EP1902160B1 - Ceramic heat insulating layer - Google Patents
Ceramic heat insulating layer Download PDFInfo
- Publication number
- EP1902160B1 EP1902160B1 EP06764032A EP06764032A EP1902160B1 EP 1902160 B1 EP1902160 B1 EP 1902160B1 EP 06764032 A EP06764032 A EP 06764032A EP 06764032 A EP06764032 A EP 06764032A EP 1902160 B1 EP1902160 B1 EP 1902160B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- thermal barrier
- coating
- barrier coating
- component
- intermetallic compound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/28—Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
- F01D5/288—Protective coatings for blades
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/32—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
- C23C28/321—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/32—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
- C23C28/321—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
- C23C28/3215—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer at least one MCrAlX layer
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/34—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
- C23C28/345—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/34—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
- C23C28/345—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
- C23C28/3455—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/36—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including layers graded in composition or physical properties
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C30/00—Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/04—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
Definitions
- the invention relates to the field of materials technology. It relates to a ceramic thermal barrier coating, which for coating thermally highly stressed components such. As blades of a gas turbine, is used.
- thermal barrier coatings thermal barrier coatings
- TBC thermal barrier coatings
- Y 2 O 3 yttria
- ZrO 2 zirconia
- adhesive layers of MCrAIY are often provided between the thermal barrier coating and the surface of the component, where M stands for metal, specifically for Ni, Fe, Co or combinations thereof.
- Plasma spraying such as. As plasma spraying in air (Air Plasma Spraying APS), low pressure plasma spraying (LPPS), vacuum plasma spraying (VPS) or flame spraying, such. High Velocity Oxygen Fuel (HVOF), as well as Physical Vapor Deposition (PVD), e.g. B. by electron beam (Electron Beam Physical Vapor Deposition EP-PVD) known (see, eg. US 6,352,788 B2 . US 6,544,665 B2 ).
- Air Plasma Spraying APS Air Plasma Spraying APS
- LPPS low pressure plasma spraying
- VPS vacuum plasma spraying
- HVOF High Velocity Oxygen Fuel
- PVD Physical Vapor Deposition
- B. by electron beam Electro Beam Physical Vapor Deposition EP-PVD
- APS-sprayed TBCs have e.g. B. a high degree of inhomogeneities and porosity, which advantageously reduces the heat transfer through the TBC.
- B a high degree of inhomogeneities and porosity
- One of these countermeasures is, for example, the spraying of thicker layers. This is disadvantageous on the one hand very expensive, on the other hand practically impossible in many cases.
- Typical TBC layer thicknesses are approx. 250-300 ⁇ m.
- Al 2 O 3 (at least 0.1-3 mol%) in the microstructure of a TBC bring.
- the Al 2 O 3 does not combine with the matrix of the ceramic layer, but forms deposits and thus prevents grain growth. However, this does not have a positive influence on the voltage gradient and thus on the reduction of the danger of the TBC breaking away.
- EP 0799 904 A1 are known graded TBC, in the microstructure also oxides, preferably Al 2 O 3 , which were previously mixed with metallic materials, preferably alloyed nickel aluminides and then evaporated, were introduced. This achieves improved corrosion resistance under thermal cycling.
- a Ni or NiCo aluminide layer for example NiCrAlY
- Y 2 O 3 yttrium oxide
- ZrO 2 stabilized zirconia
- Such layers lead to improved thermal fatigue behavior of the components and good high-temperature oxidation resistance with acceptable adhesive strength.
- the aim of the invention is to avoid the mentioned disadvantages of the prior art.
- the invention is based on the object to develop an improved ceramic thermal barrier coating based on yttria (Y 2 O 3 ) stabilized zirconia (ZrO 2 ) for coating a component of a nickel-base superalloy, which is characterized by a long service life and high Oxidation resistance and ductility distinguished.
- this object is achieved in that the thermal barrier coating on the basis of yttria (Y 2 O 3 ) stabilized zirconia (ZrO 2 ) in addition to production-related impurities still at least one high-temperature and oxidation-resistant intermetallic compound whose volume fraction as a function of the distance from the Surface of the nickel-based superalloy continuously or stepwise, preferably in exponential or linear form, decreases, wherein the intermetallic compound YRh and / or Erlr.
- Y 2 O 3 yttria
- ZrO 2 stabilized zirconia
- the advantage of the invention is that a gradual change in the composition of the thermal barrier coating as a function of the thickness of the thermal barrier coating produces a less steep gradient of stress. This leads to a higher elongation tolerance of the TBC layer and thus on the one hand to an increased life under thermal stress (no chipping) and on the other hand to the possibility to apply thicker thermal barrier coatings and thus to use the coated components at higher temperatures.
- the intermetallic compounds YRh and Erlr used are oxidation-resistant and have sufficient ductility over a wide temperature range. Also have They have a low tendency to interdiffuse and have a high melting point.
- Distributive is when the volume fraction of the intermetallic compound in the layer at the surface of the component about 80 vol .-% and at the free surface is about 5%.
- the invention is applicable to all components which are exposed to high temperatures and oxidative / corrosive environmental influences, such. As blades, heat accumulation segments or parts of the combustion chambers of gas turbines.
- Fig. 1 shows in perspective view as an example of such components 1, a blade of a gas turbine.
- the blade 1 consists of a blade root 2, a platform 3 and an airfoil 4, in which cooling air channels are present, the openings in Fig. 1 are denoted by 5.
- the blade 1 is anchored with its blade root 2 in circumferential grooves in the rotor of the gas turbine, not shown.
- the blade 4 is subjected to hot combustion gases, so that the surface 7 of the airfoil 4 is exposed to both the hot combustion gases and attacks by oxidation, corrosion and erosion.
- the blade 4 is therefore on its outer surface 7 with a metallic adhesive layer 6 (in Fig. 1 not visible), on which a ceramic thermal barrier coating 8 is sprayed.
- the base material of the rotor blade 1 of the gas turbine for example, consists of a directionally solidified nickel base superalloy CM 247 with the following chemical composition (in wt .-%): 0.07 C, 8.1 Cr, 9.2 Cr, 0.5 Mo, 9.5 W, 3.2 Ta, 5.6 Al, 0.7 Ti, 0.015 B, 0.015 Zr, 1.4 Hf, balance Ni.
- the turbine blade may preferably consist of a single crystal alloy, for example with the following chemical composition (in% by weight): 7.7-8.3 Cr, 5.0-5.25 Co, 2.0-2.1 Mo, 7.8-8.3 W, 5.8-6.1 Ta, 4.9-5.1 Al, 1.3-1.4 Ti, 0.11-0.15 Si, 0.11-0.15 Hf, 200-750 ppm C, 50-400 ppm B, balance nickel and manufacturing impurities.
- These base materials are provided on their outer surface 7 with a metallic adhesive layer 6, preferably of the type MCrAIY, where M is metal (Ni, Co, Fe or combinations thereof). in the In this case, NiCrAlY was used for the adhesive layer 6.
- the Alvers adhesive layers of this type form an Al 2 O 3 -Zdertik 9, which forms by thermal oxidation of the adhesive layer 6. This Al 2 O 3 layer 9 chemically bonds the ceramic thermal barrier coating to the adhesive layer 6 and the substrate (nickel-base superalloy).
- the TBC 8 consists of yttria (Y 2 O 3 ) stabilized zirconia (ZrO 2 ) with about 7% yttria present.
- the thermal barrier coating 8 is sprayed by means of known thermal spraying, for example by means of APS.
- the ceramic powder is first mixed with powder of at least one intermetallic compound 12, in the present example of YRh, and then this powder mixture is thermally sprayed onto the adhesive layer 6.
- the volume fraction of the intermetallic compound 12 is very high, here 80 vol .-%.
- Fig. 3 This is in Fig. 3 1, where the schematic profile of the volume fractions of intermetallic compounds 12 or zirconium oxide (ZrO 2 ) stabilized with yttrium oxide (Y 2 O 3 ) in the thermal barrier coating 8 is shown as a function of the distance from the adhesive layer 6, ie, the thickness of the thermal barrier coating 8 becomes.
- the volume fraction of intermetallic compound 12 decreases continuously here exponentially. In other examples, it may also be linear or stepwise decreasing.
- the ceramic thermal barrier coatings produced by APS consist of individual grains and have a relatively large porosity.
- Fig. 2 These grains are designated by the reference numeral 10 and the pores by the reference numeral 11.
- the intermetallic compound 12, here YRh preferably deposits in these pores 11.
- the intermetallic compounds, such as YRh or Erlr are resistant to oxidation and have sufficient ductility in a wide temperature range. In addition, they have little tendency for interdiffusion and have a high melting point. Due to the gradual change in the composition of the thermal barrier coating as a function of the thickness of the thermal barrier coating, a less steep stress gradient is advantageously generated in the layer. This leads to a higher elongation tolerance of the thermal barrier coating and thus on the one hand to increased life under thermal stress (no chipping) and on the other hand to the possibility to apply thicker thermal barrier coatings and thus use the coated components at higher temperatures.
- layer thicknesses of approximately 250-300 ⁇ m could be sprayed by means of APS in the case of conventional yttria-stabilized zirconium oxide thermal barrier coatings, layer thicknesses of up to approximately 2 mm can easily be achieved in the present invention.
- the invention is not limited to the example described.
- the following intermetallic compound is also suitable for achieving the advantages according to the invention: Erlr, since these intermetallic compounds are resistant to oxidation, have good ductility in all temperature ranges, and have a low tendency to interdiffuse and have high melting points. Due to the gradual grading of the volume fraction of intermetallic compound a less steep voltage gradient is achieved, so that the thermal barrier coating substantially is more strain tolerant and thus has a longer life under thermal stress.
- novel thermal barrier coatings can also be applied to other thermally highly loaded gas turbine components, such as heat shields or combustion chamber liner, wherein the base material of the component z.
- B. Hastalloy or Haynes 230 may be and the adhesive layer z.
- B. may be a NiCoCrAIY layer.
- thermal spraying of the TBC according to the present invention also other spraying methods are suitable as APS, z. Eg EB-PVD.
- the thermal barrier coatings produced are stalk-shaped.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- General Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
- Coating By Spraying Or Casting (AREA)
- Inorganic Insulating Materials (AREA)
- Insulated Conductors (AREA)
- Cylinder Crankcases Of Internal Combustion Engines (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Abstract
Description
Die Erfindung bezieht sich auf das Gebiet der Werkstofftechnik. Sie betrifft eine keramische Wärmedämmschicht, welche zum Beschichten thermisch hochbelasteter Bauteile, wie z. B. Laufschaufeln einer Gasturbine, eingesetzt wird.The invention relates to the field of materials technology. It relates to a ceramic thermal barrier coating, which for coating thermally highly stressed components such. As blades of a gas turbine, is used.
Um die Effizienz von Gasturbinen zu erhöhen werden diese bei sehr hohen Betriebstemperaturen gefahren. Die den heissen Gasen ausgesetzten Bauteile, z. B. Leit- und Laufschaufeln oder Brennkammerelemente, werden daher bekanntermassen auf ihrer Oberfläche mit Wärmedämmschichten (Thermal Barrier Coatings, TBC) versehen, um höhere Betriebstemperaturen zu erreichen bzw. die Lebensdauer der Bauteile zu verlängern. Diese Wärmedämmschichten bestehen üblicherweise aus einem keramischen Material, meist aus mit Yttriumoxid (Y2O3) stabilisiertem Zirkonoxid (ZrO2), das auf die Oberfläche der oftmals aus Nickelbasis-Superlegierungen bestehenden Bauteile aufgebracht wird. Um die Haftung der keramischen Schicht auf dem Bauteil zu verbessern, werden zwischen der Wärmedämmschicht und der Oberfläche des Bauteiles oftmals Haftschichten aus MCrAIY vorgesehen, wobei M für Metall, und zwar für Ni, Fe, Co oder Kombinationen daraus, steht.In order to increase the efficiency of gas turbines, they are operated at very high operating temperatures. The hot gases exposed components, eg. As guide and blades or combustion chamber elements are therefore known to be provided on its surface with thermal barrier coatings (thermal barrier coatings, TBC) to achieve higher operating temperatures and to extend the life of the components. These thermal barrier coatings usually consist of a ceramic material, usually of yttria (Y 2 O 3 ) stabilized zirconia (ZrO 2 ), the is applied to the surface of the often made of nickel-base superalloys components. In order to improve the adhesion of the ceramic layer on the component, adhesive layers of MCrAIY are often provided between the thermal barrier coating and the surface of the component, where M stands for metal, specifically for Ni, Fe, Co or combinations thereof.
Es ist bekannter Stand der Technik, die TBC thermisch aufzuspritzen. Als mögliche Verfahren zum Aufbringen dieser Schichten sind Plasmaspritzen, wie z. B. Plasmaspritzen in Luft (Air Plasma Spraying APS), Niederdruck-Plasmaspritzen (Low Pressure Plasma Spraying LPPS), Vakuum-Plasmaspritzen (Vacuum Plasma Spraying VPS) oder Flammenspritzen, wie z. B. Hochgeschwindigkeitsflammenspritzen (High Velocity Oxygen Fuel HVOF), sowie physikalische Dampfabscheidung (Physical Vapour Deposition PVD), z. B. mittels Elektronenstrahl (Electron Beam Physical Vapour Deposition EP-PVD) bekannt (siehe z. B.
Mit Hilfe des EP-PVD-Verfahren werden säulenartige Schichten erzeugt, die eine dehnungstolerante Kornstruktur aufweisen, die fähig ist sich bei unterschiedlicher Beanspruchung auszudehnen oder zusammenzuziehen, so dass keine Spannungen erzeugt werden, welche beispielsweise zum Abplatzen der Schichten führen würden. Nachteilig sind bei diesem Verfahren aber die hohen Kosten.With the aid of the EP-PVD method, columnar layers are produced which have an expansion-tolerant grain structure that is capable of expanding or contracting under different loads, so that no stresses are generated which would, for example, cause the layers to flake off. The disadvantage of this method but the high cost.
Im Gegensatz dazu haben APS-gespritze TBC z. B. einen hohen Grad an Inhomogenitäten und Porosität, was vorteilhaft den Wärmetransfer durch die TBC reduziert. Während des Betriebes einer Gasturbine erhöht aber sich durch Strukturveränderungen, z. B. Kornwachstum, die thermische Leitfähigkeit, so dass Gegenmassnahmen getroffen werden müssen um einen ausreichenden Wärmeschutz zu erreichen. Eine dieser Gegenmassnahmen ist beispielsweise das Spritzen dickerer Schichten. Dies ist nachteilig einerseits sehr teuer, andererseits praktisch oftmals nicht machbar. Übliche TBC-Schichtdicken sind ca. 250-300 µm.In contrast, APS-sprayed TBCs have e.g. B. a high degree of inhomogeneities and porosity, which advantageously reduces the heat transfer through the TBC. During operation of a gas turbine but increased by structural changes, eg. As grain growth, the thermal conductivity, so that countermeasures must be taken to achieve adequate thermal protection. One of these countermeasures is, for example, the spraying of thicker layers. This is disadvantageous on the one hand very expensive, on the other hand practically impossible in many cases. Typical TBC layer thicknesses are approx. 250-300 μm.
Gemäss
Aus
Weiterhin ist bekannt (siehe beispielsweise
Ziel der Erfindung ist es, die genannten Nachteile des Standes der Technik zu vermeiden. Der Erfindung liegt die Aufgabe zu Grunde, zur Beschichtung einer Komponente aus einer Nickelbasis-Superlegierung eine verbesserte keramische Wärmedämmschicht auf der Grundlage von mit Yttriumoxid (Y2O3) stabilisiertem Zirkonoxid (ZrO2) zu entwickeln, welche sich durch eine hohe Lebensdauer und hohe Oxidationsbeständigkeit und Duktilität auszeichnet.The aim of the invention is to avoid the mentioned disadvantages of the prior art. The invention is based on the object to develop an improved ceramic thermal barrier coating based on yttria (Y 2 O 3 ) stabilized zirconia (ZrO 2 ) for coating a component of a nickel-base superalloy, which is characterized by a long service life and high Oxidation resistance and ductility distinguished.
Erfindungsgemäss wird diese Aufgabe dadurch gelöst, dass die Wärmedämmschicht auf der Grundlage von mit Yttriumoxid (Y2O3) stabilisiertem Zirkonoxid (ZrO2) neben herstellungsbedingten Verunreinigungen noch mindestens eine hochtemperatur- und oxidationsbeständige intermetallische Verbindung aufweist, deren Volumenanteil in Abhängigkeit vom Abstand von der Oberfläche der Nickel-Basis-Superlegierung kontinuierlich oder stufenweise, vorzugsweise in exponentieller oder linearer Form, abnimmt, wobei die intermetallische Verbindung YRh und/oder Erlr ist.According to the invention, this object is achieved in that the thermal barrier coating on the basis of yttria (Y 2 O 3 ) stabilized zirconia (ZrO 2 ) in addition to production-related impurities still at least one high-temperature and oxidation-resistant intermetallic compound whose volume fraction as a function of the distance from the Surface of the nickel-based superalloy continuously or stepwise, preferably in exponential or linear form, decreases, wherein the intermetallic compound YRh and / or Erlr.
Der Vorteil der Erfindung besteht darin, dass durch die allmähliche Veränderung der Zusammensetzung der Wärmedämmschicht in Abhängigkeit von der Dicke der Wärmedämmschicht ein weniger steiler Spannungsgradient erzeugt wird. Dies führt zu einer höheren Dehnungstoleranz der TBC-Schicht und damit einerseits zu einer erhöhten Lebensdauer bei thermischer Beanspruchung (kein Abplatzen) und anderseits zur Möglichkeit, dickere Wärmedämmschichten aufzubringen und somit die beschichteten Bauteile bei höheren Temperaturen einzusetzen. Die verwendeten intermetallischen Verbindungen YRh und Erlr sind oxidationsbeständig und besitzen in einem grossen Temperaturbereich eine ausreichende Duktilität. Ausserdem haben sie nur eine geringe Tendenz zur Interdiffusion und besitzen einen hohen Schmelzpunkt.The advantage of the invention is that a gradual change in the composition of the thermal barrier coating as a function of the thickness of the thermal barrier coating produces a less steep gradient of stress. This leads to a higher elongation tolerance of the TBC layer and thus on the one hand to an increased life under thermal stress (no chipping) and on the other hand to the possibility to apply thicker thermal barrier coatings and thus to use the coated components at higher temperatures. The intermetallic compounds YRh and Erlr used are oxidation-resistant and have sufficient ductility over a wide temperature range. Also have They have a low tendency to interdiffuse and have a high melting point.
Verteilhaft ist, wenn der Volumenanteil der intermetallischen Verbindung in der Schicht an der Oberfläche der Komponente ca. 80 Vol.-% und an der freien Oberfläche ca. 5 % beträgt.Distributive is when the volume fraction of the intermetallic compound in the layer at the surface of the component about 80 vol .-% and at the free surface is about 5%.
In der Zeichnung ist ein Ausführungsbeispiel der Erfindung dargestellt.In the drawing, an embodiment of the invention is shown.
Es zeigen.
- Fig. 1
- eine perspektivische Darstellung einer Laufschaufel einer Gasturbine;
- Fig. 2
- einen Schnitt entlang der Linie II-II in
Fig. 1 und - Fig. 3
- einen schematischen Verlauf der Volumenanteile in der TBC in Abhängigkeit vom Abstand vom Grundsubstrat.
- Fig. 1
- a perspective view of a blade of a gas turbine;
- Fig. 2
- a section along the line II-II in
Fig. 1 and - Fig. 3
- a schematic course of the volume fractions in the TBC as a function of the distance from the base substrate.
Es sind nur die für die Erfindung wesentlichen Merkmale dargestellt. Gleiche Elemente haben in unterschiedlichen Figuren gleiche Bezugszeichen.Only the essential features of the invention are shown. Identical elements have the same reference numerals in different figures.
Nachfolgend wird die Erfindung anhand eines Ausführungsbeispieles näher erläutert.The invention will be explained in more detail with reference to an embodiment.
Die Erfindung ist anwendbar für alle Komponenten, welche hohen Temperaturen und oxidativen/korrosiven Umwelteinflüssen ausgesetzt sind, wie z. B. Schaufeln, Wärmestausegmente oder Teile der Brennkammern von Gasturbinen.The invention is applicable to all components which are exposed to high temperatures and oxidative / corrosive environmental influences, such. As blades, heat accumulation segments or parts of the combustion chambers of gas turbines.
In der Schnittdarstellung gemäss
In einem anderen beispiel kann die Turbinenschaufel vorzugsweise aus einer Einkristalllegierung, beispielsweise mit folgender chemischer Zusammensetzung bestehen (Angaben in Gew.-%): 7.7-8.3 Cr, 5.0-5.25 Co, 2.0-2.1 Mo, 7.8-8.3 W, 5.8-6.1 Ta, 4.9-5.1 Al, 1.3-1.4 Ti, 0.11-0.15 Si, 0.11-0.15 Hf, 200-750 ppm C, 50-400 ppm B, Rest Nickel und herstellungsbedingte Verunreinigungen.In another example, the turbine blade may preferably consist of a single crystal alloy, for example with the following chemical composition (in% by weight): 7.7-8.3 Cr, 5.0-5.25 Co, 2.0-2.1 Mo, 7.8-8.3 W, 5.8-6.1 Ta, 4.9-5.1 Al, 1.3-1.4 Ti, 0.11-0.15 Si, 0.11-0.15 Hf, 200-750 ppm C, 50-400 ppm B, balance nickel and manufacturing impurities.
Diese Grundwerkstoffe (Substrate) sind auf ihrer äusseren Oberfläche 7 mit einer metallischen Haftschicht 6, vorzugsweise des Typs MCrAIY versehen, wobei M für Metall steht (Ni, Co, Fe oder deren Kombinationen). Im vorliegenden Falle wurde NiCrAlY für die Haftschicht 6 verwendet. Die Alreichen Haftschichten dieses Typs bilden eine Al2O3-Zunderschicht 9, die sich durch thermische Oxidation der Haftschicht 6 bildet. Diese Al2O3-Schicht 9 bindet chemisch die keramische Wärmedämmschicht an die Haftschicht 6 und das Substrat (Nickel-Basissuperlegierung).These base materials (substrates) are provided on their
Die TBC 8 besteht aus mit Yttriumoxid (Y2O3) stabilisiertem Zirkonoxid (ZrO2), wobei etwa 7 % Yttriumoxid vorhanden ist. Die Wärmedämmschicht 8 wird mittels bekannter thermischer Spritzverfahren beispielsweise mittels APS aufgespritzt. Dazu wird das keramische Pulver zunächst mit Pulver aus mindestens einer intermetallischen Verbindung 12, im vorliegenden Beispiel aus YRh, gemischt und anschliessend diese Pulvermischung auf die Haftschicht 6 thermisch aufgespritzt. Im ersten Verfahrensschritt ist der Volumenanteil der intermetallischen Verbindung 12 sehr hoch, hier 80 Vol.-%. Die beiden Verfahrensschritte werden nun mehrfach wiederholt werden, wobei die Pulvermischung jeweils einen geringeren Volumenanteil an der intermetallischen Verbindung YRh aufweist als in den vorangegangenen Verfahrensschritten und die Pulvermischung jeweils auf die bereits im vorangegangenen Verfahrensschritt aufgespritzte Schicht aufgespritzt wird, so dass letztlich eine Wärmedämmschicht 8 mit einem über die Schichtdicke abnehmenden Volumenanteil an intermetallischer Verbindung 12 gebildet wird. Letztlich sind an der Oberfläche der fertig beschichteten Komponente 1 nur noch ca. 5 Vol.-% YRh vorhanden.The
Dies ist in
Es ist bekannt, dass die durch APS erzeugten keramischen Wärmedämmschichten aus einzelnen Körner bestehen und eine relativ grosse Porosität aufweisen. In
Während bei konventionellen mit Yttriumoxid stabilisierten Zirkonoxid-Wärmedämmschichten Schichtdicken von ca. 250-300 µm mittels APS gespritzt werden konnten, sind bei der vorliegenden Erfindung Schichtdicken bis ca. 2 mm problemlos machbar.While layer thicknesses of approximately 250-300 μm could be sprayed by means of APS in the case of conventional yttria-stabilized zirconium oxide thermal barrier coatings, layer thicknesses of up to approximately 2 mm can easily be achieved in the present invention.
Selbstverständlich ist die Erfindung nicht auf das beschriebene Beispiel beschränkt. Neben dem bereits erwähnten YRh ist auch die folgende intermetallische Verbindung geeignet, die erfindungsgemässen Vorteile zu erreichen: Erlr , da diese intermetallischen Verbindungen oxidationsbeständig sind, in allen Temperaturbereichen eine gute Duktilität aufweisen, sowie eine geringe Tendenz zur Interdiffusion und hohe Schmelzpunkte haben. Infolge der allmählichen Abstufung des Volumenanteils an intermetallischer Verbindung wird ein weniger steiler Spannungsgradient erreicht, so dass die Wärmedämmschicht wesentlich dehnungstoleranter ist und damit eine längere Lebensdauer bei thermischer Beanspruchung aufweist.Of course, the invention is not limited to the example described. In addition to the YRh already mentioned, the following intermetallic compound is also suitable for achieving the advantages according to the invention: Erlr, since these intermetallic compounds are resistant to oxidation, have good ductility in all temperature ranges, and have a low tendency to interdiffuse and have high melting points. Due to the gradual grading of the volume fraction of intermetallic compound a less steep voltage gradient is achieved, so that the thermal barrier coating substantially is more strain tolerant and thus has a longer life under thermal stress.
Die erfindungsgemässen Wärmedämmschichten können auch auf andere thermisch hochbelastete Gasturbinenkomponenten, wie beispielsweise Wärmeschutzschilder oder Brennkammerliner, aufgebracht werden, wobei der Grundwerkstoff der Komponente z. B. Hastalloy oder Haynes 230 sein kann und die Haftschicht z. B. eine NiCoCrAIY-Schicht sein kann.The novel thermal barrier coatings can also be applied to other thermally highly loaded gas turbine components, such as heat shields or combustion chamber liner, wherein the base material of the component z. B. Hastalloy or Haynes 230 may be and the adhesive layer z. B. may be a NiCoCrAIY layer.
Schliesslich sind zum thermischen Spritzen der TBC gemäss vorliegender Erfindung auch andere Spritzverfahren als APS geeignet, z. B. EB-PVD. Die damit erzeugten Wärmedämmschichten sind stängelförmig.Finally, for thermal spraying of the TBC according to the present invention, also other spraying methods are suitable as APS, z. Eg EB-PVD. The thermal barrier coatings produced are stalk-shaped.
Selbstverständlich ist es auch möglich, die TBC direkt auf die Oberfläche der Komponente zu spritzen, d.h. ohne eine zusätzliche Haftschicht.Of course, it is also possible to inject the TBC directly onto the surface of the component, i. without an additional adhesive layer.
- 11
- Komponente, z. B. LaufschaufelComponent, e.g. B. Blade
- 22
- Schaufelfussblade root
- 33
- Plattformplatform
- 44
- Schaufelblattairfoil
- 55
- Öffnungen der KühlluftkanäleOpenings of the cooling air ducts
- 66
- Haftschichtadhesive layer
- 77
- Oberfläche der KomponenteSurface of the component
- 88th
- Wärmedämmschicht, TBCThermal barrier coating, TBC
- 99
- Al2O3-SchichtAl 2 O 3 layer
- 1010
- Korngrain
- 1111
- Porepore
- 1212
- Intermetallische VerbindungIntermetallic compound
Claims (5)
- Ceramic thermal barrier coating (8) for coating the surface (7) of a component (1) consisting of a nickel-based superalloy and an adhesive coating optionally applied thereon (6), the thermal barrier coating (8) preferably consisting of zirconium oxide (ZrO2) stabilized by yttrium oxide (Y2O3) and production-related impurities, and the thermal barrier coating (8) comprises at least one high-temperature and oxidation resistant intermetallic compound, the volume fraction of which decreases continuously or in stages as the distance from the surface (7) of the component (1)/the adhesive coating (6) increases, characterized in that the intermetallic compound is YRh and/or ErIr.
- Thermal barrier coating (8) as claimed in Claim 1, characterized in that the volume fraction of the intermetallic compound decreases exponentially as the distance from the surface (7) of the component (1)/the adhesive coating (6) increases.
- Thermal barrier coating (8) as claimed in Claim 1, characterized in that the volume fraction of the intermetallic compound decreases linearly as the distance from the surface (7) of the component (1)/the adhesive coating (6) increases.
- Thermal barrier coating (8) as claimed in Claim 1, characterized in that the volume fraction of the intermetallic compound in the coating is approximately 80% on the surface (7) of the component (1) and approximately 5% on the free surface.
- Gas turbine component, characterized in that it is coated with a thermal barrier coating (8) as claimed in one of Claims 1-4.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH11522005 | 2005-07-12 | ||
PCT/EP2006/063826 WO2007006681A1 (en) | 2005-07-12 | 2006-07-04 | Ceramic heat insulating layer |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1902160A1 EP1902160A1 (en) | 2008-03-26 |
EP1902160B1 true EP1902160B1 (en) | 2009-03-18 |
Family
ID=35985842
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP06764032A Not-in-force EP1902160B1 (en) | 2005-07-12 | 2006-07-04 | Ceramic heat insulating layer |
Country Status (5)
Country | Link |
---|---|
US (2) | US7666516B2 (en) |
EP (1) | EP1902160B1 (en) |
AT (1) | ATE426052T1 (en) |
DE (1) | DE502006003197D1 (en) |
WO (1) | WO2007006681A1 (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007006681A1 (en) | 2005-07-12 | 2007-01-18 | Alstom Technology Ltd | Ceramic heat insulating layer |
US7800021B2 (en) * | 2007-06-30 | 2010-09-21 | Husky Injection Molding Systems Ltd. | Spray deposited heater element |
FR2960242B1 (en) | 2010-05-18 | 2015-05-01 | C R M A | PROCESS FOR MANUFACTURING MULTI-LAYER COMPONENTS HAVING INCLINED HOLES AND RESISTANT TO HIGH THERMAL CONSTRAINTS AND USE OF THE PROCESS FOR REPAIRING WORKPIECES |
US20160298467A1 (en) * | 2013-11-18 | 2016-10-13 | United Technologies Corporation | Article having variable coating |
US8939706B1 (en) | 2014-02-25 | 2015-01-27 | Siemens Energy, Inc. | Turbine abradable layer with progressive wear zone having a frangible or pixelated nib surface |
US20150275682A1 (en) * | 2014-04-01 | 2015-10-01 | Siemens Energy, Inc. | Sprayed haynes 230 layer to increase spallation life of thermal barrier coating on a gas turbine engine component |
US9869013B2 (en) | 2014-04-25 | 2018-01-16 | Applied Materials, Inc. | Ion assisted deposition top coat of rare-earth oxide |
JP6301554B2 (en) * | 2015-04-17 | 2018-03-28 | 三菱日立パワーシステムズ株式会社 | Steam turbine blade and method for manufacturing steam turbine blade |
CN106435566B (en) * | 2016-09-12 | 2018-09-25 | 广西大学 | A kind of method of niobium alloy surface laser multiple tracks cladding composite ceramics gradient coating |
IT201900003691A1 (en) * | 2019-03-13 | 2020-09-13 | Nuovo Pignone Tecnologie Srl | Abrasive terminal of a rotor blade for a turboexpander |
CN113373408B (en) * | 2021-05-14 | 2022-08-09 | 中国航发北京航空材料研究院 | Dysprosium-doped gadolinium zirconate thermal barrier coating material and preparation method of coating |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3912235A (en) * | 1974-12-19 | 1975-10-14 | United Technologies Corp | Multiblend powder mixing apparatus |
JPS62156938A (en) * | 1985-12-28 | 1987-07-11 | 航空宇宙技術研究所 | Manufacture of leaning-function material |
US5236787A (en) * | 1991-07-29 | 1993-08-17 | Caterpillar Inc. | Thermal barrier coating for metallic components |
WO1993005194A1 (en) * | 1991-09-05 | 1993-03-18 | Technalum Research, Inc. | Method for the production of compositionally graded coatings |
CN1074689C (en) * | 1996-04-04 | 2001-11-14 | E·O·帕通电子焊接研究院电子束工艺国际中心 | Method of producing on substrate of protective coatings with chemical composition and structure gradient across thickness and with top ceramic layer |
US5998003A (en) * | 1998-09-10 | 1999-12-07 | Electric Power Research Institute, Inc. | Multilayer nanostructured ceramic thermal barrier coatings |
US6352788B1 (en) | 2000-02-22 | 2002-03-05 | General Electric Company | Thermal barrier coating |
US6503575B1 (en) * | 2000-05-22 | 2003-01-07 | Praxair S.T. Technology, Inc. | Process for producing graded coated articles |
US6544665B2 (en) | 2001-01-18 | 2003-04-08 | General Electric Company | Thermally-stabilized thermal barrier coating |
US6502304B2 (en) * | 2001-05-15 | 2003-01-07 | General Electric Company | Turbine airfoil process sequencing for optimized tip performance |
CN100345990C (en) | 2001-11-09 | 2007-10-31 | 阿尔斯托姆科技有限公司 | Method for developing a nickel-base super alloy |
DE10305912B4 (en) | 2003-02-13 | 2014-01-30 | Alstom Technology Ltd. | Hybrid blade for thermal turbomachinery |
DE10313489A1 (en) | 2003-03-26 | 2004-10-14 | Alstom Technology Ltd | Thermal turbomachine with axial flow |
DE10313490A1 (en) | 2003-03-26 | 2004-10-14 | Alstom Technology Ltd | Thermal turbomachine with axial flow |
CA2586974C (en) | 2004-11-18 | 2013-06-25 | Alstom Technology Ltd | Nickel-base superalloy |
JP4636319B2 (en) * | 2005-04-08 | 2011-02-23 | 住友金属工業株式会社 | Ti alloy, Ti alloy member and manufacturing method thereof |
WO2007006681A1 (en) | 2005-07-12 | 2007-01-18 | Alstom Technology Ltd | Ceramic heat insulating layer |
-
2006
- 2006-07-04 WO PCT/EP2006/063826 patent/WO2007006681A1/en not_active Application Discontinuation
- 2006-07-04 EP EP06764032A patent/EP1902160B1/en not_active Not-in-force
- 2006-07-04 DE DE502006003197T patent/DE502006003197D1/en active Active
- 2006-07-04 AT AT06764032T patent/ATE426052T1/en not_active IP Right Cessation
-
2008
- 2008-01-04 US US11/969,257 patent/US7666516B2/en not_active Expired - Fee Related
-
2010
- 2010-01-04 US US12/651,624 patent/US20100104764A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
US7666516B2 (en) | 2010-02-23 |
US20100104764A1 (en) | 2010-04-29 |
WO2007006681A1 (en) | 2007-01-18 |
ATE426052T1 (en) | 2009-04-15 |
US20080241560A1 (en) | 2008-10-02 |
EP1902160A1 (en) | 2008-03-26 |
DE502006003197D1 (en) | 2009-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1902160B1 (en) | Ceramic heat insulating layer | |
EP1969156B1 (en) | Method for coating a blade and blade of a gas turbine | |
WO2005042802A1 (en) | Protective layer for the protection of a component against corrosion and oxidation at elevated temperatures, and component | |
EP1637622A1 (en) | Process for application of a protective coating | |
EP2468925A2 (en) | Method for producing a thermal insulation layer construction | |
EP2458025B1 (en) | Alloy, protective coating and component | |
DE112008003460T5 (en) | Coated Super Alloy Objects | |
DE60125896T2 (en) | Thermally stabilized thermal barrier coating and its application | |
EP2612949A2 (en) | Alloy, protective layer and component | |
EP2907888A1 (en) | Compressor blade with erosion resistant hard material coating | |
EP2279282A1 (en) | Method for the production of an optimized bonding agent layer by means of partial evaporation of the bonding agent layer, and a layer system | |
EP1834004A1 (en) | Alloy, protective layer for protecting a component against corrosion and oxidation at high temperatures and component | |
EP1260602B1 (en) | Process for producing a thermally insulating coating system on a metallic substrate | |
EP1798299B1 (en) | Alloy, protective coating and component | |
EP1956105A1 (en) | Alloy, protective layer for protecting a component from corrosion and oxidisation in high temperatures and component | |
EP2882939A1 (en) | Method for treating a gas turbine blade and gas turbine having said blade | |
EP2589682A1 (en) | Ceramic thermal insulation coating on structured surface and production method | |
EP2537959B1 (en) | Multiple wear-resistant coating and method for its production | |
EP2845924A1 (en) | Porous ceramic coating system | |
EP1967615A1 (en) | Method for applying a heat insulation coating and turbine components with a heat insulation coating | |
EP2699713B1 (en) | Coating system with two-ply metallic layer | |
DE60225569T2 (en) | Method for local deposition of an MCrAlY coating | |
EP1900708B1 (en) | Heat insulation material with high cyclical temperature rating | |
DE112017005103B4 (en) | THERMAL INSULATION LAYER, TURBINE ELEMENT, AND THERMAL INSULATION PROCESS | |
EP2341165A1 (en) | Ceramic element or ceramic layer having high porosity, their use and ceramic element comprising said layer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20071218 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20080430 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REF | Corresponds to: |
Ref document number: 502006003197 Country of ref document: DE Date of ref document: 20090430 Kind code of ref document: P |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090318 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090318 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090318 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090318 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090318 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090318 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090618 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090318 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090629 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090318 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090318 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090827 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090318 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090318 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090718 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090318 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090618 |
|
BERE | Be: lapsed |
Owner name: ALSTOM TECHNOLOGY LTD Effective date: 20090731 |
|
26N | No opposition filed |
Effective date: 20091221 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090731 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20100331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090619 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090704 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090318 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090704 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100731 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090919 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090318 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090318 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20150721 Year of fee payment: 10 Ref country code: DE Payment date: 20150721 Year of fee payment: 10 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502006003197 Country of ref document: DE Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE Ref country code: DE Ref legal event code: R081 Ref document number: 502006003197 Country of ref document: DE Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502006003197 Country of ref document: DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20160704 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160704 |