EP1902160A1 - Ceramic heat insulating layer - Google Patents

Ceramic heat insulating layer

Info

Publication number
EP1902160A1
EP1902160A1 EP06764032A EP06764032A EP1902160A1 EP 1902160 A1 EP1902160 A1 EP 1902160A1 EP 06764032 A EP06764032 A EP 06764032A EP 06764032 A EP06764032 A EP 06764032A EP 1902160 A1 EP1902160 A1 EP 1902160A1
Authority
EP
European Patent Office
Prior art keywords
thermal barrier
barrier coating
component
intermetallic compound
adhesive layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP06764032A
Other languages
German (de)
French (fr)
Other versions
EP1902160B1 (en
Inventor
Mohamed Youssef Nazmy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Technology GmbH
Original Assignee
Alstom Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Technology AG filed Critical Alstom Technology AG
Publication of EP1902160A1 publication Critical patent/EP1902160A1/en
Application granted granted Critical
Publication of EP1902160B1 publication Critical patent/EP1902160B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/288Protective coatings for blades
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • C23C28/3215Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer at least one MCrAlX layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • C23C28/3455Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/36Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including layers graded in composition or physical properties
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material

Definitions

  • the invention relates to the field of materials technology. It relates to a ceramic thermal barrier coating, which for coating thermally highly stressed components such. As blades of a gas turbine, is used.
  • thermal barrier coatings thermal barrier coatings
  • TBC thermal barrier coatings
  • Y 2 O 3 yttrium oxide
  • ZrO 2 zirconium oxide
  • adhesive layers of MCrAIY are often provided between the thermal barrier coating and the surface of the component, where M stands for metal, specifically for Ni, Fe, Co or combinations thereof.
  • Plasma spraying such as.
  • Air Plasma Spraying APS low-pressure plasma spraying (LPPS), vacuum plasma spraying (VPS) or flame spraying, such.
  • High Velocity Oxygen Fuel (HVOF) as well as Physical Vapor Deposition (PVD), e.g. B. by electron beam (Electron Beam Physical Vapor Deposition EP-PVD) known (see, for example, US 6,352,788 B2, US 6,544,665 B2).
  • APS-sprayed TBCs have e.g. B. a high degree of inhomogeneities and porosity, which advantageously reduces the heat transfer through the TBC.
  • B a high degree of inhomogeneities and porosity
  • One of these countermeasures is, for example, the spraying of thicker layers. This is disadvantageous 3 B04 / 002-0
  • TBC layer thicknesses are approx. 250-300 ⁇ m.
  • Al2O 3 (at least 0.1-3 mol%) in the microstructure of a TBC bring.
  • the Al 2 O 3 does not combine with the matrix of the ceramic layer, but forms deposits and thus prevents grain growth. However, this does not have a positive influence on the voltage gradient and thus on the reduction of the danger of the TBC breaking away.
  • the aim of the invention is to avoid the mentioned disadvantages of the prior art.
  • the invention is based on the object, for coating a component of a nickel-base superalloy, of an improved ceramic thermal barrier coating based on yttrium oxide
  • Y2O 3 stabilized zirconia
  • Z1O2 which is characterized by a long life and high oxidation resistance and ductility.
  • this object is achieved in that the thermal barrier coating on the basis of yttria (Y2O 3 ) stabilized zirconia (ZrO 2 ) in addition to production-related impurities still at least one high-temperature and oxidation-resistant intermetallic compound whose volume fraction as a function of the distance from the surface of Nickel-based superalloy decreases continuously or stepwise, preferably in exponential or linear form.
  • Y2O 3 yttria
  • ZrO 2 stabilized zirconia
  • Superalloy and optionally applied thereon applied metallic adhesive layer component is characterized in that a) ceramic powder of yttria (Y2O 3 ) stabilized zirconia (Zr ⁇ 2) and powder of at least one intermetallic compound are mixed together, b) this powder mixture then by means of known thermal Spray method is sprayed either directly on the surface of the component or in the presence of a metallic adhesive layer directly on the metallic adhesive layer, c) the process steps a) and b) are repeated several times, wherein the
  • Powder mixture in each case has a smaller volume fraction of intermetallic compound than in the preceding process steps and the powder mixture is sprayed in each case on the already sprayed in the previous process step layer, so that ultimately a thermal barrier coating with a on the
  • the advantage of the invention is that a gradual change in the composition of the thermal barrier coating as a function of the thickness of the thermal barrier coating produces a less steep gradient of stress. This leads to a higher strain tolerance of the TBC layer and thus on the one hand to an increased service life at thermal
  • intermetallic compounds NiAl, alloyed NiAl, YRh or ErIr are used as intermetallic compounds. These intermetallic compounds are resistant to oxidation and have sufficient ductility in a wide temperature range. In addition, they have little tendency for interdiffusion and have a high melting point. 5 B04 / 002-0
  • the volume fraction of the intermetallic compound in the layer at the surface of the component is about 80% by volume and at the free surface is about 5%.
  • Fig. 1 is a perspective view of a blade of a
  • FIG. 2 shows a section along the line M-II in FIG. 1 and
  • FIG. 3 shows a schematic profile of the volume fractions in the TBC in FIG
  • the invention is applicable to all components which are exposed to high temperatures and oxidative / corrosive environmental influences, such. As blades, heat accumulation segments or parts of the combustion chambers of gas turbines.
  • Fig. 1 shows in perspective view as an example of such components 1, a blade of a gas turbine.
  • the blade 1 6 B04 / 002-0
  • the blade 1 consists of a blade root 2, a platform 3 and an airfoil 4, in which cooling air channels are present, whose openings are designated in Fig. 1 with 5.
  • the blade 1 is anchored with its blade root 2 in circumferential grooves in the rotor of the gas turbine, not shown.
  • the blade 4 is subjected to hot combustion gases, so that the surface 7 of the airfoil 4 is exposed to both the hot combustion gases and attacks by oxidation, corrosion and erosion.
  • the blade 4 is therefore provided on its outer surface 7 with a metallic adhesive layer 6 (not visible in FIG. 1) on which a ceramic thermal barrier coating 8 is sprayed.
  • the turbine blade may preferably consist of a single-crystal alloy, for example with the following chemical composition (in% by weight): 7.7-8.3 Cr, 5.0-5.25 Co, 2.0-2.1 Mo, 7.8-8.3 W, 5.8-6.1 Ta, 4.9-5.1 Al, 1.3-1.4 Ti, 0.11-0.15 Si, 0.11-0.15 Hf, 200-750 ppm C, 50-400 ppm B, balance nickel and manufacturing impurities.
  • These base materials are provided on their outer surface 7 with a metallic adhesive layer 6, preferably of the type MCrAIY, where M is metal (Ni, Co, Fe or combinations thereof).
  • M metal
  • NiCrAlY was used for the adhesive layer 6.
  • the Al-rich adhesive layers of this type form an Al 2 O 3 -Zdertik 9, which forms by thermal oxidation of the adhesive layer 6.
  • the TBC 8 consists of yttria (Y 2 O 3) stabilized zirconia (ZrO 2), with about 7% yttria is present.
  • the thermal barrier coating 8 is sprayed by means of known thermal spraying, for example by means of APS.
  • the ceramic powder is first mixed with powder of an intermetallic compound 12, in the present embodiment of nickel aluminide NiAl, and then this powder mixture is thermally sprayed onto the adhesive layer 6.
  • the volume fraction of the intermetallic compound 12 is very high, here 80 vol .-%.
  • FIG. 3 where the schematic profile of the volume fractions of intermetallic compounds 12 or of zirconium oxide (ZrO 2 ) stabilized with yttrium oxide (Y 2 O 3 ) in the thermal barrier coating 8 depends on the distance from the adhesive layer 6, ie from the Thickness of the thermal barrier coating 8 is shown.
  • the volume fraction of intermetallic compound 12 decreases continuously here exponentially. In other embodiments, it may also be linear or stepwise decreasing.
  • the ceramic thermal barrier coatings produced by APS consist of individual grains and have a relatively large porosity. In Fig. 2, these grains are with the 8 B04 / 002-0
  • the intermetallic compound 12, here NiAl preferably deposits in these pores 11.
  • the intermetallic compounds such as nickel aluminide, are resistant to oxidation and have sufficient ductility in a wide temperature range. In addition, they have little tendency for interdiffusion and have a high melting point. Due to the gradual change in the composition of the thermal barrier coating as a function of the thickness of the thermal barrier coating, a less steep stress gradient is advantageously generated in the layer. This leads to a higher elongation tolerance of the thermal barrier coating and thus on the one hand to increased life under thermal stress (no chipping) and on the other hand to the possibility to apply thicker thermal barrier coatings and thus use the coated components at higher temperatures.
  • layer thicknesses of approximately 250-300 ⁇ m could be sprayed by means of APS in the case of conventional yttria-stabilized zirconium oxide thermal barrier coatings, layer thicknesses of up to approximately 2 mm can easily be achieved in the present invention.
  • the invention is not limited to the embodiment described.
  • the following intermetallic compounds are also suitable for achieving the advantages according to the invention: YRh, ErIr and alloyed NiAl, since these intermetallic compounds are resistant to oxidation, have good ductility in all temperature ranges, and a low tendency for interdiffusion and high melting points to have. Due to the gradual grading of the volume fraction of intermetallic compound, a less steep voltage gradient is achieved, so that the thermal barrier coating is substantially more strain-tolerant and thus has a longer life under thermal stress. 9 B04 / 002-0
  • the inventive thermal barrier coatings can also be applied to other thermally highly loaded gas turbine components, such as heat shields or combustion chamber liner, wherein the base material of the component z.
  • B. Hastalloy or Haynes 230 may be and the adhesive layer z.
  • B. may be a NiCoCrAlY layer.
  • thermal spraying of the TBC according to the present invention also other spraying methods are suitable as APS, z. Eg EB-PVD.
  • the thermal barrier coatings produced are stalk-shaped.

Abstract

The invention relates to a ceramic heat insulating layer (8) for coating the surface (7) of a component (1), preferably a gas turbine component, which is composed of a nickel-base superalloy and a metallic adhesive layer (6) that is optionally applied thereto. The heat insulating layer (8) contains zirconium oxide (ZrO<SUB>2</SUB>) stabilized by means of yttria (Y<SUB>2</SUB>O<SUB>3</SUB>), production-related impurities, and at least one high temperature-resistant and oxidation-resistant intermetallic compound, e.g. NiAl, YRh, Erlr, whose volume fraction decreases continuously or gradually as the distance from the surface (7) of the component (1)/the adhesive layer (6) increases. The advantage of the invention lies in the fact that a less steep tensile gradient is obtained due to the gradual change of the composition of the heat insulating layer (8), resulting in greater elasticity tolerance of the heat insulating layer (8) and thus an increased service life under thermal stress (no flaking) while making it possible to apply thicker heat insulating layers (8) and therefore use the coated components (1) at higher temperatures.

Description

Keramische Wärmedämmschicht Ceramic thermal barrier coating
Technisches GebietTechnical area
Die Erfindung bezieht sich auf das Gebiet der Werkstofftechnik. Sie betrifft eine keramische Wärmedämmschicht, welche zum Beschichten thermisch hochbelasteter Bauteile, wie z. B. Laufschaufeln einer Gasturbine, eingesetzt wird.The invention relates to the field of materials technology. It relates to a ceramic thermal barrier coating, which for coating thermally highly stressed components such. As blades of a gas turbine, is used.
Stand der TechnikState of the art
Um die Effizienz von Gasturbinen zu erhöhen werden diese bei sehr hohen Betriebstemperaturen gefahren. Die den heissen Gasen ausgesetzten Bauteile, z. B. Leit- und Laufschaufeln oder Brennkammerelemente, werden daher bekanntermassen auf ihrer Oberfläche mit Wärmedämmschichten (Thermal Barrier Coatings, TBC) versehen, um höhere Betriebstemperaturen zu erreichen bzw. die Lebensdauer der Bauteile zu verlängern. Diese Wärmedämmschichten bestehen üblicherweise aus einem keramischen Material, meist aus mit Yttriumoxid (Y2O3) stabilisiertem Zirkonoxid (Zrθ2), das 2 B04/002-0 auf die Oberfläche der oftmals aus Nickelbasis-Superlegierungen bestehenden Bauteile aufgebracht wird. Um die Haftung der keramischen Schicht auf dem Bauteil zu verbessern, werden zwischen der Wärmedämmschicht und der Oberfläche des Bauteiles oftmals Haftschichten aus MCrAIY vorgesehen, wobei M für Metall, und zwar für Ni, Fe, Co oder Kombinationen daraus, steht.In order to increase the efficiency of gas turbines, they are operated at very high operating temperatures. The hot gases exposed components, eg. As guide and blades or combustion chamber elements are therefore known to be provided on its surface with thermal barrier coatings (thermal barrier coatings, TBC) to achieve higher operating temperatures and to extend the life of the components. These thermal barrier coatings usually consist of a ceramic material, usually of yttrium oxide (Y 2 O 3 ) stabilized zirconium oxide (ZrO 2), the 2 B04 / 002-0 is applied to the surface of components often made of nickel-based superalloys. In order to improve the adhesion of the ceramic layer on the component, adhesive layers of MCrAIY are often provided between the thermal barrier coating and the surface of the component, where M stands for metal, specifically for Ni, Fe, Co or combinations thereof.
Es ist bekannter Stand der Technik, die TBC thermisch aufzuspritzen. Als mögliche Verfahren zum Aufbringen dieser Schichten sind Plasmaspritzen, wie z. B. Plasmaspritzen in Luft (Air Plasma Spraying APS), Niederdruck- Plasmaspritzen (Low Pressure Plasma Spraying LPPS), Vakuum- Plasmaspritzen (Vacuum Plasma Spraying VPS) oder Flammenspritzen, wie z. B. Hochgeschwindigkeitsflammenspritzen (High Velocity Oxygen Fuel HVOF), sowie physikalische Dampfabscheidung (Physical Vapour Deposition PVD), z. B. mittels Elektronenstrahl (Electron Beam Physical Vapour Deposition EP-PVD) bekannt (siehe z. B. US 6,352,788 B2, US 6,544,665 B2).It is well known in the art to thermally spray on the TBC. As a possible method for applying these layers are plasma spraying, such as. As plasma spraying in air (Air Plasma Spraying APS), low-pressure plasma spraying (LPPS), vacuum plasma spraying (VPS) or flame spraying, such. High Velocity Oxygen Fuel (HVOF), as well as Physical Vapor Deposition (PVD), e.g. B. by electron beam (Electron Beam Physical Vapor Deposition EP-PVD) known (see, for example, US 6,352,788 B2, US 6,544,665 B2).
Mit Hilfe des EP-PVD-Verfahren werden säulenartige Schichten erzeugt, die eine dehnungstolerante Kornstruktur aufweisen, die fähig ist sich bei unterschiedlicher Beanspruchung auszudehnen oder zusammenzuziehen, so dass keine Spannungen erzeugt werden, welche beispielsweise zum Abplatzen der Schichten führen würden. Nachteilig sind bei diesem Verfahren aber die hohen Kosten.With the aid of the EP-PVD method, columnar layers are produced which have an expansion-tolerant grain structure that is capable of expanding or contracting under different stresses, so that no stresses are generated which would, for example, cause the layers to flake off. The disadvantage of this method but the high cost.
Im Gegensatz dazu haben APS-gespritze TBC z. B. einen hohen Grad an Inhomogenitäten und Porosität, was vorteilhaft den Wärmetransfer durch die TBC reduziert. Während des Betriebes einer Gasturbine erhöht aber sich durch Strukturveränderungen, z. B. Kornwachstum, die thermische Leitfähigkeit, so dass Gegenmassnahmen getroffen werden müssen um einen ausreichenden Wärmeschutz zu erreichen. Eine dieser Gegenmassnahmen ist beispielsweise das Spritzen dickerer Schichten. Dies ist nachteilig 3 B04/002-0In contrast, APS-sprayed TBCs have e.g. B. a high degree of inhomogeneities and porosity, which advantageously reduces the heat transfer through the TBC. During operation of a gas turbine but increased by structural changes, eg. As grain growth, the thermal conductivity, so that countermeasures must be taken to achieve adequate thermal protection. One of these countermeasures is, for example, the spraying of thicker layers. This is disadvantageous 3 B04 / 002-0
einerseits sehr teuer, andererseits praktisch oftmals nicht machbar. Übliche TBC-Schichtdicken sind ca. 250-300 μm.on the one hand very expensive, on the other hand practically impossible in many cases. Typical TBC layer thicknesses are approx. 250-300 μm.
Gemäss US 6,544,665 B2 wird deshalb vorgeschlagen, z. B. AI2O3 (mindestens 0.1-3 Mol-%) in die Mikrostruktur einer TBC einzubringen. Das AI2O3 verbindet sich nicht mit der Matrix der keramischen Schicht, sondern bildet Ablagerungen und verhindert damit das Kornwachstum. Einen positiven Einfluss auf den Spannungsgradienten und damit auf die Senkung der Abplatzgefahr der TBC hat dies aber nicht.According to US 6,544,665 B2 is therefore proposed, for. B. Al2O 3 (at least 0.1-3 mol%) in the microstructure of a TBC bring. The Al 2 O 3 does not combine with the matrix of the ceramic layer, but forms deposits and thus prevents grain growth. However, this does not have a positive influence on the voltage gradient and thus on the reduction of the danger of the TBC breaking away.
Darstellung der ErfindungPresentation of the invention
Ziel der Erfindung ist es, die genannten Nachteile des Standes der Technik zu vermeiden. Der Erfindung liegt die Aufgabe zu Grunde, zur Beschichtung einer Komponente aus einer Nickelbasis-Superlegierung eine verbesserte keramische Wärmedämmschicht auf der Grundlage von mit YttriumoxidThe aim of the invention is to avoid the mentioned disadvantages of the prior art. The invention is based on the object, for coating a component of a nickel-base superalloy, of an improved ceramic thermal barrier coating based on yttrium oxide
(Y2O3) stabilisiertem Zirkonoxid (Z1O2) zu entwickeln, welche sich durch eine hohe Lebensdauer und hohe Oxidationsbeständigkeit und Duktilität auszeichnet.(Y2O 3 ) stabilized zirconia (Z1O2), which is characterized by a long life and high oxidation resistance and ductility.
Erfindungsgemäss wird diese Aufgabe dadurch gelöst, dass die Wärmedämmschicht auf der Grundlage von mit Yttriumoxid (Y2O3) stabilisiertem Zirkonoxid (ZrO2) neben herstellungsbedingten Verunreinigungen noch mindestens eine hochtemperatur- und oxidationsbeständige intermetallische Verbindung aufweist, deren Volumenanteil in Abhängigkeit vom Abstand von der Oberfläche der Nickel- Basis-Superlegierung kontinuierlich oder stufenweise, vorzugsweise in exponentieller oder linearer Form, abnimmt.According to the invention, this object is achieved in that the thermal barrier coating on the basis of yttria (Y2O 3 ) stabilized zirconia (ZrO 2 ) in addition to production-related impurities still at least one high-temperature and oxidation-resistant intermetallic compound whose volume fraction as a function of the distance from the surface of Nickel-based superalloy decreases continuously or stepwise, preferably in exponential or linear form.
Das erfindungsgemässe Verfahren zum Aufbringen der beschriebenen Wärmedämmschicht auf die Oberfläche einer aus einer Nickel-Basis- 4 B04/002-0The inventive method for applying the described thermal barrier coating on the surface of a nickel-based 4 B04 / 002-0
Superlegierung und einer wahlweise darauf aufgebrachten metallischen Haftschicht bestehenden Komponente ist dadurch gekennzeichnet, dass a) keramisches Pulver aus mit Yttriumoxid (Y2O3) stabilisiertem Zirkonoxid (Zrθ2) und Pulver aus mindestens einer intermetallischen Verbindung miteinander gemischt werden, b) diese Pulvermischung anschliessend mittels bekannter thermischer Spritzverfahren entweder direkt auf die Oberfläche der Komponente oder beim Vorhandensein einer metallischen Haftschicht direkt auf die metallische Haftschicht aufgespritzt wird, c) die Verfahrensschritte a) und b) mehrfach wiederholt werden, wobei dieSuperalloy and optionally applied thereon applied metallic adhesive layer component is characterized in that a) ceramic powder of yttria (Y2O 3 ) stabilized zirconia (Zrθ2) and powder of at least one intermetallic compound are mixed together, b) this powder mixture then by means of known thermal Spray method is sprayed either directly on the surface of the component or in the presence of a metallic adhesive layer directly on the metallic adhesive layer, c) the process steps a) and b) are repeated several times, wherein the
Pulvermischung jeweils einen geringeren Volumenanteil an intermetallischer Verbindung aufweist als in den vorangegangenen Verfahrensschritten und die Pulvermischung jeweils auf die bereits im vorausgegangenen Verfahrensschritt aufgespritzte Schicht aufgespritzt wird, so dass letztlich eine Wärmedämmschicht mit einem über diePowder mixture in each case has a smaller volume fraction of intermetallic compound than in the preceding process steps and the powder mixture is sprayed in each case on the already sprayed in the previous process step layer, so that ultimately a thermal barrier coating with a on the
Schichtdicke abnehmenden Volumenanteil an intermetallischen Verbindungen gebildet wird.Layer thickness decreasing volume fraction of intermetallic compounds is formed.
Der Vorteil der Erfindung besteht darin, dass durch die allmähliche Veränderung der Zusammensetzung der Wärmedämmschicht in Abhängigkeit von der Dicke der Wärmedämmschicht ein weniger steiler Spannungsgradient erzeugt wird. Dies führt zu einer höheren Dehnungstoleranz der TBC-Schicht und damit einerseits zu einer erhöhten Lebensdauer bei thermischerThe advantage of the invention is that a gradual change in the composition of the thermal barrier coating as a function of the thickness of the thermal barrier coating produces a less steep gradient of stress. This leads to a higher strain tolerance of the TBC layer and thus on the one hand to an increased service life at thermal
Beanspruchung (kein Abplatzen) und anderseits zur Möglichkeit, dickere Wärmedämmschichten aufzubringen und somit die beschichteten Bauteile bei höheren Temperaturen einzusetzen.Stress (no chipping) and on the other hand the possibility to apply thicker thermal barrier coatings and thus use the coated components at higher temperatures.
Es ist zweckmässig, wenn als intermetallische Verbindungen NiAI, legierte NiAI, YRh oder ErIr verwendet werden. Diese intermetallischen Verbindungen sind oxidationsbeständig und besitzen in einem grossen Temperaturbereich eine ausreichende Duktilität. Ausserdem haben sie nur eine geringe Tendenz zur Interdiffusion und besitzen einen hohen Schmelzpunkt. 5 B04/002-0It is expedient if NiAl, alloyed NiAl, YRh or ErIr are used as intermetallic compounds. These intermetallic compounds are resistant to oxidation and have sufficient ductility in a wide temperature range. In addition, they have little tendency for interdiffusion and have a high melting point. 5 B04 / 002-0
Vorteilhaft ist, wenn der Volumenanteil der intermetallischen Verbindung in der Schicht an der Oberfläche der Komponente ca. 80 Vol.-% und an der freien Oberfläche ca. 5 % beträgt.It is advantageous if the volume fraction of the intermetallic compound in the layer at the surface of the component is about 80% by volume and at the free surface is about 5%.
Kurze Beschreibung der ZeichnungShort description of the drawing
In der Zeichnung ist ein Ausführungsbeispiel der Erfindung dargestellt.In the drawing, an embodiment of the invention is shown.
Es zeigen.Show it.
Fig. 1 eine perspektivische Darstellung einer Laufschaufel einerFig. 1 is a perspective view of a blade of a
Gasturbine;A gas turbine;
Fig. 2 einen Schnitt entlang der Linie M-Il in Fig. 1 und Fig. 3 einen schematischen Verlauf der Volumenanteile in der TBC in2 shows a section along the line M-II in FIG. 1 and FIG. 3 shows a schematic profile of the volume fractions in the TBC in FIG
Abhängigkeit vom Abstand vom Grundsubstrat.Dependence on the distance from the basic substrate.
Es sind nur die für die Erfindung wesentlichen Merkmale dargestellt. Gleiche Elemente haben in unterschiedlichen Figuren gleiche Bezugszeichen.Only the essential features of the invention are shown. Identical elements have the same reference numerals in different figures.
Wege zur Ausführung der ErfindungWays to carry out the invention
Nachfolgend wird die Erfindung anhand eines Ausführungsbeispieles näher erläutert.The invention will be explained in more detail with reference to an embodiment.
Die Erfindung ist anwendbar für alle Komponenten, welche hohen Temperaturen und oxidativen/korrosiven Umwelteinflüssen ausgesetzt sind, wie z. B. Schaufeln, Wärmestausegmente oder Teile der Brennkammern von Gasturbinen.The invention is applicable to all components which are exposed to high temperatures and oxidative / corrosive environmental influences, such. As blades, heat accumulation segments or parts of the combustion chambers of gas turbines.
Fig. 1 zeigt in perspektivischer Darstellung als ein Beispiel derartiger Komponenten 1 eine Laufschaufel einer Gasturbine. Die Laufschaufel 1 6 B04/002-0Fig. 1 shows in perspective view as an example of such components 1, a blade of a gas turbine. The blade 1 6 B04 / 002-0
besteht aus einem Schaufelfuss 2, einer Plattform 3 und einem Schaufelblatt 4, in welchem Kühlluftkanäle vorhanden sind, deren Öffnungen in Fig. 1 mit 5 bezeichnet sind. Die Laufschaufel 1 wird mit ihrem Schaufelfuss 2 in Umfangsnuten im nicht dargestellten Rotor der Gasturbine verankert. Während des Betriebes der Turbine wird das Schaufelblatt 4 mit heissen Verbrennungsgasen beaufschlagt, so dass die Oberfläche 7 des Schaufelblattes 4 sowohl den heissen Verbrennungsgasen als auch Angriffen durch Oxidation, Korrosion und Erosion ausgesetzt ist. Zum Schutz vor Oxidation/Korrosion sowie zu hoher thermischer Belastung ist das Schaufelblatt 4 daher auf seiner äusseren Oberfläche 7 mit einer metallischen Haftschicht 6 (in Fig. 1 nicht sichtbar) versehen, auf der eine keramische Wärmedämmschicht 8 aufgespritzt ist.consists of a blade root 2, a platform 3 and an airfoil 4, in which cooling air channels are present, whose openings are designated in Fig. 1 with 5. The blade 1 is anchored with its blade root 2 in circumferential grooves in the rotor of the gas turbine, not shown. During operation of the turbine, the blade 4 is subjected to hot combustion gases, so that the surface 7 of the airfoil 4 is exposed to both the hot combustion gases and attacks by oxidation, corrosion and erosion. For protection against oxidation / corrosion and high thermal stress, the blade 4 is therefore provided on its outer surface 7 with a metallic adhesive layer 6 (not visible in FIG. 1) on which a ceramic thermal barrier coating 8 is sprayed.
In der Schnittdarstellung gemäss Fig. 2 ist das Beschichtungssystem gut zu erkennen. Der Grundwerkstoff der Laufschaufel 1 der Gasturbine besteht beispielsweise aus einer gerichtet erstarrten Nickel-Basissuperlegierung CM 247 mit folgender chemischer Zusammensetzung (Angaben in Gew.-%): = 0.07 C, 8.1 Cr, 9.2 Cr, 0.5 Mo, 9.5 W, 3.2 Ta, 5.6 AI, 0.7 Ti, 0.015 B, 0.015 Zr, 1.4 Hf, Rest Ni.In the sectional view according to FIG. 2, the coating system is clearly visible. The base material of the rotor blade 1 of the gas turbine, for example, consists of a directionally solidified nickel base superalloy CM 247 with the following chemical composition (in wt .-%): = 0.07 C, 8.1 Cr, 9.2 Cr, 0.5 Mo, 9.5 W, 3.2 Ta, 5.6 Al, 0.7 Ti, 0.015 B, 0.015 Zr, 1.4 Hf, balance Ni.
In einem anderen Ausführungsbeispiel kann die Turbinenschaufel vorzugsweise aus einer Einkristalllegierung, beispielsweise mit folgender chemischer Zusammensetzung bestehen (Angaben in Gew.-%): 7.7-8.3 Cr, 5.0-5.25 Co, 2.0-2.1 Mo, 7.8-8.3 W, 5.8-6.1 Ta, 4.9-5.1 AI, 1.3-1.4 Ti, 0.11- 0.15 Si, 0.11-0.15 Hf, 200-750 ppm C, 50-400 ppm B, Rest Nickel und herstellungsbedingte Verunreinigungen.In another embodiment, the turbine blade may preferably consist of a single-crystal alloy, for example with the following chemical composition (in% by weight): 7.7-8.3 Cr, 5.0-5.25 Co, 2.0-2.1 Mo, 7.8-8.3 W, 5.8-6.1 Ta, 4.9-5.1 Al, 1.3-1.4 Ti, 0.11-0.15 Si, 0.11-0.15 Hf, 200-750 ppm C, 50-400 ppm B, balance nickel and manufacturing impurities.
Diese Grundwerkstoffe (Substrate) sind auf ihrer äusseren Oberfläche 7 mit einer metallischen Haftschicht 6, vorzugsweise des Typs MCrAIY versehen, wobei M für Metall steht (Ni, Co, Fe oder deren Kombinationen). Im vorliegenden Falle wurde NiCrAIY für die Haftschicht 6 verwendet. Die AI- reichen Haftschichten dieses Typs bilden eine AI2O3-Zunderschicht 9, die sich durch thermische Oxidation der Haftschicht 6 bildet. Diese AI2O3-Schicht 9 7 B04/002-0These base materials (substrates) are provided on their outer surface 7 with a metallic adhesive layer 6, preferably of the type MCrAIY, where M is metal (Ni, Co, Fe or combinations thereof). In the present case, NiCrAlY was used for the adhesive layer 6. The Al-rich adhesive layers of this type form an Al 2 O 3 -Zderschicht 9, which forms by thermal oxidation of the adhesive layer 6. This Al 2 O 3 layer 9 7 B04 / 002-0
bindet chemisch die keramische Wärmedämmschicht an die Haftschicht 6 und das Substrat (Nickel-Basissuperlegierung).chemically bonds the ceramic thermal barrier coating to the adhesive layer 6 and the substrate (nickel-base superalloy).
Die TBC 8 besteht aus mit Yttriumoxid (Y2O3) stabilisiertem Zirkonoxid (Zrθ2), wobei etwa 7 % Yttriumoxid vorhanden ist. Die Wärmedämmschicht 8 wird mittels bekannter thermischer Spritzverfahren beispielsweise mittels APS aufgespritzt. Erfindungsgemäss wird dazu das keramische Pulver zunächst mit Pulver aus einer intermetallischen Verbindung 12, im vorliegenden Ausführungsbeispiel aus Nickelaluminid NiAI, gemischt und anschliessend diese Pulvermischung auf die Haftschicht 6 thermisch aufgespritzt. Im ersten Verfahrensschritt ist der Volumenanteil der intermetallischen Verbindung 12 sehr hoch, hier 80 Vol.-%. Die beiden Verfahrensschritte werden nun mehrfach wiederholt werden, wobei die Pulvermischung jeweils einen geringeren Volumenanteil an der intermetallischen Verbindung NiAI aufweist als in den vorangegangenen Verfahrensschritten und die Pulvermischung jeweils auf die bereits im vorangegangenen Verfahrensschritt aufgespritzte Schicht aufgespritzt wird, so dass letztlich eine Wärmedämmschicht 8 mit einem über die Schichtdicke abnehmenden Volumenanteil an intermetallischer Verbindung 12 gebildet wird. Letztlich sind an der Oberfläche der fertig beschichteten Komponente 1 nur noch ca. 5 Vol.-% NiAI vorhanden.The TBC 8 consists of yttria (Y 2 O 3) stabilized zirconia (ZrO 2), with about 7% yttria is present. The thermal barrier coating 8 is sprayed by means of known thermal spraying, for example by means of APS. According to the invention, the ceramic powder is first mixed with powder of an intermetallic compound 12, in the present embodiment of nickel aluminide NiAl, and then this powder mixture is thermally sprayed onto the adhesive layer 6. In the first process step, the volume fraction of the intermetallic compound 12 is very high, here 80 vol .-%. The two process steps will now be repeated several times, wherein the powder mixture in each case has a smaller volume fraction of the intermetallic compound NiAI than in the preceding process steps and the powder mixture is sprayed onto the sprayed already in the previous process step layer, so that ultimately a thermal barrier coating 8 with a via the layer thickness decreasing volume fraction of intermetallic compound 12 is formed. Ultimately, only about 5 vol .-% NiAI are present on the surface of the finished coated component 1.
Dies ist in Fig. 3 dargestellt, wo der schematische Verlauf der Volumenanteile an intermetallischer Verbindungen 12 bzw. an mit Yttriumoxid (Y2O3) stabilisiertem Zirkonoxid (Zrθ2) in der Wärmedämmschicht 8 in Abhängigkeit vom Abstand von der Haftschicht 6, d.h. von der Dicke der Wärmedämmschicht 8 gezeigt wird. Der Volumenanteil an intermetallischer Verbindung 12 nimmt hier kontinuierlich exponentiell ab. In anderen Ausführungsbeispielen kann er auch linear oder stufenweise abnehmend sein.This is illustrated in FIG. 3, where the schematic profile of the volume fractions of intermetallic compounds 12 or of zirconium oxide (ZrO 2 ) stabilized with yttrium oxide (Y 2 O 3 ) in the thermal barrier coating 8 depends on the distance from the adhesive layer 6, ie from the Thickness of the thermal barrier coating 8 is shown. The volume fraction of intermetallic compound 12 decreases continuously here exponentially. In other embodiments, it may also be linear or stepwise decreasing.
Es ist bekannt, dass die durch APS erzeugten keramischen Wärmedämmschichten aus einzelnen Körner bestehen und eine relativ grosse Porosität aufweisen. In Fig. 2 sind diese Körner mit dem 8 B04/002-0It is known that the ceramic thermal barrier coatings produced by APS consist of individual grains and have a relatively large porosity. In Fig. 2, these grains are with the 8 B04 / 002-0
Bezugszeichen 10 und die Poren mit dem Bezugszeichen 11 bezeichnet. Bei der erfindungsgemässen Wärmedämmschicht 8 lagert sich die intermetallische Verbindung 12, hier NiAI, bevorzugt in diesen Poren 11 ab. Die intermetallischen Verbindungen, wie beispielsweise Nickelaluminid, sind oxidationsbeständig und besitzen in einem grossen Temperaturbereich eine ausreichende Duktilität. Ausserdem haben sie nur eine geringe Tendenz zur Interdiffusion und besitzen einen hohen Schmelzpunkt. Durch die allmähliche Veränderung der Zusammensetzung der Wärmedämmschicht in Abhängigkeit von der Dicke der Wärmedämmschicht wird mit Vorteil ein weniger steiler Spannungsgradient in der Schicht erzeugt. Dies führt zu einer höheren Dehnungstoleranz der Wärmedämmschicht und damit einerseits zu einer erhöhten Lebensdauer bei thermischer Beanspruchung (kein Abplatzen) und anderseits zur Möglichkeit, dickere Wärmedämmschichten aufzubringen und somit die beschichteten Bauteile bei höheren Temperaturen einzusetzen.Reference numeral 10 and the pores denoted by the reference numeral 11. In the case of the thermal barrier coating 8 according to the invention, the intermetallic compound 12, here NiAl, preferably deposits in these pores 11. The intermetallic compounds, such as nickel aluminide, are resistant to oxidation and have sufficient ductility in a wide temperature range. In addition, they have little tendency for interdiffusion and have a high melting point. Due to the gradual change in the composition of the thermal barrier coating as a function of the thickness of the thermal barrier coating, a less steep stress gradient is advantageously generated in the layer. This leads to a higher elongation tolerance of the thermal barrier coating and thus on the one hand to increased life under thermal stress (no chipping) and on the other hand to the possibility to apply thicker thermal barrier coatings and thus use the coated components at higher temperatures.
Während bei konventionellen mit Yttriumoxid stabilisierten Zirkonoxid- Wärmedämmschichten Schichtdicken von ca. 250-300 μm mittels APS gespritzt werden konnten, sind bei der vorliegenden Erfindung Schichtdicken bis ca. 2 mm problemlos machbar.While layer thicknesses of approximately 250-300 μm could be sprayed by means of APS in the case of conventional yttria-stabilized zirconium oxide thermal barrier coatings, layer thicknesses of up to approximately 2 mm can easily be achieved in the present invention.
Selbstverständlich ist die Erfindung nicht auf das beschriebene Ausführungsbeispiel beschränkt. Neben dem bereits erwähnten NiAI sind auch die folgenden intermetallischen Verbindungen geeignet, die erfindungsgemässen Vorteile zu erreichen: YRh, ErIr und legiertes NiAI, da diese intermetallischen Verbindungen oxidationsbeständig sind, in allen Temperaturbereichen eine gute Duktilität aufweisen, sowie eine geringe Tendenz zur Interdiffusion und hohe Schmelzpunkte haben. Infolge der allmählichen Abstufung des Volumenanteils an intermetallischer Verbindung wird ein weniger steiler Spannungsgradient erreicht, so dass die Wärmedämmschicht wesentlich dehnungstoleranter ist und damit eine längere Lebensdauer bei thermischer Beanspruchung aufweist. 9 B04/002-0Of course, the invention is not limited to the embodiment described. In addition to the NiAl already mentioned, the following intermetallic compounds are also suitable for achieving the advantages according to the invention: YRh, ErIr and alloyed NiAl, since these intermetallic compounds are resistant to oxidation, have good ductility in all temperature ranges, and a low tendency for interdiffusion and high melting points to have. Due to the gradual grading of the volume fraction of intermetallic compound, a less steep voltage gradient is achieved, so that the thermal barrier coating is substantially more strain-tolerant and thus has a longer life under thermal stress. 9 B04 / 002-0
Die erfindungsgemässen Wärmedämmschichten können auch auf andere thermisch hochbelastete Gasturbinenkomponenten, wie beispielsweise Wärmeschutzschilder oder Brennkammerliner, aufgebracht werden, wobei der Grundwerkstoff der Komponente z. B. Hastalloy oder Haynes 230 sein kann und die Haftschicht z. B. eine NiCoCrAlY-Schicht sein kann.The inventive thermal barrier coatings can also be applied to other thermally highly loaded gas turbine components, such as heat shields or combustion chamber liner, wherein the base material of the component z. B. Hastalloy or Haynes 230 may be and the adhesive layer z. B. may be a NiCoCrAlY layer.
Schliesslich sind zum thermischen Spritzen der TBC gemäss vorliegender Erfindung auch andere Spritzverfahren als APS geeignet, z. B. EB-PVD. Die damit erzeugten Wärmedämmschichten sind stängelförmig.Finally, for thermal spraying of the TBC according to the present invention, also other spraying methods are suitable as APS, z. Eg EB-PVD. The thermal barrier coatings produced are stalk-shaped.
Selbstverständlich ist es auch möglich, die TBC direkt auf die Oberfläche der Komponente zu spritzen, d.h. ohne eine zusätzliche Haftschicht.Of course, it is also possible to inject the TBC directly onto the surface of the component, i. without an additional adhesive layer.
BezugszeichenlisteLIST OF REFERENCE NUMBERS
1 Komponente, z. B. Laufschaufel1 component, eg. B. Blade
2 Schaufelfuss2 scoop feet
3 Plattform3 platform
4 Schaufelblatt4 airfoil
5 Öffnungen der Kühlluftkanäle5 openings of the cooling air ducts
6 Haftschicht6 adhesive layer
7 Oberfläche der Komponente7 Surface of the component
8 Wärmedämmschicht, TBC8 thermal barrier coating, TBC
9 AI2O3-Sd-IiCl-It9 Al 2 O 3 -Si-IiCl-It
10 Korn10 grains
11 Pore11 pore
12 Intermetallische Verbindung 12 Intermetallic compound

Claims

10 B04/002-0Patentansprüche 10 B04 / 002-0Patent claims
1. Keramische Wärmedämmschicht (8) zur Beschichtung der Oberfläche (7) einer aus einer Nickel-Basis-Superlegierung und einer wahlweise darauf aufgebrachten metallischen Haftschicht (6) bestehenden Komponente (1 ), wobei die Wärmedämmschicht (8) vorwiegend aus mit Yttriumoxid (Y2O3) stabilisiertem Zirkonoxid (Z1O2) und herstellungsbedingten Verunreinigungen besteht, dadurch gekennzeichnet, dass die Wärmedämmschicht (8) mindestens eine hochtemperatur- und oxidationsbeständige intermetallische Verbindung aufweist, deren Volumenanteil mit zunehmenden Abstand von der Oberfläche (7) derA ceramic thermal barrier coating (8) for coating the surface (7) of a component (1) consisting of a nickel-base superalloy and an optional metallic adhesive layer (6), the thermal barrier coating (8) consisting predominantly of yttria (Y 2 O 3 ) stabilized zirconium oxide (Z1O2) and production-related impurities, characterized in that the thermal barrier coating (8) comprises at least one high-temperature and oxidation-resistant intermetallic compound, the volume fraction with increasing distance from the surface (7) of
Komponente (1 )/der Haftschicht (6) kontinuierlich oder stufenweise abnimmt.Component (1) / the adhesive layer (6) continuously or gradually decreases.
2. Wärmedämmschicht (8) nach Anspruch 1 , dadurch gekennzeichnet, dass die intermetallische Verbindung NiAI und/oder legiertes NiAI ist.2. Thermal barrier coating (8) according to claim 1, characterized in that the intermetallic compound NiAl and / or alloyed NiAI.
3. Wärmedämmschicht (8) nach Anspruch 1 , dadurch gekennzeichnet, dass die intermetallische Verbindung YRh.3. thermal barrier coating (8) according to claim 1, characterized in that the intermetallic compound YRh.
4. Wärmedämmschicht (8) nach Anspruch 1 , dadurch gekennzeichnet, dass die intermetallische Verbindung ErIr ist.4. Thermal barrier coating (8) according to claim 1, characterized in that the intermetallic compound is ErIr.
5. Wärmedämmschicht (8) nach Anspruch 1 , dadurch gekennzeichnet, dass der Volumenanteil der intermetallischen Verbindung mit zunehmenden Abstand von der Oberfläche (7) der Komponente (1 )/der Haftschicht (6) exponentiell abnimmt. 11 B04/002-05. thermal barrier coating (8) according to claim 1, characterized in that the volume fraction of the intermetallic compound with increasing distance from the surface (7) of the component (1) / the adhesive layer (6) decreases exponentially. 11 B04 / 002-0
6. Wärmedämmschicht (8) nach Anspruch 1 , dadurch gekennzeichnet, dass der Volumenanteil der intermetallischen Verbindung mit zunehmenden Abstand von der Oberfläche (7) der Komponente (1 )/der Haftschicht (6) linear abnimmt.6. thermal barrier coating (8) according to claim 1, characterized in that the volume fraction of the intermetallic compound with increasing distance from the surface (7) of the component (1) / the adhesive layer (6) linearly decreases.
7. Wärmedämmschicht (8) nach Anspruch 1 , dadurch gekennzeichnet, dass der Volumenanteil der intermetallischen Verbindung in der Schicht an der Oberfläche (7) der Komponente (1 ) ca. 80 Vol.% und an der freien Oberfläche ca. 5 % beträgt.7. thermal barrier coating (8) according to claim 1, characterized in that the volume fraction of the intermetallic compound in the layer on the surface (7) of the component (1) is about 80 vol.% And at the free surface is about 5%.
8. Gasturbinenkomponente, dadurch gekennzeichnet, dass diese mit einer Wärmedämmschicht (8) nach einem der Ansprüche 1-7 beschichtet ist.8. gas turbine component, characterized in that it is coated with a thermal barrier coating (8) according to any one of claims 1-7.
9. Verfahren zum Aufbringen einer Wärmedämmschicht (8) auf die Oberfläche (7) einer aus einer Nickel-Basis-Superlegierung und einer wahlweise darauf aufgebrachten metallischen Haftschicht (6) bestehenden Komponente, dadurch gekennzeichnet, dass d) keramisches Pulver aus mit Yttriumoxid (Y2O3) stabilisiertem Zirkonoxid (Zrθ2) und Pulver aus mindestens einer intermetallischen Verbindung miteinander gemischt werden, e) diese Pulvermischung anschliessend mittels bekannter thermischer Spritzverfahren entweder direkt auf die Oberfläche (7) der Komponente (1 ) oder beim Vorhandensein einer metallischen Haftschicht (6) direkt auf die metallische Haftschicht (6) aufgespritzt wird, f) die Verfahrensschritte a) und b) mehrfach wiederholt werden, wobei die Pulvermischung jeweils einen geringeren Volumenanteil an intermetallischer Verbindung aufweist als in den vorangegangenen Verfahrensschritten und die Pulvermischung jeweils auf die bereits im vorausgegangenen Verfahrensschritt aufgespritzte Schicht aufgespritzt wird, so dass letztlich eine Wärmedämmschicht (8) mit einem über die Schichtdicke abnehmenden Volumenanteil an intermetallischen Verbindungen gebildet wird. 9. A method for applying a thermal barrier coating (8) on the surface (7) made of a nickel-based superalloy and an optionally applied thereto metallic adhesive layer (6) component, characterized in that d) ceramic powder with yttrium oxide (Y 2 O 3 ) stabilized zirconium oxide (ZrO 2) and powder of at least one intermetallic compound are mixed together, e) this powder mixture is then applied by known thermal spraying either directly to the surface (7) of the component (1) or in the presence of a metallic adhesive layer (6 f) the process steps a) and b) are repeated several times, the powder mixture each having a smaller volume fraction of intermetallic compound than in the preceding process steps and the powder mixture in each case to those already in the preceding Aufspri process step In this way, a heat-insulating layer (8) is formed with a volume fraction of intermetallic compounds which decreases over the layer thickness.
EP06764032A 2005-07-12 2006-07-04 Ceramic heat insulating layer Not-in-force EP1902160B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH11522005 2005-07-12
PCT/EP2006/063826 WO2007006681A1 (en) 2005-07-12 2006-07-04 Ceramic heat insulating layer

Publications (2)

Publication Number Publication Date
EP1902160A1 true EP1902160A1 (en) 2008-03-26
EP1902160B1 EP1902160B1 (en) 2009-03-18

Family

ID=35985842

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06764032A Not-in-force EP1902160B1 (en) 2005-07-12 2006-07-04 Ceramic heat insulating layer

Country Status (5)

Country Link
US (2) US7666516B2 (en)
EP (1) EP1902160B1 (en)
AT (1) ATE426052T1 (en)
DE (1) DE502006003197D1 (en)
WO (1) WO2007006681A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE502006003197D1 (en) 2005-07-12 2009-04-30 Alstom Technology Ltd CERAMIC HEAT INSULATION LAYER
US7800021B2 (en) * 2007-06-30 2010-09-21 Husky Injection Molding Systems Ltd. Spray deposited heater element
FR2960242B1 (en) 2010-05-18 2015-05-01 C R M A PROCESS FOR MANUFACTURING MULTI-LAYER COMPONENTS HAVING INCLINED HOLES AND RESISTANT TO HIGH THERMAL CONSTRAINTS AND USE OF THE PROCESS FOR REPAIRING WORKPIECES
US20160298467A1 (en) * 2013-11-18 2016-10-13 United Technologies Corporation Article having variable coating
US8939706B1 (en) 2014-02-25 2015-01-27 Siemens Energy, Inc. Turbine abradable layer with progressive wear zone having a frangible or pixelated nib surface
US20150275682A1 (en) * 2014-04-01 2015-10-01 Siemens Energy, Inc. Sprayed haynes 230 layer to increase spallation life of thermal barrier coating on a gas turbine engine component
US9869013B2 (en) * 2014-04-25 2018-01-16 Applied Materials, Inc. Ion assisted deposition top coat of rare-earth oxide
CN107429570B (en) * 2015-04-17 2020-06-09 三菱日立电力系统株式会社 Steam turbine rotor blade and method for manufacturing steam turbine rotor blade
CN106435566B (en) * 2016-09-12 2018-09-25 广西大学 A kind of method of niobium alloy surface laser multiple tracks cladding composite ceramics gradient coating
IT201900003691A1 (en) * 2019-03-13 2020-09-13 Nuovo Pignone Tecnologie Srl Abrasive terminal of a rotor blade for a turboexpander
CN113373408B (en) * 2021-05-14 2022-08-09 中国航发北京航空材料研究院 Dysprosium-doped gadolinium zirconate thermal barrier coating material and preparation method of coating

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3912235A (en) * 1974-12-19 1975-10-14 United Technologies Corp Multiblend powder mixing apparatus
JPS62156938A (en) * 1985-12-28 1987-07-11 航空宇宙技術研究所 Manufacture of leaning-function material
US5236787A (en) * 1991-07-29 1993-08-17 Caterpillar Inc. Thermal barrier coating for metallic components
WO1993005194A1 (en) * 1991-09-05 1993-03-18 Technalum Research, Inc. Method for the production of compositionally graded coatings
CN1074689C (en) * 1996-04-04 2001-11-14 E·O·帕通电子焊接研究院电子束工艺国际中心 Method of producing on substrate of protective coatings with chemical composition and structure gradient across thickness and with top ceramic layer
US5998003A (en) * 1998-09-10 1999-12-07 Electric Power Research Institute, Inc. Multilayer nanostructured ceramic thermal barrier coatings
US6352788B1 (en) 2000-02-22 2002-03-05 General Electric Company Thermal barrier coating
US6503575B1 (en) * 2000-05-22 2003-01-07 Praxair S.T. Technology, Inc. Process for producing graded coated articles
US6544665B2 (en) 2001-01-18 2003-04-08 General Electric Company Thermally-stabilized thermal barrier coating
US6502304B2 (en) * 2001-05-15 2003-01-07 General Electric Company Turbine airfoil process sequencing for optimized tip performance
CN100345990C (en) 2001-11-09 2007-10-31 阿尔斯托姆科技有限公司 Method for developing a nickel-base super alloy
DE10305912B4 (en) 2003-02-13 2014-01-30 Alstom Technology Ltd. Hybrid blade for thermal turbomachinery
DE10313489A1 (en) 2003-03-26 2004-10-14 Alstom Technology Ltd Thermal turbomachine with axial flow
DE10313490A1 (en) 2003-03-26 2004-10-14 Alstom Technology Ltd Thermal turbomachine with axial flow
WO2006053826A2 (en) 2004-11-18 2006-05-26 Alstom Technology Ltd Nickel-based superalloy
JP4636319B2 (en) * 2005-04-08 2011-02-23 住友金属工業株式会社 Ti alloy, Ti alloy member and manufacturing method thereof
DE502006003197D1 (en) 2005-07-12 2009-04-30 Alstom Technology Ltd CERAMIC HEAT INSULATION LAYER

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007006681A1 *

Also Published As

Publication number Publication date
US20100104764A1 (en) 2010-04-29
WO2007006681A1 (en) 2007-01-18
US7666516B2 (en) 2010-02-23
EP1902160B1 (en) 2009-03-18
US20080241560A1 (en) 2008-10-02
DE502006003197D1 (en) 2009-04-30
ATE426052T1 (en) 2009-04-15

Similar Documents

Publication Publication Date Title
EP1902160B1 (en) Ceramic heat insulating layer
EP1969156B1 (en) Method for coating a blade and blade of a gas turbine
DE60305329T2 (en) HIGHLY OXIDATION-RESISTANT COMPONENT
DE60038715T2 (en) Heat-insulating coating system for a turbine engine component
EP1673490B1 (en) Component with a protective layer for the protection of the component against corrosion and oxidation at elevated temperatures
CH694164A5 (en) High-temperature component, especially for a gas turbine, and methods for their preparation.
EP2468925A2 (en) Method for producing a thermal insulation layer construction
DE112008003460T5 (en) Coated Super Alloy Objects
EP2206805A1 (en) MCrAIX coating with different chrome and aluminium contents
WO2009138299A1 (en) Method for the production of an optimized bonding agent layer by means of partial evaporation of the bonding agent layer, and a layer system
DE102004034410A1 (en) Protective layer for application to a substrate and method for producing a protective layer
EP2907888A1 (en) Compressor blade with erosion resistant hard material coating
WO2007063091A1 (en) Alloy, protective layer for protecting a component against corrosion and oxidation at high temperatures and component
EP1260602B1 (en) Process for producing a thermally insulating coating system on a metallic substrate
EP1798299B1 (en) Alloy, protective coating and component
EP1956105A1 (en) Alloy, protective layer for protecting a component from corrosion and oxidisation in high temperatures and component
DE112008003454T5 (en) Thermal barrier coating systems
EP1948836A1 (en) Alloy, protective layer for protecting a component from corrosion and/or oxidation at high temperatures and component
EP2845924A1 (en) Porous ceramic coating system
DE102013111874A1 (en) Manufacturing method of component for gas turbine engine involves forming grooves, each with cross-sectional are in predetermined ranged with respect to area derived from product of width of opening and depth of re-entrant shaped groove
EP2537959B1 (en) Multiple wear-resistant coating and method for its production
EP2699713B1 (en) Coating system with two-ply metallic layer
EP1967615A1 (en) Method for applying a heat insulation coating and turbine components with a heat insulation coating
DE60225569T2 (en) Method for local deposition of an MCrAlY coating
DE112008003459T5 (en) Method of applying thermal barrier coating systems

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20071218

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20080430

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502006003197

Country of ref document: DE

Date of ref document: 20090430

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090318

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090318

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090318

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090318

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090318

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090618

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090318

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090629

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090318

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090318

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090827

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090318

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090318

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090718

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090318

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090618

BERE Be: lapsed

Owner name: ALSTOM TECHNOLOGY LTD

Effective date: 20090731

26N No opposition filed

Effective date: 20091221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090731

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090619

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090704

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090704

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090318

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20150721

Year of fee payment: 10

Ref country code: DE

Payment date: 20150721

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502006003197

Country of ref document: DE

Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502006003197

Country of ref document: DE

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502006003197

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160704