/korrosiven Umwelteinflüssen ausgesetzt sind, wie z. B. Schaufeln, Wärmestausegmente oder Teile der Brennkammern von Gasturbinen.
  • Fig. 1 zeigt in perspektivischer Darstellung als ein Beispiel derartiger Komponenten 1 eine Laufschaufel einer Gasturbine. Die Laufschaufel 1 besteht aus einem Schaufelfuss 2, einer Plattform 3 und einem Schaufelblatt 4, in welchem Kühlluftkanäle vorhanden sind, deren Öffnungen in Fig. 1 mit 5 bezeichnet sind. Die Laufschaufel 1 wird mit ihrem Schaufelfuss 2 in Umfangsnuten im nicht dargestellten Rotor der Gasturbine verankert. Während des Betriebes der Turbine wird das Schaufelblatt 4 mit heissen Verbrennungsgasen beaufschlagt, so dass die Oberfläche 7 des Schaufelblattes 4 sowohl den heissen Verbrennungsgasen als auch Angriffen durch Oxidation, Korrosion und Erosion ausgesetzt ist. Zum Schutz vor Oxidation/Korrosion sowie zu hoher thermischer Belastung ist das Schaufelblatt 4 daher auf seiner äusseren Oberfläche 7 mit einer metallischen Haftschicht 6 (in Fig. 1 nicht sichtbar) versehen, auf der eine keramische Wärmedämmschicht 8 aufgespritzt ist.
  • In der Schnittdarstellung gemäss Fig. 2 ist das Beschichtungssystem gut zu erkennen. Der Grundwerkstoff der Laufschaufel 1 der Gasturbine besteht beispielsweise aus einer gerichtet erstarrten Nickel-Basissuperlegierung CM 247 mit folgender chemischer Zusammensetzung (Angaben in Gew.-%): 0.07 C, 8.1 Cr, 9.2 Cr, 0.5 Mo, 9.5 W, 3.2 Ta, 5.6 Al, 0.7 Ti, 0.015 B, 0.015 Zr, 1.4 Hf, Rest Ni.
  • In einem anderen beispiel kann die Turbinenschaufel vorzugsweise aus einer Einkristalllegierung, beispielsweise mit folgender chemischer Zusammensetzung bestehen (Angaben in Gew.-%): 7.7-8.3 Cr, 5.0-5.25 Co, 2.0-2.1 Mo, 7.8-8.3 W, 5.8-6.1 Ta, 4.9-5.1 Al, 1.3-1.4 Ti, 0.11-0.15 Si, 0.11-0.15 Hf, 200-750 ppm C, 50-400 ppm B, Rest Nickel und herstellungsbedingte Verunreinigungen.
  • Diese Grundwerkstoffe (Substrate) sind auf ihrer äusseren Oberfläche 7 mit einer metallischen Haftschicht 6, vorzugsweise des Typs MCrAIY versehen, wobei M für Metall steht (Ni, Co, Fe oder deren Kombinationen). Im vorliegenden Falle wurde NiCrAlY für die Haftschicht 6 verwendet. Die Alreichen Haftschichten dieses Typs bilden eine Al2O3-Zunderschicht 9, die sich durch thermische Oxidation der Haftschicht 6 bildet. Diese Al2O3-Schicht 9 bindet chemisch die keramische Wärmedämmschicht an die Haftschicht 6 und das Substrat (Nickel-Basissuperlegierung).
  • Die TBC 8 besteht aus mit Yttriumoxid (Y2O3) stabilisiertem Zirkonoxid (ZrO2), wobei etwa 7 % Yttriumoxid vorhanden ist. Die Wärmedämmschicht 8 wird mittels bekannter thermischer Spritzverfahren beispielsweise mittels APS aufgespritzt. Dazu wird das keramische Pulver zunächst mit Pulver aus mindestens einer intermetallischen Verbindung 12, im vorliegenden Beispiel aus YRh, gemischt und anschliessend diese Pulvermischung auf die Haftschicht 6 thermisch aufgespritzt. Im ersten Verfahrensschritt ist der Volumenanteil der intermetallischen Verbindung 12 sehr hoch, hier 80 Vol.-%. Die beiden Verfahrensschritte werden nun mehrfach wiederholt werden, wobei die Pulvermischung jeweils einen geringeren Volumenanteil an der intermetallischen Verbindung YRh aufweist als in den vorangegangenen Verfahrensschritten und die Pulvermischung jeweils auf die bereits im vorangegangenen Verfahrensschritt aufgespritzte Schicht aufgespritzt wird, so dass letztlich eine Wärmedämmschicht 8 mit einem über die Schichtdicke abnehmenden Volumenanteil an intermetallischer Verbindung 12 gebildet wird. Letztlich sind an der Oberfläche der fertig beschichteten Komponente 1 nur noch ca. 5 Vol.-% YRh vorhanden.
  • Dies ist in Fig. 3 dargestellt, wo der schematische Verlauf der Volumenanteile an intermetallischer Verbindungen 12 bzw. an mit Yttriumoxid (Y2O3) stabilisiertem Zirkonoxid (ZrO2) in der Wärmedämmschicht 8 in Abhängigkeit vom Abstand von der Haftschicht 6, d.h. von der Dicke der Wärmedämmschicht 8 gezeigt wird. Der Volumenanteil an intermetallischer Verbindung 12 nimmt hier kontinuierlich exponentiell ab. In anderen Beispielen kann er auch linear oder stufenweise abnehmend sein.
  • Es ist bekannt, dass die durch APS erzeugten keramischen Wärmedämmschichten aus einzelnen Körner bestehen und eine relativ grosse Porosität aufweisen. In Fig. 2 sind diese Körner mit dem Bezugszeichen 10 und die Poren mit dem Bezugszeichen 11 bezeichnet. Bei der erfindungsgemässen Wärmedämmschicht 8 lagert sich die intermetallische Verbindung 12, hier YRh, bevorzugt in diesen Poren 11 ab. Die intermetallischen Verbindungen, wie beispielsweise YRh oder Erlr, sind oxidationsbeständig und besitzen in einem grossen Temperaturbereich eine ausreichende Duktilität. Ausserdem haben sie nur eine geringe Tendenz zur Interdiffusion und besitzen einen hohen Schmelzpunkt. Durch die allmähliche Veränderung der Zusammensetzung der Wärmedämmschicht in Abhängigkeit von der Dicke der Wärmedämmschicht wird mit Vorteil ein weniger steiler Spannungsgradient in der Schicht erzeugt. Dies führt zu einer höheren Dehnungstoleranz der Wärmedämmschicht und damit einerseits zu einer erhöhten Lebensdauer bei thermischer Beanspruchung (kein Abplatzen) und anderseits zur Möglichkeit, dickere Wärmedämmschichten aufzubringen und somit die beschichteten Bauteile bei höheren Temperaturen einzusetzen.
  • Während bei konventionellen mit Yttriumoxid stabilisierten Zirkonoxid-Wärmedämmschichten Schichtdicken von ca. 250-300 µm mittels APS gespritzt werden konnten, sind bei der vorliegenden Erfindung Schichtdicken bis ca. 2 mm problemlos machbar.
  • Selbstverständlich ist die Erfindung nicht auf das beschriebene Beispiel beschränkt. Neben dem bereits erwähnten YRh ist auch die folgende intermetallische Verbindung geeignet, die erfindungsgemässen Vorteile zu erreichen: Erlr , da diese intermetallischen Verbindungen oxidationsbeständig sind, in allen Temperaturbereichen eine gute Duktilität aufweisen, sowie eine geringe Tendenz zur Interdiffusion und hohe Schmelzpunkte haben. Infolge der allmählichen Abstufung des Volumenanteils an intermetallischer Verbindung wird ein weniger steiler Spannungsgradient erreicht, so dass die Wärmedämmschicht wesentlich dehnungstoleranter ist und damit eine längere Lebensdauer bei thermischer Beanspruchung aufweist.
  • Die erfindungsgemässen Wärmedämmschichten können auch auf andere thermisch hochbelastete Gasturbinenkomponenten, wie beispielsweise Wärmeschutzschilder oder Brennkammerliner, aufgebracht werden, wobei der Grundwerkstoff der Komponente z. B. Hastalloy oder Haynes 230 sein kann und die Haftschicht z. B. eine NiCoCrAIY-Schicht sein kann.
  • Schliesslich sind zum thermischen Spritzen der TBC gemäss vorliegender Erfindung auch andere Spritzverfahren als APS geeignet, z. B. EB-PVD. Die damit erzeugten Wärmedämmschichten sind stängelförmig.
  • Selbstverständlich ist es auch möglich, die TBC direkt auf die Oberfläche der Komponente zu spritzen, d.h. ohne eine zusätzliche Haftschicht.
  • Bezugszeichenliste
  • 1
    Komponente, z. B. Laufschaufel
    2
    Schaufelfuss
    3
    Plattform
    4
    Schaufelblatt
    5
    Öffnungen der Kühlluftkanäle
    6
    Haftschicht
    7
    Oberfläche der Komponente
    8
    Wärmedämmschicht, TBC
    9
    Al2O3-Schicht
    10
    Korn
    11
    Pore
    12
    Intermetallische Verbindung

Claims (5)

  1. Keramische Wärmedämmschicht (8) zur Beschichtung der Oberfläche (7) einer aus einer Nickel-Basis-Superlegierung und einer wahlweise darauf aufgebrachten metallischen Haftschicht (6) bestehenden Komponente (1), wobei die Wärmedämmschicht (8) vorwiegend aus mit Yttriumoxid (Y2O3) stabilisiertem Zirkonoxid (ZrO2) und herstellungsbedingten Verunreinigungen besteht und die Wärmedämmschicht (8) mindestens eine hochtemperatur- und oxidationsbeständige intermetallische Verbindung aufweist, deren Volumenanteil mit zunehmenden Abstand von der Oberfläche (7) der Komponente (1)/der Haftschicht (6) kontinuierlich oder stufenweise abnimmt, dadurch gekennzeichnet, dass die intermetallische Verbindung YRh und/oder Erlr ist.
  2. Wärmedämmschicht (8) nach Anspruch 1, dadurch gekennzeichnet, dass der Volumenanteil der intermetallischen Verbindung mit zunehmenden Abstand von der Oberfläche (7) der Komponente (1)/der Haftschicht (6) exponentiell abnimmt.
  3. Wärmedämmschicht (8) nach Anspruch 1, dadurch gekennzeichnet, dass der Volumenanteil der intermetallischen Verbindung mit zunehmenden Abstand von der Oberfläche (7) der Komponente (1)/der Haftschicht (6) linear abnimmt.
  4. Wärmedämmschicht (8) nach Anspruch 1, dadurch gekennzeichnet, dass der Volumenanteil der intermetallischen Verbindung in der Schicht an der Oberfläche (7) der Komponente (1) ca. 80 Vol.% und an der freien Oberfläche ca. 5 % beträgt.
  5. Gasturbinenkomponente, dadurch gekennzeichnet, dass diese mit einer Wärmedämmschicht (8) nach einem der Ansprüche 1-4 beschichtet ist.
EP06764032A 2005-07-12 2006-07-04 Keramische wärmedämmschicht Not-in-force EP1902160B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH11522005 2005-07-12
PCT/EP2006/063826 WO2007006681A1 (de) 2005-07-12 2006-07-04 Keramische wärmedämmschicht

Publications (2)

Publication Number Publication Date
EP1902160A1 EP1902160A1 (de) 2008-03-26
EP1902160B1 true EP1902160B1 (de) 2009-03-18

Family

ID=35985842

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06764032A Not-in-force EP1902160B1 (de) 2005-07-12 2006-07-04 Keramische wärmedämmschicht

Country Status (5)

Country Link
US (2) US7666516B2 (de)
EP (1) EP1902160B1 (de)
AT (1) ATE426052T1 (de)
DE (1) DE502006003197D1 (de)
WO (1) WO2007006681A1 (de)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007006681A1 (de) 2005-07-12 2007-01-18 Alstom Technology Ltd Keramische wärmedämmschicht
US7800021B2 (en) * 2007-06-30 2010-09-21 Husky Injection Molding Systems Ltd. Spray deposited heater element
FR2960242B1 (fr) 2010-05-18 2015-05-01 C R M A Procede de fabrication de pieces multicouches comportant des trous inclines et devant resister a des contraintes thermiques elevees et utilisation du procede pour la reparation de pieces
EP3071727B1 (de) * 2013-11-18 2019-05-01 United Technologies Corporation Schaufelblatt mit variabler beschichtung
US8939706B1 (en) 2014-02-25 2015-01-27 Siemens Energy, Inc. Turbine abradable layer with progressive wear zone having a frangible or pixelated nib surface
US20150275682A1 (en) * 2014-04-01 2015-10-01 Siemens Energy, Inc. Sprayed haynes 230 layer to increase spallation life of thermal barrier coating on a gas turbine engine component
US9869013B2 (en) 2014-04-25 2018-01-16 Applied Materials, Inc. Ion assisted deposition top coat of rare-earth oxide
KR102002239B1 (ko) * 2015-04-17 2019-07-19 미츠비시 히타치 파워 시스템즈 가부시키가이샤 증기 터빈 동익 및 증기 터빈 동익의 제조 방법
CN106435566B (zh) * 2016-09-12 2018-09-25 广西大学 一种铌合金表面激光多道熔覆复合陶瓷梯度涂层的方法
IT201900003691A1 (it) * 2019-03-13 2020-09-13 Nuovo Pignone Tecnologie Srl Terminale abrasivo di una pala rotorica per un turboespansore
CN113373408B (zh) * 2021-05-14 2022-08-09 中国航发北京航空材料研究院 一种镝掺锆酸钆热障涂层材料及涂层的制备方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3912235A (en) * 1974-12-19 1975-10-14 United Technologies Corp Multiblend powder mixing apparatus
JPS62156938A (ja) * 1985-12-28 1987-07-11 航空宇宙技術研究所 傾斜機能材料の製造方法
US5236787A (en) * 1991-07-29 1993-08-17 Caterpillar Inc. Thermal barrier coating for metallic components
WO1993005194A1 (en) * 1991-09-05 1993-03-18 Technalum Research, Inc. Method for the production of compositionally graded coatings
CN1074689C (zh) * 1996-04-04 2001-11-14 E·O·帕通电子焊接研究院电子束工艺国际中心 基体上制备有跨厚度化学组成和结构梯度并陶瓷外层方法
US5998003A (en) * 1998-09-10 1999-12-07 Electric Power Research Institute, Inc. Multilayer nanostructured ceramic thermal barrier coatings
US6352788B1 (en) * 2000-02-22 2002-03-05 General Electric Company Thermal barrier coating
US6503575B1 (en) * 2000-05-22 2003-01-07 Praxair S.T. Technology, Inc. Process for producing graded coated articles
US6544665B2 (en) * 2001-01-18 2003-04-08 General Electric Company Thermally-stabilized thermal barrier coating
US6502304B2 (en) * 2001-05-15 2003-01-07 General Electric Company Turbine airfoil process sequencing for optimized tip performance
EP1451382A1 (de) * 2001-11-09 2004-09-01 Alstom Technology Ltd Verfahren zur entwicklung einer nickel-basis-superlegierung
DE10305912B4 (de) * 2003-02-13 2014-01-30 Alstom Technology Ltd. Hybrid- Schaufel für thermische Turbomaschinen
DE10313490A1 (de) * 2003-03-26 2004-10-14 Alstom Technology Ltd Axial durchströmte thermische Turbomaschine
DE10313489A1 (de) * 2003-03-26 2004-10-14 Alstom Technology Ltd Axial durchströmte thermische Turbomaschine
CA2586974C (en) * 2004-11-18 2013-06-25 Alstom Technology Ltd Nickel-base superalloy
JP4636319B2 (ja) * 2005-04-08 2011-02-23 住友金属工業株式会社 Ti合金およびTi合金部材とその製造方法
WO2007006681A1 (de) 2005-07-12 2007-01-18 Alstom Technology Ltd Keramische wärmedämmschicht

Also Published As

Publication number Publication date
US20100104764A1 (en) 2010-04-29
WO2007006681A1 (de) 2007-01-18
US20080241560A1 (en) 2008-10-02
EP1902160A1 (de) 2008-03-26
ATE426052T1 (de) 2009-04-15
US7666516B2 (en) 2010-02-23
DE502006003197D1 (de) 2009-04-30

Similar Documents

Publication Publication Date Title
EP1902160B1 (de) Keramische wärmedämmschicht
EP1969156B1 (de) Verfahren zum beschichten einer schaufel und schaufel einer gasturbine
EP1673490B1 (de) Bauteil mit einer schutzschicht zum schutz des bauteils gegen korrosion und oxidation bei hohen temperaturen
EP1637622A1 (de) Verfahren zum Aufbringen einer Schutzschicht
EP2468925A2 (de) Verfahren zur Herstellung eines Wärmedämmschichtaufbaus
EP2458025B1 (de) Legierung, Schutzschicht und Bauteil
DE112008003460T5 (de) Überzogene Superlegierungs-Gegenstände
DE60125896T2 (de) Thermisch stabilisierte Wärmedämmschicht und deren Aufbringung
EP2612949A2 (de) Legierung, Schutzschicht und Bauteil
EP2279282A1 (de) Verfahren zur herstellung einer optimierten haftvermittlerschicht durch teilweise verdampfung der haftvermittlerschicht und ein schichtsystem
EP2907888A1 (de) Verdichterschaufel mit erosionsbeständiger Hartstoffbeschichtung
WO2007063091A1 (de) Legierung, schutzschicht zum schutz eines bauteils gegen korrosion und oxidation bei hohen temperaturen und bauteil
EP1260602B1 (de) Verfahren zum Erzeugen eines wärmedämmenden Schichtsystems auf einem metallischen Substrat
EP1798299B1 (de) Legierung, Schutzschicht und Bauteil
EP1956105A1 (de) Legierung, Schutzschicht zum Schutz eines Bauteils gegen Korrision und Oxidation bei hohen Temperaturen und Bauteil
EP2882939A1 (de) Verfahren zur aufbereitung einer gasturbinenschaufel sowie gasturbine mit derartiger schaufel
EP2845924A1 (de) Poröses keramisches Schichtsystem
EP2537959B1 (de) Mehrfache Verschleißschutzbeschichtung und Verfahren zu Ihrer Herstellung
EP1967615A1 (de) Verfahren zum Aufbringen einer Wärmedämmbeschichtung und Turbinenbauteile mit einer Wärmedämmbeschichtung
EP2699713B1 (de) Schichtsystem mit zweilagiger metallischer schicht
EP1900708B1 (de) Wärmedämmstoff mit hoher zyklischer Temperaturbelastbarkeit
EP2341165A1 (de) Keramisches Bauteil oder keramische Schicht mit hoher Porosität, deren Verwendung sowie Bauteil aufweisend diese Schicht
DE112008003459T5 (de) Verfahren zum Aufbringen von Wärmesperren-Überzugssystemen
DE112017005103B4 (de) Wärmedämmschicht, turbinenelement, und wärmedämmschichtverfahren
EP1811055A1 (de) Verfahren zur Herstellung eines Bauteils mit Löchern

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20071218

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20080430

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502006003197

Country of ref document: DE

Date of ref document: 20090430

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090318

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090318

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090318

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090318

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090318

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090618

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090318

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090629

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090318

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090318

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090827

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090318

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090318

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090718

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090318

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090618

BERE Be: lapsed

Owner name: ALSTOM TECHNOLOGY LTD

Effective date: 20090731

26N No opposition filed

Effective date: 20091221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090731

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090619

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090704

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090704

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090318

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20150721

Year of fee payment: 10

Ref country code: DE

Payment date: 20150721

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502006003197

Country of ref document: DE

Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502006003197

Country of ref document: DE

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502006003197

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160704