EP1956105A1 - Alloy, protective layer for protecting a component from corrosion and oxidisation in high temperatures and component - Google Patents
Alloy, protective layer for protecting a component from corrosion and oxidisation in high temperatures and component Download PDFInfo
- Publication number
- EP1956105A1 EP1956105A1 EP20080009404 EP08009404A EP1956105A1 EP 1956105 A1 EP1956105 A1 EP 1956105A1 EP 20080009404 EP20080009404 EP 20080009404 EP 08009404 A EP08009404 A EP 08009404A EP 1956105 A1 EP1956105 A1 EP 1956105A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- component
- protective layer
- cobalt
- rhenium
- chromium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C30/00—Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/32—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
- C23C28/321—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/32—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
- C23C28/321—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
- C23C28/3215—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer at least one MCrAlX layer
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/34—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
- C23C28/345—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/34—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
- C23C28/345—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
- C23C28/3455—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T50/00—Aeronautics or air transport
- Y02T50/60—Efficient propulsion technologies, e.g. for aircraft
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31678—Of metal
Definitions
- the invention relates to an alloy according to claim 1, a protective layer for protecting a component against corrosion and oxidation at high temperatures according to claim 3 and a component according to claim 5.
- the invention relates to a protective layer for a component consisting of a nickel or cobalt base superalloy.
- protective layers for metallic components intended to increase their corrosion resistance and / or oxidation resistance are known in the art in large numbers. Most of these protective layers are known under the collective name MCrAlY, where M is at least one of the elements selected from the group comprising iron, cobalt and / or nickel and further essential components are chromium, aluminum and yttrium.
- Protective coatings containing rhenium are also from the U.S. Patent 5,154,885 and the EP 0 652 299 B1 known.
- the EP 1 524 334 A1 discloses an MCrAlY layer with a high cobalt content.
- the EP 1 306 454 B1 a protective layer of nickel, cobalt, chromium, aluminum, rhenium and yttrium. Information about the proportions of nickel and cobalt are not available.
- the US 6,346,134 B1 discloses an MCrAlY layer, having a chromium content of 20 wt.% to 35 wt.%, an aluminum content of 5 wt.% to 15 wt.%, additions of hafnium, rhenium, lanthanum or tantalum and a high yttrium content of 4 wt. % to 6% by weight.
- the US 6,280,857 B1 discloses a protective layer which discloses the elements cobalt, chromium and aluminum based on nickel, the optional addition of rhenium as well as compelling admixtures of yttrium and silicon.
- inlet temperatures are important determinants of thermodynamic efficiencies achievable with gas turbines. Due to the use of specially developed alloys as base materials for components that are subject to high thermal loads such as guide vanes and rotor blades, in particular through the use of monocrystalline superalloys, inlet temperatures of well over 1000 ° C are possible. Meanwhile, the prior art allows inlet temperatures of 950 ° C and more in stationary gas turbines and 1100 ° C and more in gas turbines of aircraft engines.
- a protective layer In addition to the sufficient chemical resistance of a protective layer under the attacks that are expected of flue gases at temperatures in the order of 1000 ° C, a protective layer must also have sufficient mechanical properties, not least in view of the mechanical interaction between the protective layer and the base material , to have. In particular, the protective layer must be sufficiently ductile in order to be able to follow any deformations of the base material and not to break, since in this way points of attack for oxidation and corrosion would be created.
- the problem typically arises that increasing the proportions of elements such as aluminum and chromium, which can improve the resistance of a protective layer against oxidation and corrosion, leads to a deterioration of the ductility of the protective layer, so that mechanical failure, in particular formation of cracks, is expected in a gas turbine usually occurring mechanical stress.
- elements such as aluminum and chromium
- a superalloy is known for a substrate that also contains rhenium. It describes that the intermetallic phases formed by rhenium reduce the long-term stability of the superalloy.
- an object of the present invention to provide an alloy and a protective layer which has good high-temperature resistance in corrosion and oxidation, has good long-term stability and, in addition, a mechanical stress to be expected particularly in a gas turbine at a high temperature well adjusted.
- the object is achieved by an alloy according to claim 1 and a protective layer according to claim 4.
- Another object of the invention is to provide a component which has increased protection against corrosion and oxidation.
- a component according to claim 6 in particular a component of a gas turbine or steam turbine, which has a protective layer of the type described above for protection against corrosion and oxidation at high temperatures.
- the invention is u. a. based on the knowledge that the protective layer in the layer and in the transition region between protective layer and base material shows brittle chromium-rhenium precipitates.
- these brittle phases which form increasingly with time and temperature, lead to pronounced longitudinal cracks in the layer as well as in the interface layer base material with subsequent detachment of the layer.
- the brittleness of the Cr-Re precipitates increases due to the interaction with carbon, which may diffuse into the layer from the base material or which diffuses into the layer through the surface during a heat treatment in the furnace. Oxidation of the chromium-rhenium phases further enhances the driving force for crack formation.
- FIG. 1 a layer system with a protective layer
- FIG. 2 Test results of cyclic load tests
- FIG. 3 a table of superalloys
- FIG. 4 a gas turbine
- FIG. 5 a perspective view of a combustion chamber
- FIG. 6 a perspective view of a turbine blade.
- a protective layer 7 for protecting a component 1, 120, 130, 138, 155 ( Fig. 1 . 4 . 5 . 6 ) against corrosion and oxidation at a high temperature, the following elements (in% by weight): 11% to 13% Cobalt, 20% to 22% Chrome, 10.5% to 11.5% Aluminum, 1.5% to 2.5% Rhenium, 0.3% to 0.5% Yttrium and and / or at least one equivalent metal from the group comprising scandium and the rare earth elements and the remainder nickel.
- the alloy may have other elements.
- the alloy consists only of nickel, cobalt, chromium, aluminum, yttrium and rhenium.
- the proportions of the individual elements are specially tuned with regard to their effects, which are to be seen in connection with the element rhenium. If the proportions are such that no chromium-rhenium precipitates form advantageously no brittle phases during use of the protective layer, so that the runtime behavior is improved and extended. This is done not only by a low chromium content, but also, taking into account the influence of aluminum on the phase formation, by accurately measuring the content of aluminum. The low selection of 11% to 13% cobalt surprisingly significantly and disproportionately improves the thermal and mechanical properties of the protective layer 7.
- the protective layer has good resistance to oxidation with good corrosion resistance and is also characterized by particularly good ductility properties, so that it is particularly qualified for use in a gas turbine with a further increase in the inlet temperature. There is hardly any embrittlement during operation since the layer has hardly any chromium-rhenium precipitates that become brittle during use.
- the superalloy has no or at most 6 vol% chromium rhenium precipitates.
- the powders are applied for example by plasma spraying (APS, LPPS, VPS, ). Other methods are also conceivable (PVD, CVD, cold gas spraying, ).
- the sum of the trace elements in the protective layer 7 is in total in particular ⁇ 0.5% and is advantageously divided as follows on some elements: carbon ⁇ 250 ppm, oxygen ⁇ 400 ppm, nitrogen 100 ppm, hydrogen ⁇ 50 ppm.
- the protective layer 7 is advantageously applied to a substrate 4 made of a superalloy based on nickel or cobalt.
- substrate 4 the compositions of in FIG. 3 Listed superalloys in question, in particular the alloys that form a DS or SX structure.
- nickel-based alloys are used for the substrate 4.
- the thickness of the protective layer 7 on the component 1 is preferably dimensioned to a value of between about 100 ⁇ m and 300 ⁇ m.
- the protective layer 7 is particularly suitable for protecting a component against corrosion and oxidation, while the component at a material temperature of about 950 ° C, in aircraft turbines also at about 1100 ° C, with a flue gas is applied.
- the protective layer 7 is thus particularly qualified for protecting a component 1, 120, 130, 138, 155 of a gas turbine 100, in particular a guide blade 130, blade 120 or other components, with hot gas before or in the turbine of the gas turbine 100 is charged.
- the protective layer 7 can be used as an overlay (protective layer is the outer layer or as a bondcoat (protective layer is an intermediate layer and adhesion promoter layer).
- FIG. 1 shows a layer system 1 as a component.
- the layer system 1 consists of a substrate 4.
- the substrate 4 may be metallic and / or ceramic.
- turbine components such as turbine run 120 ( Fig. 6 ) or vanes 130 (FIG. Fig. 4 . 6 ), Combustor liners 155 ( Fig. 5 ) and other housing parts 138 of a steam or gas turbine 100 (FIG. Fig. 4 )
- the substrate 4 is made of a nickel- or cobalt-based superalloy.
- the protective layer 7 according to the invention is present.
- this protective layer 7 is applied by LPPS (low pressure plasma spraying) or by cold gas spraying.
- the protective layer 7 can be applied to newly manufactured components 1 and remanufactured components 1 from the refurbishment.
- Refurbishment means that after use, components 1 are optionally separated from layers (thermal barrier coating) and corrosion and oxidation products are removed, for example by acid treatment (Acid stripping). If necessary, cracks still have to be repaired. Thereafter, such a component can be coated again because the substrate 4 is very expensive.
- FIG. 2 10 shows experimental results of stress samples subjected to cyclic loading, namely test results for a sample (application) with a composition according to the present application (claim 2) and test results for a layer according to the prior art (StdT) which has a composition according to the patents US 5,154,885 . US 5,273,712 or US 5,268,238 having.
- the layers were coated on a substrate designated PWA 1484 (Pratt & Whitney alloy).
- the samples are subjected to a specific mechanical, cyclic load (vibration load) and cyclic temperature loads (TMF tests). The experiments were carried out stretch-controlled with 0.50% strain.
- FIG. 4 shows by way of example a gas turbine 100 in a longitudinal partial section.
- the gas turbine 100 has inside a rotatably mounted about a rotation axis 102 rotor 103, which is also referred to as a turbine runner.
- a compressor 105 for example, a toroidal combustion chamber 110, in particular annular combustion chamber 106, with a plurality of coaxially arranged burners 107, a turbine 108 and the exhaust housing 109th
- the annular combustion chamber 106 communicates with an annular annular hot gas channel 111, for example.
- Each turbine stage 112 is formed of two blade rings.
- a series 125 formed of rotor blades 120 follows.
- the guide vanes 130 are fastened to an inner housing 138 of a stator 143, whereas the moving blades 120 of a row 125 are attached to the rotor 103 by means of a turbine disk 133, for example. Coupled to the rotor 103 is a generator or work machine (not shown).
- air 105 is sucked in and compressed by the compressor 105 through the intake housing 104.
- the compressed air provided at the turbine-side end of the compressor 105 is supplied to the burners 107 where it is mixed with a fuel.
- the mixture is then burned to form the working fluid 113 in the combustion chamber 110.
- the working medium 113 flows along the hot gas channel 111 past the guide vanes 130 and the rotor blades 120.
- the working medium 113 expands in a pulse-transmitting manner, so that the rotor blades 120 drive the rotor 103 and drive the machine coupled to it.
- the components exposed to the hot working medium 113 are subject to thermal loads during operation of the gas turbine 100.
- the guide vanes 130 and rotor blades 120 of the first turbine stage 112, viewed in the direction of flow of the working medium 113, are subjected to the greatest thermal stress in addition to the heat shield bricks lining the annular combustion chamber 106. In order to withstand the temperatures prevailing there, they are cooled by means of a coolant.
- the substrates may have a directional structure, ie they are monocrystalline (SX structure) or have only longitudinal grains (DS structure).
- the material used is iron-, nickel- or cobalt-based superalloys. For example, superalloys are used, as is known from the EP 1 204 776 .
- EP 1 306 454 EP 1 319 729 .
- WO 99/67435 or WO 00/44949 are known.
- the blades 120, 130 have protective layers 7 according to the invention against corrosion and corrosion and / or a thermal barrier coating.
- the thermal barrier coating consists for example of ZrO 2 , Y 2 O 3 -ZrO 2 , ie it is not, partially or completely stabilized by yttrium oxide and / or calcium oxide and / or magnesium oxide.
- suitable coating processes such as electron beam evaporation (EB-PVD), stalk-shaped grains are produced in the thermal barrier coating.
- the vane 130 has a guide vane foot (not shown here) facing the inner housing 138 of the turbine 108 and a vane head opposite the vane foot.
- the vane head faces the rotor 103 and fixed to a mounting ring 140 of the stator 143.
- FIG. 5 shows a combustion chamber 110 of a gas turbine, which may comprise a layer system 1.
- the combustion chamber 110 is configured, for example, as a so-called annular combustion chamber, in which a plurality of burners 102 arranged around the turbine shaft 103 in the circumferential direction open into a common combustion chamber space.
- the combustion chamber 110 is configured in its entirety as an annular structure, which is positioned around the turbine shaft 103 around.
- the combustion chamber 110 is designed for a comparatively high temperature of the working medium M of about 1000 ° C to 1600 ° C.
- the combustion chamber wall 153 is provided on its side facing the working medium M side with an inner lining formed from heat shield elements 155.
- Each heat shield element 155 is equipped on the working medium side with a particularly heat-resistant protective layer or made of high-temperature-resistant material and has the protective layer 7 according to FIG. 1 on. Due to the high temperatures in the interior of the combustion chamber 110, a cooling system is additionally provided for the heat shield elements 155 or for their holding elements.
- the materials of the combustor wall and their coatings may be similar to the turbine blades 120, 130.
- the combustion chamber 110 is designed in particular for detecting losses of the heat shield elements 155.
- a number of temperature sensors 158 are positioned between the combustion chamber wall 153 and the heat shield elements 155.
- FIG. 6 shows a perspective view of a blade 120, 130, which has a layer system 1 with the protective layer 7 according to the invention.
- the blade 120, 130 extends along a longitudinal axis 121.
- the blade 120, 130 has along the longitudinal axis 121 consecutively a fastening region 400, a blade platform 403 adjoining thereto and an airfoil region 406.
- a blade root 183 is formed, which serves for fastening the rotor blades 120, 130 to the shaft.
- the blade root 183 is designed as a hammer head.
- Other configurations, for example as a Christmas tree or Schwalbenschwanzfuß are possible.
- solid metallic materials are used in all regions 400, 403, 406 of the blades 120, 130.
- the blade 120, 130 may be manufactured by a casting process, by a forging process, by a milling process or combinations thereof.
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Ceramic Engineering (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
- Physical Vapour Deposition (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Abstract
Description
Die Erfindung betrifft eine Legierung gemäß Anspruch 1, eine Schutzschicht zum Schutz eines Bauteils gegen Korrosion und Oxidation bei hohen Temperaturen gemäß Anspruch 3 und ein Bauteil gemäß Anspruch 5.The invention relates to an alloy according to
Die Erfindung bezieht sich insbesondere auf eine Schutzschicht für ein Bauteil, das aus einer Superlegierung auf Nickel- oder Kobaltbasis besteht.More particularly, the invention relates to a protective layer for a component consisting of a nickel or cobalt base superalloy.
Schutzschichten für metallische Bauteile, die deren Korrosionsbeständigkeit und/oder Oxidationsbeständigkeit erhöhen sollen, sind im Stand der Technik in großer Zahl bekannt. Die meisten dieser Schutzschichten sind unter dem Sammelnamen MCrAlY bekannt, wobei M für mindestens eines der Elemente aus der Gruppe umfassend Eisen, Kobalt und/oder Nickel steht und weitere wesentliche Bestandteile Chrom, Aluminium und Yttrium sind.Protective layers for metallic components intended to increase their corrosion resistance and / or oxidation resistance are known in the art in large numbers. Most of these protective layers are known under the collective name MCrAlY, where M is at least one of the elements selected from the group comprising iron, cobalt and / or nickel and further essential components are chromium, aluminum and yttrium.
Aus der
Schutzschichten, die Rhenium enthalten, sind auch aus dem
Die
Ebenso offenbart die
Die
Die
Die Bemühung um die Steigerung der Eintrittstemperaturen sowohl bei stationären Gasturbinen als auch bei Flugtriebwerken hat auf dem Fachgebiet der Gasturbinen eine große Bedeutung, da die Eintrittstemperaturen wichtige Bestimmungsgrößen für die mit Gasturbinen erzielbaren thermodynamischen Wirkungsgrade sind. Durch den Einsatz speziell entwickelter Legierungen als Grundwerkstoffe für thermisch hoch zu belastende Bauteile wie Leit- und Laufschaufeln, insbesondere durch den Einsatz einkristalliner Superlegierungen, sind Eintrittstemperaturen von deutlich über 1000°C möglich. Inzwischen erlaubt der Stand der Technik Eintrittstemperaturen von 950°C und mehr bei stationären Gasturbinen sowie 1100°C und mehr in Gasturbinen von Flugtriebwerken.Efforts to increase inlet temperatures in both stationary gas turbines and aircraft engines are of great importance in the gas turbine art because inlet temperatures are important determinants of thermodynamic efficiencies achievable with gas turbines. Due to the use of specially developed alloys as base materials for components that are subject to high thermal loads such as guide vanes and rotor blades, in particular through the use of monocrystalline superalloys, inlet temperatures of well over 1000 ° C are possible. Meanwhile, the prior art allows inlet temperatures of 950 ° C and more in stationary gas turbines and 1100 ° C and more in gas turbines of aircraft engines.
Während die physikalische Belastbarkeit der inzwischen entwickelten Grundwerkstoffe für die hoch belasteten Bauteile im Hinblick auf mögliche weitere Steigerungen der Eintrittstemperaturen weitgehend unproblematisch ist, muss zur Erzielung einer hinreichenden Beständigkeit gegen Oxidation und Korrosion auf Schutzschichten zurückgegriffen werden. Neben der hinreichenden chemischen Beständigkeit einer Schutzschicht unter den Angriffen, die von Rauchgasen bei Temperaturen in der Größenordnung von 1000°C zu erwarten sind, muss eine Schutzschicht auch genügend gute mechanische Eigenschaften, nicht zuletzt im Hinblick auf die mechanische Wechselwirkung zwischen der Schutzschicht und dem Grundwerkstoff, haben. Insbesondere muss die Schutzschicht hinreichend duktil sein, um eventuellen Verformungen des Grundwerkstoffes folgen zu können und nicht zu reißen, da auf diese Weise Angriffspunkte für Oxidation und Korrosion geschaffen würden. Hierbei kommt typischerweise das Problem auf, dass eine Erhöhung der Anteile von Elementen wie Aluminium und Chrom, die die Beständigkeit einer Schutzschicht gegen Oxidation und Korrosion verbessern können, zu einer Verschlechterung der Duktilität der Schutzschicht führt, so dass mit einem mechanischen Versagen, insbesondere der Bildung von Rissen, bei einer in einer Gasturbine üblicherweise auftretenden mechanischen Belastung zu rechnen ist. Beispiele für die Verringerung der Duktilität der Schutzschicht durch die Elemente Chrom und Aluminium sind im Stand der Technik bekannt.While the physical strength of the now developed base materials for the highly loaded components with regard to possible further increases in the inlet temperatures is largely unproblematic, must to achieve a sufficient resistance to oxidation and corrosion are used on protective layers. In addition to the sufficient chemical resistance of a protective layer under the attacks that are expected of flue gases at temperatures in the order of 1000 ° C, a protective layer must also have sufficient mechanical properties, not least in view of the mechanical interaction between the protective layer and the base material , to have. In particular, the protective layer must be sufficiently ductile in order to be able to follow any deformations of the base material and not to break, since in this way points of attack for oxidation and corrosion would be created. Here, the problem typically arises that increasing the proportions of elements such as aluminum and chromium, which can improve the resistance of a protective layer against oxidation and corrosion, leads to a deterioration of the ductility of the protective layer, so that mechanical failure, in particular formation of cracks, is expected in a gas turbine usually occurring mechanical stress. Examples of reducing the ductility of the protective layer by the elements chromium and aluminum are known in the art.
Aus der
Dementsprechend liegt der Erfindung die Aufgabe zugrunde, eine Legierung und eine Schutzschicht anzugeben, die eine gute Hochtemperaturbeständigkeit in Korrosion und Oxidation aufweist, eine gute Langzeitstabilität aufweist und die außerdem einer mechanischen Beanspruchung, die insbesondere in einer Gasturbine bei einer hohen Temperatur zu erwarten ist, besonders gut angepasst ist.Accordingly, it is an object of the present invention to provide an alloy and a protective layer which has good high-temperature resistance in corrosion and oxidation, has good long-term stability and, in addition, a mechanical stress to be expected particularly in a gas turbine at a high temperature well adjusted.
Die Aufgabe wird gelöst durch eine Legierung gemäß Anspruch 1 und eine Schutzschicht gemäß Anspruch 4.The object is achieved by an alloy according to
Eine weitere Aufgabe der Erfindung besteht darin, ein Bauteil aufzuzeigen, das einen erhöhten Schutz gegen Korrosion und Oxidation aufweist.Another object of the invention is to provide a component which has increased protection against corrosion and oxidation.
Die Aufgabe wird ebenso gelöst durch ein Bauteil gemäß Anspruch 6, insbesondere ein Bauteil einer Gasturbine oder Dampfturbine, das zum Schutz gegen Korrosion und Oxidation bei hohen Temperaturen einer Schutzschicht der vorbeschriebenen Art aufweist.The object is also achieved by a component according to
In den Unteransprüchen sind weitere vorteilhafte Maßnahmen aufgelistet.
Die in den Unteransprüchen aufgelisteten Maßnahmen können in vorteilhafter Art und Weise beliebig miteinander kombiniert werden.In the subclaims further advantageous measures are listed.
The measures listed in the dependent claims can be combined in any advantageous manner with each other.
Der Erfindung liegt u. a. die Erkenntnis zugrunde, dass die Schutzschicht in der Schicht und in dem Übergangsbereich zwischen Schutzschicht und Grundwerkstoff spröde Chrom-Rhenium-Ausscheidungen zeigt. Diese mit der Zeit und Temperatur im Einsatz sich verstärkt ausbildenden Sprödphasen führen im Betrieb zu stark ausgeprägten Längsrissen in der Schicht als auch im Interface Schicht-Grundwerkstoff mit anschließender Ablösung der Schicht. Durch die Wechselwirkung mit Kohlenstoff, der aus dem Grundwerkstoff in die Schicht hineindiffundieren kann oder der während einer Wärmebehandlung im Ofen durch die Oberfläche in die Schicht hineindiffundiert, erhöht sich zusätzlich die Sprödigkeit der Cr-Re-Ausscheidungen. Durch eine Oxidation der Chrom-Rhenium-Phasen wird die Triebkraft zur Rissbildung noch verstärkt.The invention is u. a. based on the knowledge that the protective layer in the layer and in the transition region between protective layer and base material shows brittle chromium-rhenium precipitates. During operation, these brittle phases, which form increasingly with time and temperature, lead to pronounced longitudinal cracks in the layer as well as in the interface layer base material with subsequent detachment of the layer. In addition, the brittleness of the Cr-Re precipitates increases due to the interaction with carbon, which may diffuse into the layer from the base material or which diffuses into the layer through the surface during a heat treatment in the furnace. Oxidation of the chromium-rhenium phases further enhances the driving force for crack formation.
Wichtig ist dabei auch der Einfluss von Kobalt, der die thermischen und mechanischen Eigenschaften bestimmt.Also important is the influence of cobalt, which determines the thermal and mechanical properties.
Die Erfindung wird im Folgenden näher erläutert.The invention will be explained in more detail below.
Es zeigen
Erfindungsgemäß weist eine Schutzschicht 7 (
Die Legierung kann noch weitere Elemente aufweisen.
Vorzugsweise besteht die Legierung jedoch nur aus Nickel, Kobalt, Chrom, Aluminium, Yttrium und Rhenium.The alloy may have other elements.
Preferably, however, the alloy consists only of nickel, cobalt, chromium, aluminum, yttrium and rhenium.
Dabei wird die vorteilhafte Wirkung des Elementes Rhenium ausgenutzt unter Verhinderung der Sprödphasenbildung.The beneficial effect of the element rhenium is exploited while preventing the formation of brittle phase.
Festzustellen ist, dass die Anteile der einzelnen Elemente besonders abgestimmt sind im Hinblick auf ihre Wirkungen, die in Zusammenhang mit dem Element Rhenium zu sehen sind. Wenn die Anteile so bemessen sind, dass sich keine Chrom-Rhenium-Ausscheidungen bilden, entstehen vorteilhafterweise keine Sprödphasen während des Einsatzes der Schutzschicht, so dass das Laufzeitverhalten verbessert und verlängert ist.
Dies geschieht nicht nur durch einen geringen Chromgehalt, sondern auch, unter Berücksichtigung des Einflusses von Aluminium auf die Phasenbildung, durch genaue Bemessung des Gehalts an Aluminium.
Die niedrige Auswahl von 11% bis 13% Kobalt verbessert überraschend deutlich und überproportional die thermischen und mechanischen Eigenschaften der Schutzschicht 7.
Bei diesem eng ausgewählten Bereich an Kobalt wird die Entstehung und weitere Bildung der γ' Phase der Legierung besonders gut unterdrückt, die normalerweise zu einem Peak in dem thermischen Ausdehnungskoeffizienten der Legierung führt. Dieser Peak würde ansonsten beim Hochheizen des Bauteils mit der Schutzschicht 7 (Anfahren der Turbine) oder anderen Temperaturschwankungen hohe mechanische Spannungen (thermal mismatch) zwischen Schutzschicht 7 und einem Substrat 4 (
Dies wird durch den erfindungsgemäß ausgewählten Kobaltgehalt zumindest drastisch reduziert.
In Wechselwirkung mit der Reduzierung der Sprödphasen, die sich besonders unter höheren mechanischen Eigenschaften negativ auswirken, werden durch die Verringerung der mechanischen Spannungen durch den ausgewählten Kobalt-Gehalt die mechanischen Eigenschaften verbessert.It should be noted that the proportions of the individual elements are specially tuned with regard to their effects, which are to be seen in connection with the element rhenium. If the proportions are such that no chromium-rhenium precipitates form advantageously no brittle phases during use of the protective layer, so that the runtime behavior is improved and extended.
This is done not only by a low chromium content, but also, taking into account the influence of aluminum on the phase formation, by accurately measuring the content of aluminum.
The low selection of 11% to 13% cobalt surprisingly significantly and disproportionately improves the thermal and mechanical properties of the
In this narrowly selected range of cobalt, the formation and further formation of the γ 'phase of the alloy is suppressed particularly well, which normally leads to a peak in the thermal expansion coefficient of the alloy. Otherwise, this peak would cause high mechanical stresses (thermal mismatch) between the
This is at least drastically reduced by the cobalt content selected according to the invention.
In interaction with the reduction of the brittle phases, which have a negative effect especially under higher mechanical properties, the reduction of the mechanical stresses by the selected cobalt content improves the mechanical properties.
Die Schutzschicht weist bei guter Korrosionsbeständigkeit eine besonders gute Beständigkeit gegen Oxidation auf und zeichnet sich auch durch besonders gute Duktilitätseigenschaften aus, so dass sie besonders qualifiziert ist für die Anwendung in einer Gasturbine bei einer weiteren Steigerung der Eintrittstemperatur. Während des Betriebs kommt es kaum zu einer Versprödung, da die Schicht kaum Chrom-Rhenium-Ausscheidungen aufweist, die im Laufe des Einsatzes verspröden. Die Superlegierung weist keine oder maximal 6 vol% Chrom-Rhenium-Ausscheidungen auf.The protective layer has good resistance to oxidation with good corrosion resistance and is also characterized by particularly good ductility properties, so that it is particularly qualified for use in a gas turbine with a further increase in the inlet temperature. There is hardly any embrittlement during operation since the layer has hardly any chromium-rhenium precipitates that become brittle during use. The superalloy has no or at most 6 vol% chromium rhenium precipitates.
Besonders günstig ist es dabei den Anteil von Rhenium auf 2%, den Chromgehalt auf 21%, den Aluminiumgehalt auf 11%, den Kobaltgehalt auf 12% und den Yttrium-Gehalt auf 0,4% festzulegen. Gewisse Schwankungen ergeben sich aufgrund großindustrieller Herstellung, so dass auch Yttriumgehalte von 0,2% bis 0,3% bzw. 0,4% bis 0,6% verwendet werden und ebenfalls gute Eigenschaften zeigen.It is particularly advantageous to set the proportion of rhenium to 2%, the chromium content to 21%, the aluminum content to 11%, the cobalt content to 12% and the yttrium content to 0.4%. Certain fluctuations occur due to large industrial production, so that yttrium contents of 0.2% to 0.3% or 0.4% to 0.6% are used and also show good properties.
Eine ebenso wichtige Rolle spielen die Spurenelemente im zu verspritzenden Pulver und damit in der Schutzschicht 7, die Ausscheidungen bilden und damit Versprödungen darstellen.
Die Pulver werden beispielsweise durch Plasmaspritzen aufgebracht (APS, LPPS, VPS, ...). Andere Verfahren sind ebenso denkbar (PVD, CVD, Kaltgasspritzen, ...).
Die Summe der Spurenelemente in der Schutzschicht 7 ist in der Summe insbesondere < 0,5% und teilt sich vorteilhafterweise wie folgt auf einige Elemente auf: Kohlenstoff < 250ppm, Sauerstoff < 400ppm, Stickstoff 100ppm, Wasserstoff < 50ppm.An equally important role is played by the trace elements in the powder to be sprayed and thus in the
The powders are applied for example by plasma spraying (APS, LPPS, VPS, ...). Other methods are also conceivable (PVD, CVD, cold gas spraying, ...).
The sum of the trace elements in the
Bei diesem Bauteil 1 ist die Schutzschicht 7 vorteilhafterweise aufgetragen auf ein Substrat 4 aus einer Superlegierung auf Nickel- oder Kobaltbasis.
Als Substrat 4 kommen die Zusammensetzungen der in
As
Die Dicke der Schutzschicht 7 auf dem Bauteil 1 wird vorzugsweise auf einen Wert zwischen etwa 100µm und 300µm bemessen.The thickness of the
Die Schutzschicht 7 eignet sich besonders zum Schutz eines Bauteils gegen Korrosion und Oxidation, während das Bauteil bei einer Materialtemperatur um etwa 950° C, bei Flugturbinen auch um etwa 1100° C, mit einem Rauchgas beaufschlagt wird.The
Die Schutzschicht 7 gemäß der Erfindung ist damit besonders qualifiziert zum Schutz eines Bauteils 1, 120, 130, 138, 155 einer Gasturbine 100, insbesondere einer Leitschaufel 130, Laufschaufel 120 oder anderen Komponenten, die mit heißem Gas vor oder in der Turbine der Gasturbine 100 beaufschlagt wird.
Die Schutzschicht 7 kann als overlay (Schutzschicht ist die äußere Schicht oder als Bondcoat (Schutzschicht ist eine Zwischenschicht und Haftvermittlerschicht) verwendet werden.The
The
Auf diese Schutzschicht 7 können weitere Schichten, insbesondere keramische Wärmedämmschichten 10 (
Das Schichtsystem 1 besteht aus einem Substrat 4.
Das Substrat 4 kann metallisch und/oder keramisch sein. Insbesondere bei Turbinenbauteilen, wie z.B. Turbinenlauf- 120 (
Auf dem Substrat 4 ist die erfindungsgemäße Schutzschicht 7 vorhanden.
Vorzugsweise wird diese Schutzschicht 7 durch LPPS (low pressure plasma spraying) oder durch Kaltgasspritzen aufgebracht.
The
The
On the
Preferably, this
Die Schutzschicht 7 kann auf neu hergestellte Bauteile 1 und wiederaufgearbeitete Bauteile 1 aus dem Refurbishment aufgebracht werden.
Wiederaufarbeitung (Refurbishment) bedeutet, dass Bauteile 1 nach ihrem Einsatz gegebenenfalls von Schichten (Wärmedämmschicht) getrennt werden und Korrosions- und Oxidationsprodukte entfernt werden, beispielsweise durch eine Säurebehandlung (Säurestrippen). Gegebenenfalls müssen noch Risse repariert werden. Danach kann ein solches Bauteil wieder beschichtet werden, da das Substrat 4 sehr teuer ist.The
Refurbishment means that after use,
Die Schichten wurden aufgetragen auf ein Substrat mit der Bezeichnung PWA 1484 (Pratt & Whitney alloy).
Dabei werden die Proben einer bestimmten mechanischen, zyklischen Belastung (Schwingungsbelastung) und zyklischen Temperaturbelastungen ausgesetzt (TMF-Versuche).
Die Versuche wurden dehnungskontrolliert mit 0.50% Dehnung durchgeführt.
The layers were coated on a substrate designated PWA 1484 (Pratt & Whitney alloy).
The samples are subjected to a specific mechanical, cyclic load (vibration load) and cyclic temperature loads (TMF tests).
The experiments were carried out stretch-controlled with 0.50% strain.
Aufgetragen ist in der
Es ist deutlich zu erkennen, dass die Schicht nach dem Stand der Technik schon bei 750 Zyklen Risse aufweist, die sehr viel schneller wachsen als bei einer Schicht gemäß der Anmeldung.
Bei der Schicht gemäß der Anmeldung treten erst oberhalb von 1000 Zyklen Risse auf, die außerdem noch sehr viel kleiner sind als die bei der Schicht gemäß Stand der Technik. Auch das Risswachstum über die Anzahl der Zyklen ist deutlich geringer.
Dies zeigt die Überlegenheit der erfindungsgemäßen Schutzschicht 7.Is applied in the
It can be clearly seen that the layer according to the prior art already has cracks at 750 cycles, which grow much faster than with a layer according to the application.
In the case of the layer according to the application, cracks only appear above 1000 cycles and, in addition, are still much smaller than those in the layer according to the prior art. Crack growth over the number of cycles is also significantly lower.
This shows the superiority of the
Die
Die Gasturbine 100 weist im Inneren einen um eine Rotationsachse 102 drehgelagerten Rotor 103 auf, der auch als Turbinenläufer bezeichnet wird.
Entlang des Rotors 103 folgen aufeinander ein Ansauggehäuse 104, ein Verdichter 105, eine beispielsweise torusartige Brennkammer 110, insbesondere Ringbrennkammer 106, mit mehreren koaxial angeordneten Brennern 107, eine Turbine 108 und das Abgasgehäuse 109.
Die Ringbrennkammer 106 kommuniziert mit einem beispielsweise ringförmigen Heißgaskanal 111. Dort bilden beispielsweise vier hintereinandergeschaltete Turbinenstufen 112 die Turbine 108.
Jede Turbinenstufe 112 ist aus zwei Schaufelringen gebildet. In Strömungsrichtung eines Arbeitsmediums 113 gesehen folgt im Heißgaskanal 111 einer Leitschaufelreihe 115 eine aus Laufschaufeln 120 gebildete Reihe 125.The
Along the
The
Each
Die Leitschaufeln 130 sind dabei an einem Innengehäuse 138 eines Stators 143 befestigt, wohingegen die Laufschaufeln 120 einer Reihe 125 bspw. mittels einer Turbinenscheibe 133 am Rotor 103 angebracht sind. An dem Rotor 103 angekoppelt ist ein Generator oder eine Arbeitsmaschine (nicht dargestellt).The guide vanes 130 are fastened to an
Während des Betriebes der Gasturbine 100 wird vom Verdichter 105 durch das Ansauggehäuse 104 Luft 135 angesaugt und verdichtet. Die am turbinenseitigen Ende des Verdichters 105 bereitgestellte verdichtete Luft wird zu den Brennern 107 geführt und dort mit einem Brennmittel vermischt. Das Gemisch wird dann unter Bildung des Arbeitsmediums 113 in der Brennkammer 110 verbrannt.
Von dort aus strömt das Arbeitsmedium 113 entlang des Heißgaskanals 111 vorbei an den Leitschaufeln 130 und den Laufschaufeln 120. An den Laufschaufeln 120 entspannt sich das Arbeitsmedium 113 impulsübertragend, so dass die Laufschaufeln 120 den Rotor 103 antreiben und dieser die an ihn angekoppelte Arbeitsmaschine.During operation of the
From there, the working
Die dem heißen Arbeitsmedium 113 ausgesetzten Bauteile unterliegen während des Betriebes der Gasturbine 100 thermischen Belastungen. Die Leitschaufeln 130 und Laufschaufeln 120 der in Strömungsrichtung des Arbeitsmediums 113 gesehen ersten Turbinenstufe 112 werden neben den die Ringbrennkammer 106 auskleidenden Hitzeschildsteinen am meisten thermisch belastet.
Um den dort herrschenden Temperaturen standzuhalten, werden diese mittels eines Kühlmittels gekühlt.
Ebenso können die Substrate eine gerichtete Struktur aufweisen, d.h. sie sind einkristallin (SX-Struktur) oder weisen nur längsgerichtete Körner auf (DS-Struktur).
Als Material werden eisen-, nickel- oder kobaltbasierte Superlegierungen verwendet.
Beispielsweise werden Superlegierungen verwendet, wie sie aus der
In order to withstand the temperatures prevailing there, they are cooled by means of a coolant.
Likewise, the substrates may have a directional structure, ie they are monocrystalline (SX structure) or have only longitudinal grains (DS structure).
The material used is iron-, nickel- or cobalt-based superalloys.
For example, superalloys are used, as is known from the
Die Schaufeln 120, 130 weisen erfindungsgemäße Schutzschichten 7 gegen Korrosion und Korrosion und/oder eine Wärmedämmschicht auf. Die Wärmedämmschicht besteht beispielsweise ZrO2, Y2O3-ZrO2, d.h. sie ist nicht, teilweise oder vollständig stabilisiert durch Yttriumoxid und/oder Kalziumoxid und/oder Magnesiumoxid.
Durch geeignete Beschichtungsverfahren wie z.B. Elektronenstrahlverdampfen (EB-PVD) werden stängelförmige Körner in der Wärmedämmschicht erzeugt.The
By means of suitable coating processes, such as electron beam evaporation (EB-PVD), stalk-shaped grains are produced in the thermal barrier coating.
Die Leitschaufel 130 weist einen dem Innengehäuse 138 der Turbine 108 zugewandten Leitschaufelfuß (hier nicht dargestellt) und einen dem Leitschaufelfuß gegenüberliegenden Leitschaufelkopf auf. Der Leitschaufelkopf ist dem Rotor 103 zugewandt und an einem Befestigungsring 140 des Stators 143 festgelegt.The
Die
Die Brennkammer 110 ist beispielsweise als so genannte Ringbrennkammer ausgestaltet, bei der eine Vielzahl von in Umfangsrichtung um die Turbinenwelle 103 herum angeordneten Brennern 102 in einen gemeinsamen Brennkammerraum münden. Dazu ist die Brennkammer 110 in ihrer Gesamtheit als ringförmige Struktur ausgestaltet, die um die Turbinenwelle 103 herum positioniert ist.The
Zur Erzielung eines vergleichsweise hohen Wirkungsgrades ist die Brennkammer 110 für eine vergleichsweise hohe Temperatur des Arbeitsmediums M von etwa 1000°C bis 1600°C ausgelegt. Um auch bei diesen, für die Materialien ungünstigen Betriebsparametern eine vergleichsweise lange Betriebsdauer zu ermöglichen, ist die Brennkammerwand 153 auf ihrer dem Arbeitsmedium M zugewandten Seite mit einer aus Hitzeschildelementen 155 gebildeten Innenauskleidung versehen. Jedes Hitzeschildelement 155 ist arbeitsmediumsseitig mit einer besonders hitzebeständigen Schutzschicht ausgestattet oder aus hochtemperaturbeständigem Material gefertigt und weist die Schutzschicht 7 gemäß
Aufgrund der hohen Temperaturen im Inneren der Brennkammer 110 ist zudem für die Hitzeschildelemente 155 bzw. für deren Halteelemente ein Kühlsystem vorgesehen.To achieve a comparatively high efficiency, the
Due to the high temperatures in the interior of the
Die Materialien der Brennkammerwand und deren Beschichtungen können ähnlich der Turbinenschaufeln 120, 130 sein.The materials of the combustor wall and their coatings may be similar to the
Die Brennkammer 110 ist insbesondere für eine Detektion von Verlusten der Hitzeschildelemente 155 ausgelegt. Dazu sind zwischen der Brennkammerwand 153 und den Hitzeschildelementen 155 eine Anzahl von Temperatursensoren 158 positioniert.The
Die Schaufel 120, 130 erstreckt sich entlang einer Längsachse 121.
The
Die Schaufel 120, 130 weist entlang der Längsachse 121 aufeinander folgend einen Befestigungsbereich 400, eine daran angrenzende Schaufelplattform 403 sowie einen Schaufelblattbereich 406 auf. Insbesondere im Schaufelblattbereich 406 ist die Schutzschicht 7 oder ein Schichtsystem 1 gemäß
Im Befestigungsbereich 400 ist ein Schaufelfuß 183 gebildet, der zur Befestigung der Laufschaufeln 120, 130 an der Welle dient. Der Schaufelfuß 183 ist als Hammerkopf ausgestaltet. Andere Ausgestaltungen, beispielsweise als Tannenbaum- oder Schwalbenschwanzfuß sind möglich. Bei herkömmlichen Schaufeln 120, 130 werden in allen Bereichen 400, 403, 406 der Laufschaufel 120, 130 massive metallische Werkstoffe verwendet. Die Laufschaufel 120, 130 kann hierbei durch ein Gussverfahren, durch ein Schmiedeverfahren, durch ein Fräsverfahren oder Kombinationen daraus gefertigt sein.The
In the
Claims (8)
die folgende Elemente enthält (Angaben in Gew.%):
wobei der Kohlenstoffgehalt < 250ppm,
wobei der Sauerstoffgehalt < 400ppm,
wobei der Stickstoffgehalt < 100ppm und
wobei der Wasserstoffgehalt < 50ppm beträgt,
Rest Nickel.Alloy for protection of a component (1, 120, 130, 138, 155) against corrosion and / or oxidation at high temperatures,
contains the following elements (in% by weight):
the carbon content being <250 ppm,
the oxygen content being <400 ppm,
the nitrogen content <100ppm and
where the hydrogen content is <50 ppm,
Rest of nickel.
bestehend aus
Nickel, Kobalt, Chrom, Aluminium, Yttrium und Rhenium.Alloy according to claim 1,
consisting of
Nickel, cobalt, chromium, aluminum, yttrium and rhenium.
die maximal 6 vol% Chrom-Rhenium-Ausscheidungen enthält.Protective layer according to claim 3,
which contains a maximum of 6% chromium rhenium precipitates.
insbesondere ein Bauteil (1, 120, 130, 138, 155) einer Gasturbine (100),
das zum Schutz gegen Korrosion und/oder Oxidation bei hohen Temperaturen eine Schutzschicht (7) nach Anspruch 3 oder 4 aufweist.component
in particular a component (1, 120, 130, 138, 155) of a gas turbine (100),
which has a protective layer (7) according to claim 3 or 4 for protection against corrosion and / or oxidation at high temperatures.
bei dem auf der Schutzschicht (7) eine keramische Wärmedämmschicht (10) aufgebracht ist.Component according to claim 5,
in which a ceramic thermal barrier coating (10) is applied to the protective layer (7).
bei dem ein Substrat (4) des Bauteils (1, 120, 130, 138, 155) nickelbasiert ist.Component according to claim 5 or 6,
in which a substrate (4) of the component (1, 120, 130, 138, 155) is nickel-based.
bei dem ein Substrat (4) des Bauteils (1, 120, 130, 138, 155) kobaltbasiert istComponent according to claim 5 or 6,
in which a substrate (4) of the component (1, 120, 130, 138, 155) is cobalt-based
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20080009404 EP1956105A1 (en) | 2005-10-25 | 2006-10-06 | Alloy, protective layer for protecting a component from corrosion and oxidisation in high temperatures and component |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20050023321 EP1780294A1 (en) | 2005-10-25 | 2005-10-25 | Alloy, protective coating for protecting a structural member against corrosion and oxidation at high temperatures and structural member |
EP20080009404 EP1956105A1 (en) | 2005-10-25 | 2006-10-06 | Alloy, protective layer for protecting a component from corrosion and oxidisation in high temperatures and component |
EP20060807025 EP1812613B1 (en) | 2005-10-25 | 2006-10-06 | Component with protective coating against corrosion and oxidation at elevated temperatures |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20060807025 Division EP1812613B1 (en) | 2005-10-25 | 2006-10-06 | Component with protective coating against corrosion and oxidation at elevated temperatures |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1956105A1 true EP1956105A1 (en) | 2008-08-13 |
Family
ID=35501002
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20050023321 Withdrawn EP1780294A1 (en) | 2005-10-25 | 2005-10-25 | Alloy, protective coating for protecting a structural member against corrosion and oxidation at high temperatures and structural member |
EP20080009404 Withdrawn EP1956105A1 (en) | 2005-10-25 | 2006-10-06 | Alloy, protective layer for protecting a component from corrosion and oxidisation in high temperatures and component |
EP20100000552 Withdrawn EP2177637A1 (en) | 2005-10-25 | 2006-10-06 | Alloy, protective coating for protecting a structural member against corrosion and oxidation at high temperatures and structural member |
EP20060807025 Not-in-force EP1812613B1 (en) | 2005-10-25 | 2006-10-06 | Component with protective coating against corrosion and oxidation at elevated temperatures |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20050023321 Withdrawn EP1780294A1 (en) | 2005-10-25 | 2005-10-25 | Alloy, protective coating for protecting a structural member against corrosion and oxidation at high temperatures and structural member |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20100000552 Withdrawn EP2177637A1 (en) | 2005-10-25 | 2006-10-06 | Alloy, protective coating for protecting a structural member against corrosion and oxidation at high temperatures and structural member |
EP20060807025 Not-in-force EP1812613B1 (en) | 2005-10-25 | 2006-10-06 | Component with protective coating against corrosion and oxidation at elevated temperatures |
Country Status (5)
Country | Link |
---|---|
US (1) | US20090136769A1 (en) |
EP (4) | EP1780294A1 (en) |
CN (1) | CN100549234C (en) |
RU (1) | RU2359054C2 (en) |
WO (1) | WO2007048693A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102008057159A1 (en) * | 2008-11-13 | 2010-05-20 | Mtu Aero Engines Gmbh | Gas turbine useful in aircraft engine, comprises two rotor discs, which are braced to each other and which directly adjoin to each other in a contact area, where one of the rotor discs is equipped in the contact area |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2330349B1 (en) * | 2009-12-01 | 2018-10-24 | Siemens Aktiengesellschaft | Pilot burner of a gas turbine engine, combustor, and gas turbine engine |
US20120128525A1 (en) * | 2010-11-24 | 2012-05-24 | Kulkarni Anand A | Metallic Bondcoat or Alloy with a High y/y' Transition Temperature and a Component |
EP2474413A1 (en) * | 2011-01-06 | 2012-07-11 | Siemens Aktiengesellschaft | Alloy, protective coating and component |
RU2527543C1 (en) * | 2013-03-06 | 2014-09-10 | Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) | Nickel-based alloy for application of wear and corrosion resistance by micro plasma or cold supersonic spraying |
US11167375B2 (en) | 2018-08-10 | 2021-11-09 | The Research Foundation For The State University Of New York | Additive manufacturing processes and additively manufactured products |
CN109811197B (en) * | 2019-01-09 | 2020-09-01 | 河北五维航电科技股份有限公司 | Preparation method of blade root gasket material for 700-DEG C steam turbine regulating stage |
DE102019207367A1 (en) | 2019-05-20 | 2020-11-26 | Oerlikon Surface Solutions Ag | Method for applying a coating to a surface of a mullite material, mullite material with a coating and a gas turbine component |
Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0194392B1 (en) | 1985-03-13 | 1989-08-23 | General Electric Company | Nickel-base superalloys especially useful as compatible protective environmental coatings for advanced superalloys |
US5154885A (en) | 1989-08-10 | 1992-10-13 | Siemens Aktiengesellschaft | Highly corrosion and/or oxidation-resistant protective coating containing rhenium |
US5268238A (en) | 1989-08-10 | 1993-12-07 | Siemens Aktiengesellschaft | Highly corrosion and/or oxidation-resistant protective coating containing rhenium applied to gas turbine component surface and method thereof |
US5273712A (en) | 1989-08-10 | 1993-12-28 | Siemens Aktiengesellschaft | Highly corrosion and/or oxidation-resistant protective coating containing rhenium |
EP0652299B1 (en) | 1993-11-08 | 1996-12-27 | ROLLS-ROYCE plc | Coating composition having good corrosion and oxidation resistance |
WO1999067435A1 (en) | 1998-06-23 | 1999-12-29 | Siemens Aktiengesellschaft | Directionally solidified casting with improved transverse stress rupture strength |
WO2000044949A1 (en) | 1999-01-28 | 2000-08-03 | Siemens Aktiengesellschaft | Nickel base superalloy with good machinability |
WO2001009403A1 (en) | 1999-07-29 | 2001-02-08 | Siemens Aktiengesellschaft | High-temperature part and method for producing the same |
US6280857B1 (en) | 1997-10-30 | 2001-08-28 | Alstom | High temperature protective coating |
US6346134B1 (en) | 2000-03-27 | 2002-02-12 | Sulzer Metco (Us) Inc. | Superalloy HVOF powders with improved high temperature oxidation, corrosion and creep resistance |
EP1306454A1 (en) | 2001-10-24 | 2003-05-02 | Siemens Aktiengesellschaft | Rhenium containing protective coating protecting a product against corrosion and oxidation at high temperatures |
EP1319729A1 (en) | 2001-12-13 | 2003-06-18 | Siemens Aktiengesellschaft | High temperature resistant part, made of single-crystal or polycrystalline nickel-base superalloy |
US20050064229A1 (en) * | 2001-10-24 | 2005-03-24 | Siemens Aktiengesellschaft | Rhenium-containing protective layer for protecting a component against corrosion and oxidation at high temperatures |
EP1524334A1 (en) | 2003-10-17 | 2005-04-20 | Siemens Aktiengesellschaft | Protective coating for protecting a structural member against corrosion and oxidation at high temperatures and structural member |
EP1693473A1 (en) * | 2005-02-18 | 2006-08-23 | Siemens Aktiengesellschaft | MCrAlX-alloy, protective coating made thereof and method for its production |
EP1700932A1 (en) * | 2005-03-08 | 2006-09-13 | Siemens Aktiengesellschaft | Layer system with diffusion inhibiting layer |
EP1707653A1 (en) * | 2005-04-01 | 2006-10-04 | Siemens Aktiengesellschaft | Coating system |
EP1734145A1 (en) * | 2005-06-13 | 2006-12-20 | Siemens Aktiengesellschaft | Coating system for a component having a thermal barrier coating and an erosion resistant coating, method for manufacturing and method for using said component |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3928026A (en) * | 1974-05-13 | 1975-12-23 | United Technologies Corp | High temperature nicocraly coatings |
US4005989A (en) * | 1976-01-13 | 1977-02-01 | United Technologies Corporation | Coated superalloy article |
EP1365044A1 (en) * | 2002-05-24 | 2003-11-26 | Siemens Aktiengesellschaft | MCrAl-coating |
-
2005
- 2005-10-25 EP EP20050023321 patent/EP1780294A1/en not_active Withdrawn
-
2006
- 2006-10-06 EP EP20080009404 patent/EP1956105A1/en not_active Withdrawn
- 2006-10-06 WO PCT/EP2006/067123 patent/WO2007048693A1/en active Application Filing
- 2006-10-06 CN CNB2006800048184A patent/CN100549234C/en not_active Expired - Fee Related
- 2006-10-06 EP EP20100000552 patent/EP2177637A1/en not_active Withdrawn
- 2006-10-06 RU RU2007131018A patent/RU2359054C2/en not_active IP Right Cessation
- 2006-10-06 US US12/084,080 patent/US20090136769A1/en not_active Abandoned
- 2006-10-06 EP EP20060807025 patent/EP1812613B1/en not_active Not-in-force
Patent Citations (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0194392B1 (en) | 1985-03-13 | 1989-08-23 | General Electric Company | Nickel-base superalloys especially useful as compatible protective environmental coatings for advanced superalloys |
US5154885A (en) | 1989-08-10 | 1992-10-13 | Siemens Aktiengesellschaft | Highly corrosion and/or oxidation-resistant protective coating containing rhenium |
US5268238A (en) | 1989-08-10 | 1993-12-07 | Siemens Aktiengesellschaft | Highly corrosion and/or oxidation-resistant protective coating containing rhenium applied to gas turbine component surface and method thereof |
US5273712A (en) | 1989-08-10 | 1993-12-28 | Siemens Aktiengesellschaft | Highly corrosion and/or oxidation-resistant protective coating containing rhenium |
EP0652299B1 (en) | 1993-11-08 | 1996-12-27 | ROLLS-ROYCE plc | Coating composition having good corrosion and oxidation resistance |
US6280857B1 (en) | 1997-10-30 | 2001-08-28 | Alstom | High temperature protective coating |
WO1999067435A1 (en) | 1998-06-23 | 1999-12-29 | Siemens Aktiengesellschaft | Directionally solidified casting with improved transverse stress rupture strength |
WO2000044949A1 (en) | 1999-01-28 | 2000-08-03 | Siemens Aktiengesellschaft | Nickel base superalloy with good machinability |
EP1204776A1 (en) | 1999-07-29 | 2002-05-15 | Siemens Aktiengesellschaft | High-temperature part and method for producing the same |
WO2001009403A1 (en) | 1999-07-29 | 2001-02-08 | Siemens Aktiengesellschaft | High-temperature part and method for producing the same |
US6346134B1 (en) | 2000-03-27 | 2002-02-12 | Sulzer Metco (Us) Inc. | Superalloy HVOF powders with improved high temperature oxidation, corrosion and creep resistance |
EP1306454A1 (en) | 2001-10-24 | 2003-05-02 | Siemens Aktiengesellschaft | Rhenium containing protective coating protecting a product against corrosion and oxidation at high temperatures |
EP1306454B1 (en) | 2001-10-24 | 2004-10-06 | Siemens Aktiengesellschaft | Rhenium containing protective coating protecting a product against corrosion and oxidation at high temperatures |
US20050064229A1 (en) * | 2001-10-24 | 2005-03-24 | Siemens Aktiengesellschaft | Rhenium-containing protective layer for protecting a component against corrosion and oxidation at high temperatures |
EP1319729A1 (en) | 2001-12-13 | 2003-06-18 | Siemens Aktiengesellschaft | High temperature resistant part, made of single-crystal or polycrystalline nickel-base superalloy |
EP1524334A1 (en) | 2003-10-17 | 2005-04-20 | Siemens Aktiengesellschaft | Protective coating for protecting a structural member against corrosion and oxidation at high temperatures and structural member |
EP1693473A1 (en) * | 2005-02-18 | 2006-08-23 | Siemens Aktiengesellschaft | MCrAlX-alloy, protective coating made thereof and method for its production |
EP1700932A1 (en) * | 2005-03-08 | 2006-09-13 | Siemens Aktiengesellschaft | Layer system with diffusion inhibiting layer |
EP1707653A1 (en) * | 2005-04-01 | 2006-10-04 | Siemens Aktiengesellschaft | Coating system |
EP1734145A1 (en) * | 2005-06-13 | 2006-12-20 | Siemens Aktiengesellschaft | Coating system for a component having a thermal barrier coating and an erosion resistant coating, method for manufacturing and method for using said component |
Non-Patent Citations (3)
Title |
---|
ANTON R ET AL: "DEGRADATION OF ADVANCED MCRAIY COATINGS BY OXIDATION AND INTERDIFFUSION", MATERIALS SCIENCE FORUM, AEDERMANNSFDORF, CH, vol. 369-372, 2001, pages 719 - 726, XP001057411, ISSN: 0255-5476 * |
CZECH N ET AL: "IMPROVEMENT OF MCRA1Y COATINGS BY ADDITION OF RHENIUM", SURFACE AND COATINGS TECHNOLOGY, ELSEVIER, AMSTERDAM, NL, vol. 68/69, 1 December 1994 (1994-12-01), pages 17 - 21, XP001057413, ISSN: 0257-8972 * |
QUADAKKERS W J ET AL: "Long-term oxidation tests on a Re-containing MCrAlY coating", SURFACE AND COATINGS TECHNOLOGY, ELSEVIER, AMSTERDAM, NL, vol. 94-95, no. 1-3, October 1997 (1997-10-01), pages 41 - 45, XP002191474, ISSN: 0257-8972 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102008057159A1 (en) * | 2008-11-13 | 2010-05-20 | Mtu Aero Engines Gmbh | Gas turbine useful in aircraft engine, comprises two rotor discs, which are braced to each other and which directly adjoin to each other in a contact area, where one of the rotor discs is equipped in the contact area |
Also Published As
Publication number | Publication date |
---|---|
RU2359054C2 (en) | 2009-06-20 |
CN100549234C (en) | 2009-10-14 |
EP1780294A1 (en) | 2007-05-02 |
US20090136769A1 (en) | 2009-05-28 |
EP1812613B1 (en) | 2012-12-26 |
RU2007131018A (en) | 2009-02-20 |
CN101120110A (en) | 2008-02-06 |
EP1812613A1 (en) | 2007-08-01 |
EP2177637A1 (en) | 2010-04-21 |
WO2007048693A1 (en) | 2007-05-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1673490B1 (en) | Component with a protective layer for the protection of the component against corrosion and oxidation at elevated temperatures | |
EP1812613B1 (en) | Component with protective coating against corrosion and oxidation at elevated temperatures | |
EP2458025B1 (en) | Alloy, protective coating and component | |
EP2612950A2 (en) | Alloy, protective layer and component | |
WO2007063091A1 (en) | Alloy, protective layer for protecting a component against corrosion and oxidation at high temperatures and component | |
EP1798299B1 (en) | Alloy, protective coating and component | |
EP1806418A1 (en) | Alloy, protective coating for protecting a structural member against corrosion and oxidation at high temperatures and structural member | |
EP1790743A1 (en) | Alloy, protective layer and component | |
EP1783236A1 (en) | Alloy, protecting coating for a component protection against corrosion and oxidation at high temperature and component | |
EP1854898A1 (en) | Alloy, protective layer and component | |
EP2710167A1 (en) | Alloy, protective layer and component | |
EP1692322B1 (en) | Metal protective coating | |
EP2699713A1 (en) | Layer system having a two-ply metal layer | |
EP1790746B1 (en) | Alloy, protective layer and component | |
EP1806419B1 (en) | Alloy, protective coating for protecting a structural member against corrosion and oxidation at high temperatures and structural member | |
WO2011086046A2 (en) | Alloy, protective layer, and component | |
EP2756107A1 (en) | Alloy, protective layer and component | |
EP2524063A1 (en) | Alloy, protective layer, and component |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AC | Divisional application: reference to earlier application |
Ref document number: 1812613 Country of ref document: EP Kind code of ref document: P |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK RS |
|
17P | Request for examination filed |
Effective date: 20080725 |
|
17Q | First examination report despatched |
Effective date: 20090324 |
|
AKX | Designation fees paid |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
APBK | Appeal reference recorded |
Free format text: ORIGINAL CODE: EPIDOSNREFNE |
|
APBN | Date of receipt of notice of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA2E |
|
APBR | Date of receipt of statement of grounds of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA3E |
|
APAF | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOSCREFNE |
|
APBT | Appeal procedure closed |
Free format text: ORIGINAL CODE: EPIDOSNNOA9E |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN |
|
18W | Application withdrawn |
Effective date: 20120801 |