WO2003027280A1 - Systeme de surexpression genique - Google Patents

Systeme de surexpression genique Download PDF

Info

Publication number
WO2003027280A1
WO2003027280A1 PCT/JP2002/009452 JP0209452W WO03027280A1 WO 2003027280 A1 WO2003027280 A1 WO 2003027280A1 JP 0209452 W JP0209452 W JP 0209452W WO 03027280 A1 WO03027280 A1 WO 03027280A1
Authority
WO
WIPO (PCT)
Prior art keywords
promoter
gene
dna
vector
sequence
Prior art date
Application number
PCT/JP2002/009452
Other languages
English (en)
French (fr)
Inventor
Satoshi Saitoh
Osamu Saotome
Noriko Yasutani
Yasuo Matsuo
Nobuhiro Ishida
Masana Hirai
Katsuhiko Kitamoto
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Kabushiki Kaisha Toyota Chuo Kenkyusho
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2002128286A external-priority patent/JP2003164294A/ja
Priority claimed from JP2002128323A external-priority patent/JP4109489B2/ja
Application filed by Toyota Jidosha Kabushiki Kaisha, Kabushiki Kaisha Toyota Chuo Kenkyusho filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to BR0212649-4A priority Critical patent/BR0212649A/pt
Priority to US10/490,046 priority patent/US20050120394A1/en
Priority to CN028208072A priority patent/CN1571838B/zh
Priority to DE60234854T priority patent/DE60234854D1/de
Priority to EP02765543A priority patent/EP1437405B1/en
Priority to AU2002330401A priority patent/AU2002330401B2/en
Publication of WO2003027280A1 publication Critical patent/WO2003027280A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/67General methods for enhancing the expression
    • C12N15/69Increasing the copy number of the vector

Definitions

  • the present invention relates to a method for introducing and expressing a gene into a host organism using genetic engineering techniques. Further, the present invention provides a novel promoter, a recombinant vector containing the promoter and the target gene, a transformant containing the recombinant vector, and a method for producing a useful gene product or a useful substance using the transformant. About.
  • a YEP type vector using 2 ⁇ m DNA is often used.
  • the YEP vector can introduce a large number of copies of the gene, but the enzyme activity may be reduced due to the loss of the vector due to cell division, and the stability is not sufficient.
  • the vector should contain a drug resistance marker and the drug should be added to the medium, or if the host strain already has an auxotrophic marker, Designed to include an auxotrophic marker in the vector, and the ability to apply selective pressure by using a highly purified minimal medium (YNB, Difco) as the medium.
  • YNB highly purified minimal medium
  • a chromosome transfer type vector a YIP vector utilizing homologous recombination is known.
  • the transgene can be stably present on the genome depending on the design of the vector, but generally the transgene cannot be highly expressed.
  • promoters of the alcohol dehydrodanase 1 (ADH1) gene and the promoter of the 3-phosphoglycerate kinase (PGK) gene which are known to show strong expression levels, are currently reported as promoters for Saccharomyces cerevisiae.
  • ADH1 alcohol dehydrodanase 1
  • PGK 3-phosphoglycerate kinase
  • An object of the present invention is to provide a method for stably introducing a target gene into a host organism and for highly expressing the gene.
  • the present invention provides a promoter having a strong transcriptional activity for expressing a target gene, a recombinant vector containing the promoter, a transformant containing the recombinant vector, and an object using the transformant. It is intended to provide a method for producing a gene expression product or a useful substance.
  • the present inventor linked the gene of interest to be expressed in the pyruvate decarboxylase 1 promoter in the yeast Saccharomyces cerevisiae, and ligated it to the host genome. It has been found that the introduction of the gene allows the target gene to be stably expressed at a high level.
  • the present inventor focused on the fact that a large amount of ethanol is produced in Saccharomyces cerevisiae, thought that the pyruvate decarboxylase 1 gene was highly expressed in the ethanol fermentation pathway, and The promoter region of the carboxylase 1 gene (PDC 1) was isolated. Further, the present inventor has proposed that this PDC 1 When the promoter region was ligated to the target gene and introduced into Saccharomyces cerevisiae, it was found that the promoter gene highly expressed the target gene. From the above findings, the present inventors have completed the present invention.
  • the present invention is characterized in that a target gene is introduced into a genome under the control of a promoter of a gene having an autoregulation mechanism or a promoter of a gene not essential for growth or fermentation in a host organism.
  • Gene expression method In the above promoter, 1 to 40 bases are deleted or substituted in the promoter base sequence of the promoter having the autoregulation mechanism or in the base sequence of the promoter of a gene not essential for growth or fermentation in the host organism. Alternatively, it may be a DNA containing an added sequence and having promoter activity.
  • the above promoter may be complementary to the base sequence of the promoter of the gene in which the autoregulation mechanism is present, or to the whole or part of the base sequence of the promoter of a gene that is not essential for growth or fermentation in the host organism. It may be a DNA that hybridizes with a DNA consisting of a specific sequence under stringent conditions and has a promoter activity.
  • the promoter of the gene in which the autoregulation mechanism is present includes a promoter of the pyruvate decarboxylase 1 gene, and thioredoxin is used as a promoter of a gene that is not essential for growth. And the promoter of the gene to be deleted.
  • the host organism may be any of bacteria, yeast, insects, animals, and plants, and yeasts belonging to the genus Saccharomyces are particularly preferable. These host organisms refer to living organisms (excluding humans), tissues, and cells.
  • the promoter of the pyruvate decarboxylase 1 gene is a promoter comprising any one of the following DNAs (a) to (c).
  • the present invention also relates to a recombinant vector containing the above promoter. It is preferable that the recombinant vector of the present invention is linked so that the target gene can be expressed.
  • the recombinant vector may be a plasmid vector or a viral vector.
  • examples of the target gene include a nucleic acid encoding a protein or an antisense nucleic acid thereof, a nucleic acid encoding an antisense RNA decoy, and a nucleic acid selected from lipozymes.
  • the present invention is a transformant obtained by transforming a host using any of the above-described recombinant vectors.
  • the host may be a bacterium, a yeast, an animal, an insect or a plant, but is preferably a yeast belonging to the genus Saccharomyces. These host organisms refer to all living organisms (excluding humans), tissues, and cells.
  • the present invention also provides a method of culturing any of the above transformants in a medium, and collecting an expression product of the target gene or a substance produced by the expression product from the obtained culture. This is a method for producing an expression product or a substance produced by the expression product.
  • the present invention will be described in detail. This application is based on Japanese Patent Application No.
  • the gene expression method of the present invention provides a method of genomically transforming a target gene under the control of a promoter of a gene having an autoregulation mechanism or under the control of a promoter of a gene not essential for growth or fermentation in a host organism. Featured in You.
  • the outline of the method of the present invention is as follows.
  • a promoter of a gene having an autoregulation mechanism or a promoter of a gene not essential for growth or fermentation of a host organism is selected.
  • the target host organism any organism for which substance production and functional modification or functional analysis are desired can be used.
  • bacteria, yeast, insects, animals, plants, and the like can be mentioned.
  • a gene having an autoregulation mechanism is specified.
  • "Autoregulation mechanism” means that there are multiple genes with the same function in the same organism, usually at least one of them is expressed, and the remaining genes are suppressed. This means that the remaining gene is expressed and continues its function only when it stops functioning due to destruction or the like.
  • the pyruvate decarboxylase gene (PDC) of yeast belonging to the genus Saccharomyces is a gene that encodes an enzyme that decarboxylates pyruvate and converts it into acetoaldehyde in the process of producing ethanol. Plays an important role.
  • PDC includes PDC K PDC5 and PDC6, but PDC1 normally functions, and PDC5 and PDC6 are suppressed by the action of PDC1.
  • PDC1 normally functions, and PDC5 and PDC6 are suppressed by the action of PDC1.
  • PDC1 when PDC1 is inactivated by gene disruption or mutation caused by a drug, the PDC5 gene is activated, thereby losing the yeast production function.
  • No (Eberhard t, I. eta l., Eur. J. Biochem. 1999, 262 (1): 191-201; Muller, EH. Eta l., FEBS Lett. 1999, 449 (2- 3): 245-250).
  • Schaaf et al. Confirmed the yeast pyruvate decarboxylase activity after deletion of the PDC1 promoter (Schaaf f, I.
  • the physiological expression system is almost the same as the parent strain.
  • the PDC1 promoter has been isolated in the genus Kluyveromtces, which is classified as yeast (W094 / 01569), but is not regulated in the genus Kluyveromyces. The mechanism has not been reported.
  • a gene having an autoregulation mechanism can be identified by confirming whether or not a gene product protein is still expressed in a strain in which a certain gene has been disrupted.
  • the promoter of the gene in which the autoregulation mechanism specified in this manner exists is selected.
  • a promoter of PDC1 hereinafter referred to as PDC1 promoter
  • PDC1 promoter a promoter of PDC1
  • non-essential gene means a gene that is unrelated to the growth and fermentation even if the gene is destroyed or inactivated, the growth or fermentation or both of them are maintained.
  • Genes that are not essential for growth or fermentation can be identified by confirming whether the host organism continues to grow and ferment in a strain in which a certain gene has been disrupted.
  • genes include, for example, the TRX1 gene encoding thioredoxin, which is present in most organisms.
  • the TRX1 gene is involved in DNA replication, oxidative stress response, vacuolar inheritance, etc., but is not essential for growth or fermentation. That is, even if the TRX1 gene is disrupted or replaced in the host organism, the host organism can continue to grow or ferment.
  • the promoter of a gene that is not essential for the growth or fermentation of the host organism specified in this way is selected.
  • the “target gene” means a gene that is desired to be expressed for substance production and function modification or function analysis, and may be either a homologous gene or a heterologous gene.
  • a useful protein Genes encoding proteins are preferred, and such useful proteins include, for example, interferons, vaccines, hormones, and the like.
  • the target gene may be a gene that encodes an enzyme that produces a useful substance, such as a gene that encodes lactate dehydrogenase that produces lactic acid from pyruvate.
  • the preparation of the target gene and the promoter described above may employ any method known in the art.
  • the target gene and the above promoter when they are isolated from a source, they can be prepared by a method for synthesizing cDNA from RNA prepared by the guanidine isothiosinate method. Alternatively, it can be prepared by amplifying genomic DNA into a cyclized form by PCR.
  • the thus obtained target gene and the DNA of the above promoter can be used as they are depending on the purpose, or by digesting with a restriction enzyme or adding a linker as desired.
  • a DNA containing a sequence in which 1 to 40 bases are deleted, substituted or added in the base sequence of the promoter and having a promoter activity is also usable as the promoter.
  • promoter activity refers to the ability and function of producing a gene product of a target gene in or outside the host when the target gene is ligated in a state capable of being expressed downstream of the promoter and introduced into the host.
  • Such DNA maintains promoter activity at a level that can be used under almost the same conditions as those under which a promoter consisting of a full-length nucleotide sequence having no mutation (deletion, substitution or addition) functions.
  • the base sequence is 1 to 40 based on the base sequence.
  • Technology to artificially delete, substitute or add single bases, such as site-directed mutagenesis, Mutants having different sequences can be produced while maintaining motor activity. For example,
  • error-prone polymerase chain reaction is also known as a method for producing mutants, and it is possible to introduce mutations of one to several bases by selecting conditions with low stringency of replication. Yes (Cadwell, RC and Joyce, GF PCR Methods and Appli cat ions 2 (1992) 28-33; Malboeuf, CM et al. Biotechn i Ques 30 (2001) 1074-8; Moore, GL and Maranas C DJ Theor. Biol. 7; 205 (2000) 483-503).
  • a probe consisting of a sequence complementary to all or part of the base sequence of the promoter of a gene having an autoregulation mechanism or the promoter of a gene not essential for growth or fermentation in a host organism is used as a probe (100 to 100%). (900 bases), and hybridized under stringent conditions to produce a DNA comprising the nucleotide sequence of a promoter of a gene having an autoregulation mechanism or a promoter of a gene not essential for growth or fermentation in a host organism. It is also possible to newly obtain and use DNA consisting of another nucleotide sequence having the same function as that of (i.e., one promoter activity).
  • the stringent conditions for example, sodium concentration, 10 to 300, preferably 20 to 100 mm, temperature. 25 to 70 D C, preferably refers to conditions in a 42 ⁇ 55 ° C.
  • the promoter activity of the DNA obtained as described above is preferably selected from various reporter genes, for example, luciferase gene (LUC), chloramphenicol acetyltransferase gene (CAT), ⁇ -galactosidase gene (GAL) and the like.
  • LOC luciferase gene
  • CAT chloramphenicol acetyltransferase gene
  • GAL ⁇ -galactosidase gene
  • the gene in which the autoregulation mechanism is present or a gene that is not essential for growth or fermentation in the host organism is disrupted, and the target gene is introduced under the control of the promoter of this gene, or Replace with target gene.
  • the target gene isolated as described above and the selected promoter are operably linked and introduced into the genome of a host organism.
  • "Operably linked" means that the target gene and the promoter are linked so that the target gene is expressed under the control of the promoter in the host organism into which the target gene is introduced. I do.
  • Introduction of the target gene and the above-mentioned promoter can be performed using any method known in the art.
  • the target gene and the above promoter can be introduced into the genome of the host organism using a recombinant vector.
  • the recombinant vector can be obtained by ligating (inserting) the gene of interest and the above-mentioned promoter into an appropriate vector.
  • the vector for inserting the target gene is not particularly limited as long as it can be integrated into the genome of the host organism, and includes, for example, plasmid DNA, bacteriophage DNA, retrotransposon DNA, yeast artificial chromosome DNA (YAC: yeast art if ic i al chromosome).
  • Examples of the plasmid DNA include Yip-type E. coli-yeast shuttle vector such as pRS403, pRS404, pRS405, pRS406, pAURlOl or PAUR135, and Escherichia coli-derived plasmid (pBR322, pBR325, pUC18, pUC19, pUC118, pI) C119.
  • Bacterial-derived plasmids for example, pUB110, pTP5, etc.
  • phage DNA include phage ⁇ (Charon4A, Cliaron21A, EMBL3, EMBL4, Agt10, AgtlK ⁇ ), ⁇ 174, M13mpl8 or M13mpl9 and the like.
  • Retrotransposons include Ty factors and the like.
  • As a YAC vector Is PYACC2 and the like.
  • the purified DNA is digested with an appropriate restriction enzyme, and inserted into an appropriate vector DNA at a restriction enzyme site or at a multi-cloning site. And the like.
  • the target gene needs to be incorporated into a vector so that the function of the gene is exerted under the control of the selected promoter. Therefore, the recombination vector contains, in addition to the promoter selected above, the target gene, and the minerals, a cis element such as an enhancer, a splicing signal, a polyA addition signal, and a ribosome binding sequence (if desired). SD sequence) can be linked. Further, a selection method indicating that the vector is retained in the cell may be linked.
  • examples of the selection marker include a dihydrofolate reductase gene, an ampicillin resistance gene, a neomycin resistance gene, and the like.
  • Other marker genes include, but are not limited to, the tributophan synthesis gene (TRP1 gene), and other marker genes such as the URA3 gene, ADE2 gene, The HIS3 gene or G418 resistant gene having drug resistance is also available.
  • terminator sequence examples include an evening-terminator gene of dariseraldehyde triphosphate dehydrogenase gene (GAPDH), but the present invention is not limited to this and can be used in a host organism. Any terminator array may be used.
  • GPDH dariseraldehyde triphosphate dehydrogenase gene
  • a recombinant vector can be prepared so as to be compatible with the expression of the target gene in the host organism.
  • the target gene can be expressed in the host organism under the control of the promoter selected above.
  • the recombination vector preferably comprises a promoter, a liposome binding sequence, a target gene, and a transcription termination sequence. Further, a gene that controls a promoter may be included.
  • Escherichia coli examples include Escherichia coli K12 and DH1
  • Bacillus subtilis examples include Bacillus subtilis (Bacil 1 uss ubti Us). And the like.
  • the method for introducing a recombinant vector into bacteria is not particularly limited as long as it is a method for introducing DNA into bacteria. For example, a method using calcium ions, an electoporation method and the like can be mentioned.
  • yeast When yeast is used as a host, for example, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Pichia pastoris and the like are used.
  • the method for introducing the recombinant vector into yeast is not particularly limited as long as it is a method for introducing DNA into yeast, and examples thereof include an elect-portation method, a spheroplast method, and a lithium acetate method.
  • a method for introducing the recombinant vector for example, a calcium phosphate method, a lipofection method, an electrification method, or the like is used.
  • a method for introducing a recombinant vector for example, an agrobacterium method, a particle gun method, a PEG method, and an electoral poration method are used.
  • a recombinant vector When an insect, animal (excluding human) or plant individual is used as a host, a recombinant vector can be introduced according to a technique for producing a transgenic animal or plant known in the art.
  • methods for introducing a recombinant vector into an individual animal include microinjection into a fertilized egg, a method for introduction into ES cells, and a method for introducing a cell nucleus introduced into a culture cell into a fertilized egg by nuclear transfer.
  • Whether or not the target gene has been integrated under the control of the promoter can be confirmed by the PCR (polymerase chain reaction) method or the Southern hybridization method.
  • PCR polymerase chain reaction
  • the amplified product is subjected to agarose gel electrophoresis, polyacrylamide gel electrophoresis, or capillary electrophoresis, stained with bromide TC, SYBR Green solution, etc., and the amplified product is detected as a single band.
  • the introduced DNA can be confirmed.
  • amplification products can also be detected by performing PCR using primers previously labeled with a fluorescent dye or the like.
  • the target gene is introduced into the genome (genome integration) under the control of the promoter of the gene in which the autoregulation mechanism exists, or under the control of the promoter of a gene that is not essential for the growth or fermentation of the host organism.
  • the target gene is expressed in the organism. Since the PDC1 promoter is a very strong promoter, if the PDC1 promoter is selected, it will be highly expressed even if the target gene is introduced into the genome in a single copy. Also, since the original gene of the selected promoter is not essential for growth and fermentation, the host organism can continue growth and fermentation even if it is destroyed or replaced with the target gene, and expresses the target gene for a long period of time. be able to.
  • the promoter of the present invention is a promoter of the pyruvate decarboxylase 1 gene derived from Saccharomyces cerevisiae (hereinafter, referred to as PDC1 promoter).
  • Pyruvate decarboxylase is an enzyme involved in the ethanol fermentation pathway of yeast, and normally only PDC1 functions among the PDC1, PDC5, and PDC6 genes (see “1. Selection of promoter”).
  • the present inventor noted that, although pyruvate decarboxylase was produced only by the expression of PDC1 due to the regulation mechanism, ethanol was produced in large quantities, and that PDC1 The promoter region was identified.
  • the PDC1 promoter was determined and isolated as follows. First, a vector for homologous recombination was constructed using the published genome sequence of Saccharomyces cerevisiae (Saccharomyces Genome Database) so that the target gene could be introduced downstream of the promoter. After introducing this vector, a strain having a high expression level of the target gene was selected, and a PDC1 promoter fragment was obtained by PCR. The nucleotide sequence of the region corresponding to the promoter was determined using a sequencer (ABI 310 Genetic Analyzer).
  • the PDC1 promoter contains a DNA consisting of the nucleotide sequence represented by SEQ ID NO: 1. After isolating the PDC1 promoter, its DNA can be obtained by chemical synthesis according to the technique of nucleic acid synthesis.
  • the PDC1 promoter of the present invention comprises a base sequence in which 1 to 40 bases have been deleted, substituted or added in the base sequence represented by SEQ ID NO: 1, and has a promoter activity all over the time.
  • Promote activity refers to having the ability and function to produce a gene product of the target gene in the host or outside the host when the target gene is ligated in a state that can be expressed downstream of the promoter and introduced into the host. Say. Such DNA only needs to have a promoter activity, but it can be used under almost the same conditions under which the promoter consisting of the base sequence represented by SEQ ID NO: 1 functions. It means that the activity is maintained.
  • the promoter activity consisting of the nucleotide sequence represented by SEQ ID NO: 1.
  • DNA that maintains activity is produced according to the description in the literature such as Molecular Cloning (ed. By Sambrook et al. (1989) Cold Spring Harbor Lab. Press, New York) with reference to the nucleotide sequence represented by SEQ ID NO: 1. be able to.
  • the sequence is hybridized under stringent conditions to obtain a sequence. It is also possible to newly obtain and use a DNA consisting of another base sequence having the same function as the DNA consisting of the base sequence represented by No. 1 (ie, the activity of the promoter overnight).
  • the stringent conditions include, for example, a sodium concentration of 10 to 300 mM, preferably 20 to 100 mM, a temperature of 25 to 70 ° C, Preferably, it refers to conditions at 42 to 55 ° C.
  • mutant obtained as described above or the DM obtained by hybridization has the activity as a promoter is determined by the method described in the section “2. Preparation of target gene and promoter overnight” above. Can be confirmed by
  • the PDC1 promoter of the present invention can be used not only for expressing a target gene under the control of the promoter using the autoregulation mechanism but also as a general promoter.
  • the promoter of the present invention can be used as a general promoter, it can be used as a 'promoter for highly expressing a target gene.
  • the recombinant vector of the present invention can be obtained by ligating (inserting) the PDC1 promoter of the present invention and the gene of interest into an appropriate vector.
  • the “target gene” includes, for example, a nucleic acid encoding a protein or its antisense nucleic acid, a nucleic acid encoding an antisense RNA decoy, lipozyme, and the like.
  • a nucleic acid encoding a useful protein is preferable as the target gene, and examples of such a useful protein include interferon and vaccine.
  • the nucleic acid encoding the protein may be a nucleic acid encoding a gene encoding an enzyme that produces a useful substance, such as a nucleic acid encoding a lactate dehydrogenase that generates lactic acid from pyruvate. No.
  • An antisense nucleic acid has a base sequence complementary to any RNA (genomic RNA and mRNA), and forms a double strand with these to express the gene information encoded by the RNA (transcription and translation) ) Means that suppresses Any nucleic acid substance can be used as the antisense sequence as long as it blocks the translation or transcription of the gene. Examples include DNA, RNA, or any nucleic acid mimic. Therefore, an antisense nucleic acid (oligonucleotide) sequence is designed so as to be complementary to a partial sequence of the gene whose expression is to be suppressed.
  • the length of the antisense nucleic acid sequence to be designed is as long as it can inhibit gene expression. It is not limited to, but is, for example, 10 to 50 bases, preferably 15 to 25 bases. Oligonucleotides can be easily chemically synthesized by known methods. For the purposes of the present invention, molecular analogs of antisense oligonucleotides can also be used. Molecular analogs have high stability and distribution specificity. Molecular analogs include those in which a chemically reactive group, such as iron-linked ethylenediaminetetraacetic acid, is attached to an antisense oligonucleotide.
  • the nucleic acid encoding the NA decoy refers to a gene encoding a transcription factor binding protein or an RNA having a sequence of a transcription factor binding site or a similar sequence, and is introduced into cells as a decoy. By suppressing the action of transcription factors.
  • a lipozyme refers to one that cleaves the mRNA of a particular protein, and one that inhibits the translation of these particular proteins.
  • a lipozyme can be designed from a gene sequence encoding a specific protein. For example, as a hammerhead lipozyme, the method described in FEBS Leer, 228; 228-230 (1988) can be used. it can. In addition, not only hammerhead lipozymes, but also hairpin liposomes, delta lipozymes, etc., which cleave mRNAs of specific proteins and which inhibit the translation of these specific proteins, the present invention Used in ,
  • the vector into which the target gene is inserted may be a chromosome transfer vector that can be integrated into the genome of the host organism as described in the section “Introduction of Target Gene and Promoter”, or a plasmid known in the art. It is not particularly limited as long as it is a single-type vector, and examples thereof include plasmid DNA, bacteriophage DNA, retrotransposon DNA, and yeast artificial chromosome DNA (YAC: yeast art ifici al chromosome).
  • Plasmid DNAs include, for example, pRS413, pRS414, pRS415, pRS416, YCp50, PAUR11 or PAUR123, etc., and YEp-type E. coli-yeast shuttle vector such as pYES2 or YEpl3, pRS403, pRS404, pRS405, i) Yip-type E. coli-yeast shuttle vector such as RS406, PAUR101 or PAUR135, plasmid derived from E.
  • coli pBR322 pBR325, pUC18, pUC19, pUC118, pUC118, pTV118N, pTV1 19N ColE-based plasmids such as pBluescript, pHSG298, pHSG396 or pTrc99A; pl5A-based plasmids such as pACYC177 or PACYC184; pSClOl-based plasmids such as pMW118, pMW119; p-layer 218 or p-secreted 219;
  • the phage DNA include ⁇ phage (Charon4A, Charon21A, EMBL3, EMBL4, AgtlO, AgtlK ⁇ ZAP), ⁇ 174, M13I18, and M13I19.
  • retrotransposons include Ty factors.
  • One of the YAC vectors is pYACC2.
  • the purified DNA is digested with an appropriate restriction enzyme, and inserted into an appropriate vector-DNA restriction enzyme site or a multiple cloning site.
  • a method of inserting and ligating to a vector is employed.
  • the PDC1 promoter of the present invention needs to be incorporated into a vector in an expressible state so that the function of the target gene is exhibited.
  • the state in which expression is possible means that the target gene and the PDC1 promoter are integrated into a vector so that the target gene is expressed under the control of the PDC1 promoter in the host organism into which the target gene is introduced. Means that.
  • the vector of the present invention contains, in addition to the PDC1 promoter overnight, the target gene, the evening minerals, the cis element such as the enhancer, the splicing signal, the polyA addition signal, and the selection marker, if desired. Ribosome binding sequence (SD sequence) and the like. Examples of the selection marker include a dihydrofolate reductase gene, an ampicillin resistance gene, a neomycin resistance gene, and the like.
  • the transformant of the present invention can be obtained by introducing the recombinant vector of the present invention into a host so that the target gene can be expressed under the control of the PDC1 promoter overnight.
  • the host is not particularly limited as long as it can express the target gene under the control of the PDC1 promoter of the present invention.
  • a genus Escherichia such as Escherichia coli
  • a genus Bacillus such as Bacillus subtilis
  • a genus such as Pseudomonas put ida Bacteria belonging to the genus Eudomonas are exemplified.
  • Yeast such as Saccharoiyces cerevisiae and Schizosaccharomyces pombe; and animal cells such as COS cells and Chinese hamster ovary cells (CH0 cells).
  • insect cells such as Si9 and Si21 can also be used.
  • the recombinant vector of the present invention is capable of autonomous replication in the bacterium, and is composed of the promoter, ribosome binding sequence, target gene, and transcription termination sequence of the present invention. Is preferred. Further, a gene that controls the motor of the present invention may be included.
  • Escherichia coli examples include Escherichia coli K12 and DH1
  • Bacillus subtilis examples include Bacillus subtilis.
  • the method for introducing the recombinant vector into bacteria is not particularly limited as long as it is a method for introducing DNA into bacteria.
  • Saccharomyces Serepishe Saccharomyces cerevisiae
  • Schizosaccharomyces - Honbe Schizosaccharomyces pombe
  • Pi arsenide ⁇ pastoris Pi arsenide ⁇ pastoris or the like.
  • the method for introducing the recombinant vector into yeast is not particularly limited as long as it is a method for introducing DNA into yeast.
  • monkey cells such as COS-7, Vero, CH0 cells, mouse L cells, rat GH3, and human FL cells are used.
  • Methods for introducing the recombinant vector into animal cells include, for example, the electroporation method, the calcium phosphate method, and the lipofection method.
  • Si9 cells When insect cells are used as a host, Si9 cells, Si21 cells and the like are used.
  • a method for introducing a recombinant vector into an insect cell for example, a calcium phosphate method, a lipofection method, an electrification method, or the like is used.
  • a plant When a plant is used as a host, tomato, tobacco and the like can be mentioned, but not limited thereto.
  • a method for introducing a recombinant vector into a plant cell for example, the agrobacterium method, the particle gun method, the PEG method, the electrolysis method and the like are used.
  • a recombinant vector When an insect, animal (excluding human) or plant individual is used as a host, a recombinant vector can be introduced according to a technique for producing a transgenic animal or plant known in the art.
  • the host organism into which the recombinant vector has been introduced is selected for a strain into which the target gene has been introduced under the control of the above-described promoter.
  • a transformant is selected using the above-mentioned selection marker as an index.
  • the transformant thus obtained can stably express the target gene at a high level under the control of the PDC1 promoter, so that the protein encoded by the target gene as described below is used. It can be used for production, function analysis of target gene, etc. '
  • the gene expression product or the substance produced by the expression product is obtained by culturing the transformant obtained as described above and collecting the gene expression product or the substance produced by the expression product from the obtained culture. It is obtained by doing.
  • “Culture” means any of cultured cells or cultured cells, or crushed cells or cells, in addition to the culture supernatant.
  • the method for culturing the transformant of the present invention is performed according to a usual method applied to culturing a host.
  • the medium for culturing the transformant obtained by using a microorganism such as yeast as a host contains a carbon source, a nitrogen source, inorganic salts, and the like, which can be used by the microorganism, and cultivates the transformant efficiently.
  • a natural medium or a synthetic medium may be used as long as the medium is capable of producing the same.
  • the carbon source include carbohydrates such as glucose, fructose, sucrose, and starch; organic acids such as acetic acid and propionic acid; and alcohols such as ethanol and propanol.
  • the nitrogen source examples include ammonia, ammonium chloride, ammonium sulfate, ammonium acetate, ammonium phosphate, and other inorganic or organic acid ammonium salts, and other nitrogen-containing compounds, as well as peptone, meat extract, and corn steep liquor.
  • the inorganic substance use is made of potassium dibasic phosphate, dibasic dibasic phosphate, magnesium phosphate, magnesium sulfate, sodium chloride, ferrous sulfate, manganese sulfate, copper sulfate, calcium carbonate and the like. Cultivation is usually performed at 30 ° C for 6 to 24 hours under aerobic conditions such as shaking culture or aeration and stirring culture.
  • the pH is kept between 4.0 and 6.0.
  • the pH is adjusted using an inorganic or organic acid, an alkaline solution, or the like.
  • an antibiotic such as ampicillin-tetracycline may be added to the medium as needed.
  • a medium for culturing a transformant obtained using animal cells as a host commonly used RPMI 1640 medium, DMEM medium, or a medium obtained by adding fetal calf serum or the like to such a medium is used.
  • Culture is usually performed at 37 ° C for 1 to 30 days in the presence of 5% C02.
  • antibiotics such as kanamycin and benicillin may be added to the medium as needed.
  • a substance produced by a gene product or an expression product can be collected from the culture using a conventional protein purification means or the like.
  • the cells are subjected to ultrasonic disruption treatment, grinding treatment, pressure crushing and the like to extract substances produced by gene products or expression products by conventional methods. Add protease inhibitors as needed.
  • the culture solution itself can be used. Then, the solution is filtered, centrifuged, etc., to remove the solid portion, and if necessary, the nucleic acid is removed by, for example, protoamine treatment. ..
  • ammonium sulfate, alcohol, acetone, and the like are added thereto to fractionate, and the precipitate is collected to obtain a crude protein solution.
  • the protein solution is subjected to various chromatography, electrophoresis and the like to obtain a purified enzyme preparation. For example, gel filtration using Sephadex, Ultragel or biogel, ion exchange chromatography, electrophoresis using polyacrylamide gel, affinity chromatography, fractionation using reverse phase chromatography, etc. By selecting or combining these, it is possible to obtain a substance produced by a purified target gene product or expression product.
  • the above-mentioned culture method and purification method are only examples, and the present invention is not limited to these.
  • amino acid sequence of a substance produced by the purified gene product or expression product can be confirmed by a known amino acid analysis, for example, an automatic amino acid sequencing method by Edman degradation.
  • 1A to 1C are construction diagrams of a chromosome transfer vector pBTRP_PDCl_LDH.
  • FIG. 2A and 2B are construction diagrams of a chromosome transfer vector ⁇ ⁇ ⁇ ⁇ ⁇ -PDC1-LDH.
  • FIG. 3 is a diagram showing the genomic structure of a strain obtained when yeast Saccharomyces cerevisiae was transformed using the vector pBTRP-PDC1-LDH.
  • FIG. 4 is a construction diagram of the chromosome transfer vectors pAUR-LacZ-T123PDC1 (A), pAUR-LacZ-0C2PDCl (B), and pAUR-LacZ-YPHPDC1 (C).
  • FIGS. 5A and 5B are diagrams showing a comparison of the gene sequences of the pBTRP-PD-LDH-introduced strain-derived PDC1 promoter (983 bp), IF02260 strain-derived PDC1 promoter (968 bp), and YPH strain-derived PDC1 promoter (968 bp). is there.
  • FIG. 6 shows the results of transformants into which the PDC1 promoter (983 bp) derived from the pBTRP-PDC1-LDH-introduced strain, the PDC1 promoter (968 bp) from the IF02260 strain, and the PDC1 promoter (968 bp) derived from the YPH strain were introduced before subculture.
  • FIG. 6 shows the activity of 6 galactose tosidase.
  • FIG. 7 shows the results of the passage of transformants in which the PDC1 promoter from the pBTRP-PDC1-LDH-introduced strain (983 bp), the PDC1 promoter from the IFO2260 strain (968 bp), and the PDC1 promoter from the YPH strain (968 bp) were introduced.
  • FIG. 2 is a view showing ⁇ galactosidase activity after culturing.
  • the promoter region (PDC1P) of the pyruvate decarboxylase 1 gene was determined and isolated.
  • the PDC1P fragment was isolated by PCR amplification using genomic DNA of Saccharomyces cerevisiae YPH strain (Stratagene) as type III.
  • the genomic DNA of Saccharomyces cerevisiae YPH strain was prepared using Fast DNAKit (Bio101), a genome preparation kit, according to the attached protocol for details. DNA concentration was measured with a spectrophotometer UUro spec 3000 (Amersham Pharmacia Biotech). Specified.
  • the reaction conditions of the PCR amplification apparatus were as follows: 96 ° C for 2 minutes, 25 cycles of (96 ° C for 30 seconds-55 ° C for 30 seconds-72 ° C for 90 seconds), and then to 4 ° C.
  • the amplified fragment of the PDC1 primer was subjected to 1% TBE agarose gel electrophoresis to confirm the amplified gene fragment.
  • the primer DM used in the reaction used synthetic DNA (Sade Technology Co., Ltd.), and the DNA sequence of this primer is as follows.
  • Example 2 Construction of a recombinant vector containing a promoter and a target gene
  • a bifidobacterium was used as a target gene under the control of the Saccharomyces cerevisiae pyruvate decarboxylase 1 gene (PDC1) promoter sequence.
  • a recombinant vector was constructed using the lactate dehydrogenase gene (LDH gene) derived from longum (Biiidobacterium longuni).
  • LDH gene lactate dehydrogenase gene
  • the chromosome transfer vector newly constructed for this example was named pBTRP-PDC1-LDH, and the details of this vector construction example are described below. The outline of this embodiment is shown in FIGS. However, the procedure of vector construction is not limited to this.
  • the promoter fragment of the PDC1 gene (PDC1P) 97ibp, which is a necessary gene fragment, and the 518 bp fragment of the downstream region of the PDC1 gene (PDC1D), as described above, are used to transform the genomic DNA of the Saccharomyces cerevisiae YPH strain. Isolation was performed by the PCR amplification method used as template. The procedure for PCR amplification is as described above. The following primers were used for amplification of the downstream region fragment.
  • PDC1D-LDH-D (31mer, Tm value 54.4 ° C) with a restriction enzyme Apal site at the end: ATA TAT GAA TTC TTT GAT TGA TTT GAC TGT G (SEQ ID NO: 5)
  • PDC1P and PDC1D obtained by the above reaction
  • the PDC1P amplified fragment was subjected to restriction enzyme reaction with the restriction enzymes BamHI / EcoRI and the PDC1D amplified fragment using the restriction enzyme Xhol / Apal.
  • the enzymes used below were all manufactured by Takara Shuzo. A detailed manual of a series of procedures for ethanol precipitation treatment and restriction enzyme treatment followed Molecular Cloning A Laboratory Manual second edition (Maniat is et al., Cold Spring Harbor Laboratory press. 1989).
  • a series of reaction operations in the construction of the vector were performed according to a general DNA subcloning method. That is, pBluescriptll SK + vector (Toyobo) to which the restriction enzyme BamHI / EcoRI (Takara Shuzo) and the dephosphorylating enzyme Alkaline Phosphatase (BAP, Takara Shuzo) were applied was amplified by the PCR method and treated with the restriction enzyme.
  • the PDC1P fragment subjected to the above was ligated by a T4 DNA Ligase reaction (FIG. 1A).
  • the LigaFast Rapid DNA Ligation System Promega was used for the T4 DNA Ligase reaction, and the details followed the attached protocol.
  • Competent cells were Escherichia coli strain JM109 (Toyobo), and the details were performed according to the attached protocol.
  • the resulting culture was spread on an LB plate containing the antibiotic ampicillin lOO ⁇ g / ml and cultured overnight.
  • the grown colonies are confirmed by colony PCR using the insert DNA primer DNA, and the plasmid DNA preparation by miniprep is confirmed by restriction enzyme treatment, and the target vector pBPDClP vector is isolated. ( Figure 1B).
  • FE-BP-7423 has been deposited internationally under the Budapest Treaty (Original deposit date: October 26, 1999.) Then, this vector was subjected to Xhol / Apal treatment, and the amplified PDC1D fragment ( Figure 2A) Finally, the PBPDCIP-LDH II vector was treated with EcoRV and the pRS404 vector (Stratagene) was treated with Aatll / Sspl and T4 DNA polymerase. The TRP1 marker fragment obtained as described above was ligated to construct a chromosome-introduced pBTRP-PDCl-LDH vector, which is the final construct (FIG. 2B).
  • the nucleotide sequence was determined to confirm the constructed chromosome-introduced pBTRP-PDC1-LDH vector.
  • An ABI PRISM 310 Genetic Analyzer PE Applied Biosystems was used as a base sequence analyzer, and details of sample preparation, instrument use, and the like were in accordance with the manual attached to this apparatus.
  • the vector DNA used as the sample was prepared by the extraction method and purified by column using the GFX DNA Purification kit (Amershani Pharmacia Biotech), followed by a spectrophotometer UUro spec 3000 (Amersham Pharmacia Biotech). The DNA concentration measured in) was used.
  • the host a yeast strain IFO2260 (a strain registered with the Fermentation Research Institute) that is required to be a tryptophan, is cultured in a 10m] YPD medium at 30 ° C until the logarithmic growth phase. After washing with TE buffer, 0.5 nUTE buffer and 0.5 ml of 0.2 M lithium acetate were added, and shaking culture was performed at 30 ⁇ for 1 hour. Thereafter, pBTRP-PDC1-LDH treated with restriction enzymes Apal and Spel was added.
  • the bacterial suspension of this plasmid was shake-cultured at 30 ° C. for 30 minutes, and 150 ml of 70% polyethylene darcol 4000 was added thereto, followed by thorough stirring. After shaking culture at 30 ° C for 1 hour, heat shock was applied at 42 ° C for 5 minutes. After washing the cells, suspend the cells in 200 ml of water. The strain was plated on a selective medium.
  • the obtained colony was isolated with a selective medium, and after obtaining a colony, a strain into which LDH was introduced downstream of the PDC1 promoter was obtained by PCR. Furthermore, sporulation was performed in a sporulation medium, 'diploidization was performed using homozygosity, and a strain in which the above vector was introduced into both diploid chromosomes was obtained.
  • Figure 3 shows the genome structure of the above vector.
  • the resulting transformant was inoculated in a YPD liquid medium (glucose 10%) so that the cell concentration was 1%, and the mixture was allowed to stand at 30 ° C for 2 days.
  • a YPD liquid medium glucose 10%
  • LDH-introduced strain with YEP vector a system in which LDH was introduced under the control of the conventional GAP Promoter
  • LDH-introduced strain in pBTRP-PDC-LDH LDH introduced under the control of the PDC1 promoter
  • Lactic acid was not produced in the non-vector-introduced strain (1), whereas lactic acid was produced in (2) and (3) in which LDH was introduced.
  • strain 3 in which LDH was introduced with the chromosome transfer vector under the control of the PDC1 promoter, produced 2.5 times more lactic acid compared to 2, which was introduced with the YEP vector.
  • Saccharomyces cerevisiae pBTRP-PD-LDH-introduced strain (strain prepared in Example 3), IF02260 strain (strain registered in the Fermentation Research Institute), and YPH strain (Stratagene The PDC1 promoter sequence was isolated by the PCR amplification method using the genomic DNA of (1) as type III.
  • the base sequence of the primer DNA used in the reaction is as follows.
  • a vector was constructed in which reporter genes were linked under the control of the three isolated PDC1 promoter sequences.
  • a reporter gene a 3-galactosidase gene (LacZ gene) was used.
  • the chromosome transfer vectors newly constructed for this example were named PAUR-LacZ-T123PDC1, pAUR-LacZ-0C2PDC1, and pAUR-LacZ-YMPDC1, and the following are examples of vector construction. The details are described.
  • FIG. 4 shows the outline of this embodiment. However, the procedure of vector construction is not limited to this.
  • the three types of promoter sequences obtained in Example 5, namely, the PDC1 promoter derived from the pBTRP-PDC-LDH-transferred strain (983 bp), the PDCl promoter derived from the IF02260 strain (968 bp), and the PDCl promoter derived from the YPH strain (968 bp) 968 bp) were treated with restriction enzymes Sail (Takara Shuzo) and ligated into pAUR-LacZ vector by T4 DNA Ligase reaction.
  • T4 DNA Li gase reaction LigaFast Rapid DNA Ligation System (Promega) was used, and the details followed the attached protocol.
  • Nucleotide sequence analysis was performed on the constructed vector, and the gene sequences of the pBTRP-PDC LDH-introduced PDC1 promoter (983 bp), IF02260 strain-derived PDC1 promoter overnight (968 bp), and ⁇ strain-derived PDC1 promoter (968 bp) were analyzed. Compared. A comparison of this sequence is shown in FIGS. 5A and B. The operation of nucleotide sequence analysis was performed in the same manner as in Example 2.
  • the PDC1 promoter (983 bp) derived from the pBTRP-PD-LDH-introduced strain differs from the PDC1 promoter sequence (971 bp) consisting of the nucleotide sequence represented by SEQ ID NO: 12 by 12 nucleotides. It consists of a sequence with a restriction enzyme Sail site (GTCGAC) added to both ends of the promoter sequence.
  • GTCGAC restriction enzyme Sail site
  • the PDC1 promoter overnight (968 bp) derived from the IF02260 strain differs from the PDC1 promoter sequence consisting of the base sequence represented by SEQ ID NO: 1 by 30 nucleotides, and specifically, the promoter of SEQ ID NO: 1
  • the guanine (G) at position 861 of the sequence is replaced with cytosine (C)
  • the cytosine (C) at position 894 is replaced with thymine (T)
  • the adenine (A) at position 925 is replaced with thymine (T).
  • GTCCCCCAATTCTC is added. Furthermore, it is composed of a sequence obtained by adding a restriction enzyme Sa11 site (GTCGAC) to both ends of the promoter of SEQ ID NO: 1.
  • the YPH strain-derived PDC1 promoter overnight (968 bp) differs from the PDC1 promoter overnight sequence consisting of the nucleotide sequence represented by SEQ ID NO: 37 by 37 bases. Specifically, the promoter of SEQ ID NO: 1 Cytosine (C) at position 179 is thymine (T), adenine (A) at position 214 is guanine (G), guanine (G) at position 216 is adenine (A), and position 271 Thymine (T) replaces cytosine (C) with 344th guanine
  • G is adenine (A)
  • 490th adenine (A) is guanine (G)
  • 533th cytosine (C) is thymine (T)
  • 566th thymine (T) is cytosine (C)
  • the 660th guanine (G) is replaced by cytosine (C)
  • the 925th adenine (A) is replaced by thymine (T)
  • 15-base sequence after the 972th is
  • GTCCCCCAATTCTC is added. Furthermore, the promoter of SEQ ID NO: 1 — Consists of a sequence with a restriction enzyme Sail site (GTCGAC) added to both ends of the sequence.
  • the host yeast, IFO2260 strain (a strain registered with the Fermentation Research Institute) is cultivated on a tryptophan-requiring strain in 10 ml YPD medium at 30 ° C until the logarithmic growth phase, and the cells are collected and washed with TE buffer. After 0.5 ml of TE buffer and 0.5 ml of 0.2 M lithium acetate were added, shaking culture was performed at 30 ° C. for 1 hour. Then, pAUR-LacZ-T123PDClP, pAUR-LacZ-YPHPDC1P, and pAUR-LacZ-0C2PDC1P treated with the restriction enzyme Bst1107I (Takara Shuzo) were added.
  • the suspension of this plasmid was cultured with shaking at 30 ° C. for 30 minutes, and 150 1 of 70% polyethylene glycol 4000 was added thereto, followed by thorough stirring. This solution was shake-cultured at 30 ° C for 1 hour, heat shocked at 42 ° C for 5 minutes, and the cells were cultured in lml YPD medium at 30 ° C for 12 hours. After the main culture solution was washed, the suspension was suspended in 200 i of sterile water and applied to a monoleobatisin selective medium. The concentration of aureobathicin added to the medium was 0.4 L g / ml.
  • the obtained colonies were isolated on an aureobathicin selection medium, and the obtained colonies were subjected to a PCR method to obtain a target strain.
  • Example 8 Measurement of; 8 galactosidase activity in genetically modified strains The; 8 galactosidase activity of the above-mentioned transformants and non-transformants was measured. Each strain was cultured in 2 ml of YPD liquid medium (glucose 2%) at 30 ° (:, 20 hours. These strains were collected, and 50 mM Tris-HC] 500/1 and glass beads (425- (600 microns Acid Washed, SIGMA) was added, and portex was performed at 4 ° C for 15 minutes.
  • the supernatant of the solution was collected by centrifugation, and the galactosidase activity was measured.
  • the activity was measured using a / 3-Gal actosidase Enzyme Assay System (Promega), and the details were in accordance with the attached protocol.
  • the activity value per ABS600nm 1.0 was determined, and the results are shown in Fig. 6 (before subculture) and Fig. 7 (after subculture).
  • a gene can be stably introduced and highly expressed without affecting the growth and fermentation of the host organism. Therefore, an effective means for substance production and function modification or function analysis is provided.
  • the present invention also provides a promoter that activates transcription in a host.
  • the promoter of the present invention can highly express a gene introduced at a low copy number in a host, and is effective for improving the amount of substance produced.
  • SEQ ID NO: 3 Synthetic DNA
  • SEQ ID NO: 5 synthetic DNA
  • SEQ ID NO: 6 synthetic DNA
  • SEQ ID NO: 7 synthetic DNA

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Mycology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

明 細 書
遺伝子高発現系 技術分野
本発明は、 宿主生物に遺伝子工学的手法を用いて遺伝子を導入し発現させる方 法に関する。 また本発明は、 新規なプロモーター、 該プロモーター及び目的遺伝 子を含む組換えベクター、 該組換えベクターを含有する形質転換体、 並びに該形 質転換体を用いた有用遺伝子産物又は有用物質の製造方法に関する。
背景技術
宿主生物において物質生産を行ったり、 宿主生物の機能の改変又は分析を行う 場合には、 宿主生物に同種又は異種遺伝子を導入し発現させる遺伝子工学的手法 が用いられている。 しかしながら、 この遺伝子工学的手法は、 安定性及び高発現 の点でまだ十分なものではなく、 改善が望まれている。
例えば、 宿主生物が酵母サッカ αマイセス · セレビシェ (Saccharomyces cerev i s i ae) の場合、 2 x m DNAを利用した YEPタイプのベクターがよく用いられ ている。 YEPベクターは、 多数コピーの璋伝子を導入することができるが、 細胞分 裂に伴いベクターの脱落などによりその酵素活性が低下することがあるため安定 性の点で十分とはいえない。 酵素活性を向上させるためには、 ベクターに薬剤耐 性マーカ一を含有させ、 培地にこの薬剤を添加するか、 又は、 宿主株にあらかじ め栄養要求性マーカーが付与されている場合には、 栄養要求性マーカーをべクタ 一に含むよう設計を行い、さらに培地として高度に精製した最小培地(YNB, Di f co 社製) を利用することによって選択圧を加えることができる力 いずれの場合に ついても培地コストは高額になつてしまうという問題点がある。
一方、 染色体導入型ベクターとしては、相同組換えを利用した YIPベクタ一が知 られている。 この YIPベクターは、 ベクタ一の設計によっては、 導入遺伝子を安定 的にゲノム上に存在させることができるが、 一般的には導入遺伝子を高発現させ ることはできない。 以上のような理由から、 当技術分野では、 安定的かつ低コストで宿主生物に遺 伝子を導入し、 高発現させる方法が望まれていた。
また例えばサッカロマイセス ·セレピシェの細胞内で目的遺伝子を発現させる 場合、その上流に酵母内で発現可能なプロモーターを連結することが必要である。 現在報告されているサッカロマイセス ·セレピシェのプロモー夕一としては強い 発現量を示すことが知られているアルコールデヒドロダナ一ゼ 1 (ADH1) 遺伝子 のプロモーターや 3-ホスホグリセレ一トキナーゼ(PGK)遺伝子のプロモー夕一が 知られている。 また、 相同組換えによる遺伝子導入では安定性が高いため、 強力 なプロモーターにより目的とする遺伝子を発現させることが可能であれば、 物質 生産、 機能改変又は機能解析の点で有効である。
しかし、酵母に相同組換えを利用して遺伝子導入を行う場合には上記 YIPベクタ 一を利用するが、 この塲合コピー数は 1または 2しか期待することができない。 そのため、シングルコピーでも高発現可能なプロモーターの開発が望まれていた。
発明の開示
本発明は、 宿主生物に安定的に目的遺伝子を導入し、 高発現させる方法を提供 することを目的とする。 また本発明は、 目的遺伝子を発現させるのに強力な転写 活性を有するプロモーター、 及び該プロモータ一を含む組換えベクター、 該組換 えベクターを含む形質転換体、 並びに該形質転換体を用いた目的遺伝子発現産物 又は有用物質の製造方法を提供することを目的とする。 本発明者は、 上記課題を解決するために鋭意研究を行った結果、 酵母サッカロ マイセス ·セレピシェ中のピルビン酸デカルポキシラーゼ 1プロモータ一に発現 させたい目的遺伝子を連結し、 これを宿主のゲノムに導入することにより、 該目 的遺伝子を安定的に高発現させ得るという知見を得た。
また本発明者は、 サッカロマイセス ·セレピシェにおいて非常に大量にェ夕ノ —ルが生産されることに着目し、 エタノール発酵経路においてピルビン酸デカル ボキシラーゼ 1遺伝子が高発現されると考え、 上記ピルビン酸デカルボキシラー ゼ 1遺伝子(PDC 1 ) のプロモーター領域を単離した。 さらに本発明者は、 この PDC 1 のプロモータ一領域を目的遺伝子と連結してサッカロマイセス ·セレピシェに導 入したところ、 このプロモータ一により目的遺伝子が高発現される知見を得た。 以上のような知見から、 本発明者は本発明を完成するに至った。
すなわち、 本発明は、 オートレギュレーション機構が存在する遺伝子のプロモ —ター、 又は宿主生物において生育若しくは発酵に必須ではない遺伝子のプロモ 一夕一の制御下に目的遺伝子をゲノムに導入することを特徴とする遺伝子発現方 法である。 上記プロモーターは、 オートレギュレーション機構が存在する遺伝子 のプロモー夕一の塩基配列、 又は宿主生物において生育若しくは発酵に必須では ない遺伝子の,プロモーターの塩基配列において 1〜4 0個の塩基が欠失、 置換若 しくは付加された配列を含み、かつプロモーター活性を有する DNAであってもよい。 また上記プロモータ一は、 オートレギユレーション機構が存在する遺伝子のプロ モーターの塩基配列、 又は宿主生物において生育若しくは発酵に必須ではない遺 伝子のプロモーターの塩基配列の全部若しくは一部の配列に相補的な配列からな る DNAとストリンジェン卜な条件下でハイブリダィズし、かつ、 プロモーター活性 を有する DNAであってもよい。
本発明において、 上記ォートレギュレーシヨン機構が存在する遺伝子のプロモ 一夕一としては、 ピルビン酸デカルポキシラーゼ 1遺伝子のプロモー夕一が挙げ られ、 生育に必須ではない遺伝子のプロモーターとしては、 チォレドキシンをコ 一ドする遺伝子のプロモーターが挙げられる。
この場合、 宿主生物は、 細菌、 酵母、 昆虫、 動物又は植物のいずれでもよく、 特にサッカロマイセス属に属する酵母が好ましい。 これらの宿主生物は、 生物個 体 (ヒトを除く) 、 組織、 細胞のいずれをも意味する。
また本発明において、 上記ピルビン酸デカルボキシラーゼ 1遺伝子のプロモー 夕一は、 以下の (a ) 〜 (c ) のいずれかの DNAからなるプロモ一ターである。
( a ) 配列番号 1で表される塩基配列からなる DNA、
( b ) 配列番号 1で表される塩基配列において〗〜 4 0個の塩基が欠失、 置換若 しくは付加された塩基配列からなり、 かつプロモーター活性を有する DNA、 又は
( c ) 配列番号 1で表される塩基配列の全部若しくは一部に相補的な配列からな る DNAとス卜リンジェントな条件下でハイプリダイズし、かつプロモーター活性を 有する DNA
本発明はまた、 上記プロモーターを含む組換えべクタ一である。 本発明の組換 えべクタ一は、 目的遺伝子が発現可能な状態で連結されたものが好ましい。 この 場合、 該組換えベクターはプラスミドベクタ一又はウィルスベクターであってよ い。 また、 該組換えベクターにおいて、 目的遺伝子としては、 タンパク質をコー ドする核酸又はそのアンチセンス核酸、アンチセンス RNAデコイをコードする核酸 及びリポザィムから選択される核酸が挙げられる。
さらに本発明は、 上記いずれかの組換えべクタ一を用いて宿主を形質転換して 得られる形質転換体である。 ここで宿主は、 細菌、 酵母、 動物、 昆虫又は植物で ありうるが、 特にサッカロマイセス属に属する酵母であることが好ましい。 これ らの宿主生物は、 生物個体 (ヒトを除く) 、 組織、 細胞のいずれをも意味する。 本発明はまた、 上記いずれかの形質転換体を培地中で培養し、 得られる培養物 から目的遺伝子の発現産物又は該発現産物により生産される物質を採取すること を特徴とする、 目的遺伝子の発現産物又は該発現産物により生産される物質の製 造方法である。 以下、 本発明を詳細に説明する。 本願は、 2001年 9月 20 日に出願された日本 国特許出願第 2001-286637号及びその優先権を主張して 2002年 4月 30日に出願 された日本国特許出願第 2002 - 128323号、 並びに 2001年 9月 20日に出願された 日本国特許出願第 2001- 287159号及びその優先権を主張して 2002年 4月 30日に 出願された日本国特許出願第 2002-128286号の優先権を主張するものであり、 上 記特許出願の明細書及び Z又は図面に記載される内容を包含する。 生物界には、 オートレギュレーション機構が存在する遺伝子や、 生育及び発酵 に必須ではない遺伝子が存在する。 本発明者らはこの点に着目し、 遺伝子の導入 及び発現方法において、 このような遺伝子のプロモーターを選択した。 従って、 本発明の遺伝子発現方法は、 ォートレギユレーション機構が存在する遺伝子のプ 口モーターの制御下に、 あるいは宿主生物において生育又は発酵に必須ではない 遺伝子のプロモーターの制御下に目的遺伝子をゲノムに導入することを特徴とす る。 本発明の方法の概要は以下の通りである。
1 . プロモーターの選択
まず、 オートレギュレーション機構の存在する遺伝子のプロモーター、 又は宿 主生物の生育若しくは発酵に必須ではない遺伝子のプロモーターを選択する。 対 象となる宿主生物としては、 物質生産及び機能改変又は機能分析が望まれるあら ゆる生物を宿主生物として用いることができる。 例えば、 細菌、 酵母、 昆虫、 動 物、 又は植物などが挙げられる。
( 1 ) オートレギュレ一シヨン機構が存在する遺伝子プロモーター
オートレギュレーション機構が存在する遺伝子のプロモーターを選択するには、 まず、 オートレギュレーション ίί構が存在する遺伝子を特定する。 「オートレギ ユレーシヨン機構」 とは、 同じ機能を有する遺伝子が同一生物において複数存在 し、 通常、 そのうちの少なくとも 1つは発現している力 残りの遺伝子は抑制さ れており、 通常発現している遺伝子が破壊などにより機能しなくなった場合にの み、 残りの遺伝子が発現されてその機能を継続する機構を意味する。 例えば、 サ ッカロマイセス属に属する酵母のピルビン酸デカルポキシラーゼ遺伝子(PDC)は、 エタノールを生産する過程においてピルビン酸を脱炭酸してァセトアルデヒドに 変換する酵素をコードする遺伝子であり、発酵過程で重要な役割を果たしている。 PDCには、 PDC K PDC5及び PDC6が存在するが、通常は PDC 1が機能しており、 PDC5 及び PDC6は PDC 1の働きによって抑制されている。 しかしながら、 遺伝子破壊や 薬剤による変異をこの PDC 1に与えて PDC 1の機能を不活性化させた場合には、 PDC5 遺伝子が活性化され、 それにより酵母のェ夕ノ一ル生産機能は失われない (Eberhard t, I. e t a l. , Eur. J. Bi ochem. 1999, 262 (1) : 191-201 ; Mul l er, EH. e t a l. , FEBS Le t t. 1999, 449 (2-3) : 245-250) 。 実際に、 Schaaf f らは、 PDC 1 プロモーターを欠失させた後、 酵母のピルビン酸デカルポキシラーゼ活性を確認 している (Schaaf f, I. et a l . , Curr. Gene t. 1989, 15 : 75-81) 。 すなわち、 生 理的な表現系は親株とほぼ同等となる。 一方、 酵母に分類されるクルイべ口マイ セス属 (Kluyveromtces) において PDC 1プロモーターが単離されているが (国際 公開 W094/01569号)、 クルイべロマイセス属においてはォ一トレギュレ一ション 機構は報告されていない。
オートレギュレーション機構が存在する遺伝子は、 ある遺伝子を破壊した株に おいて、 遺伝子産物であるタンパク質が依然として発現されているかどうかを確 認することにより特定することができる。 このようにして特定されたオートレギ ユレ一ション機構が存在する遺伝子のプロモ一夕一を選択する。 本発明において は、 例えば、 PDC 1のプロモータ一 (以下、 PDC1プロモーターと呼ぶ。 ) を選択す ることができる。
( 2 ) 生育又は発酵に必須ではない遺伝子のプロモーター
宿主生物の生育又は発酵に必須ではない遺伝子のプロモ一夕一を選択するには、 まず、 生育又は発酵に必須ではない遺伝子を特定する。 ここで、 「生育」 とは菌 体が増殖できるように生存していることを意味し、 「発酵」 とはアルコール発酵 等の物質を生産することを意味する。 そして、 「必須ではない遺伝子」 とは、 当 該遺伝子を破壊又は不活性化しても依然として生育若しくは発酵又はこれらの両 者が維持され、 これらの生育及び発酵とは無関係の遺伝子を意味する。
生育又は発酵に必須ではない遺伝子は、 ある遺伝子を破壊した株において、 宿 主生物が生育及び発酵を継続するかどうかを確認することにより特定することが できる。 このような遺伝子としては、 例えば、 大部分の生物に存在するチォレド キシンをコードする TRX1遺伝子が挙げられる。 この TRX1遺伝子は、 DNA複製、 酸化的ストレス応答、 液胞遺伝などに関与しているが、 生育又は発酵に必ずしも 必須ではない。 すなわち、 宿主生物において TRX1遺伝子を破壊又は置換しても、 宿主生物は生育又は発酵を継続することができる。 このようにして特定された宿 主生物の生育又は発酵に必須ではない遺伝子のプロモーターを選択する。
2 . 目的遺伝子及びプロモーターの調製
宿主生物に導入する上記選択したプロモーターと目的遺伝子を調製する。 本発 明において、 「目的遺伝子」 とは、 物質生産及び機能改変又は機能分析のために 発現させることが望まれる遺伝子を意味し、 同種遺伝子又は異種遺伝子のいずれ でもよい。 例えば物質生産を目的とする場合、 目的遺伝子としては有用なタンパ ク質をコードする遺伝子が好ましく、 そのような有用タンパク質としては、 例え ば、 インターフェロン、 ワクチン、 ホルモンなどが挙げられる。 また、 目的遺伝 子は、 有用な物質を生産する酵素をコードする遺伝子であってもよく、 例えばピ ルビン酸から乳酸を生成する乳酸デヒドロゲナーゼをコードする遺伝子などが挙 げられる。
目的遺伝子及び上記プロモ」夕一の調製は、 当技術分野で周知の任意の手法を 採用することができる。 例えば、 目的遺伝子及び上記プロモーターを供与源から 単離する場合には、 グァニジンイソチオシァネート法により調製された RNAから cDNAを合成する方法により調製することができる。 また、 PCRによりゲノム DNA を鐃型として増幅することにより調製することも可能である。 このようにして得 た目的遺伝子及び上記プロモーターの DNAは、 目的によりそのまま、 又は所望に より制限酵素で消化したり、 リンカ一を付加することにより使用することができ る。
本発明においては、プロモーターの塩基配列において 1〜4 0個の塩基が欠失、 置換若しくは付加された配列を含み、かつプロモー夕一活性を有する DNAもまたプ ロモ—夕—として利用可能である。 プロモーター活性とは、 プロモーターの下流 に発現可能な状態で目的遺伝子を連結し、 宿主に導入した際、 宿主内又は宿主外 において目的遺伝子の遺伝子産物を生産させる能力及び機能を有することをいう。 このような DNAは、 変異 (欠失、 置換若しくは付加) を有しない完全長の塩基配列 からなるプロモーターが機能する条件と同一の条件でほぼ同様の利用が可能な程 度のプロモーター活性が維持されていることをいう。 例えば、 完全長の配列のプ 口モー夕一活性の約 0. 01〜100倍、好ましくは約 0. 5〜20倍、 より好ましくは約 0. 5 〜 2倍の活性を維持する DNAである。
このような DNAは、 Mol ecul ar Cloning (Sambrookら編 (1989) Cold Spring Harbor Lab. Press, New York) 等の文献の記載に従って製造することができる。
例えば、 ォ一トレギュレーシヨン機構が存在する遺伝子のプロモーターの塩基 配列、 又は宿主生物において生育若しくは発酵に必須ではない遺伝子のプロモー 夕一の塩基配列を基にして、 当該塩基配列から 1〜4 0個の塩基の欠失、 置換若 しくは付加を人為的に行う技術、 例えば部位特異的突然変異誘発法により、 プロ モーター活性を維持しつつ配列の異なる変異体を作製することができる。 例えば
1〜4 0個の塩基が置換されるような部位特異的突然変異誘発については、 Proc. Nat l. Acad. Sc i. USA 81 (1984) 5662-5666;冊 85/00817号公報; Nature 316 (1985) 601-605; Gene 34 (1985) 315-323; Nucl e i c Ac i ds Res. 13 (1985) 4431-4442 ; Proc. Nat l. Acad. Sc i. USA 79 (1982) 6409-6413; Sc ience 224 (1984) 143卜 1433等に 記載の技術に従って変異体を取得し、 これを利用することができる。 また、 市販 のキッ ト (Mut an- G、 Mutan-K (宝酒造) ) を用いてこれらの変異体を作製するこ とができる。 さらに、 誤りを起こしやすいポリメラーゼ連鎖反応 (error- prone PCR) もまた変異体作製方法として知られており、複製の厳密度の低い条件を選択 することによって 1〜数塩基の変異を導入することができる (Cadwe l l, R. C. and Joyce, G. F. PCR Me thods and Appl i cat ions 2 (1992) 28-33; Malboeuf, C. M. e t al. B i otechn i Ques 30 (2001) 1074-8; Moore, G. L. and Maranas C D. J. Theor. Biol. 7 ; 205 (2000) 483-503) 。
また、 オートレギュレーション機構が存在する遺伝子のプロモーター、 又は宿 主生物において生育若しくは発酵に必須ではない遺伝子のプロモーターの塩基配 列の全部又は一部に相補的な配列からなる丽 Aをプローブ(100〜900塩基) として 用いてストリンジェン卜な条件下でハイプリダイズさせることによって、 オート レギュレーシヨン機構が存在する遺伝子のプロモーター、 又は宿主生物において 生育若しくは発酵に必須ではない遺伝子のプロモーターの塩基配列からなる DNA と同様の機能 (すなわちプロモータ一活性) を有する他の塩基配列からなる DNA を新たに取得し、利用することもできる。 ここで、ストリンジェントな条件とは、 例えばナトリウム濃度が、 10〜300 、 好ましくは 20〜100mMであり、 温度が 25〜 70DC、 好ましくは 42〜55°Cにおける条件をいう。
上記のように取得した変異体やハイブリダイゼーシヨンにより得られる DNAが プロモ一夕一としての活性を有するか否かは、 以下のような手法により確認する ことができる。 すなわち、 上記のようにして得られる DNAのプロモーター活性は、 好ましくは種々のレポーター遺伝子、 例えばルシフェラーゼ遺伝子 (LUC) 、 クロ ラムフエニコールァセチルトランスフェラーゼ遺伝子 (CAT) 、 βガラクトシダー ゼ遺伝子 (GAL) 等をプロモーターの下流域に連結したベクターを作製し、 当該べ クタ一を用いて宿主のゲノムに導入した後、 当該レポーター遺伝子の発現を測定 することにより確認することができる。
3 . 目的遺伝子及びプロモーターの導入
続いて、 上記オートレギュレーション機構が存在する遺伝子、 又は宿主生物に おいて生育若しくは発酵に必須ではない遺伝子を破壊し、 この遺伝子のプロモー ターの制御下に目的遺伝子を導入するか、 あるいはこの遺伝子を目的遺伝子と置 換する。
例えば、 上述のようにして単離した目的遺伝子と上記選択したプロモーターと を機能可能な形で連結して宿主生物のゲノムに導入する。 「機能可能な形で連結 する」 とは、 目的遺伝子が導入される宿主生物において上記プロモータ一の制御 下に目的遺伝子が発現されるように、 目的遺伝子と上記プロモーターとを連結す ることを意味する。 目的遺伝子及び上記プロモーターの導入は、 当技術分野で公 知のあらゆる手法を用いて行うことができる。 例えば、 組換えベクターを用いて 目的遺伝子及び上記プロモーターを宿主生物のゲノムに導入することができる。 組換えベクターは、適当なベクターに目的遺伝子及び上記プロモーターを連結(揷 入)することにより得ることができる。目的遺伝子を挿入するためのベクタ一は、 宿主生物中のゲノムに組み込み可能なものであれば特に限定されず、 例えば、 プ ラスミ ド DNA、 バクテリオファージ DNA、 レトロトランスポゾン DNA、 酵母人工染 色体 DNA (YAC: yeast art i f ic i al chromosome) などが挙げられる。
プラスミ ド DNAとしては、 例えば pRS403、 pRS404、 pRS405、 pRS406、 pAURlOl 又は PAUR135などの Yip型大腸菌-酵母シャトルべクタ一、大腸菌由来のプラスミ ド(pBR322、pBR325、pUC18、pUC 19、pUC118、pI)C119、pTV118N、pTV119N、pBl uescript、 pHSG298, pHSG396又は pTrc99Aなどの ColE系プラスミ ド、 pACYC 177又は pACYC 184 などの pl5A系プラスミド、 pMW118、 p丽 119、 pMW218又は pMW219などの pSClOl 系プラスミ ド等) 、 枯草菌由来のプラスミ ド (例えば pUB110、 pTP5等)などが挙 げられ、 ファージ DNAとしては λファージ(Charon4A、 Cliaron21A, EMBL3、 EMBL4、 A gt lO, A gt l K λ ΖΑΡ) 、 Φ Χ174、 M13mpl8又は M13mpl9などが挙げられる。 レ トロトランスポゾンとしては、 Ty因子などが挙げられる。 YAC用ベクターとして は PYACC2などが挙げられる。
ベクターに目的遺伝子及び上記プロモータ一を挿入するには、 まず、 精製され た DNAを適当な制限酵素で切断し、適当なベクター DNAの制限酵素部位又はマル チクロ一二ングサイトに揷入してベクターに連結する方法などが採用される。 目的遺伝子は、 上記選択されたプロモーターの制御下にてその遺伝子の機能が 発揮されるようにベクターに組み込まれることが必要である。 そこで、 組換えべ クタ一には、上記選択されたプロモー夕一、 目的遺伝子、夕一ミネ一夕一のほか、 所望によりェンハンサーなどのシスエレメント、 スプライシングシグナル、 ポリ A付加シグナル、 リボソーム結合配列(S D配列) などを連結することができる。 また、 ベクタ一が細胞内に保持されていることを示す選択マ一力一を連結しても よい。 なお、 選択マーカーとしては、 例えばジヒドロ葉酸還元酵素遺伝子、 アン ピシリン耐性遺伝子、 ネオマイシン耐性遺伝子などが挙げられる。 その他、 マ一 カー遺伝子としてトリブトファン合成遺伝子 (TRP 1遺伝子) が挙げられるが、 こ れらに限定されるものではなく、 他のマーカ一遺伝子、 例えば、 栄養要求性能を 持つ URA3遺伝子、 ADE2遺伝子、 HIS3遺伝子、 又は薬剤耐性能を持つ G418耐性遺 伝子も利用可能である。
ターミネータ一配列としては、 ダリセルアルデヒド 3リン酸デヒドロゲナ一ゼ 遺伝子 (GAPDH) の夕一ミネ一ター遺伝子が挙げられるが、 本発明はこれに限定さ れるものではなく、 宿主生物内で使用可能なターミネータ一配列であればいかな るものを使用してもよい。
以上のようにして宿主生物における目的遺伝子の発現に適合するように組換え ベクターを作製することができる。 この組換えべクタ一を用いて宿主生物を形質 転換することにより、 宿主生物において上記選択したプロモーターの制御下にて 目的遺伝子を発現させることができる。
大腸菌などの細菌を宿主とする場合は、 組換えべクタ一が、 プロモーター、 リ ポゾーム結合配列、 目的遺伝子、 転写終結配列により構成されていることが好ま しい。 また、 プロモーターを制御する遺伝子が含まれていてもよい。
大腸菌としては、 例えばエッシェリヒァ · コリ (Escher ichi a col i) K12、 DH1な どが挙げられ、枯草菌としては、例えばバチルス ·ズブチリス(Bac i l 1 u s s ub t i U s) などが挙げられる。 細菌への組換えベクターの導入方法としては、 細菌に DNAを 導入する方法であれば特に限定されるものではない。 例えばカルシウムイオンを 用いる方法、 エレクト口ポレーション法などが挙げられる。
酵母を宿主とする場合は、 例えばサッカロミセス ·セレビシェ(Saccharomyces cerevi s i ae)、 シソサッカロミセス ·ポンべ(Schi zosaccharomyces pombe)、 ピヒ ァ ·パストリス(Pichi a pastor i s)などが用いられる。 酵母への組換えベクターの 導入方法としては、 酵母に DNAを導入する方法であれば特に限定されず、 例えば エレクト口ポレーシヨン法、 スフエロプラスト法、 酢酸リチウム法などが挙げら れる。
昆虫又は動物を宿主とする場合、 組換えべクタ一の導入方法としては、 例えば リン酸カルシウム法、 リポフエクシヨン法、 エレク トロボレ一シヨン法などが用 いられる。 . 植物を宿主とする場合、 組換えベクターの導入方法としては、 例えばァグロバ クテリウム法、 パーティクルガン法、 PEG 法、 エレクト口ポレーシヨン法などが 用いられる。
昆虫、 動物 (ヒトを除く) 又は植物の個体を宿主とする場合には、 当技術分野 で公知のトランスジエニック動物又は植物の作製手法に従って組換えベクターを 導入することができる。 例えば、 動物個体への組換えベクターの導入方法として は、 受精卵へのマイクロインジェクション法、 E S細胞へ導入する方法、 培養細 胞へ導入した細胞核を核移植により受精卵に導入する方法などが挙げられる。' 上述のように組換えベクターを導入した宿主生物は、 目的遺伝子が上記選択さ れたプロモー夕一の制御下に導入されている株について選択を行う。具体的には、 上記の選択マーカーを指標にして形質転換株を選択する。
目的遺伝子が上記プロモータ一制御下に組み込まれたか否かの確認は、 PCR (ポ リメラ一ゼ連鎖反応) 法、 サザンハイブリダィゼ一シヨン法により行うことがで きる。 例えば、 形質転換株から DNAを調製し、 導入 DNA特異的プライマ一を設計 して PCRを行う。 その後、 増幅産物についてァガロースゲル電気泳動、 ポリアク リルアミ ドゲル電気泳動又はキヤピラリー電気泳動などを行い、臭化工チジゥム、 SYBR Green液などにより染色し、 そして増幅産物を 1本のバンドとして検出する ことにより、 導入 DNAを確認することができる。 また、 予め蛍光色素などにより 標識したプライマーを用いて PCRを行い、 増幅産物を検出することもできる。 さ らに、 マイクロプレートなどの固相に増幅産物を結合させ、 蛍光又は酵素反応な どにより増幅産物を確認する方法も採用することができる。 上述のようにして、 オートレギュレーション機構が存在する遺伝子のプロモ一 夕一、 又は宿主生物の生育若しくは発酵に必須ではない遺伝子のプロモーターの 制御下に目的遺伝子がゲノムに導入され (ゲノムインテグレーション) 、 宿主生 物において目的遺伝子が発現される。 PDC 1プロモーターは非常に強力なプロモー ターであるため、 PDC1プロモーターを選択した場合には、 目的遺伝子がゲノムに シングルコピーで導入されても、 高発現されることになる。 また、 選択したプロ モーターの元の遺伝子は生育及び発酵に必須ではないため、 破壊又は目的遺伝子 と置換されても、 宿主生物は生育及び発酵を継続することができ、 目的遺伝子を 長期にわたって発現することができる。
4 . ピルビン酸デカルボキシラーゼ 1遺伝子 (PDC1) プロモーター
本発明のプロモーターは、 サッカロマイセス 'セレピシェに由来するピルビン 酸デカルポキシラーゼ 1遺伝子のプロモーター(以下、 PDC1プロモーターと呼ぶ。) である。 ピルビン酸デカルボキシラーゼは、 酵母のエタノール発酵経路に関与す る酵素であり、 通常は PDC1、 PDC5及び PDC6遺伝子のうち PDC1のみが機能している ( 「 1 . プロモーターの選択」 の項を参照) 。 本発明者は、 ピルビン酸デカルボ キシラ一ゼがォ一トレギュレ一シヨン機構のために PDC1の発現のみで産生されて いるにも関わらず、 エタノールが大量に生産されている点に着目し、 PDC1のプロ モーター領域を特定した。
PDC1プロモータ一は、 以下のようにして決定し、 単離した。 最初に、 公開され ているサッカロマイセス .セレピシェのゲノム塩基配列 (Saccharomyces Genome Database) を利用して、 プロモーター下流に目的とする遺伝子が導入される ように相同組換え用のベクターを構築した。 このベクターを導入し、 目的とする 遺伝子の発現量が多い株を選抜し、 PCRにより PDC1プロモーター断片を得、 PDC1 プロモーターに相当する領域の塩基配列をシークェンサ一 (ABI 310 Genet ic Analyzer) により決定した。
PDC1プロモータ一は、配列番号 1で表される塩基配列からなる DNAを含む。 PDC1 プロモータ—を単離した後は、その DNAは、核酸合成の手法に従って化学合成する ことにより得ることができる。
また、 本発明の PDC1プロモーターには、 配列番号 1で表される塩基配列におい て 1〜4 0個の塩基が欠失、 置換若しくは付加された塩基配列からなり、 かつプ ロモ一夕一活性を有する DNAも含まれる。 プロモー夕一活性とは、 プロモーターの 下流に発現可能な状態で目的遺伝子を連結し、 宿主に導入した際、 宿主内又は宿 主外において目的遺伝子の遺伝子産物を生産する能力及び機能を有することをい う。 このような DNAは、 プロモータ一活性を有していればよいが、 配列番号 1で表 される塩基配列からなるプロモーターが機能する条件と同一の条件でほぼ同様の 利用が可能な程度のプロモータ一活性が維持されていることをいう。 例えば、 配 列番号 1で表される塩基配列からなるプロモー夕一活性の約 0. 01〜100倍、好まし くは約 0. 5〜20倍、 より好ましくは約 0. 5〜 2倍の活性を維持する DNAである。 このような DNAは、 配列番号 1で表される塩基配列を参照すれば、 Molecul ar Cloning (Sambrookら編(1989) Cold Spring Harbor Lab. Press, New York) 等の 文献の記載に従つて製造することができる。
例えば、 上述した配列番号 1で表される塩基配列を基にして、 当該塩基配列か らュ〜 4 0個の塩基の欠失、 置換若しくは付加を人為的に行う技術、 例えば上記 「2 . 目的遺伝子及びプロモーターの調製」 の項で記載したような部位特異的突 然変異誘発法により、 プロモー夕一活性を維持しつつ配列の異なる変異体を作製 することができる。
また、 配列番号 1で表される塩基配列の全部又は一部に相補的な配列からなる DNAをプローブ(100〜900塩基) として用いてス卜リンジェン卜な条件下でハイブ リダィズさせることによって、配列番号 1で表される塩基配列からなる DNAと同様 の機能(すなわちプロモ一夕一活性) を有する他の塩基配列からなる DNAを新たに 取得し、 利用することもできる。 ここで、 ストリンジェン卜な条件とは、 例えば ナトリウム濃度が、 10〜300mM、 好ましくは 20〜100mMであり、 温度が 25〜70°C、 好ましくは 42〜55°Cにおける条件をいう。
上記のように取得した変異体やハイプリダイゼーションにより得られる DMが プロモーターとしての活性を有するか否かは、 上記 「2 . 目的遺伝子及びプロモ 一夕一の調製」 の項に記載するような手法により確認することができる。
本発明の PDC1プロモーターは、 オートレギユレーション機構を利用して該プロ モ一ターの制御下に目的遺伝子を発現させるためだけではなく、 一般的なプロモ 一夕一として使用することができる。
5 . 組換えベクターの構築
本発明のプロモーターは、 一般的なプロモーターとして使用することが可能で あるため、 目的遺伝子を高発現させるための'プロモーターとして利用することが できる。本発明の組換えベクターは、適当なベクターに本発明の PDC 1プロモータ 一と目的遺伝子とを連結 (挿入) することにより得ることができる。 ここで 「目 的遺伝子」 とは、 例えば、 タンパク質をコードする核酸又はそのアンチセンス核 酸、 アンチセンス RNAデコイをコードする核酸、 リポザィムなどが挙げられる。 物質生産を目的とする場合には、 目的遺伝子としては有用なタンパク質をコ一 ドする核酸が好ましく、 そのような有用タンパク質としては、 例えば、 インター フエロン、 ワクチン等が挙げられる。 また、 タンパク質をコードする核酸は、 有 用物質を生産する酵素をコードする遺伝子の核酸であってもよく、 例えばピルビ ン酸から乳酸を生成するラクテ一トデヒドロゲナ一ゼをコードする遺伝子の核酸 等が挙げられる。
アンチセンス核酸とは、 任意の RNA (ゲノム RNA及び mRNA) と相補的な塩基配 列を有し、 これらと 2本鎖を形成することによって該 RNAにコードされる遺伝子 情報の発現 (転写、 翻訳) を抑制するものをいう。 アンチセンス配列は、 遺伝子 の翻訳又は転写をプロックする限り任意の核酸物質を使用することができる。 例 えば、 DNA、 RNA, 又は任意の核酸擬似物が挙げられる。 従って、 発現を抑制させ ようとする遺伝子の一部の配列に相補的となるようにアンチセンス核酸 (オリゴ ヌクレオチド) 配列を設計する。
設計すべきアンチセンス核酸配列の長さは、 遺伝子の発現を阻害し得る限り特 に限定されるものではないが、 例えば 10〜50塩基、 好ましくは 15〜25塩基であ る。 オリゴヌクレオチドは、 公知手法により容易に化学合成することができる。 本発明の目的のために、 アンチセンスオリゴヌクレオチドの分子類似体も使用 することができる。 分子類似体は、 高安定性、 分布特異性などを有するものであ る。 分子類似体には、 化学的に反応性である基、 例えば鉄結合エチレンジァミン 四酢酸をアンチセンスオリゴヌクレオチドに結合させたものが挙げられる。
NA デコイをコードする核酸とは、 転写因子の結合タンパク質をコードする遺 伝子あるいは転写因子の結合部位の配列又は類似の配列を有する RNAを指し、 こ れらを 「おとり」 として細胞内に導入することによって転写因子の作用を抑制す るものをいう。
リポザィムとは、特定のタンパク質の mRNAを切断するものをいい、 これら特定 のタンパク質の翻訳を阻害するものをいう。 リポザィムは特定のタンパク質をコ ードする遺伝子配列より設計することができ、 例えば、 ハンマーヘッド型リポザ ィムとしては、 FEBS Le er, 228 ; 228- 230 (1988)に記載の方法を用いることがで きる。また、ハンマーへッド型リポザィムだけではなく、ヘアピン型リポザィム、 デルタ型リポザィムなどの、 特定のタンパク質の mRNAを切断するものであって、 これら特定のタンパク質の翻訳を阻害するものであれば本発明において使用しう る。 ,、
目的遺伝子を挿入するためのベクターは、 上記 「目的遺伝子及びプロモーター の導入」 の項に記載したような宿主生物中のゲノムに組み込み可能な染色体導入 型べクタ一、 又は当技術分野で公知のプラスミ ド型ベクタ一であれば特に限定さ れず、 例えば、 プラスミド DNA、 バクテリオファージ DNA、 レトロトランスポゾン DNA、 酵母人工染色体 DNA (YAC: yeas t art i f i c i al chromosome) などが挙げられ る。
プラスミ ド DNAとしては、 例えば pRS413、 pRS414 pRS415、 pRS416、 YCp50、 PAUR11 又は PAUR123 などの YCp 型大腸菌-酵母シャトルべクタ一、 pYES2 又は YEp l 3などの YEp型大腸菌-酵母シャトルべクタ一、 pRS403、pRS404、pRS405、i〕RS406、 PAUR101又は PAUR135などの Yip型大腸菌-酵母シャ トルべクタ一、大腸菌由来の プラスミ ド (pBR322 pBR325、 pUC 18、 pUC 19、 pUC 1 18、 pUC 1 19, pTV1 18N、 pTV1 19N pBluescript、 pHSG298、 pHSG396又は pTrc99Aなどの ColE系プラスミド、 pACYC177 又は PACYC184などの pl5A系プラスミ ド、 pMW118、 pMW119、 p層 218又は p匿 219 などの pSClO l系プラスミド等) 、 枯草菌由来のプラスミ ド (例えば pUB110、 pTP5 等)などが挙げられ、 ファージ DNAとしては λファージ (Charon4A、 Charon21A、 EMBL3、 EMBL4、 A gt lO, A gt l K λ ZAP) 、 Χ174, M13即 18又は M13即 19などが 挙げられる。 レトロトランスポゾンとしては、 Ty因子などが挙げられる。 YAC用 ベクタ一としては pYACC2などが挙げられる。
ベクタ一に本発明の PDC1プロモ一夕一及び目的遺伝子を挿入するには、 まず、 精製された DNAを適当な制限酵素で切断し、適当なベクタ一 DNAの制限酵素部位 又はマルチクローニングサイ トに挿入してベクターに連結する方法等が採用され る。
本発明の PDC1プロモーターは、目的遺伝子の機能が発揮されるように発現可能 な状態でベクターに組み込まれることが必要である。 発現可能な状態とは、 目的 遺伝子が導入される宿主生物において PDC1 プロモーターの制御下に目的遺伝子 が発現されるように、目的遺伝子と PDC1プロモ一夕一とを連結してベクタ一に組 み込むことを意味する。 そこで、 本発明のベクタ一には、 PDC1プロモ一夕一、 目 的遺伝子、夕一ミネ一夕一のほか、所望によりェンハンサ一等のシスエレメント、 スプライシングシグナル、 ポリ A付加シグナル、 選択マ一カー、 リボソーム結合 配列 (SD配列) 等を連結することができる。 なお、 選択マーカーとしては、 例え ばジヒドロ葉酸還元酵素遺伝子、 アンピシリン耐性遺伝子、 ネオマイシン耐性遺 伝子等が挙げられる。
6 . 組換えベクターによる形質転換
本発明の形質転換体は、 本発明の組換えべクタ一を、 目的遺伝子が PDC1プロモ 一夕一の制御下に発現し得るように宿主中に導入することにより得ることができ る。 ここで、 宿主としては、 本発明の PDC1プロモーターの制御下に目的遺伝子を 発現できるものであれば特に限定されるものではない。例えば、エツシエリヒア · コリ (Escherichi a col i)等のエツシエリヒア属、 バチルス ·ズプチリス(Baci l lus subt i l i s)等のバチルス属、 シユードモナス ·プチダ(Pseudomonas put ida)等のシ ユードモナス属に属する細菌が挙げられる。 また、 サッカロミセス ·セレビシェ
(Saccharoiyces cerevisiae)、シゾサッカロミセス '不ンベ (Schizosaccharomyces pombe)等の酵母、 さらに COS細胞、 チャイニーズハムスター卵巣細胞 (CH0細胞) 等の動物細胞が挙げられる。 あるいは Si9、 Si21等の昆虫細胞を用いることもで きる。
大腸菌等の細菌を宿主とする場合は、 本発明の組換えベクターが該細菌中で自 律複製可能であると同時に、 本発明のプロモーター、 リボゾーム結合配列、 目的 遺伝子、 転写終結配列により構成されていることが好ましい。 また、 本発明のプ 口モーターを制御する遺伝子が含まれていてもよい。
大腸菌としては、 例えばエッシェリヒァ · コリ (Escherichia col i)K12、 DH1等 が挙げられ、 枯草菌としては、 例えばバチルス ·ズブチリス(Bacillus subtil is) 等が挙げられる。 細菌への組換えベクターの導入方法としては、 細菌に DNAを導 入する方法であれば特に限定されるものではない。
酵母を宿主とする場合は、 例えばサッカロミセス ·セレピシェ(Saccharomyces cerevisiae) ¾ シゾサッカロミセス -ホンべ (Schizosaccharomyces pombe)、 ピヒ ァ ·パストリス(Pichiapastoris)等が用いられる。 酵母への組換えベクターの導 入方法としては、 酵母に DNAを導入する方法であれば特に限定されるものではな い。
動物細胞を宿主とする場合は、サル細胞 COS- 7、 Vero、 CH0細胞、マウス L細胞、 ラッ ト GH3、 ヒト FL細胞等が用いられる。 動物細胞への組換えべクタ一の導入方 法としては、 例えばエレクトロボレ一シヨン法、 リン酸カルシウム法、 リポフエ クシヨン法等が挙げられる。
昆虫細胞を宿主とする場合は、 Si9細胞、 Si21細胞等が用いられる。 昆虫細胞 への組換えベクターの導入方法としては、 例えばリン酸カルシウム法、 リポフエ クション法、 エレク トロボレ一ション法等が用いられる。
植物を宿主とする場合は、 トマト、 タバコ等が挙げられるが、 これらに限定さ れない。 植物細胞への組換えベクターの導入方法としては、 例えばァグロバクテ リウム法、 パーティクルガン法、 PEG 法、 エレクトロボレ一シヨン法等が用いら れる。 昆虫、 動物 (ヒトを除く) 又は植物の個体を宿主とする場合には、 当技術分野 で公知のトランスジエニック動物又は植物の作製手法に従って組換えベクターを 導入することができる。
上述のように組換えベクターを導入した宿主生物は、 目的遺伝子が上記選択さ れたプロモータ一の制御下に導入されている株について選択を行う。具体的には、 上記の選択マーカーを指標にして形質転換株を選択する。 このようにして得られ た形質転換体は、 PDC1プロモーターの制御下にて目的遺伝子を安定に高発現する ことができるため、 以下に記載するような目的遺伝子によりコ一ドされるタンパ ク質の生産、 またその他、 目的遺伝子の機能解析などに利用することができる。'
7 . 遺伝子発現産物又は発現産物により生産される物質の製造
次に、 遺伝子発現産物又は発現産物により生産される物質の製造方法について 説明する。 本発明において、 遺伝子発現産物又は発現産物により生産される物質 は、 上記のようにして得られた形質転換体を培養し、 得られる培養物から遺伝子 発現産物又は発現産物により生産される物質を採取することにより得られる。「培 養物」 とは、 培養上清のほか、 培養細胞若しくは培養菌体、 又は細胞若しくは菌 体の破砕物のいずれをも意味するものである。 本発明の形質転換体を培養する方 法は、 宿主の培養に適用される通常の方法に従って行われる。
酵母菌等の微生物を宿主として得られた形質転換体を培養する培地としては、 微生物が資化し得る炭素源、 窒素源、 無機塩類等を含有し、 形質転換体の培養を 効率的に行うことができる培地であれば、 天然培地、 合成培地のいずれを用いて もよい。 炭素源としては、 グルコース、 フラクトース、 スクロース、 デンプン等 の炭水化物、 酢酸、 プロピオン酸等の有機酸、 エタノール、 プロパノール等のァ ルコール類が用いられる。 窒素源としては、 アンモニア、 塩化アンモニゥム、 硫 酸アンモニゥム、 酢酸アンモニゥム、 リン酸アンモニゥム等の無機酸若しくは有 機酸のアンモニゥム塩又はその他の含窒素化合物のほか、 ペプトン、 肉エキス、 コーンスティ一プリカ一等が用いられる。無機物としては、リン酸第一力リウム、 リン酸第二力リウム、 リン酸マグネシウム、硫酸マグネシウム、塩化ナ卜リゥム、 硫酸第一鉄、 硫酸マンガン、 硫酸銅、 炭酸カルシウム等が用いられる。 培養は、 通常、 振盪培養又は通気攪拌培養等の好気的条件下、 30°Cで 6〜24時 間行う。培養期間中、 pHは 4. 0〜6. 0に保持する。 pHの調整は、無機又は有機酸、 アル力リ溶液等を用いて行う。 培養中は必要に応じてアンピシリンゃテトラサイ クリン等の抗生物質を培地に添加してもよい。
動物細胞を宿主として得られた形質転換体を培養する培地としては、 一般に使 用されている RPMI 1640培地、 DMEM培地又はこれらの培地に牛胎児血清等を添加 した培地等が用いられる。 培養は、 通常、 5 % C02存在下、 37°Cで 1〜30 日行う。 培養中は必要に応じてカナマイシン、 ベニシリン等の抗生物質を培地に添加して もよい。
培養終了後、 該培養物より遺伝子産物又は発現産物により生産される物質を採 取するには、 通常のタンパク質精製手段等を用いて得ることが出来る。 例えば、 形質転換細胞内に生産された場合は、 常法により菌体を超音波破壊処理、 磨砕処 理、加圧破砕等により遺伝子産物又は発現産物により生産される物質を抽出する。 必要に応じてプロテアーゼ阻害剤を添加する。 また、 培養上清に生産された場合 は、 培養液そのものを用いることが出来る。 そして、 この溶液を濾過、 遠心分離 等を行い固形部分を除去し、 必要によりプロト夕ミン処理等により核酸を除去す る。 ..
次いで、 これに硫安、 アルコール、 アセトン等を添加して分画し、 沈殿物を採 取し、 粗タンパク質溶液を得る。 該タンパク質溶液を各種クロマトグラフィー、 電気泳動等にかけて精製酵素標品を得る。 例えば、 セフアデックス、 ウルトロゲ ル若しくはバイオゲル等を用いるゲル濾過、 イオン交換体クロマトグラフィー、 ポリアクリルアミドゲル等を用いる電気泳動法、 ァフィ二ティクロマ卜グラフィ ―、 逆相クロマトグラフィー等を用いる分画法を適宜選択し、 又はこれらを組合 わせることにより、 精製された目的の遺伝子産物又は発現産物により生産される 物質を得ることが出来る。 しかし、 上記培養法、 精製法は一例であって、 これに 限定されるものではない。
なお、 精製された遺伝子産物又は発現産物により生産される物質が有するアミ ノ酸配列の確認は、 公知のアミノ酸分析、 例えばエドマン分解法による自動アミ ノ酸配列決定法等により行うことが出来る。 図面の簡単な説明
図 1 A〜 l Cは、 染色体導入型べクタ一 pBTRP_PDCl_LDHの構築図である。
図 2 A及び 2 Bは、 染色体導入型ベクター ρΒΠΡ- PDC1-LDHの構築図である。 図 3は、 ベクター pBTRP- PDC1- LDHを用いて酵母サッカロマイセス ·セレピシェ の形質転換を行った場合に得られる株のゲノム構造を示す図である。
図 4は、 染色体導入型ベクター pAUR- LacZ- T123PDC1 (A) 、 pAUR-LacZ-0C2PDCl (B) 及び pAUR- LacZ- YPHPDC1 (C) の構築図である。
図 5 A及び 5 Bは、 pBTRP- PD - LDH導入株由来 PDC1プロモータ一 (983bp) 、 IF02260株由来 PDC1プロモーター (968bp) 、 及び YPH株由来 PDC1プロモーター (968bp) の遺伝子配列の比較を示す図である。
図 6は、 pBTRP- PDC1- LDH導入株由来 PDC1プロモーター (983bp) 、 IF02260株由 来 PDC1プロモーター (968bp) 、 及び YPH株由来 PDC1プロモーター (968bp) を導入 した形質転換体における、継代培養前の; 6ガラク 'トシダーゼ活性を示す図である。 図 7は、 pBTRP- PDC1- LDH導入株由来 PDC1プロモータ一 (983bp) 、 IFO2260株由 来 PDC1プロモーター (968bp) 、 及び YPH株由来 PDC1プロモー夕一 (968bp) を導入 した形質転換体における、継代培養後の^ガラクトシダーゼ活性を示す図である。
発明を実施するための最良の形態
以下、 実施例により本発明をさらに具体的に説明する。 但し、 本発明はこれら 実施例にその技術的範囲が限定されるものではない。
〔実施例 1〕 pBTRP-PDCl- LDH構築のための PDC1P断片の単離
本実施例においては、 ピルビン酸デカルボキシラーゼ 1遺伝子のプロモーター 領域 (PDC1P) を決定し、 単離した。 PDC1P断片は、 サッカロマイセス ·セレビシ ェ YPH株 (Stratagene社) のゲノム DNAを铸型として使用した PCR増幅法によって 単離を行った。
サッカロマイセス 'セレピシェ YPH株のゲノム DNAは、 ゲノム調製キッ トである Fast DNAKit (Bio 101社) を用い、 詳細は付属のプロトコールに従い、 調製した。 DNA濃度は分光光度計 UUro spec 3000 (Amersham Pharmacia Biotech社) にて測 定した。
PCR反応には、 増幅酵素として、 増幅断片の正確性が高いとされる Pyrobest DNA polymerase (宝酒造社) を使用した。 上記手法にて調製したサッカロマイセス - セレピシェ YPH株のゲノム DNA 50ng/サンプル、プライマー DNA 50pmol/サンプル、 及び Pyrobest DNA polymerase 0.2ュニット /サンプルを合計で 50 / 1の反応系に調 製した。反応溶液を、 PCR増幅装置 Gene A即 PCR system 9700 (PE Applied Biosystems 社) によって DNA増幅を行った。 PCR増幅装置の反応条件は、 96°C 2分の後、 (96°C 30秒— 55°C 30秒— 72°C 90秒) を 25サイクル行い、 その後 4°Cとした。 PDC1プライ マーの増幅断片を 1%TBEァガロースゲル電気泳動にて遺伝子増幅断片の確認を行 つた。 なお反応に使用したプライマー DMは、 合成 DNA (サヮデーテクノロジ一社) を用い、 このプライマ一の DNA配列は以下の通りである。
- PDC1P-LDH-U (31mer, Tm値 58.3°C) 末端に制限酵素 BamHIサイ トを付カロ : ATA TAT GGA TCC GCG TTT ATT TAG CTA TCT C (配列番号 2 )
• PDC1P- LDH - D (31mer、 Tm値 54.4°C) 末端に制限酵素 EcoRIサイ 卜を付加 : ATA TAT GAA TTC TTT GAT TGA TTT GAC TGT G (配列番号 3 )
〔実施例 2〕 プロモーター及び目的遺伝子を含む組換えべクタ一の構築 本実施例においては、 サッカロマイセス ■セレピシェ由来のピルビン酸デカル ポキシラーゼ 1遺伝子 (PDC1) プロモーター配列の制御下で、 目的遺伝子として ビフィ ドバクテリゥム · ロンガム (Biiidobacterium longuni) 由来のラクテート デヒドロゲナーゼ遺伝子 (LDH遺伝子) を使用して組換えベクターを構築した。 本実施例のために新たに構築した染色体導入型ベクターを pBTRP- PD C 1 -LDHと名 付け、 以下に本ベクター構築例の詳細を記す。 なお本実施例の概要を図 1及び 2 に示す。 但し、 ベクター構築の手順はこれに限定されるものではない。
ベクタ一の構築にあたって、 必要な遺伝子断片である PDC1遺伝子のプロモータ 一断片 (PDC1P) 97ibpと、 PDC1遺伝子下流領域断片 (PDC1D) 518bpは、 上述のよ うに、サッカロマイセス ·セレビシェ YPH株のゲノム DNAを鐯型として使用した PCR 増幅法によって単離を行った。 PCR増幅の手順は上記の通りである力 PDC1遺伝子 下流領域断片の増幅には、 以下のプライマーを使用した。
- PDC1D-LDH-U (34mer, Tm値 55.3°C) 末端に制限酵素 Xholサイトを付加 : ATA TAT CTC GAG GCC AGC TAA CTT CTT GGT CGA C (配列番号 4)
• PDC1D- LDH-D (31mer、 Tm値 54.4°C) 末端に制限酵素 Apalサイトを付カロ : ATA TAT GAA TTC TTT GAT TGA TTT GAC TGT G (配列番号 5) 上記反応にて取得した PDC1P及び PDC1D各遺伝子増幅断片をそれぞれ、 ェタノ一 ル沈殿処理によって精製した後、 PDC1P増幅断片を制限酵素 BamHI/EcoRI及び PDC1D 増幅断片を制限酵素 Xhol/Apalにて制限酵素反応処理を行った。なお以下に用いた 酵素類はすべて宝酒造社製のものを用いた。 また、 エタノール沈殿処理、 制限酵 素処理の一連操作の詳細なマニュアルは Molecular Cloning A Laboratory Manual second edition (Maniat is et al. , Cold Spring Harbor Laboratory press.1989) に従った。
ベクターの構築における一連の反応操作は、一般的な DNAサブクローニング法に 準じて行った。 すなわち、 制限酵素 BamHI/EcoRI (宝酒造社) 及び脱リン酸化酵素 Alkaline Phosphatase (BAP, 宝酒造社) を施した pBluescriptll SK+ベクタ一 (東 洋紡社) に、 上記 PCR法にて増幅し、 制限酵素処理を施した PDC1P断片を T4 DNA Ligase反応によって連結させた(図 1 A)。T4 DNA Ligase反応には、 LigaFast Rapid DNALigation System (プロメガ社)を用い、詳細は付属のプロトコールに従った。 次に Ligation反応を行った溶液を、 コンビテント細胞へ形質転換を行った。 コ ンピテント細胞は大腸菌 JM109株 (東洋紡社) を用い、 詳細は付属のプロトコール に従って行った。得られた培養液は抗生物質アンピシリン lOO^g/mlを含有した LB プレートにまいて一晩培養した。 生育したコロニーを、 インサート断片のプライ マー DNAを用いたコロニ一 PCR法による確認、 及びミニプレップによるプラスミ ド DNA調製溶液を、 制限酵素処理による確認を行い、 目的とするベクター pBPDClPベ クタ一を単離した (図 1 B) 。
ついでトヨ夕自動車 (株) によって構築された pYLDlベクターを制限酵素 EcoRI/Aatll処理及び末端修飾酵素 T4 DNA polymerase処理することで得られる LDH 遺伝子断片を、 同じく制限酵素 EcoRI処理、 末端修飾酵素 T4 DNA polymerase処理 を行った PBPDC1Pベクター中に、 上述と同様の操作でサブクローニングを行い、 BPDCIP-LDH Iベクタ一を作製した (図 1 C) 。 なお、 上記の pYLDlベクターは大 腸菌に導入され (名称: 「E. coli pYLDlj ) 、 独立行政法人産業技術総合研究所 特許生物寄託センター (茨城県つくば巿東 1丁目 1番地 1 ) に、 受託番号 FE而 BP- 7423としてブダペスト条約に基づき国際寄託されている (原寄託日 :平成 11 (1999) 年 10月 26日) 。 続いてこのべクタ一を Xhol/Apal処理し、 増幅した PDC1D 断片を連結させて PBPDCIP-LDH IIベクターを作製した (図 2 A) 。 最後に PBPDCIP-LDH IIベクタ一を EcoRV処理したものに、 pRS404ベクタ一 (Stratagene 社) を Aatll/Sspl処理、 T4DNA polymerase処理して得られた TRP1マーカ一断片を 連結させて、 最終コンストラクトである染色体導入型 pBTRP-PDCl- LDHベクタ一を 構築した (図 2 B) 。
構築した染色体導入型 pBTRP- PDC1- LDHベクターの確認の為に塩基配列決定を行 つた。 塩基配列解析装置として ABI PRISM 310 Genetic Analyzer (PE Applied Biosystems社) を使用し、 試料の調製法、 及び機器の使用方法等の詳細は本装置 付属のマニュアルに従った。試料となるベクター DNAはアル力リ抽出法により調製 したものを用い、 これを GFX DNA Purification kit (Amershani Pharmacia Biotech 社) にてカラム精製した後、 分光光度計 UUro spec 3000 (Amersham Pharmacia B i o t ech社) にて DNA濃度を測定したものを用いた。
〔実施例 3〕 組換えベクターの宿主への導入
宿主である酵母 IFO2260株 (社団法人 ·発酵研究所に登録されている菌株) のト リブ卜ファン要求株は、 10m]YPD培地にて 30°Cで対数増殖期まで培養を行い、集菌 及び TEバッファーによる洗浄を行った後、 0.5nUTEバッファーと 0.5ml、 0.2M酢酸 リチウムを加え、 30^にて 1時間振盪培養を行った。 その後、 制限酵素 Apal及び Spelで処理した pBTRP- PDC1-LDHを加えた。
このプラスミ ドの菌懸濁液を 30°Cで 30分間振盪培養後、 70%ポリエチレンダリコ ール 4000を 150ml加え、 よく撹絆した。 30°Cにて 1時間振盪培養した後、 42°Cにて 5分間ヒートショックを与えた。 菌体を洗浄した後、 200mlの水に懸濁したものを 選択培地に塗株した。
得られたコロニーを選択培地で単離し、 コロニーを得た後、 PCRにて PDC 1プロモ 一ターの下流に LDHが導入されている株を取得した。更に、胞子形成培地で胞子形 成を行い、 ホモ夕リック性を利用して' 2倍体化を行い、 2倍体である染色体両方 に上記ベクターが導入されている株を取得した。
酵母サッカロマイセス ·セレピシェが図 2に示した pBTRP- PDC1- LDHで形質転換 され、 ゲノム上に導入されたことを PCRで確認した。上記べクタ一のゲノム上の構 造を図 3に示す。
〔実施例 4〕 発現産物による物質生産
得られた形質転換体について、 YPD液体培地(グルコース 10%)に菌体濃度が 1 % になるように接種して、 30°Cにて 2日間静置培養を行い、 ①ベクター非導入株、 ② YEPベクタ一での LDH導入株 (従来の GAPプロモー夕一の制御下に LDHを導入した 系) 、 及び③ pBTRP- PDC卜 LDHでの LDH導入株 (PDC 1プロモーターの制御下に LDHを 導入した系) の乳酸生産量について比較検討を行った。 この結果を表 1に示す。 【表 1】
LDH導入法の違いと継代培養による乳酸生産量の比較
Figure imgf000026_0001
ベクター非導入株①では乳酸を作らないのに対して、 LDHを導入した②及び③で は乳酸を生産していた。 さらに YEPベクターで導入した②に比べ、 PDC 1プロモータ 一の制御下に染色体導入型ベクターで LDHを導入した株③では 2. 5倍の乳酸を生産 していた。
また、 本方法により導入した形質の安定性を確認することを目的として、 YPD プレートで 3回の継代培養を行った後に、 PCRにより遺伝子導入と乳酸生産量につ いて調べたところ、 YEPベクターで導入した系②では乳酸を生産しなくなつていた のに対し、 LDHを発現させた③では継代培養前と同量の乳酸生産が維持されていた また、 PCRでゲノム上の構造について変化のないことを確認したことから、③の pBTRP- PDC 1- LDHにより LDHを発現させる系は、安定に存在し、遺伝子を高発現させ るといえる。
以上の結果より、 LDHを本発明の PDC1プロモーターと機能可能な状態で連結して 組み込んだ染色体導入型ベクターを用いた場合には、!^ Hが安定に高発現されるこ とがわかった。
〔実施例 5〕 変異配列を含む PDC1プロモーター配列の単離
本実施例及び以下の実施例においては、 数塩基の異なる配列をもつ 3種類の PDC1プロモ一夕一配列を単離し、 本プロモーター下に LacZ遺伝子が連結するよう 設計した染色体導入型ベクターを構築した。 これらのベクタ一を用いて、 染色体 中の同一の位置に該プロモータ一と該遺伝子を 1 コピー導入して形質転換酵母を 作製した。 それぞれの形質転換酵母の i3ガラクトシダーゼ活性を測定し、 3種類 のプロモー夕一活性を比較した。
本実施例においては、サッカロマイセス ·セレピシェ pBTRP-PD -LDH導入株(実 施例 3で作製した菌株) 、 IF02260株 (社団法人 ·発酵研究所に登録されている菌 株) 及び YPH株 (Stratagene社) のゲノム DNAを錶型として使用した PCR増幅法によ つて PDC1プロモー夕一配列の単離を行った。
各サッカロマイセス ·セレピシェ (pBTRP-PD -LDH導入株、 IF02260株、 YPH株) のゲノム DNAの調製方法及び PCR増幅法は、 実施例 1及び 2と同様の手法にて行つ た。
なお反応に使用したプライマ一 DNAの塩基配列は以下の通りである。
pBTRP- PDC 1- LDH導入株由来の PDC 1プロモータ一の増幅
- PDCl PrFrag-U2 (32 Tm値 64. 4°C) 末端に制限酵素 Sal Iサイ トを付加
: AAA TTT GTC GAC AAG GGT AGC CTC CCC ATA AC (配列番号 6 ) • PDC1 PrFrag- D2 (31mer Tm値 61. 1°C ) 末端に制限酵素 Sal Iサイ トを付加 : ATA TAT GTC GAC GAG AAT TGG GGG ATC TTT G (配列番号 7 )
IFO2260株及び YPH株由来の PDClプロモーターの増幅
•PDCl PrFrag-U2 (32mer、 Tm値 64. 4°C ) 末端に制限酵素 Sal Iサイ トを付加
: AAA TTT GTC GAC AAG GGT AGC CTC CCC ATA AC (配列番号 6 ) •PDCl PrFrag-D (43mer、 Tm値 62, 5°C ) 末端に制限酵素 Sal Iサイ トを付加 : TTT AAA GTC GAC TTT GAT TGA TTT GAC TGT GTT ATT TTG CGT G (配 列番号 8 )
〔実施例 6〕 変異プロモーター配列を含む、 /3ガラクトシダーゼ解析用べク ターの構築
本実施例においては、 単離した 3種類の PDC1プロモーター配列の制御下で、 レ ポーター遺伝子を連結したベクターを構築した。 レポーター遺伝子として、 3ガ ラクトシダーゼ遺伝子 (LacZ遺伝子) を使用した。
本実施例の ため に新た に構築 し た染色体導入型べク タ 一 を、 PAUR-LacZ-T 123PDC 1、 pAUR-LacZ-0C2PDC 1及び pAUR- LacZ- YMPDC 1と名付け、 以下 にベクターの構築例の詳細を記す。 なお本実施例の概要を図 4に示す。 但し、 ベ クタ一構築の手順はこれに限定されるものではない。
ベクターの構築における一連の反応操作は、一般的な DNAサブクローニング法 に従った。 プロメガ社 pSV- /3 - Galactos idase Control Vectorを制限酵素で切り 出し、 LacZ断片を取得した後、平滑末端処理して pAUR- LacZベクターを作製した。 こうして構築された pAUR - LacZベクターに、 Sai l (宝酒造) 処理、 および脱リン 酸化酵素 Alkal ine Phosphatase (BAP, 宝酒造) 処理を行った。 次に、 実施例 5 において取得した 3種類のプロモーター配列、 すなわち pBTRP-PDC卜 LDH導入株 由来 PDC 1プロモー夕一 (983bp) 、 IF02260株由来 PDClプロモーター (968bp) 、 及び YPH株由来 PDClプロモータ一 (968bp) を、 それぞれ制限酵素 Sai l (宝酒造) にて制限酵素処理を行い、 pAUR-LacZベクター中に、 T4 DNA Li gase 反応によつ て連結させた。 T4 DNA Li gase 反応には、 LigaFas t Rapid DNA Ligat ion Sys tem (プロメガ社) を用い、 詳細は付属のプロトコールに従った。
得られた Ligat ion 反応溶液を用いて、 コンビテント細胞へ形質転換を行い、 コロニー PCR法によって、 目的とする構築べクタ一を取得した。 上記一連の操作 は実施例 2と同様の手法にて行った。
構築したベクタ一について塩基配列解析を行い、 pBTRP-PDC卜 LDH導入株由来 PDC1プロモーター (983bp) 、 IF02260株由来 PDC1プロモ一夕一 (968bp) 、 及び ΥΗί株由来 PDC1プロモーター (968bp) の遺伝子配列を比較した。 本配列の比較 を図 5 A及び Bに示す。 なお塩基配列解析の操作は実施例 2と同様の手法にて 行った。
pBTRP- PD -LDH導入株由来 PDC1プロモータ一 (983bp) は、 配列番号 1で表さ れる塩基配列からなる PDC1プロモーター配列 (971bp) とは 12塩基異なるもので あり、 具体的には、 配列番号 1のプロモーター配列の両末端に制限酵素 Sail部 位 (GTCGAC) が付加された配列で構成されている。
また IF02260株由来 PDC1プロモ一夕一 (968bp) は、 配列番号 1で表される塩 基配列からなる P D C 1プロモーター配列とは 30塩基異なるものであり、 具体的に は、 配列番号 1のプロモー夕一配列の 861番目のグァニン (G)がシトシン (C) に、 894番目のシトシン (C) がチミン (T) に、 925番目のアデニン (A) が チミ ン ( T ) に置換されてお り 、 また 972番目以降に 15塩基の配列
(GATCCCCCAATTCTC) が付加されている。 またさらに、 配列番号 1のプロモ一夕 —配列の両末端に制限酵素 S a 11部位 ( GT C GAC ) が付加された配列で構成されて いる。
YPH株由来 PDC1プロモ一夕一 (968bp) は、 配列番号 1で表される塩基配列か らなる PDC1プロモ一夕一配列とは 37塩基異なるものであり、 具体的には、 配列 番号 1のプロモータ一配列の 179番目のシトシン (C) がチミン (T) に、 214 番目のアデニン (A) がグァニン (G) に、 216番目のグァニン (G) がアデ二 ン (A) に、 271番目のチミン (T) がシトシン (C) に、 344番目のグァニン
(G) がアデニン (A) に、 490番目のアデニン (A) がグァニン (G) に、 533 番目のシトシン(C)がチミン(T) に、 566番目のチミン (T)がシトシン (C) に、 660番目のグァニン (G) がシトシン (C) に、 925番目のアデニン (A) がチミ ン (T) に置換されており、 また 972番目以降に 15塩基の配列
(GATCCCCCAATTCTC) が付加されている。 またさらに、 配列番号 1のプロモー夕 —配列の両末端に制限酵素 Sai l部位 (GTCGAC) が付加された配列で構成されて いる。
〔実施例 7〕 組換えべクタ一の宿主への導入
宿主である酵母 IFO2260株 (社団法人,発酵研究所に登録されている菌株) の トリプトファン要求株に、 10ml YPD培地にて 30°Cで対数増殖期まで培養を行い、 集菌および TEバッファーによる洗浄を行った後、 0. 5ml TEバッファーと 0. 5ml の 0. 2M酢酸リチウムを加え、 30°Cにて 1時間の振盪培養を行った。 その後、 制限 酵素 Bst l l07I (宝酒造)で処理した pAUR-LacZ- T123PDClP、 pAUR- LacZ- YPHPDC1P、 pAUR- LacZ- 0C2PDC1Pを加えた。
このプラスミ ドの懸濁液を 30°Cで 30分間振盪培養後、 70%ポリエチレンダリコ —ル 4000を 150 1加え、よく攪拌した。本溶液を 30°Cにて 1時間振盪培養した後、 42°Cにて 5分間ヒートショックを与え、 本菌体を lml YPD培地にて 30°Cで 12時間 培養を行った。 本培養液を洗浄後、 200 i 1の滅菌水に懸濁したものをォ一レオ バチシン選択培地に塗株した。 培地に添加したオーレォバチシンの濃度は 0. 4 L g/mlとし 7こ。
得られたコロニーはオーレォバチシン選択培地で単離を行い、 得られたコロ 二一に対して PCR法を行って、 目的とする株を取得した。
〔実施例 8〕 遺伝子組換え菌株における ;8ガラクトシダ一ゼ活性の測定 上記形質転換体と非形質転換体について ;8ガラク トシダ一ゼ活性を測定した。 各菌株を 2ml YPD液体培地 (グルコース 2%) で、 30° (:、 20時間の培養を行った。 こ れらを集菌し、 50mM Tri s- HC】 500 / 1およびガラスビース (425- 600microns Ac id Washed, SIGMA社) を加え、 4°Cで 15分間ポルテックスを行った。
遠心によつて本溶液の上清を採取し、 これらの ガラクトシダ一ゼ活性測定を 測定した。 活性測定は、 /3 -Gal actos idase Enzyme Assay System (プロメガ社) を用い、 詳細は付属のプロ卜コールに従った。 ABS600nm= l. 0当たりの活性値を求 め、 この結果を図 6 (継代培養前) 及び図 7 (継代培養後) に示す。
以上の結果より、 数十塩基の付加配列、 又は異なる配列をもつ PDC 1プロモー夕 一配列であっても、 安定したプロモー夕一活性を持つことが明らかとなった。 従 つて、 オートレギュレーション機構が存在する遺伝子のプロモーター、 又は宿主 生物において生育若しくは発酵に必須ではない遺伝子のプロモータ一は、 完全長 ではなくても利用することができるといえる。 本明細書に引用した全ての刊行物、 特許及び特許出願は、 その全文を参照によ り本明細書にとり入れるものとする。 産業上の利用可能性
本発明によると、 宿主生物の生育及び発酵に影響を及ぼすことなく、 遺伝子を 安定に導入し、 そして高発現させることができる。 従って、 物質生産、 及び機能 改変又は機能解析に有効な手段が提供される。 また本発明により、 宿主における 転写を活性化するプロモーターが提供される。 本発明のプロモーターは、 宿主に おいて低コピー数で導入された遺伝子を高発現させることができ、 物質生産量を 向上させるために有効である。 配列フリ一テキスト
配列番号 1 :合成 DNA
配列番号 2 :合成 DNA
配列番号 3 :合成 DNA
配列番号 4 :合成 DNA
配列番号 5 :合成 DNA
配列番号 6 :合成 DNA
配列番号 7 :合成 DNA
配列番号 8 合成 DNA

Claims

請 求 の 範 囲 . ォ一トレギュレーション機構が存在する遺伝子のプロモータ一、 又は宿主生 物において生育若しくは発酵に必須ではない遺伝子のプロモーターの制御下に 目的遺伝子をゲノムに導入することを特徴とする遺伝子発現方法。
. プロモーターが、 オートレギュレーション機構が存在する遺伝子のプロモー 夕一の塩基配列、 又は宿主生物において生育若しくは発酵に必須ではない遺伝 子のプロモ一ターの塩基配列において 1〜4 0個の塩基が欠失、 置換若しくは 付加された配列を含み、 かつプロモータ一活性を有する DNAである、 請求項 1記 載の遺伝子発現方法。
. プロモーターが、 オートレギュレーション機構が存在する遺伝子のプロモー ターの塩基配列、 又は宿主生物において生育若しくは発酵に必須ではない遺伝 子のプロモーターの塩基配列の全部若しくは一部の配列に相補的な配列からな る DNAとストリンジェン卜な条件下でハイブリダィズし、 かつ、 プロモーター活 性を有する DNAである、 請求項 1記載の遺伝子発現方法。
. オートレギュレーション機構が存在する遺伝子のプロモーターが、 ピルビン 酸デカルポキシラーゼ 1遺伝子のプロモーターである、 請求項 1〜 3のいずれ かに記載の遺伝子発現方法。
. 生育に必須ではない遺伝子のプロモーターが、 チォレドキシンをコードする 遺伝子のプロモーターである、 請求項 1〜 3のいずれかに記載の遺伝子発現方 法。
. 宿主生物が、 細菌、 酵母、 昆虫、 動物又は植物である請求項 1〜 5のいずれ かに記載の遺伝子発現方法。
. 酵母がサッカロマイセス属に属するものである請求項 6記載の遺伝子発現方 法。
. 以下の (a ) 、 ( b ) 又は (c ) の DNAからなるプロモーター。
( a ) 配列番号 1で表される塩基配列からなる DNA
( b ) 配列番号 1で表される塩基配列において 1〜4 0個の塩基が欠失、 置換 若しくは付加された塩基配列からなり、 かつプロモーター活性を有する DNA (c) 配列番号 1で表される塩基配列の全部若しくは一部に相補的な配列から なる DNAとストリンジェントな条件下でハイブリダィズし、かつプロモーター 活性を有する DNA
9. 請求項 8記載のプロモー夕一を含む組換えべクタ一。
1 0.目的遺伝子が発現可能な状態で連結された請求項 9記載の組換えベクター。
1 1. プラスミ ドベクター又はウィルスベクターである、 請求項 9又は 1 0記載 の組換えベクター。
1 2. 目的遺伝子が、 タンパク質をコードする核酸又はそのアンチセンス核酸、 アンチセンス RNAデコイをコードする核酸及びリボザィムからなる群から選択 されるいずれかのものである、 請求項 1 0又は 1 1記載の組換えべクタ一。
1 3. 請求項 9〜1 2のいずれか 1項に記載の組換えべクタ一を用いて宿主を形 質転換して得られる形質転換体。
14. 宿主が、 細菌、 酵母、 動物、 昆虫又は植物である、 請求項 1 3記載の形質 転換体。
1 5. 酵母がサッカロマイセス属に属するものである、 請求項 14記載の形質転 換体。
1 6. 請求項 1 3〜1 5のいずれか 1項に記載の形質転換体を培地中で培養し、 得られる培養物から目的遺伝子の発現産物又は該発現産物により生産される物 質を採取することを特徴とする、 目的遺伝子の発現産物又は該発現産物により 生産される物質の製造方法。
PCT/JP2002/009452 2001-09-20 2002-09-13 Systeme de surexpression genique WO2003027280A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
BR0212649-4A BR0212649A (pt) 2001-09-20 2002-09-13 Sistema para alcançar elevada expressão gênica
US10/490,046 US20050120394A1 (en) 2001-09-20 2002-09-13 System for achieving high expression of genes
CN028208072A CN1571838B (zh) 2001-09-20 2002-09-13 实现基因高表达的系统
DE60234854T DE60234854D1 (de) 2001-09-20 2002-09-13 Genüberexpressionssystem
EP02765543A EP1437405B1 (en) 2001-09-20 2002-09-13 Gene overexpression system
AU2002330401A AU2002330401B2 (en) 2001-09-20 2002-09-13 Gene overexpression system

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2001-287159 2001-09-20
JP2001287159 2001-09-20
JP2001286637 2001-09-20
JP2001-286637 2001-09-20
JP2002128286A JP2003164294A (ja) 2001-09-20 2002-04-30 Pdc1プロモーター
JP2002128323A JP4109489B2 (ja) 2001-09-20 2002-04-30 遺伝子高発現系
JP2002-128286 2002-04-30
JP2002-128323 2002-04-30

Publications (1)

Publication Number Publication Date
WO2003027280A1 true WO2003027280A1 (fr) 2003-04-03

Family

ID=27482568

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/009452 WO2003027280A1 (fr) 2001-09-20 2002-09-13 Systeme de surexpression genique

Country Status (7)

Country Link
US (1) US20050120394A1 (ja)
EP (1) EP1437405B1 (ja)
CN (1) CN1571838B (ja)
AU (1) AU2002330401B2 (ja)
BR (1) BR0212649A (ja)
DE (1) DE60234854D1 (ja)
WO (1) WO2003027280A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004104202A1 (ja) * 2003-05-22 2004-12-02 Kabushiki Kaisha Toyota Chuo Kenkyusho D-乳酸脱水素酵素活性を有するタンパク質をコードするdna及びその利用

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007043253A1 (ja) * 2005-10-14 2007-04-19 Toray Industries, Inc. 酵母及びl-乳酸の製造方法
JP2009034036A (ja) * 2007-08-01 2009-02-19 Toyota Motor Corp 形質転換用酵母、形質転換方法及び物質生産方法
WO2014131348A1 (zh) * 2013-02-26 2014-09-04 中国科学院上海生命科学研究院 一种具有高效驱动活性的启动子
KR102245298B1 (ko) 2014-09-05 2021-04-27 삼성전자주식회사 증가된 edc 활성을 갖고 락테이트 생산능을 갖는 유전적으로 조작된 효모 세포, 그를 제조하는 방법, 그를 제조하는 방법, 및 그를 사용하여 락테이트를 생산하는 방법
KR102311681B1 (ko) * 2015-07-28 2021-10-12 삼성전자주식회사 내산성을 갖는 효모 세포, 그를 이용하여 유기산을 생산하는 방법 및 상기 내산성 효모 세포를 생산하는 방법
CN109943492B (zh) * 2019-04-03 2022-08-16 广东省微生物研究所(广东省微生物分析检测中心) 一种重组酵母菌株及其应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1985000817A1 (en) 1983-08-10 1985-02-28 Amgen Microbial expression of interleukin ii
US5631143A (en) 1992-07-08 1997-05-20 Rhone-Poulenc Rorer S.A. K. lactis pyruvate-decarboxylase promoter and use thereof
WO2000070065A1 (fr) * 1999-05-17 2000-11-23 Institut National De La Recherche Agronomique (Inra) PROMOTEUR DE LA THIOREDOXINE TaTrxh2 DE BLE

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1324969C (en) * 1988-05-06 1993-12-07 Jeffrey R. Shuster High level expression of proteins in yeast
IT1294728B1 (it) * 1997-09-12 1999-04-12 Biopolo S C A R L Ceppi di lievito per la riproduzione di acido lattico
DE19919285C1 (de) * 1999-04-28 2000-10-19 Laue Hans Joachim Vorrichtung zur Fütterung und/oder zum Tränken von Nutztieren
US7141410B2 (en) * 2000-11-22 2006-11-28 Natureworks Llc Methods and materials for the production of organic products in cells of Candida species

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1985000817A1 (en) 1983-08-10 1985-02-28 Amgen Microbial expression of interleukin ii
US5631143A (en) 1992-07-08 1997-05-20 Rhone-Poulenc Rorer S.A. K. lactis pyruvate-decarboxylase promoter and use thereof
WO2000070065A1 (fr) * 1999-05-17 2000-11-23 Institut National De La Recherche Agronomique (Inra) PROMOTEUR DE LA THIOREDOXINE TaTrxh2 DE BLE

Non-Patent Citations (20)

* Cited by examiner, † Cited by third party
Title
BUTLER G. ET AL.: "Identification of an upstream activation site in the pyruvate decarboxylase structural gene (PDC1) of saccharomyces cerevisiae", CURR. GENET., vol. 14, no. 5, 1988, pages 405 - 412, XP002961302 *
DESTRUELLE M. ET AL.: "Regulation of the expression of the Kluyveromyces lactis PDC1 gene: carbon source-responsive elements and autoregulation", YEAST, vol. 15, no. 5, 1999, pages 361 - 370, XP002961304 *
DOHMEN R J ET AL.: "CLONING OF THE SCHWANNIOMYCES-OCCIDENTALIS GLUCOAMYLASE GENE GAM1 AND ITS EXPRESSION IN SACCHAROMYCES-CEREVISIAE", GENE (AMSTERDAM), vol. 95, no. 1, 1990
EBERHARDT I. ET AL.: "Autoregulation of yeast pyruvate decarboxylase gene expression requires the enzyme but not its catalytic activity", EUR. J. BIOCHEM., vol. 262, no. 1, 1999, pages 191 - 201, XP002961303 *
GENE, vol. 34, 1985, pages 315 - 323
HOHMANN S.: "PDC6, a weakly expressed pyruvate decarboxylase gene from yeast, is activated when fused spontaneously under the control of the PDC1 promoter", CURR. GENET., vol. 20, no. 5, 1991, pages 373 - 378, XP002961307 *
KELLERMANN E ET AL.: "NUCLEIC ACIDS RESEARCH", vol. 14, 1986, OXFORD UNIVERSITY PRESS, article "Analysis of the primary structure and promoter function of a pyruvate decarboxylase gene (PDC1) from saccharomyces cerevisiae"
KELLERMANN E. ET AL.: "Analysis of the primary structure and promoter function of a pyruvate decarboxylase gene (PDC1) from saccharomyces cerevisiae", NUCLEIC ACIDS RES., vol. 14, no. 22, 1986, pages 8963 - 8977, XP002961301 *
LIESEN T. ET AL.: "ERA, a novel cis-acting element required for autoregulation and ethanol repression of PDC1 transcription in saccharomyces cerevisiae", MOL. MICROBIOL., vol. 21, no. 3, 1996, pages 621 - 632, XP002961306 *
LIM C.J. ET AL.: "Growth-phase regulation of the escherichia coli thioredoxin gene", BIOCHIM. BIOPHYS. ACTA, vol. 1491, no. 1-3, 2000, pages 1 - 6, XP004275608 *
MUTAN-G; MUTAN-K, TAKARA BIO
NATURE, vol. 316, 1985, pages 601 - 605
NUCLEIC ACIDS RES., vol. 13, 1985, pages 4431 - 4442
PASTERNAK C. ET AL.: "Expression of the thioredoxin gene (trxA) in rhodobacter sphaeroides Y is regulated by oxygen", MOL. GEN. GENET., vol. 250, no. 2, 1996, pages 189 - 196, XP002961309 *
PROC. NATL. ACAD. SCI. USA, vol. 79, 1982, pages 6409 - 6413
PROC. NATL. ACAD. SCI. USA, vol. 81, 1984, pages 5662 - 5666
SAMBROOK ET AL.: "Molecular Cloning", 1989, COLD SPRING HARBOR LAB. PRESS
SCIENCE, vol. 224, 1984, pages 1431 - 1433
See also references of EP1437405A4 *
SEEBOTH P.G. ET AL.: "PDC1(0) mutants of saccharomyces cerevisiae give evidence for an additional structural PDC gene: cloning of PDC5, a gene homologous to PDC1", J. BACTERIOL., vol. 172, no. 2, 1990, pages 678 - 685, XP002961305 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004104202A1 (ja) * 2003-05-22 2004-12-02 Kabushiki Kaisha Toyota Chuo Kenkyusho D-乳酸脱水素酵素活性を有するタンパク質をコードするdna及びその利用
US7964382B2 (en) 2003-05-22 2011-06-21 Kabushiki Kaisha Toyota Chuo Kenkyusho DNA encoding a protein having D-lactate dehydrogenase activity and uses thereof
CN1795270B (zh) * 2003-05-22 2011-09-21 丰田自动车株式会社 编码具有d-乳酸脱氢酶活性蛋白质的dna及其用途

Also Published As

Publication number Publication date
CN1571838A (zh) 2005-01-26
AU2002330401B2 (en) 2006-02-09
CN1571838B (zh) 2010-05-26
EP1437405A1 (en) 2004-07-14
DE60234854D1 (de) 2010-02-04
EP1437405A4 (en) 2005-03-09
BR0212649A (pt) 2004-08-24
US20050120394A1 (en) 2005-06-02
EP1437405B1 (en) 2009-12-23

Similar Documents

Publication Publication Date Title
US20230107997A1 (en) Methods for modification of target nucleic acids
KR102229968B1 (ko) 메틸영양성 효모를 유전적으로 조작하는 발현 구축물 및 방법
CN110527697B (zh) 基于CRISPR-Cas13a的RNA定点编辑技术
US20170088845A1 (en) Vectors and methods for fungal genome engineering by crispr-cas9
KR102626503B1 (ko) 뉴클레오타이드 표적 인식을 이용한 표적 서열 특이적 개변 기술
US20130210097A1 (en) Glycolic acid fermentative production with a modified microorganism
CN112481309B (zh) Ago蛋白的用途及组合物和基因编辑方法
JP4095889B2 (ja) 高光学純度な乳酸の製造方法
WO2003027280A1 (fr) Systeme de surexpression genique
JP4109489B2 (ja) 遺伝子高発現系
US7696333B1 (en) Promoter in the presence of organic acid and utilization thereof
JP7454881B2 (ja) Crisprタイプi-dシステムを利用した標的ヌクレオチド配列改変技術
US8679799B2 (en) Production of acid and solvent in microorganisms
CN116670295A (zh) 用于在抑制香草酸形成的情况下产生香草醛的拟无枝酸菌属菌株
US6218145B1 (en) Bacterial expression systems based on plastic or mitochondrial promoter combinations
CN111979257B (zh) 一种重组dna及其应用
WO2002055716A1 (en) Antibiotics-independent vector for constant high-expression and method for gene expression using the same
CN112831517B (zh) 由番茄红素基因介导的改造的克隆载体及其应用
JP2003164294A (ja) Pdc1プロモーター
WO2024080067A1 (ja) ゲノム編集方法およびゲノム編集用組成物
US20240060097A1 (en) Bioconversion of ferulic acid to vanillin
CN115838713A (zh) 一种蛋白酶及其在l-肌肽合成中的应用
KR20230162423A (ko) 에스테야 베르미콜라에서 발현 가능한 프로모터 및 이의 이용
US20020123100A1 (en) Binary BAC vector and uses thereof
KR20060069540A (ko) 마 모자이크바이러스 전체 게놈을 함유하는 식물발현용 벡터

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BY BZ CA CH CN CO CR CU CZ DE DM DZ EC EE ES FI GB GD GE GH HR HU ID IL IN IS KE KG KP KR KZ LK LR LS LT LU LV MA MD MG MK MW MX MZ NO NZ OM PH PL PT RO SD SE SG SI SK SL TJ TM TN TR TT UA UG US UZ VC VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ UG ZM ZW AM AZ BY KG KZ RU TJ TM AT BE BG CH CY CZ DK EE ES FI FR GB GR IE IT LU MC PT SE SK TR BF BJ CF CG CI GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10490046

Country of ref document: US

Ref document number: 1-2004-500401

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: 2002330401

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 805/CHENP/2004

Country of ref document: IN

Ref document number: 1200400349

Country of ref document: VN

Ref document number: 2002765543

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 20028208072

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2002765543

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2002330401

Country of ref document: AU