WO2003023887A1 - Separateur pour piles a combustible de type polymere solide, et son procede de production - Google Patents

Separateur pour piles a combustible de type polymere solide, et son procede de production Download PDF

Info

Publication number
WO2003023887A1
WO2003023887A1 PCT/JP2002/008903 JP0208903W WO03023887A1 WO 2003023887 A1 WO2003023887 A1 WO 2003023887A1 JP 0208903 W JP0208903 W JP 0208903W WO 03023887 A1 WO03023887 A1 WO 03023887A1
Authority
WO
WIPO (PCT)
Prior art keywords
halogen
resin composition
resin
unsaturated polyester
composition according
Prior art date
Application number
PCT/JP2002/008903
Other languages
English (en)
French (fr)
Inventor
Hiroya Okumura
Takashi Shibata
Original Assignee
Mitsui Takeda Chemicals, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Takeda Chemicals, Inc. filed Critical Mitsui Takeda Chemicals, Inc.
Publication of WO2003023887A1 publication Critical patent/WO2003023887A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0221Organic resins; Organic polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0213Gas-impermeable carbon-containing materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0226Composites in the form of mixtures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a resin composition useful as a separator for a polymer electrolyte fuel cell, a separator formed from the resin composition, and a method for producing the separator.
  • the polymer electrolyte fuel cell is a solid polymer consisting of an ion-exchange membrane (ion-conductive polymer membrane) such as perfluoro- sulfonic acid, which has a sulfonic acid group introduced into a fluorocarbon skeleton such as a polytetrafluoroethylene skeleton.
  • ion-exchange membrane ion-conductive polymer membrane
  • fluorocarbon skeleton such as a polytetrafluoroethylene skeleton.
  • These include a polymer electrolyte membrane, two electrodes arranged on both sides of the electrolyte membrane, and Separee with gas supply grooves for supplying gases such as hydrogen and oxygen to each electrode. It consists of two current collectors arranged on both sides of the night.
  • separators are required to have properties such as gas impermeability, low electrical resistance (conductivity), chemical resistance, and high mechanical strength. Therefore, a method of forming a plate material by machining such as cutting using a plate material made of titanium or graphite has been studied. However, this method lacks mass productivity and is difficult to implement industrially.
  • Japanese Patent Application Laid-Open No. Hei 4-267072 discloses a fuel cell gas separator made of stainless steel or copper. However, although the productivity of these metals is high, their long-term contact with hydrogen gas used as fuel degrades the materials, and the battery characteristics are rapidly lowered.
  • Japanese Patent Application Laid-Open No. H10-3394927 discloses carbon powder and thermosetting.
  • a separator for a polymer electrolyte fuel cell in which a resin composition containing a mold resin (a phenol resin, a polyimide resin, an epoxy resin, a furan resin, and the like) is molded by a resin molding method is disclosed.
  • phenolic resins used as thermosetting resins cure slowly and have low productivity. For example, in the example of this patent document, curing for 10 hours or more is required.
  • gas such as water vapor is generated as the phenolic resin is cured, the cured product is warped and the gas impermeability is reduced.
  • Japanese Patent Application Laid-Open No. 2001-151833 discloses a separator for fuel cells composed of a bielester resin.
  • the separator composed of a vinyl ester resin is excellent in productivity, it is decomposed due to highly reactive oxygen generated at the anode and cannot be used for a long time.
  • Japanese Patent Application Laid-Open No. 2001-122627 discloses a fuel cell in which a sheet formed of a resin composition containing a non-carbonaceous thermoplastic resin and a conductive agent is subjected to stubbing molding.
  • a method for manufacturing a separator is disclosed, and a sheet formed of an unsaturated polyester resin and a conductive agent is described in a comparative example.
  • sheets made of unsaturated polyester resin are not sufficiently resistant to active oxygen. Accordingly, an object of the present invention is to provide a separator suitable for a fuel cell (particularly, a polymer electrolyte fuel cell) and a method for industrially advantageously producing this separator.
  • Another object of the present invention is to provide a separator for a polymer electrolyte fuel cell having excellent durability, particularly resistance to active oxygen, and a method for easily and efficiently obtaining this separator. It is in. Still another object of the present invention is to provide a separator for a polymer electrolyte fuel cell exhibiting gas impermeability, low electric resistance and high mechanical strength, and to obtain this separator easily and efficiently. It is to provide a method that can do this. Another object of the present invention is to provide a separator for a polymer electrolyte fuel cell having high dimensional accuracy, and a method for obtaining the separator with high molding accuracy.
  • Still another object of the present invention is to provide a resin composition suitable for the above separation. Disclosure of the invention
  • the present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, by using a conductive agent in combination with a halogen-containing unsaturated polyester-based resin, the industrial productivity has been improved, and a demand for a separator has been increased.
  • the present inventors have found that a fuel cell separator having all the various characteristics to be obtained can be obtained, and have completed the present invention.
  • the resin composition of the present invention is a resin composition capable of forming a separator of a fuel cell, and includes a conductive agent and a halogen-containing unsaturated polyester resin.
  • a radical polymerizable thermosetting resin may be constituted by the halogen-containing unsaturated polyester resin and the radical polymerizable diluent.
  • At least one of the dicarboxylic acid component and the diol component constituting the halogen-containing unsaturated polyester resin may contain a halogen atom.
  • the dicarboxylic acid component includes at least a halogen-containing dicarboxylic acid (eg, a halogen-containing C 8 —i 2 aromatic dicarboxylic acid or an anhydride thereof, a halogen-containing C s —i.
  • a halogen-containing dicarboxylic acid eg, a halogen-containing C 8 —i 2 aromatic dicarboxylic acid or an anhydride thereof, a halogen-containing C s —i.
  • the ratio of the halogen-containing dicarboxylic acid may be 10 mol% or more in the dicarboxylic acid component constituting the halogen-containing unsaturated polyester resin.
  • the diol component is a halogen-containing C 2 — ⁇ It may be composed of 2 alkylene glycols, halobisphenols, and / or halogen-containing aromatic diols.
  • the ratio of the halogen atom is preferably 1% by weight or more (for example, about 3 to 50% by weight) based on the halogen-containing unsaturated polyester resin.
  • the double bond equivalent of the halogen-containing unsaturated polyester resin is about 150 to 100, and from the relationship with the operating temperature of the separator, the radical polymerizable thermosetting resin type
  • the cured product has a glass transition temperature of 120 ° C. or higher.
  • the number average molecular weight of the halogen-containing unsaturated polyester resin is, for example, about 500 to 300,000.
  • the radical polymerizable diluent may be composed of at least an aromatic vinyl compound.
  • the ratio (weight ratio) of the conductive agent to the radically polymerizable thermosetting resin is about 55 to 45 to 95 Z5.
  • As the conductive agent carbon powder, carbon fiber and the like are preferable.
  • the resin composition may further contain a low-shrinking agent (particularly, a thermoplastic resin such as a styrene-based thermoplastic elastomer, a saturated polyester-based resin, or a vinyl acetate-based polymer).
  • the ratio of the low shrinkage agent is, for example, about 0.1 to 30 parts by weight based on 100 parts by weight of the radical polymerizable thermosetting resin system.
  • the present invention also includes a polymer electrolyte fuel cell separator (such as a carpone separator) formed of the resin composition.
  • This separator has excellent durability (especially resistance to active oxygen) and gas impermeability.
  • the resin composition has excellent moldability. Therefore, the present invention, the resin composition (e.g., clay-like or compound of the viscous material having a 2 5 ° Helipath viscometer viscosity 1 0 2 to 1 by at C 0 6 P a ⁇ s) of the resin molding And a method for producing the above-mentioned separator (eg, carpon separator). Further, in the above method, the resin composition may be kneaded and molded by a pressure type dies.
  • a conductive agent and a halogen-containing polyester resin And a method for improving the resistance to active oxygen of a separator for a fuel cell formed of a resin composition containing the following.
  • the term “radical polymerizable thermosetting resin system” means a resin composition composed of at least a radical polymerizable resin such as an unsaturated polyester resin, and a radical polymerizable resin together with the resin. When a diluent is used, it is used to include both. Further, “radical polymerizable diluent” means a monomer having a radical polymerizable unsaturated bond.
  • the conductive agent various components, such as carbon powder (conventional artificial graphite powder, expanded graphite powder, natural graphite powder, coke powder, and conductive powder), as long as they mainly contribute to lowering the electrical resistance of the separator. Bon Black), carbon fiber, metal powder, etc. can be used. These conductive agents can be used alone or in combination of two or more. Among these conductive agents, carbon powder and carbon fiber are preferable, and a powdery conductive agent such as carbon powder is usually used. Since these conductive agents are filled at a high density, it is possible to use powder whose particle size has been adjusted or powder that has been surface-treated in advance.
  • the average particle size of the conductive agent (especially carbon powder) has a close relationship with the ratio of the radical polymerizable thermosetting resin system, and cannot be specified unconditionally, but is usually from 10 nm to 100 m, preferably 20 nm to 80 m, more preferably:! About 50 m.
  • the radical polymerizable thermosetting resin system is composed of at least a halogen-containing unsaturated polyester resin, and may be composed of a halogen-containing unsaturated polyester resin alone. It may be composed of a radical polymerizable diluent. (Halogen-containing unsaturated polyester resin)
  • the halogen-containing unsaturated polyester resin can be obtained by reacting a dicarboxylic acid component with a diol (or glycol) component, provided that at least one of the dicarboxylic acid component and the diol component contains an octagen atom.
  • a dicarboxylic acid component with a diol (or glycol) component, provided that at least one of the dicarboxylic acid component and the diol component contains an octagen atom.
  • the halogen atom include a fluorine, chlorine, bromine and iodine atom. Of these halogen atoms, chlorine and bromine atoms, particularly chlorine atoms, are preferred.
  • halogen-containing dicarboxylic acids for example, Tetorakurorofu evening Le acid, tetrachloroethene port phthalic anhydride, halogen-containing C 8, such as tetrabromophthalic anhydride off Yuru acid - E 2 aromatic dicarboxylic acid or its anhydride; the Tet Rakuroroshiku port Halogens containing Cs—i, such as xandicarponic acid or its acid anhydride.
  • Alicyclic dicarboxylic acid or its anhydride heptonic acid (1,4,5,6,7,7-hexachlorobicyclo [2.2.1]) —Halogen-containing Cs—i 4- aliphatic bridged cyclic dicarboxylic acid or its anhydride (eg, halogen-containing polycyclic aliphatic bridge), such as —dicarboxylic acid), acetic anhydride, and halogen-containing adamantine dicarboxylic acid.
  • cyclic dicarboxylic acids or their anhydrides in particular, halogen-containing Yuji ring system C 8 - 1 4 aliphatic crosslinked cyclic dicarboxylic acid or anhydride) and the like. These halogen-containing dicarboxylic acids can be used alone or in combination of two or more.
  • the dicarboxylic acid component may be composed of a non-halogen-containing dicarboxylic acid.
  • the non-halogenated dicarboxylic acid, polymerizable dicarboxylic acid [Ma maleic acid, maleic anhydride, fumaric acid, citraconic acid, anhydride Citra Con acid, Itakon acid, C 4 such as anhydrous Itakon acid - 6 aliphatic unsaturated multi salt group Acid or its anhydride] or non-polymerizable dicarboxylic acid [C 3 _ 1 () aliphatic saturated dicarboxylic acid such as malonic acid, succinic acid, glutaric acid, adipic acid, suberic acid, sebacic acid, azelaic acid, etc.
  • the polymerizable dicarboxylic acid a component selected from maleic acid, maleic anhydride, and fumaric acid is often used.
  • halogen-containing diol examples include, for example, halogen-containing C such as dibromoneopentyl glycol ⁇
  • 2 _ 2 alkylenedaricol; Tetrapromobisphenol A ⁇ te Halobisphenols such as traclomouth bisphenol A; adducts of these halobisphenols with alkylene oxides, for example, tetrabromobisphenol A — Examples thereof include halogen-containing aromatic diols such as ethylene oxide adduct and tetrabromobisphenol A-propylene oxide adduct.
  • the diol component may be composed of a halogen-free diol in addition to the halogen-containing diol.
  • the non-halogen-containing diols, C 2 - 1 2 alkylene glycolate Ichiru e.g., ethylene glycol, 1, 2 - propylene glycol, 1, 3 - propylene glycol, 1, 3 one-butanediol, 1 '4 one-butanediol, 1,5-pentanedidiol, 3-methyl-1,5-pentanedidiol, 1,6-hexanediol, linear or branched alkylenedaricols such as neopentyldaricol), polyoxy C 2 — 4 Alkylenedaricols (for example, diethylene glycol, triethylene glycol, dipropylene glycol, tripropylene glycol, etc.), alicyclic polyols (for example, hydrogenated bisphenols such as cyclohexanediol,
  • a polycarboxylic acid [Cs- ⁇ 2 aromatic dicarboxylic acid such as trimellitic acid, trimellitic anhydride, pyromellitic acid, pyromellitic anhydride or the like or an acid anhydride thereof; E - C 8, such as cyclohexene tricarboxylic acid anhydride to carboxylic acid Ya Mechirushiku port.
  • Alicyclic dicarboxylic acid or anhydride thereof] and polyol (polyhydric alcohol such as trimethylolpropane, glycerin, pen-erythritol, sorbitol, etc.) and the like.
  • monohydric alcohol to hexanol, hexanol 2 one Echiru, old corruptible alcohol, stearyl alcohol, C 4, such as O rail alcohol - 24 alcohol
  • monohydric alcohol may block the ends of the unsaturated polyester.
  • a component which can be copolymerized or reacted with these components for example, a dispersing agent may be used in combination.
  • the polymerizable dicarboxylic acid is an essential component.
  • it can be selected from a range of about 10Z90 to 70/30> and more preferably about 20Z80 to 60Z40 (for example, 20/80 to 50/50).
  • the ratio of halogen atoms to the halogen-containing unsaturated polyester resin is 1% by weight or more (for example, about 1 to 70% by weight), preferably 3% by weight or more (for example, about 3 to 50% by weight), more preferably 5% by weight. % By weight (eg, about 5 to 30% by weight).
  • a halogen-containing dicarboxylic acid preferably a halogen-containing alicyclic dicarboxylic acids, more preferable properly halogen-containing aliphatic crosslinked cyclic dicarboxylic acids (e.g., halogen-containing C 8 _ 14 aliphatic
  • a group-bridged cyclic dicarboxylic acid particularly, heptonic acid.
  • Halogen-containing dicarboxylic acids e.g., halogen-containing organic C 8 of the like Tsu DOO acid - 14 aliphatic crosslinked cyclic dicarboxylic acid
  • the ratio is about 1.2Z1, more preferably about 0.9Z1 to 1.1Z1.
  • the esterification reaction is carried out by a conventional method, for example, in an inert gas atmosphere, in the presence of an esterification catalyst, at normal pressure or reduced pressure, at 100 to 230: preferably at about 150 to 220 ° C.
  • the reaction can be carried out while removing water generated at the temperature from the reaction system. Nitrogen gas or the like can be used as the inert gas.
  • the esterification catalyst include acid catalysts [for example, inorganic acids (sulfuric acid, hydrochloric acid, phosphoric acid, etc.), sulfonic acids (p-toluenesulfonate, etc.), Lewis acids (boron trifluoride, etc.), ion exchange resins, solid catalysts.
  • the reaction is carried out using a thermal polymerization inhibitor (eg, hydroquinones such as hydroquinone and 2-t-butylhydroquinone; (E.g., tecols, phenols such as hydroquinone monomethyl ether).
  • a thermal polymerization inhibitor eg, hydroquinones such as hydroquinone and 2-t-butylhydroquinone; (E.g., tecols, phenols such as hydroquinone monomethyl ether).
  • the double bond equivalent in the obtained halogen-containing unsaturated polyester resin is 150 to 100, preferably 150 to 800, and more preferably about 150 to 600. It is. If the double bond equivalent is too small, a cured product having a very high crosslink density is formed, and is fragile and difficult to use industrially. Conversely, if the double bond equivalent is too large, sufficient cross-linking cannot be obtained, making it difficult to obtain sufficient heat resistance, mechanical properties, and the like.
  • the molecular weight of the halogen-containing unsaturated polyester resin is, for example, a number average molecular weight of 500 to 300, preferably 100 to 0: L0000, more preferably 20000. It is about 800.
  • the acid value of the nitrogen-containing unsaturated polyester resin is about 1 to 50 mgKOH / g, preferably about 5 to 30 mgKOHZg.
  • the halogen-containing unsaturated polyester resin may be combined with another radical polymerizable resin.
  • Other radically polymerizable resins include, for example, resins or oligomers having an ,, 3-ethylenically unsaturated bond (polymerizable unsaturated bond), for example, vinyl ester resins (by the reaction of an epoxy resin with (meth) acrylic acid).
  • the resulting epoxy (meth) acrylate, urethane (meth) acrylate, polyester (meth) acrylate and the like can be exemplified.
  • halogen-containing unsaturated polyester resin 100/0 to 50/50, preferably It is about 100 to 60Z40, more preferably about 100 to 70Z30.
  • Halogen-containing unsaturated polyester resin has at least one double bond (particularly ⁇ , It is preferable to use it after dilution with a reactive diluent (radical polymerizable diluent) having i3-ethylenically unsaturated bond).
  • radical polymerizable diluent examples include unsaturated carboxylic acids such as (meth) acrylic acid, crotonic acid, and cinnamic acid; methyl (meth) acrylate, (meth) ethyl acrylate, (meth) propyl acrylate, and Unsaturated carboxylic acid C i-i 2 alkyl ester such as butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, dodecyl (meth) acrylate; unsaturated such as glycidyl (meth) acrylate power Rupon acid glycidyl glycol ester; (meth) Akuriru 2-hydroxyethyl E not saturated force Rupon hydroxyalkyl C 2 _ 8 alkyl esters, such as chill; (meth) Akuri Ruami de, (meth) acrylonitrile, nitrogen-containing, such as Binirupirori Don Monomer: aromatic vinyl compound such as
  • Ethylene glycol di (meth) acrylate 1,4-butanediol (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, etc.
  • C 2 _ 8 alkylene glycol unsaturated carboxylic acid ester poly O carboxymethyl polyalkylene render recall unsaturated saturated carboxylic acid esters such as diethylene da recall di (meth) Akuri rate; 1, trimethylolpropane tri (meth) ⁇ click Li And polyfunctional (meth) acrylates such as pentaerythritol tri (meth) acrylate and pentaerythritol tetra (meth) acrylate.
  • These diluents can be used alone or in combination of two or more. Among these diluents, at least an aromatic vinyl compound (especially styrene) is preferred from the viewpoint of formability and economy.
  • the radical polymerizable diluent may contain a halogen atom, and may be, for example, a halogen-containing aromatic vinyl compound (for example, halogen-containing styrene such as chlorostyrene, dichlorostyrene, bromostyrene, dibutomostyrene, etc.) or halogen-containing.
  • Unsaturated carboxylic acid C examples thereof include j- 12 alkyl esters (for example, halogen-containing (meth) acrylic acid Ci— such as ⁇ -fluoroacrylic acid ester; alkyl ester and the like).
  • Aromatic vinyl compounds (especially styrene) have a higher copolymerizability with unsaturated polyester resins than (meth) acrylic monomers (diluents), and improve the physical properties (such as mechanical strength) of molded products. In addition to high dilution efficiency (decrease in viscosity), moldability can be improved even with a small amount.
  • Aromatic vinyl compounds also have higher chemical resistance than other diluents (eg, acryl-based diluents). Therefore, the radical polymerizable diluent preferably contains at least an aromatic vinyl compound (particularly, styrene).
  • the ratio (weight ratio) of the halogen-containing unsaturated polyester-based resin to the radical polymerizable diluent is usually in the range of about 100 to ZO to 20Z80, which is a halogen-containing unsaturated polyester-based resin and Z radical polymerizable diluent.
  • 90 Z10 to 20Z80 preferably 90Z10 to 40/60, and more preferably about 90Z10 to 55Z45. In order to achieve higher heat resistance, it is advantageous to reduce the ratio of the diluent.
  • the resin composition of the present invention preferably contains a low-shrinking agent in order to reduce the warpage and curing shrinkage of the molded article and improve dimensional accuracy.
  • a low-shrinking agent in general, radically polymerizable thermosetting resins tend to shrink during polymerization molding, easily cause irregularities and warpage, and often reduce dimensional accuracy. Even in such a case, the dimensional accuracy of the molded product can be improved by the low shrinkage agent.
  • Non-polymerizable resins such as polyester resins (for example, saturated aromatic polyester resins such as polyethylene terephthalate and polybutylene terephthalate, polyethylene adipates, and polybutylene adipates) , Saturated aliphatic polyester resins such as polybutylene sebacate, copolymerized saturated polyester resins having polyoxyethylene units, etc.), acrylic resins [for example, (meth) acrylic acid C such as polymethyl methacrylate) Uru.
  • polyester resins for example, saturated aromatic polyester resins such as polyethylene terephthalate and polybutylene terephthalate, polyethylene adipates, and polybutylene adipates
  • Saturated aliphatic polyester resins such as polybutylene sebacate
  • copolymerized saturated polyester resins having polyoxyethylene units etc.
  • acrylic resins for example, (meth) acrylic acid C such as polymethyl methacrylate
  • low-shrinkage agents can be used alone or in combination of two or more.
  • low-shrinking agents styrene-based thermoplastic elastomers [for example, styrene-gen-based copolymers (for example, styrene-butadiene block copolymer / styrene-isoprene block copolymer or their water) Additives)], saturated polyester resins, and vinyl acetate polymers (for example, polyvinyl acetate).
  • the proportion of these low shrinkage agents is 0.1 to 30 parts by weight, preferably 0.5 to 25 parts by weight, more preferably 100 to 100 parts by weight of the radical polymerizable thermosetting resin system. It is about 1 to 20 parts by weight. If the proportion of the low-shrinkage agent is too small, the dimensional accuracy tends to decrease, and if too large, the physical properties such as heat resistance decrease.
  • the number average molecular weight of the low profile additive can be selected depending on the kind of thermosetting resin is not particularly limited, usually, 1 0 0 0 ⁇ 1 0 X 1 0 5, the preferred properly 2 0 0 0 ⁇ 5 X 1 0 5, more preferably from 3 0 0 0 to 2 X 1 0 5 about.
  • the shrinkage of the molded article can be reduced to 0.15% or less, preferably 0.1% or less, more preferably 0.05% or less. Can be improved.
  • a rubber component may be added to the radically polymerizable thermosetting resin system in order to improve the physical properties of the separation as a cured product, for example, toughness and impact resistance.
  • the rubber component include a liquid rubber or a modified product thereof (for example, acrylonitrile butadiene rubber (NBR), epoxy group terminal, NBR, vinyl group terminal NBR, etc.), fine particle rubber (for example, crosslinked acrylic resin). And the like).
  • the amount of the rubber component used is usually about 1 to 30 parts by weight based on 100 parts by weight of the radical polymerizable thermosetting resin system.
  • the resin composition of the present invention can be easily cured by adding a conventional curing agent used for curing a radically polymerizable thermosetting resin system and, if necessary, a conventional curing accelerator.
  • the curing agent examples include organic peroxides such as aliphatic peroxides (methylethyl ketone peroxide, t_butylperoxy 21-ethylhexanoate, di-t-butylperoxide, lauroyl peroxide). Aromatic peroxides (cyclohexanone peroxide, etc.), aromatic peroxides (benzoylperoxide, dicumyl peroxide, cumenehydriodropoxide, t-butylperoxybenzoate, etc.) ) Can be exemplified. These curing agents can be used alone or in combination of two or more.
  • the curing agent is used in an amount of about 0.1 to 5 parts by weight, preferably about 0.5 to 3 parts by weight, and more preferably about 1 to 3 parts by weight, based on 100 parts by weight of the radical polymerizable thermosetting resin system. It is.
  • the curing accelerator examples include metal salts (e.g., transition metal salts such as cobalt naphthenate and cobalt octanoate), amines (e.g., tertiary amines such as dimethylaniline and dimethylaniline), and acetylacetone. . These curing accelerators can be used alone or in combination of two or more.
  • the curing accelerator is used in an amount of 0.01 to 3 parts by weight, preferably 0.05 to 2 parts by weight, and more preferably 0.1 to 100 parts by weight of the radical polymerizable thermosetting resin system. About 2 parts by weight.
  • the resin composition of the present invention may contain, if necessary, a filler (aluminum hydroxide, glass powder, calcium carbonate, talc, silica, clay, a glass balloon, etc.), a polymerization inhibitor (octahydroquinone, t —Putyl catechol, etc.), fiber reinforcement (glass fiber, carbon fiber, etc.), release agent (metal stones such as calcium stearate and zinc stearate, silicone or fluorine-based organic compounds, phosphoric acid compounds, etc.) Conventional additives such as a thickener (an oxide or a hydroxide such as magnesium or calcium) may be added.
  • a filler aluminum hydroxide, glass powder, calcium carbonate, talc, silica, clay, a glass balloon, etc.
  • a polymerization inhibitor octahydroquinone, t —Putyl catechol, etc.
  • fiber reinforcement glass fiber, carbon fiber, etc.
  • release agent metal
  • Radical polymerizable thermosetting resin composed of at least halogen-containing unsaturated polyester resin (that is, composed of halogen-containing unsaturated polyester resin alone, halogen-containing unsaturated polyester resin and radical polymerizable diluent)
  • the glass transition temperature of the cured product of the cured resin composition is 120: or more (particularly about 140 to 200 ° C). Is preferred.
  • the upper limit temperature of the polymer electrolyte fuel cell used may exceed 100 ° C., and it is preferable that the separator be glassy and have sufficient elasticity up to this temperature.
  • the raw materials of the halogen-containing unsaturated polyester resin may be adjusted to lower the crosslink density and reactivity.
  • C s— i 2 Long-chain polyvalent power
  • rubonic acid e.g., rubonic acid
  • (poly) oxyalkylene dalichol such as diethylene glycol, dipropylene glycol, etc.
  • the raw material used for the halogen-containing unsaturated polyester resin may be adjusted to increase the crosslinking density and reactivity.
  • a monomer having a rigid structure such as hydrogenated bisphenol A
  • the resin composition of the present invention has high fluidity and moldability, and can be molded by a conventional resin molding method.
  • the resin molding method include conventional molding methods such as casting, compression molding, and injection molding. More specifically, a molded article can be obtained by injecting or filling a resin composition into a predetermined mold and curing it under heating and pressure. In heating and pressing, the curing temperature of the resin composition (e.g., 7 0 ⁇ 2 5 0 ° C , preferably 1 0 0 ⁇ 2 0 0 ° about C) pressure 0.
  • l X 1 0 6 P a ⁇ 5 0 X 1 0 6 P a (preferably l X 1 0 6 P a ⁇ 1 0 X 1 0 6 P a) may be row one degree.
  • Curing of the resin composition may be performed in an inert gas atmosphere.
  • a radical reaction the generation of warpage can be suppressed, and a homogeneous molded body can be obtained within a short time.
  • a groove as a gas flow path can be formed with high precision without cutting.
  • the resin composition may be degassed or defoamed in order to obtain a homogeneous molded article.
  • the resin composition may be in the form of a powdery or coarse-grained compound. Such a compound can be obtained by adding a resin composition to a conventional It can be produced by kneading with a single kneader. Further, the resin composition may be a viscous or clay-like homogeneous compound, and such a compound can be obtained by kneading the resin composition with a pressurized kneader. In particular, a compound having a uniform composition and excellent fluidity can be produced even when the conductive agent is filled at a high concentration.
  • the pressure is not particularly limited as long as a homogeneous compound is Ru obtained, 0.:! ⁇ L O kgf Zc m 2 (9. 8 X 1 0 3 ⁇ 9. 8 X 1 0 5 Pa), preferably about 0.3 to 8 kgf / cm 2 , more preferably about 0.5 to 8 kgf Zcm 2 (particularly,! To 8 kgf / cm 2 ).
  • Examples of the shape of the pressurized type blades include panbury type, sigma blade, and simplex (single curve). Of these shapes, Banbury type blades are preferred.
  • the number of revolutions of the blade is not particularly limited, but is about 5 to 150 rpm, preferably about 10 to 120 rpm.
  • the temperature for kneading is not particularly limited, but is about room temperature to 100 ° C. (: preferably about room temperature to 80 ° C. (eg, room temperature to 50 ° C.). Under normal conditions, kneading can be performed in the air.
  • the viscosity of the compound of clay-like or produced by kneading a pressurized kneader one viscous material in 2 5 ° C, 1 0 2 ⁇ 1 0 6 P a ⁇ s, preferably the 1 0 3 ⁇ 1 0 6 P a ⁇ s, and more preferably from 1 0 3 to 1 0 5 about P a ⁇ s.
  • a pressurized kneader By kneading with a pressurized kneader, the mechanical strength and thermal conductivity of the resin composition can be improved.
  • non-conductive substances for example, low shrinkage
  • the thermal conductivity can be kept high, and a molded article without defects can be obtained.
  • the cured product of the resin composition of the present invention exhibits durability (particularly resistance to active oxygen), gas impermeability, low electrical resistance and high mechanical strength, and can be easily molded by a resin molding method.
  • it can be used for various applications such as electronic components, it is useful as a separator for fuel cells, especially for polymer electrolyte fuel cells equipped with a polymer electrolyte membrane.
  • a groove (one or a plurality of grooves) is formed as a gas flow path for supplying a hydrogen gas or an oxidizing gas (oxygen-containing gas such as oxygen).
  • the thickness of the separator may be about 1 to 10 mm (particularly 2 to 5 mm). Industrial applicability
  • the cured molded article formed from the resin composition of the present invention can be filled with a conductive agent at a high ratio, it exhibits high conductivity, high durability (particularly resistance to active oxygen), and low gas permeability. High mechanical strength and dimensional accuracy. Further, the resin composition of the present invention can be molded by a resin molding method and is a compound having excellent fluidity, and therefore, has excellent moldability. Therefore, the resin composition of the present invention is suitable as a separator material for a fuel cell, particularly for a polymer electrolyte fuel cell.
  • Example 1 Example 1
  • Heptic acid 972 g, fumaric acid 870 g, propylene glycol 582 g, neopentyl glycol 265 g were prepared by a conventional method at a reaction temperature of 200 ° C and an acid value of 15 Reaction until mg K / H / g
  • a logen-containing unsaturated polyester resin was prepared. 100 parts by weight of the halogen-containing unsaturated polyester resin was mixed with 70 parts by weight of styrene to obtain a halogen-containing unsaturated polyester resin composition A.
  • 330 g of artificial graphite powder manufactured by SIC Corporation, SGL 10; average particle size 10) was added to 300 g of the halogen-containing unsaturated polyester resin composition A 280 g.
  • styrene-butadiene block copolymer D—KX410 CS, manufactured by Shell JSRE last omer Co., Ltd.
  • a styrene solution (styrene content: 50% by weight) was mixed with 10 parts by weight to obtain a halogen-containing unsaturated polyester resin composition B.
  • a flat plate was formed in the same manner as in Example 1, except that the halogen-containing unsaturated polyester resin composition B was used instead of the halogen-containing unsaturated polyester resin composition A.
  • a reaction temperature of 200 ° C. was obtained by adding 1.556 g of heptanoic acid, 6966 g of fumaric acid, 963 g of 1,6-hexanediol and 212 g of neopentyl glycol in a conventional manner. The reaction was continued until the acid value reached 2 Omg KOHZg to prepare a halogen-containing unsaturated polyester resin. 100 parts by weight of the halogen-containing unsaturated polyester resin was mixed with 70 parts by weight of styrene to obtain a halogen-containing unsaturated polyester resin composition C. A flat plate was formed in the same manner as in Example 1 except that the halogen-containing unsaturated polyester resin composition C was used instead of the halogen-containing unsaturated polyester resin composition A.
  • styrene-butadiene block copolymer D—K X40 CS, Shell JSRE last omer Co., Ltd.
  • a styrene solution styrene content of 50% by weight was mixed with 12 parts by weight to obtain a halogen-containing unsaturated polyester resin composition D.
  • a flat plate was formed in the same manner as in Example 1 except that the halogen-containing unsaturated polyester resin composition A was replaced with the halogen-containing unsaturated polyester resin composition D.
  • Diethylene glycol 2910 g, fumaric acid 500 g, adipic acid 150 g and isophthalic acid 2429 g were prepared by a conventional method at a reaction temperature of 200. The reaction was continued until the acid value reached 15 mgKOH / g with C to prepare an unsaturated polyester resin. 100 parts by weight of the unsaturated polyester resin was mixed with 70 parts by weight of styrene to obtain an unsaturated polyester resin composition E.
  • a flat plate was formed in the same manner as in Example 1, except that the unsaturated polyester resin composition E was used instead of the halogen-containing unsaturated polyester resin composition A.
  • Unsaturated polyester resin composition F was obtained by mixing 70 parts by weight of styrene.
  • a flat plate was formed in the same manner as in Example 1 except that the unsaturated polyester resin composition F was used instead of the halogen-containing unsaturated polyester resin composition A.
  • a flat plate was formed in the same manner as in Example 1 except that a beer ester resin composition was used instead of the halogen-containing unsaturated polyester resin composition A.
  • the measurement was performed according to JISR 7202.
  • the three-point bending method was measured according to JISK 7203.
  • Nitrogen gas permeability (Nitrogen gas permeability X specimen thickness) / (time X cross-sectional area X differential pressure) (unit: cm 2 Zs ec ⁇ a tm).
  • the resistance to active oxygen was evaluated by evaluating the ozone resistance of the molded article under the following conditions and methods (1) to (3).
  • Ozone generator Ozone generator (o-3-3) manufactured by Japan Ozone Co., Ltd.
  • Exposure method 1 Ozone exposure under one liquid phase condition
  • Weight loss (%) ⁇ (Wi-W 0 ) / W.
  • a flat plate of 300 mm X 300 mm X 1 mm was kept at 23 ° C X 50% RH for one day.
  • the thickness error of each flat plate was less than 0.1 mm.
  • Each flat plate was placed on a flat surface of a glass plate, the center of a 300 mm square was brought into contact with the glass plate, and the distances (mm) at the four corners (ends) from the glass plate were measured. did.
  • Ozone resistance-1 liquid phase
  • Ozone resistance-2 gas phase
  • the flat plate molded with the resin composition of the present invention is excellent in various characteristics.
  • Examples 1 to 4 using a halogen-containing unsaturated polyester resin have particularly excellent resistance to active oxygen.
  • Comparative Examples 1 and 2 since the unsaturated polyester resin containing no halogen is used, the resistance to active oxygen is low.
  • Comparative Example 3 since the bier ester resin was used, the resistance to active oxygen was low.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Fuel Cell (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

明 細 書 固体高分子型燃料電池用セパレー夕一およびその製造方法 技術分野
本発明は、 固体高分子型燃料電池のセパレーターとして有用な樹 脂組成物、 その樹脂組成物で形成されたセパレーターおよびそのセ パレーターの製造方法に関する。 背景技術
固体高分子型燃料電池は、 ポリテトラフルォロエチレン骨格など のフルォロカーボン骨格にスルホン酸基を導入したパ一フルォロカ —ポンスルホン酸などのイオン交換膜 (イオン伝導性高分子膜) か らなる固体高分子の電解質膜と、 この電解質膜の両側に配された 2 つの電極と、 それぞれの電極に水素や酸素などのガスを供給するた めのガス供給溝を設けたセパレ一夕一と、 これらのセパレ一夕一の 両側に配設された 2つの集電体とから構成されている。
これらの構成材のうち、 セパレ一ターには、 ガス不透過性、 低電 気抵抗性 (導電性)、 耐薬品性、 高い機械強度等の性質が求められ る。 そこで、 従来からチタンや黒鉛を材料とした板材を用い、 この 板材を切削加工などの機械加工によって成形する方法が検討されて きている。 しかし、 この方法では、 量産性に欠け、 工業的な実施が 困難である。
特開平 4一 2 6 7 0 6 2号公報には、 ステンレス鋼又は銅で構成 された燃料電池用ガスセパレー夕一が開示されている。 しかし、 こ れらの金属の材質では工業的な生産性は高いものの、 燃料として用 いる水素ガスとの長時間に亘る接触により、 材料劣化が起こるため 、 電池特性が急激に低下する。
また、 特開平 1 0— 3 3 4 9 2 7号公報には、 炭素粉末と熱硬化 型樹脂 (フエノール樹脂、 ポリイミ ド樹脂、 エポキシ樹脂、 フラン 樹脂等) とを含む樹脂組成物を樹脂成形法で成形した固体高分子型 燃料電池のセパレ一ターが開示されている。 しかし、 熱硬化型樹脂 として使用されているフエノール樹脂は硬化が遅く、 生産性が低い 。 例えば、 この特許文献の実施例では 1 0時間以上の硬化を必要と している。 また、 フエノール樹脂の硬化に伴って、 水蒸気などのガ スが発生するため、 硬化物に反りが生じるとともに、 ガス不透過性 が低下する。
また、 特開 2 0 0 1 — 1 5 1 8 3 3号公報には、 ビエルエステル 系樹脂で構成された燃料電池用セパレ一夕一が開示されている。 し かし、 ビニルエステル系樹脂で構成されたセパレーターは、 生産性 は優れるものの、 陽極で発生する高反応性の酸素により分解が進み 、 長時間の使用には耐えられない。
さらに、 特開 2 0 0 1— 1 2 2 6 7 7号公報には、 非炭素質熱可 塑性樹脂と導電剤とを含む樹脂組成物で形成されたシートを、 ス夕 ンビング成形する燃料電池用セパレー夕の製造方法が開示されてお り、 比較例において、 不飽和ポリエステル樹脂と導電剤とで形成さ れたシートが記載されている。 しかし、 不飽和ポリエステル樹脂で 構成されたシートでも、 活性酸素に対する耐性は充分ではない。 従って、 本発明の目的は、 燃料電池 (特に固体高分子型燃料電池 ) に適したセパレ一ターと、 このセパレ一夕一を工業的に有利に製 造できる方法を提供する。
本発明の他の目的は、 耐久性、 特に、 活性酸素に対する耐性に優 れた固体高分子型燃料電池用セパレ一ターと、 このセパレー夕一を 簡便かつ効率よく得ることができる方法を提供することにある。 本発明のさらに他の目的は、 ガス不透過性、 低電気抵抗性及び高 い機械強度を示す固体高分子型燃料電池用セパレ一ターと、 このセ パレ一夕一を簡便かつ効率よく得ることができる方法を提供するこ とにある。 本発明の別の目的は、 寸法精度の高い固体高分子型燃料電池用セ パレ一ターと、 このセパレ一夕一を高い成形精度で得ることができ る方法を提供することにある。
本発明のさらに別の目的は、 前記セパレ一夕一に適した樹脂組成 物を提供することにある。 発明の開示
本発明者らは、 前記課題を解決するため鋭意研究を重ねた結果、 導電剤とハロゲン含有不飽和ポリエステル系樹脂とを組み合わせて 用いることにより、 工業的な生産性を高め、 セパレ一ターに要求さ れる種々の特性を兼ね備えた燃料電池用セパレ一夕一が得られるこ とを見出し、 本発明を完成するに至った。
すなわち、 本発明の樹脂組成物は、 燃料電池のセパレー夕一を形 成可能な樹脂組成物であって、 導電剤とハロゲン含有不飽和ポリェ ステル系樹脂とで構成されている。 前記組成物において、 ハロゲン 含有不飽和ポリエステル系樹脂及びラジカル重合性希釈剤でラジカ ル重合性熱硬化型榭脂系を構成してもよい。 前記ハロゲン含有不飽 和ポリエステル系榭脂を構成するジカルボン酸成分及びジオール成 分のうち少なくとも一方の成分が、 ハロゲン原子を含有してもよい 。 前記ジカルボン酸成分は、 少なくともハロゲン含有ジカルボン酸 (例えば、 ハロゲン含有 C 8— i 2芳香族ジカルボン酸又はその無水 物、 ハロゲン含有 C s — i。脂環族ジカルボン酸又はその無水物、 及 び/あるいはハロゲン含有 C s— i 4脂肪族橋架環式ジカルボン酸又 はその無水物)、 好ましくは少なくともハロゲン含有脂環族ジカル ボン酸 [例えば、 ハロゲン含有二環系 C 84脂肪族ジカルボン酸 又はその無水物、 特にへット酸 (クロレンド酸)] で構成されてい てもよい。 前記ハロゲン含有ジカルボン酸の割合は、 ハロゲン含有 不飽和ポリエステル系樹脂を構成するジカルボン酸成分中 1 0モル %以上であってもよい。 前記ジオール成分は、 ハロゲン含有 C 2— 丄 2アルキレングリコール、 ハロビスフエノール類、 及び/又はハ口 ゲン含有芳香族ジオールで構成されていてもよい。 ハロゲン原子の 割合は、 ハロゲン含有不飽和ポリエステル系樹脂に対して 1重量% 以上 (例えば、 3〜 5 0重量%程度) が好ましい。 架橋性の点から 、 ハロゲン含有不飽和ポリエステル系樹脂の二重結合当量は 1 5 0 〜 1 0 0 0程度であり、 セパレーターの使用温度との関係から、 ラ ジカル重合性熱硬化型樹脂系の硬化物が 1 2 0 °C以上のガラス転移 温度を有するのが好ましい。 ハロゲン含有不飽和ポリエステル系樹 脂の数平均分子量は、 例えば、 5 0 0〜 3 0 0 0 0程度である。 前 記ラジカル重合性希釈剤は、 少なくとも芳香族ビニル化合物で構成 されていてもよい。 導電剤とラジカル重合性熱硬化型樹脂系との割 合 (重量比) は、 前者ノ後者 = 5 5ノ 4 5〜 9 5 Z 5程度である。 前記導電剤としては、 炭素粉末や炭素繊維等が好ましい。 前記樹脂 組成物は、 さらに低収縮化剤 (特に、 スチレン系熱可塑性エラスト マ一、 飽和ポリエステル系樹脂、 酢酸ビニル系重合体等の熱可塑性 樹脂) を含んでもよい。 低収縮化剤の割合は、 例えば、 前記ラジカ ル重合性熱硬化型樹脂系 1 0 0重量部に対して、 0 . 1〜 3 0重量 部程度である。
本発明には、 前記樹脂組成物で形成された固体高分子型燃料電池 用セパレーター (カーポンセパレーターなど) も含まれる。 このセ パレーターは、 耐久性 (特に活性酸素に対する耐性) 及びガス不透 過性に優れている。 また、 前記樹脂組成物は、 成形性に優れている 。 そのため、 本発明は、 前記樹脂組成物 (例えば、 2 5 °Cでのヘリ パス粘度計による粘度 1 0 2〜 1 0 6 P a · sを有する粘土状又は 粘性体のコンパウンド) を樹脂成形法で成形して前記セパレー夕一 (カーポンセパレー夕一など) を製造する方法も含む。 また、 前記 方法において、 前記樹脂組成物を加圧式二一ダ一で混練して成形し てもよい。
さらに、 本発明には、 導電剤とハロゲン含有ポリエステル系樹脂 とを含む樹脂組成物で形成された燃料電池用セパレ一ターの活性酸 素に対する耐性を向上させる方法も含まれる。
なお、 本願明細書において、 「ラジカル重合性熱硬化型樹脂系」 は、 少なくとも不飽和ポリエステル系樹脂などのラジカル重合性榭 脂で構成される樹脂組成物を意味し、 前記樹脂とともにラジカル重 合性希釈剤を用いる場合は両者を含む意味で用いる。 また、 「ラジ カル重合性希釈剤」 とは、 ラジカル重合性不飽和結合を有する単量 体を意味する。 発明を実施するための最良の形態
[導電剤]
導電剤としては、 主としてセパレー夕一の電気抵抗を下げること に寄与する限り、 種々の成分、 例えば、 炭素粉末 (慣用の人造黒鉛 粉末、 膨張黒鉛粉末、 天然黒鉛粉末、 コークス粉、 導電性力一ボン ブラック等)、 炭素繊維、 金属粉末等が使用できる。 これらの導電 剤は、 単独で又は二種以上組み合わせて使用できる。 これらの導電 剤のうち、 炭素粉末や炭素繊維が好ましく、 通常、 炭素粉末などの 粉末状導電剤が使用される。 これらの導電剤は高密度に充填するた め、 粒度を調整した粉末や、 あらかじめ表面処理した粉末を使用す ることもできる。
導電剤 (特に炭素粉末) の平均粒径は、 ラジカル重合性熱硬化型 樹脂系の割合と密接な関係を有し、 一概に規定できないが、 通常、 1 0 n m〜 1 0 0 m、 好ましくは 2 0 n m〜 8 0 m、 さらに好 ましくは:!〜 5 0 m程度である。
[ラジカル重合性熱硬化型樹脂系]
ラジカル重合性熱硬化型樹脂系は、 少なくともハロゲン含有不飽 和ポリエステル系樹脂で構成されており、 ハロゲン含有不飽和ポリ エステル系樹脂単独で構成してもよく、 ハロゲン含有不飽和ポリェ ステル系樹脂及びラジカル重合性希釈剤で構成してもよい。 (ハロゲン含有不飽和ポリエステル系樹脂)
ハロゲン含有不飽和ポリエステル系樹脂は、 ジカルボン酸成分と ジオール (又はグリコール) 成分との反応により得ることができ、 ジカルボン酸成分及びジオール成分の少なくとも一方の成分が八口 ゲン原子を含有していればよい。 ハロゲン原子としては、 例えば、 フッ素、 塩素、 臭素、 ヨウ素原子が例示できる。 これらのハロゲン 原子のうち、 塩素及び臭素原子、 特に塩素原子が好ましい。
ハロゲン含有ジカルボン酸としては、 例えば、 テトラクロロフ夕 ル酸、 テトラクロ口無水フタル酸、 テトラブロモ無水フ夕ル酸等の ハロゲン含有 C 8 —ェ 2芳香族ジカルボン酸又はその酸無水物 ; テト ラクロロシク口へキサンジカルポン酸又はその酸無水物などのハロ ゲン含有 C s— i。脂環族ジカルボン酸又はその無水物 ; へッ ト酸 ( 1, 4 , 5, 6 , 7, 7 一へキサクロロビシクロ [ 2 . 2 . 1 ] へ プ夕— 5 —ェン— 2, 3—ジカルボン酸)、 無水へッ ト酸、 ハロゲ ン含有ァダマン夕ンジカルボン酸等のハロゲン含有 C s— i 4脂肪族 橋架環式ジカルボン酸又はその無水物 (例えば、 ハロゲン含有多環 系脂肪族橋架環式ジカルボン酸又はその無水物、 特に、 ハロゲン含 有二環系 C 81 4脂肪族橋架環式ジカルボン酸又はその無水物) 等 が例示できる。 これらのハロゲン含有ジカルボン酸は、 単独で又は 二種以上組み合わせて使用できる。
ジカルボン酸成分は、 非ハロゲン含有ジカルボン酸で構成しても よい。 非ハロゲンジカルボン酸としては、 重合性ジカルボン酸 [マ レイン酸、 無水マレイン酸、 フマル酸、 シトラコン酸、 無水シトラ コン酸、 ィタコン酸、 無水ィタコン酸等の C 46脂肪族不飽和多塩 基酸又はその無水物等] や、 非重合性ジカルボン酸 [マロン酸、 コ ハク酸、 グルタル酸、 アジピン酸、 スベリン酸、 セバシン酸、 ァゼ ライン酸等の C 3 _ 1 ()脂肪族飽和ジカルボン酸 ; イソフタル酸、 テ レフタル酸、 フ夕ル酸、 無水フタル酸等の C 8— i 2芳香族ジカルポ ン酸又はその酸無水物 ; 1 , 4 —シクロへキサンジカルボン酸、 テ トラヒドロフ夕ル酸、 テトラヒ ドロ無水フ夕ル酸、 へキサヒ ドロフ タル酸、 へキサヒ ドロ無水フタル酸、 ハイミック酸、 無水ハイミツ ク酸、 無水ナジン酸等の C 。脂環族ジカルボン酸又はその無水 物等] 等が例示できる。 重合性ジカルボン酸としては、 マレイン酸 、 無水マレイン酸、 フマル酸から選択された成分を用いる場合が多 い。
ハロゲン含有ジオールとしては、 例えば、 ジブロモネオペンチル グリコールゃジク口口ネオペンチルグリコール等のハロゲン含有 C
2 _ : 2アルキレンダリコール ; テトラプロモビスフエノール Aゃテ トラクロ口ビスフエノール A等のハロビスフエノ一ル類; これらの ハロビスフエノール類とアルキレンォキシドとの付加物、 例えば、 テトラブロモビスフエノール A —エチレンォキシド付加物ゃテトラ ブロモビスフエノール A—プロピレンォキシド付加物等のハロゲン 含有芳香族ジオール等が例示できる。
ジオール成分は、 前記ハロゲン含有ジオールの他、 非ハロゲン含 有ジオールで構成してもよい。 非ハロゲン含有ジオールとしては、 C 21 2アルキレングリコ一ル (例えば、 エチレングリコール、 1 , 2 —プロピレングリコール、 1 , 3 —プロピレングリコール、 1 , 3 一ブタンジオール、 1 ' 4 一ブタンジオール、 1 , 5—ペン夕 ンジオール、 3—メチルー 1, 5 —ペン夕ンジオール、 1 , 6—へ キサンジオール、 ネオペンチルダリコール等の直鎖状又は分岐鎖状 アルキレンダリコール)、 ポリォキシ C 24アルキレンダリコール (例えば、 ジエチレングリコール、 トリエチレングリコール、 ジブ ロピレングリコール、 トリプロピレングリコール等)、 脂環族ジォ ール (例えば、 シクロへキサンジォ一ル、 水素化ビスフエノール A などの水素化ビスフエノール類、 水素化ビスフエノール類のアルキ レンォキシド付加物等)、 芳香族ジオール (例えば、 ビスフエノー ル Aなどのビスフエノール類、 ビスフエノール類の C 24アルキレ ンォキシド付加物等) 等が例示できる。 非ハロゲン含有ジオールと しては、 少なく とも直鎖状又は分岐鎖状アルキレングリコールを使 用する場合が多い。
さらに必要であれば、 多価カルボン酸 [トリメリッ ト酸、 無水ト リメリット酸、 ピロメリ ット酸、 無水ピロメリッ ト酸等の C s—丄 2 芳香族ジカルボン酸又はその酸無水物; メチルシクロへキセントリ カルボン酸ゃメチルシク口へキセントリカルボン酸無水物等の C 8 —ェ。脂環族ジカルボン酸又はその無水物等]、 ポリオール (トリメ チロールプロパン、 グリセリン、 ペン夕エリスリ トール、 ソルビト —ル等の多価アルコールなど) 等を併用してもよい。 さらには、 1 価アルコール (へキサノール、 2一ェチルへキサノール、 才クチル アルコール、 ステアリルアルコール、 ォレイルアルコール等の C424アルコール等) で不飽和ポリエステルの末端を封鎖してもよい 。 さらに、 これらの成分と共重合又は反応可能な成分、 例えば、 ジ シク口ペン夕ジェンなどを併用してもよい。
前記ジカルボン酸成分において、 重合性ジカルボン酸は必須成分 であり、 例えば、 重合性ジカルボン酸の割合 (モル比) は、 重合性 ジカルボン酸 Z非重合性ジカルボン酸 = 2 0ノ 8 0〜 1 0 0 /0、 好ましくは 2 5 / 7 5〜 1 0 0ブ 0、 さらに好ましくは 3 0/ 7 0 〜: L 0 0Z 0 (例えば、 3 0ノ 7 0〜 9 0/ 1 0) 程度の範囲から 選択できる。
ハロゲン含有ジカルボン酸の割合 (モル比) は、 ハロゲン含有ジ カルボン酸/非ハロゲン含有ジカルボン酸 = 0/ 1 0 0〜9 0 / 1 0 (例えば、 0ノ 1 0 0〜 7 5 / 2 5)、 好ましくは 1 0 Z 9 0〜 7 0 / 3 0 > さらに好ましくは 2 0Z8 0 ~ 6 0Z4 0 (例えば、 2 0 / 8 0〜 5 0ノ 5 0 ) 程度の範囲から選択できる。
ハロゲン含有ジオールの割合 (モル比) は、 ハロゲン含有ジォー ル Z非ハロゲン含有ジォ一ル= 0/ 1 0 0 - 1 0 0/ 0 , 好ましく は 1 0ノ 9 0〜 1 0 0/ 0、 さらに好ましくは 2 0/ 8 0〜 1 0 0 / 0程度の範囲から選択でき、 0 / 1 0 0〜 5 0ノ 5 0程度であつ てもよい。
ハロゲン含有不飽和ポリエステル系樹脂に対するハロゲン原子の 割合は、 1重量%以上 (例えば、 1〜70重量%程度)、 好ましく は 3重量%以上 (例えば、 3〜50重量%程度)、 さらに好ましく は 5重量%以上 (例えば、 5〜 30重量%程度) である。
本発明では、 前記ハロゲン含有成分として、 ハロゲン含有ジカル ボン酸、 好ましくはハロゲン含有脂環族ジカルボン酸、 さらに好ま しくはハロゲン含有脂肪族橋架環式ジカルボン酸 (例えば、 ハロゲ ン含有 C8_14脂肪族橋架環式ジカルボン酸、 特にへッ ト酸) を含 有するのが好ましい。
ハロゲン含有ジカルボン酸 (例えば、 へッ ト酸などのハロゲン含 有 C814脂肪族橋架環式ジカルボン酸) の割合は、 ジカルボン酸 成分中 10モル%以上 (例えば、 10〜 90モル%)、 好ましくは 1 5〜80モル%以上、 さらに好ましくは 20〜60モル%程度で ある。
ジカルボン酸成分とジオール成分との割合 (モル比) は、 通常、 ジカルボン酸の力ルポキシル基 Zジオールのヒ ド口キシル基 = 0. 7Z1〜1. 3/1、 好ましくは 0. 8/1〜 1. 2Z1、 さらに 好ましくは 0. 9Z1〜 1. 1 Z 1程度となる割合である。
エステル化反応は、 慣用の方法、 例えば、 不活性ガス雰囲気中、 エステル化触媒の存在下、 常圧又は減圧下、 1 0 0〜2 30 :、 好 ましくは 1 50〜 220 °C程度の温度で生成する水を反応系から除 去しながら行うことができる。 不活性ガスとしては、 窒素ガスなど が利用できる。 エステル化触媒としては、 酸触媒 [例えば、 無機酸 (硫酸、 塩酸、 リン酸など)、 スルホン酸類 (p— トルエンスルホ ン酸など)、 ルイス酸 (三フッ化ホウ素など)、 イオン交換樹脂、 固 体酸など] や塩基触媒 (金属アルコキシドなど) 等が例示できる。 なお、 反応は、 熱重合禁止剤 (例えば、 ハイ ドロキノン、 2— t— ブチルハイ ドロキノンなどのハイ ドロキノン類 ; 4— tーブチルカ テコールなどの力テコ一ル類;ハイ ドロキノンモノメチルエーテル などのフエノール類など) の存在下で行ってもよい。
得られたハロゲン含有不飽和ボリエステル系樹脂中の二重結合当 量は、 1 5 0〜 1 0 0 0、 好ましくは 1 5 0〜 8 0 0、 さらに好ま しくは 1 5 0〜 6 5 0程度である。 二重結合当量が小さすぎると、 架橋密度が非常に高い硬化物が生成し、 もろく、 工業的に使用する ことは難しい。 逆に、 二重結合当量が大きすぎると、 充分な架橋を 得ることができず、 充分な耐熱性、 機械物性等を得ることが難しく なる。
なお、 ハロゲン含有不飽和ポリエステル系樹脂の分子量は、 例え ば、 数平均分子量 5 0 0〜 3 0 0 0 0、 好ましくは 1 0 0 0〜: L 0 0 0 0、 さらに好ましくは 2 0 0 0〜 8 0 0 0程度である。 ノヽロゲ ン含有不飽和ポリエステル系樹脂の酸価は、 1〜 5 0 mgKOH/ g、 好ましくは 5〜 3 O mgKOHZg程度である。
ラジカル重合性熱硬化型樹脂系において、 ハロゲン含有不飽和ポ リエステル系樹脂は、 他のラジカル重合性樹脂と組み合わせてもよ い。 他のラジカル重合性樹脂としては、 《, /3—エチレン性不飽和 結合 (重合性不飽和結合) を有する樹脂又はオリゴマー、 例えば、 ビニルエステル樹脂 (エポキシ樹脂と (メタ) アクリル酸との反応 により得られるエポキシ (メタ) ァクリレート)、 ウレタン (メタ ) ァクリレート、 ポリエステル (メタ) ァクリレート等が例示でき る。 ハロゲン含有不飽和ポリエステル系樹脂と他のラジカル重合性 榭脂との割合は、 ハロゲン含有不飽和ポリエステル系樹脂/他のラ ジカル重合性樹脂 = 1 0 0 /0〜 5 0/ 5 0、 好ましくは 1 0 0ノ 0〜 6 0Z4 0、 さらに好ましくは 1 0 0 Z 0〜 7 0ノ 3 0程度で ある。
(ラジカル重合性希釈剤)
ハロゲン含有不飽和ポリエステル系樹脂は、 低粘度化や架橋密度 の調整などのため、 分子内に少なくとも 1つの二重結合 (特に α, i3—エチレン性不飽和結合) を有する反応性希釈剤 (ラジカル重合 性希釈剤) で希釈して用いることが好ましい。
ラジカル重合性希釈剤としては、 (メタ) アクリル酸、 クロ トン 酸、 桂皮酸等の不飽和カルボン酸 ; (メタ) アクリル酸メチル、 (メ タ) アクリル酸ェチル、 (メタ) アクリル酸プロピル、 (メタ) ァク リル酸ブチル、 (メタ) アクリル酸 2—ェチルへキシル、 (メタ) ァ クリル酸ドデシル等の不飽和カルボン酸 C i— i 2アルキルエステル ; (メタ) ァクリル酸グリシジルなどの不飽和力ルポン酸グリシジ ルエステル ; (メタ) ァクリル酸 2—ヒドロキシェチルなどの不飽 和力ルポン酸ヒドロキシ C 2 _ 8アルキルエステル ; (メタ) ァクリ ルアミ ド、 (メタ) アクリロニトリル、 ビニルピロリ ドン等の窒素 含有単量体 ; スチレン、 ビニルトルエン、 ジビニルベンゼン、 p— t 一プチルスチレン等の芳香族ビニル化合物 ; エチレングリコール ジ (メ夕) ァクリ レート、 1, 4—ブタンジォ一ルジ (メタ) ァク リ レート、 1 , 6 一へキサンジオールジ (メタ) ァクリレート、 ネ ォペンチルグリコールジ (メタ) ァクリ レート等の C 2 _ 8アルキレ ングリコール不飽和カルボン酸エステル ; ジエチレンダリコールジ (メタ) ァクリ レートなどのポリォキシアルキレンダリコール不飽 和カルボン酸エステル ; 1、リメチロールプロパントリ (メタ) ァク リ レー卜、 ペン夕エリスリ トールトリ (メタ) ァクリ レート、 ペン タエリスリ トールテトラ (メタ) ァクリ レート等の多官能 (メタ) ァクリ レー卜類を挙げることができる。 これらの希釈剤は、 単独で 又は二種以上組み合わせて使用できる。 これらの希釈剤のうち、 成 形性及び経済性の点から、 少なく とも芳香族ビニル化合物 (特にス チレン) が好ましい。
前記ラジカル重合性希釈剤は、 ハロゲン原子を含有していもよく 、 例えば、 ハロゲン含有芳香族ビニル化合物 (例えば、 クロロスチ レン、 ジクロロスチレン、 ブロモスチレン、 ジブ口モスチレンなど のハロゲン含有スチレンなど) やハロゲン含有不飽和カルボン酸 C j— 12アルキルエステル (例えば、 α—フルォロアクリル酸エステ ルなどのハロゲン含有 (メタ) アクリル酸 C i— 。アルキルエステ ルなど) 等が例示できる。
芳香族ビニル化合物 (特にスチレン) は、 (メタ) アクリル系単 量体 (希釈剤) に比べて、 不飽和ポリエステル系樹脂との共重合性 が高く、 成形品の物性 (機械的強度など) を向上できるとともに、 希釈効率 (粘度低下) が高いため、 少量であっても成形性を向上で きる。 また、 芳香族ビニル化合物は、 他の希釈剤 (例えば、 ァクリ ル系希釈剤など) に比べて耐薬品性も高い。 従って、 ラジカル重合 性希釈剤は、 少なくとも芳香族ビニル化合物 (特にスチレン) を含 むのが好ましい。
八ロゲン含有不飽和ポリエステル系樹脂とラジカル重合性希釈剤 との割合 (重量比) は、 通常、 ハロゲン含有不飽和ポリエステル系 樹脂 Zラジカル重合性希釈剤 = 1 0 0Z O〜 2 0Z8 0程度の範囲 から選択でき、 9 0 Z 1 0〜 2 0 Z 8 0、 好ましくは 9 0 Z 1 0〜 4 0 / 6 0、 さらに好ましくは 9 0 Z 1 0〜 5 5 Z4 5程度である 。 より高い耐熱性を発現させるためには、 希釈剤の割合を低減する のが有利である。
導電剤とラジカル重合性熱硬化型樹脂系との割合 (重量比) は、 導電剤 Zラジカル重合性熱硬化型樹脂系 = 5 5 Z4 5〜 9 5Z 5、 好ましくは 6 0 Z4 0〜 9 5/ 5、 さらに好ましくは 6 5 / 3 5〜 9 2Z 8程度である。 導電剤の割合が少なすぎると、 導電性が改良 されず、 導電剤の割合が多すぎると、 成形流動性が不充分となり、 成形が困難となる。
なお、 導電剤とハロゲン含有不飽和ポリエステル系樹脂との割合 (重量比) は、 導電剤/ハロゲン含有不飽和ポリエステル系樹脂 = 5 5 4 5〜 9 5 5、 好ましくは 6 0 Z4 0〜 9 5 Z5、 さらに 好ましくは 6 5 / 3 5〜 9 5/ 5程度である。
[低収縮化剤] 本発明の樹脂組成物は、 成形品の反りや硬化収縮を低減させ、 寸 法精度を向上させるため、 低収縮化剤を含むのが好ましい。 一般に ラジカル重合性熱硬化樹脂は、 重合成形時に収縮し、 凹凸や反り等 が発生し易く、 寸法精度が低下する場合が多い。 このような場合で あっても、 低収縮化剤により成形品の寸法精度を向上できる。 低収縮化剤としては、 非重合性榭脂、 例えば、 ポリエステル系榭 脂 (例えば、 ポリエチレンテレフ夕レートゃポリブチレンテレフタ レート等の飽和芳香族ポリエステル系樹脂、 ポリエチレンアジべ一 ト、 ポリブチレンアジペート、 ポリブチレンセバケ一ト等の飽和脂 肪族ポリエステル系樹脂、 ポリオキシエチレン単位を有する共重合 飽和ポリエステル系樹脂等)、 アクリル系樹脂 [例えば、 ポリメチ ルメ夕クリレートなどの (メタ) アクリル酸 C卜 。アルキルエス テルを単量体成分とする単独又は共重合体など]、 酢酸ビニル系重 合体 (例えば、 ポリビニルアセテート、 エチレン一酢酸ビニル共重 合体等)、 スチレン系樹脂 [例えば、 ポリスチレンなどのスチレン 系単量体の単独又は共重合体、 スチレン一 (メタ) アクリル酸プロ ック共重合体、 スチレン— (メタ) アクリル酸エステルブロック共 重合体、 スチレン—酢酸ビニルブロック共重合体等のスチレンと共 重合性モノマ一との共重合体、 架橋ポリスチレン等]、 ポリオレフ ィ ン系樹脂 [例えば、 ポリエチレン、 エチレン一 (メタ) アクリル 酸共重合体、 エチレン一 (メタ) アクリル酸エステル共重合体等] 、 熱可塑性エラス トマ一 (例えば、 スチレン系熱可塑性エラス トマ ―、 ォレフィ ン系熱可塑性エラストマ一、 ポリエステル系熱可塑性 エラストマ一、 ポリ塩化ビニル系熱可塑性エラス トマ一、 ポリウレ タン系熱可塑性エラス 卜マー等) 等が例示できる。 これらの低収縮 化剤は、 単独で又は二種以上組み合わせて使用できる。 これらの低 収縮化剤のうち、 スチレン系熱可塑性エラス トマ一 [例えば、 スチ レン—ジェン系共重合体 (例えば、 スチレン一ブタジエンブロック 共重合体ゃスチレン一イソプレンブロック共重合体又はそれらの水 添物等)]、 飽和ポリエステル系樹脂、 酢酸ビニル系重合体 (例えば 、 ポリビニルアセテート) が好ましい。
これらの低収縮化剤の割合は、 ラジカル重合性熱硬化型樹脂系 1 0 0重量部に対して、 0. 1〜 3 0重量部、 好ましくは 0. 5〜 2 5重量部、 さらに好ましくは 1〜 2 0重量部程度である。 低収縮化 剤の割合が少なすぎると、 寸法精度が低下し易くなり、 多すぎると 、 耐熱性などの物性が低下する。
低収縮化剤の数平均分子量は、 熱硬化型樹脂の種類によって選択 でき、 特に制限されないが、 通常、 1 0 0 0〜 1 0 X 1 05、 好ま しくは 2 0 0 0〜 5 X 1 05、 さらに好ましくは 3 0 0 0〜 2 X 1 05程度である。
低収縮化剤を含む樹脂組成物で成形すると、 成形品の収縮率を、 0. 1 5 %以下、 好ましくは 0. 1 %以下、 さらに好ましくは 0. 0 5 %以下に低減でき、 寸法精度を改善できる。
ラジカル重合性熱硬化型樹脂系には、 硬化物としてのセパレー夕 一の物性、 例えば、 靭性、 耐衝撃性等の改良のため、 ゴム成分を添 加してもよい。 ゴム成分としては、 液状ゴム又はその変性物 [例え ば、 力ルポキシル基末端アクリロニトリルブタジエンゴム (NB R ), エポキシ基末端 NB R、 ビニル基末端 NB R等]、 微粒子状ゴム (例えば、 架橋アクリル樹脂微粒子など) 等が挙げられる。 ゴム成 分の使用量は、 ラジカル重合性熱硬化型樹脂系 1 0 0重量部に対し て、 通常、 1〜 3 0重量部程度である。
[硬化剤及び硬化促進剤]
本発明の樹脂組成物は、 ラジカル重合性熱硬化型樹脂系の硬化に 使用される慣用の硬化剤および必要に応じて慣用の硬化促進剤を添 加することによって容易に硬化させることができる。
硬化剤としては、 有機過酸化物、 例えば、 脂肪族過酸化物 (メチ ルェチルケトンパーォキシド、 t _ブチルパーォキシ 2一ェチルへ キサノエート、 ジ t一ブチルパーォキシド、 ラウロイルパーォキシ ド等)、 芳香族過酸化物 (ベンゾィルパーォキシド、 ジクミルパー ォキシド、 クメンハイ ドロパ一ォキシド、 t一ブチルパーォキシベ ンゾエート等)、 脂環族過酸化物 (シクロへキサノンパーォキシド など) 等が例示できる。 これらの硬化剤は、 単独で又は二種以上組 み合わせて使用できる。 硬化剤の割合は、 ラジカル重合性熱硬化型 樹脂系 1 0 0重量部に対して、 0 . 1〜 5重量部、 好ましくは 0 . 5〜 3重量部、 さらに好ましくは 1〜 3重量部程度である。
硬化促進剤としては、 金属塩 (ナフテン酸コバルト、 オクタン酸 コバルト等の遷移金属塩など)、 アミン類 (ジメチルァ二リン、 ジ ェチルァニリン等の第三級アミンなど)、 ァセチルァセ卜ン等が例 示できる。 これらの硬化促進剤は、 単独で又は二種以上組み合わせ て使用できる。 硬化促進剤の割合は、 ラジカル重合性熱硬化型樹脂 系 1 0 0重量部に対して、 0 . 0 1〜 3重量部、 好ましくは 0 . 0 5〜 2重量部、 さらに好ましくは 0 . 1〜 2重量部程度である。
[他の添加剤]
本発明の樹脂組成物には、 必要に応じて、 充填剤 (水酸化アルミ 二ゥム、 ガラス粉末、 炭酸カルシウム、 タルク、 シリカ、 クレー、 ガラスバルーン等)、 重合禁止剤 (八イ ドロキノン、 t—プチルカ テコール等)、 繊維強化剤 (ガラス繊維、 カーボン繊維等)、 離型剤 (ステアリン酸カルシウム、 ステアリン酸亜鉛等の金属石鹼、 シリ コーン又はフッ素系有機化合物、 リン酸系化合物等)、 増粘剤 (マ グネシゥム、 カルシウム等の酸化物又は水酸化物等) 等の慣用の添 加剤を配合することもできる。
[硬化物のガラス転.移温度]
少なくともハロゲン含有不飽和ポリエステル系樹脂で構成された ラジカル重合性熱硬化型樹脂系 (すなわち、 ハロゲン含有不飽和ポ リエステル系樹脂単独、 ハロゲン含有不飽和ポリエステル系樹脂と ラジカル重合性希釈剤とで構成された樹脂組成物) の硬化物のガラ ス転移温度は 1 2 0 :以上 (特に 1 4 0〜 2 0 0 °C程度) であるこ とが好ましい。 固体高分子型燃料電池は使用される上限温度が 1 0 0 °cを超えることがあり、 セパレー夕一もこの温度付近までガラス 状で充分な弾性を保持していることが好ましい。
ガラス転移温度を低くするためには、 ハロゲン含有不飽和ポリエ ステル系樹脂の使用原料を調整して架橋密度及び反応性を低くして もよく、 例えば、 アジピン酸ゃセバシン酸等の C (s— i 2長鎖多価力 ルボン酸や、 ジエチレングリコール、 ジプロピレングリコール等の (ポリ) ォキシアルキレンダリコール等を原料の単量体として使用 してもよい。 ガラス転移温度を高くするためには、 ハロゲン含有不 飽和ポリエステル系樹脂の使用原料を調整して架橋密度及び反応性 を高く してもよく、 例えば、 剛直な構造を有する単量体 (水素化ビ スフエノ一ル Aなど) を使用してもよい。
[樹脂組成物の成形方法及び用途]
本発明の樹脂組成物は、 流動性、 成形性が高く、 慣用の樹脂成形 法で成形することができる。 樹脂成形法としては、 例えば、 注型、 圧縮成形、 射出成形等の慣用の成形方法が例示できる。 より具体的 には、 所定の型内に樹脂組成物を注入又は充填し、 加熱加圧下で硬 化することにより、 成形体を得ることができる。 加熱加圧において は、 樹脂組成物の硬化温度 (例えば、 7 0〜 2 5 0 °C、 好ましくは 1 0 0〜 2 0 0 °C程度) で圧力 0. l X 1 0 6 P a〜5 0 X 1 0 6 P a (好ましくは l X 1 0 6 P a〜 1 0 X 1 0 6 P a) 程度で行つ てもよい。 樹脂組成物の硬化は、 不活性ガスの雰囲気下で行っても よい。 特に、 ラジカル反応を利用することにより、 反りの生成を抑 制でき、 短時間内に均質な成形体を得ることができる。 さらに、 樹 脂成形法により成形できるので、 切削加工することなく、 ガス流路 としての溝を精度よく形成できる。 なお、 均質な成形体を得るため 、 樹脂組成物は、 脱気又は脱泡してもよい。
なお、 樹脂組成物は、 粉末状又は粗粒状のコンパウンドの形態で あってもよい。 このようなコンパウンドは、 樹脂組成物を通常の二 ーダ一で混練することにより生成できる。 また、 樹脂組成物は、 粘 性体又は粘土状の均質なコンパゥンドであってもよく、 このような コンパウンドは、 樹脂組成物を加圧式ニーダ一で混練することによ り得ることができる。 特に、 導電剤を高い濃度で充填しても均一な 組成で、 かつ流動性に優れたコンパウンドを作製することができる 。 従って、 加圧式二一ダ一を用いてコンパウンドを成形すると、 表 面に凹凸がなく平滑であり、 外観に優れるとともに、 空孔などの欠 陥のない成形体が得られ、 成形体の圧縮強度や曲げ強度等の機械的 物性も向上できる。
加圧式二一ダ一において、 圧力は、 均質なコンパウンドが得られ る限り特に制限されず、 0. :!〜 l O k g f Zc m2 ( 9. 8 X 1 03〜 9. 8 X 1 05 P a)、 好ましくは 0. 3〜 8 k g f /c m2 、 さらに好ましくは 0. 5〜8 k g f Zc m2 (特に;!〜 8 k g f / c m2) 程度である。
加圧式二一ダ一の羽根の形状としては、 パンバリータイプ、 シグ マブレード、 シンプレックス (シングルカーブ) 等の形状を例示で きる。 これらの形状のうち、 バンバリ一型の羽根が好ましい。 羽根 の回転数は、 特に制限されないが、 5〜 1 5 0 r p m、 好ましくは 1 0〜 1 2 0 r pm程度である。 混練する温度は、 特に制限されな いが、 室温〜 1 0 0° (:、 好ましくは室温〜 8 0 °C (例えば、 室温〜 5 0 °C) 程度である。 なお、 混練は適当な雰囲気下で行うことがで き、 通常、 空気中で行うことができる。 また、 通常、 遮光下で混練 される。
本発明において、 加圧式ニーダ一の混練により生成した粘土状又 は粘性体のコンパウンドの粘度 (ヘリパス粘度計による) は、 2 5 °Cにおいて、 1 02〜 1 06P a · s、 好ましくは 1 03〜 1 06 P a · s、 さらに好ましくは 1 03〜 1 05 P a · s程度である。 な お、 加圧式ニーダ一で混練すると、 樹脂組成物の機械的強度や熱伝 導度を向上することができ、 特に、 非導電性物質 (例えば、 低収縮 化剤など) を添加しても、 熱伝導度を高く維持することができ、 欠 陥のない成形体を得ることができる。
本発明の樹脂組成物の硬化物は、 耐久性 (特に活性酸素に対する 耐性)、 ガス不透過性、 低電気抵抗性及び高い機械強度を示し、 樹 脂成形法で簡便に成形できるため、 電気 ·電子部品などの種々の用 途に使用することができるが、 燃料電池、 特に、 固体高分子電解質 膜を備えた固体高分子型燃料電池用セパレーターとして有用である このセパレー夕一は、 通常、 平板状であり、 水素ガスや酸化ガス (酸素などの酸素含有ガス) を供給するためのガス流路としての溝 ( 1又は複数の溝) も形成されている。 セパレー夕一の厚みは、 1 〜 1 0 mm (特に 2〜 5 mm) 程度であってもよい。 産業上の利用可能性
本発明の樹脂組成物で形成された硬化成形品は、 導電剤を高い割 合で充填できるため、 高い導電性を示すともに、 耐久性 (特に活性 酸素に対する耐性) が高く、 ガス透過性も低く、 機械的強度及び寸 法精度も高い。 さらに、 本発明の樹脂組成物は、 樹脂成形法で成形 が可能であり、 かつ流動性に優れたコンパウンドであるため、 成形 性にも優れる。 従って、 本発明の樹脂組成物は、 燃料電池、 特に固 体高分子型燃料電池用セパレーター材料として好適である。 実施例
以下に、 実施例に基づいて本発明をより詳細に説明するが、 本発 明はこれらの実施例によって限定されるものではない。
実施例 1
へッ ト酸 9 7 2 g、 フマル酸 8 7 0 g、 プロピレングリコール 5 8 2 g、 ネオペンチルグリコール 2 6 5 gを、 常法により、 反応温 度 2 0 0 °Cで酸価が 1 5 m g K〇H / gになるまで反応させて、 ハ ロゲン含有不飽和ポリエステル樹脂を調製した。 このハロゲン含有 不飽和ポリエステル樹脂 1 0 0重量部に対してスチレン 7 0重量部 を混合し、 ハロゲン含有不飽和ポリエステル樹脂組成物 Aを得た。 ハロゲン含有不飽和ポリエステル樹脂組成物 A 2 8 0 gに、 人造 黒鉛粉末 (エスィ一シ一 (株) 製、 S GL 1 0、 平均粒径 1 0 ) 3 3 0 g、 人造黒鉛粉末 (エスィ一シ一 (株) 製、 S GL 2 5、 平均粒径 2 5 m) 7 7 0 g , t一ブチルパーォキシベンゾエー卜 (日本油脂 (株) 製、 TB P B) 5. 6 gを加圧式ニーダ一 (モリ ャマ (株) 製、 D O . 5— 3) を使用し、 3. 9 2 X 1 05 P a ( 4 k g f / c m2) の圧力下、 40 °C、 5 0 r p mで混練し、 脱気 した後、 3 0 0 X 3 0 0 X 8 mmの平型中で 5 0 k gノ c m2 (4 . 9 X l 06P a)、 1 5 0°C、 2分間硬化させ平板を成形した。 実施例 2
実施例 1で得られたハロゲン含有不飽和ポリエステル樹脂 1 0 0 重量部に対して、 スチレン一ブタジエンブロック共重合体 (D— K X 4 1 0 C S、 S h e l l J S R E l a s t ome r (株) 製 ) のスチレン溶液 (スチレン含量 5 0重量%) を 1 0重量部混合し 、 ハロゲン含有不飽和ポリエステル樹脂組成物 Bを得た。
ハロゲン含有不飽和ポリエステル樹脂組成物 Aの代わりにハロゲ ン含有不飽和ポリエステル樹脂組成物 Bを用いる以外は実施例 1 と 同様にして平板を成形した。
実施例 3
へッ ト酸 1 5 5 6 g、 フマル酸 6 9 6 g、 1 , 6—へキサンジォ —ル 9 6 3 g、 ネオペンチルグリコール 2 1 2 gを、 常法により、 反応温度 2 0 0 °Cで酸価が 2 Omg KOHZgになるまで反応させ て、 ハロゲン含有不飽和ポリエステル樹脂を調製した。 このハロゲ ン含有不飽和ポリエステル樹脂 1 0 0重量部に対してスチレン 7 0 重量部を混合し、 ハロゲン含有不飽和ポリエステル樹脂組成物 Cを 得た。 ハロゲン含有不飽和ポリエステル樹脂組成物 Aの代わりにハロゲ ン含有不飽和ポリエステル樹脂組成物 Cを用いる以外は実施例 1 と 同様にして平板を成形した。
実施例 4
実施例 3で得られたハロゲン含有不飽和ポリエステル樹脂 1 0 0 重量部に対して、 スチレン一ブタジエンブロック共重合体 (D— K X4 1 0 C S, S h e l l J S R E l a s t ome r (株) 製 ) のスチレン溶液 (スチレン含量 5 0重量%) を 1 2重量部混合し 、 ハロゲン含有不飽和ポリエステル樹脂組成物 Dを得た。
ハロゲン含有不飽和ポリエステル樹脂組成物 Aの代わりにハ口ゲ ン含有不飽和ポリエステル樹脂組成物 Dを用いる以外は実施例 1 と 同様にして平板を成形した。
比較例 1
ジエチレングリコール 2 9 1 0 g、 フマル酸 5 0 0 g、 アジピン 酸 1 0 5 0 g、 イソフタル酸 242 9 gを、 常法により、 反応温度 2 0 0。Cで酸価が 1 5mgKOH/gになるまで反応させて、 不飽 和ポリエステル樹脂を調製した。 この不飽和ポリエステル樹脂 1 0 0重量部に対してスチレン 7 0重量部を混合し、 不飽和ポリエステ ル樹脂組成物 Eを得た。
ハロゲン含有不飽和ポリエステル樹脂組成物 Aの代わりに不飽和 ポリエステル樹脂組成物 Eを用いる以外は実施例 1 と同様にして平 板を成形した。
比較例 2
プロピレングリコール 5 0 1 0 g、 イソフタル酸 6 2 5 0 gを、 常法により、 反応温度 2 0 0 °Cで酸価が 1 5mgKOHZgになる まで一次反応させた後、 プロピレングリコール 2 3 2 0 g、 無水マ レイン酸 5 5 3 0 gを加え、 常法により、 反応温度 2 0 0 °Cで酸価 が 2 O mg KOHZgになるまで反応させ、 不飽和ポリエステル樹 脂を調製した。 この不飽和ポリエステル樹脂 1 0 0重量部に対して 3
21 スチレン 70重量部を混合し、 不飽和ポリエステル樹脂組成物 Fを 得た。
ハロゲン含有不飽和ポリエステル樹脂組成物 Aの代わりに不飽和 ポリエステル樹脂組成物 Fを用いる以外は実施例 1と同様にして平 板を成形した。
比較例 3
攪拌機、 冷却管、 窒素ガス導入装置および温度計を備えた 4つ口 フラスコに、 ビスフエノール A型エポキシ樹脂 (東都化成 (株) 製 、 ェポトート YD 1 2 8、 エポキシ当量 1 87 gZe q) 374 g 、 メタクリリレ酸 1 72 g、 トリフエニルホスフィン 0. 2 g、 ハイ ドロキノン 0. 1 gを仕込み 1 20 °Cにて 8時間反応させ、 酸価が 1. 8mgKOH/gのビニルエステル樹脂 546 gを得た。 この ビニルエステル樹脂をスチレン 364 gで希釈し、 ビニルエステル 樹脂組成物を得た。
ハロゲン含有不飽和ポリエステル榭脂組成物 Aの代わりにビエル エステル樹脂組成物を用いる以外は実施例 1と同様にして平板を成 形した。
実施例 1〜 4及び比較例 1〜 3で得られた平板について、 以下の 物性評価を行った。 結果を表 1に示す。
(電気抵抗)
J I S R 720 2に準じて測定した。
(曲げ強度)
3点曲げ法 J I S K 7203に準じて測定した。
(ガス透過率)
ガス透過率は、 窒素ガスを用いて測定され、 下記式で表される。 窒素ガス透過率 == (窒素ガス透過量 X試験片厚み) / (時間 X 断面積 X差圧) (単位 : cm2Zs e c · a tm)。
(熱伝導率)
50 mmx 5 0 mmx 1 0 mmの平板を 2枚重ねて、 ホッ トディ スク法 (面加熱源法) (米国 N I S Tの国際標準物質を基準とし、 相対比較により熱伝導率を決定する方法) により、 2 3°Cで、 熱物 性測定装置 (丁?八ー 5 0 1型 (京都電子工業 (株) 製)) を用い て測定した。 なお、 測定は 3回繰り返し平均値で示した。
(耐オゾン性)
以下の ( 1 ) 〜 ( 3) の条件及び方法で成形物の耐オゾン性を評 価することにより、 活性酸素に対する耐性を評価した。
( 1 ) オゾン発生装置及びオゾン供給方法
オゾン発生装置: 日本オゾン (株) 製、 オゾン発生装置 (o— 3 — 3 )
オゾン発生量: 1. 5 gZh
オゾン濃度: 0. 47 % (47 0 0 p pm) ·
供給量: 2 5 0 0 m l Zm i n ( 1 0 Lのガラス容器に 5 Lの水 を入れ、 水中にオゾン含有ガスをバブリング)
( 2 ) 暴露条件
試験温度: 2 5 °C
暴露方法: 1一液相条件でのオゾン暴露
2一気相条件でのオゾン暴露
( 3) 重量減少評価方法
上記条件での 6 0日間のテストピースの重量 と初期のテ ストピースの重量 (WQ)、 さらにオゾンが発生しない以外は同条 件での 6 0日後のテストピースの重量 (W2) から以下の式により 、 重量減少量を評価した。
重量減少量 (%) = {(Wi -W0) /W。一 (W2—W。) ZW。
} X 1 0 0
(収縮率)
3 0 0 mmX 3 0 0 mmx 5 mmの平板に対する線収縮を測定し た。
(反り) 3 0 0 mmX 3 0 0 mm X 1 mmの平板を 2 3 °C X 5 0 %RH条 件にて 1日保持した。 各平板の厚み誤差はいずれも 0. 1 mm以下 であった。 各平板をガラス板の平坦面上に設置し、 3 0 0 mm角の 中心部をガラス板に接触させ、 ガラス板からの 4隅 (末端) の距離 (mm) を測定し、 平均値で表した。
実施例 実施例 実施例 実施例 比較例 比較例 比較例
1 2 3 4 1 2 3
電気抵抗( · Ω - cm) 1000 1000 1000 1000 1000 1000 1000
曲げ強度(kg/mm2) 5.5 6.0 6.3 6.5 5.9 6.1 6.5
ガス透過率 (cmVsec-atm) <10-6 <10- 6 <10— 6 <10-6 <10—6 ぐ 10 -6 ぐ 10— 6
熱伝導率(W/(m*K)) 30 31 30 30 28 26 36
比重 1.85 1.84 1.86 1.84 1.88 1.90 1.87
耐オゾン性- 1 (液相)(%) 0.15 0.19 0.18 0.20 0.51 0.53 1.64 t 耐オゾン性- 2(気相)(%) 0.22 0.28 0.25 0.31 0.59 0.80 2.94
収縮率(%) 0.18 0.09 0.21 0.10 0.20 0.23 0.20
反り (丽) 15.6 6.8 16.9 7.5 16.6 17.2 16.0
表 1の結果より、 本発明の樹脂組成物で成形された平板は、 諸特 性に優れる。 ハロゲン含有不飽和ポリエステル樹脂を用いた実施例 1 〜 4は、 活性酸素に対する耐性が特に優れている。 これに対して 、 比較例 1及び 2では、 ハロゲンを含有しない不飽和ポリエステル 系樹脂を用いているので、 活性酸素に対する耐性が低い。 比較例 3 では、 ビエルエステル樹脂を用いているので、 活性酸素に対する耐 性が低い。

Claims

請求の範囲
1 . 燃料電池のセパレ一夕一を形成可能な樹脂組成物であって、 導電剤とハロゲン含有不飽和ポリエステル系樹脂とで構成されてい る樹脂組成物。
2 . ハロゲン含有不飽和ポリエステル系樹脂及びラジカル重合性 希釈剤でラジカル重合性熱硬化型樹脂系を構成している請求項 1記 載の樹脂組成物。
3 . ハロゲン含有不飽和ポリエステル系樹脂を構成するジカルポ ン酸成分及びジオール成分のうち少なくとも一方の成分が、 ハロゲ ン原子を含有する請求項 1記載の樹脂組成物。
4 . ジカルボン酸成分が、 少なくともハロゲン含有ジカルボン酸 で構成されている請求項 3記載の樹脂組成物。
5 . ジカルボン酸成分が、 ハロゲン含有 C 8 _ 1 2芳香族ジカルボ ン酸又はその無水物、 ハロゲン含有 C 8— i。脂環族ジカルボン酸又 はその無水物、 及びハロゲン含有 C 8 _ 1 4脂肪族橋架環式ジカルボ ン酸又はその無水物からなる群より選択された少なくとも一種で構 成されている請求項 3記載の樹脂組成物。
6 . ジカルボン酸成分が、 少なくともハロゲン含有脂環族ジカル ボン酸で構成されている請求項 3記載の樹脂組成物。
7 . ジカルボン酸成分が、 少なくともハロゲン含有二環系 C g— i 4脂肪族ジカルボン酸又はその無水物で構成されている請求項 3記 載の樹脂組成物。
8 . ハロゲン含有ジカルボン酸の割合が、 ハロゲン含有不飽和ポ リエステル系樹脂を構成するジカルボン酸成分中 1 0モル%以上で ある請求項 4記載の樹脂組成物。
9 . ジオール成分が、 ハロゲン含有 C 21 2アルキレングリコー ル、 ハロビスフエノール類、 及びハロゲン含有芳香族ジオールから なる群より選択された少なくとも一種で構成されている請求項 3記 載の樹脂組成物。
1 0. ハロゲン原子の割合がハロゲン含有不飽和ポリエステル系 樹脂に対して 1重量%以上である請求項 1記載の樹脂組成物。
1 1. ハロゲン含有不飽和ポリエステル系樹脂の二重結合当量が 1 5 0〜 1000である請求項 1記載の樹脂組成物。
1 2. ハロゲン含有不飽和ポリエステル系樹脂の数平均分子量が 500〜 30000であり、 ハロゲン原子の割合がハロゲン含有不 飽和ポリエステル系樹脂に対して 3〜 50重量%である請求項 1記 載の樹脂組成物。
1 3. ラジカル重合性希釈剤が、 少なくとも芳香族ビニル化合物 で構成されている請求項 2記載の樹脂組成物。
1 4. ラジカル重合性熱硬化型樹脂系の硬化物が、 12 0°C以上 のガラス転移温度を有する請求項 2記載の樹脂組成物。
1 5. 導電剤とラジカル重合性熱硬化型樹脂系との割合 (重量比 ) が、 前者/後者 = 5 5ノ 45〜9 5/5である請求項 2記載の樹 脂組成物。
1 6. 導電剤が炭素粉末及び炭素繊維から選択された少なくとも 一種で構成されている請求項 1記載の樹脂組成物。
1 7. 炭素粉末及び炭素繊維から選択された少なくとも一種の導 電剤と、 ジカルボン酸成分が少なくともへッ ト酸で構成されたハロ ゲン含有不飽和ポリエステル系樹脂と、 α, /3—エチレン性不飽和 二重結合を有する単量体とを含み、 前記不飽和ポリエステル系樹脂 と前記単量体との割合 (重量比) が、 前者ノ後者 == 1 00 Ζ 0〜 2 0Ζ8 0であり、 前記導電剤と、 前記不飽和ポリエステル系樹脂及 び前記単量体の総量との割合 (重量比) が、 前者 Ζ後者 = 5 5/4 5〜9 5 / 5である請求項 1記載の樹脂組成物。
1 8. さらに低収縮化剤を含む請求項 1記載の樹脂組成物。
1 9. 低収縮化剤が、 スチレン系熱可塑性エラストマ一、 飽和ポ リエステル系樹脂及び酢酸ビニル系重合体からなる群より選択され た少なくとも 1種である請求項 1 8記載の樹脂組成物。
2 0. さらに低収縮化剤を含み、 低収縮化剤の割合が、 ラジカル 重合性熱硬化型樹脂系 1 0 0重量部に対して、 0. 1〜 3 0重量部 である請求項 2記載の樹脂組成物。
2 1. 請求項 1記載の樹脂組成物で形成された固体高分子型燃料 電池用セパレー夕一。
2 2. 請求項 1記載の樹脂組成物を樹脂成形法で成形して請求項 2 1記載のセパレ一夕一を製造する方法。
2 3. 請求項 1記載の樹脂組成物を加圧式ニーダ一で混練して成 形する請求項 2 2記載の方法。
2 4. 加圧式エーダーにおける圧力が 9. 8 X 1 03〜 9. 8 X 1 05 P aである請求項 2 3記載の方法。
2 5. 樹脂組成物が、 2 5 °Cでのヘリパス粘度計による粘度 1 0 2~ 1 06 P a · sを有する粘土状又は粘性体のコンパゥンドであ る請求項 2 2記載の方法。
2 6. 樹脂組成物で形成された燃料電池用セパレ一夕一の活性酸 素に対する耐性を向上する方法であって、 前記樹脂組成物として、 導電剤とハロゲン含有不飽和ポリエステル系榭脂とを含む樹脂組成 物を用いる方法。
PCT/JP2002/008903 2001-09-10 2002-09-02 Separateur pour piles a combustible de type polymere solide, et son procede de production WO2003023887A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-273139 2001-09-10
JP2001273139A JP2003086196A (ja) 2001-09-10 2001-09-10 固体高分子型燃料電池用セパレーターおよびその製造方法

Publications (1)

Publication Number Publication Date
WO2003023887A1 true WO2003023887A1 (fr) 2003-03-20

Family

ID=19098397

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/008903 WO2003023887A1 (fr) 2001-09-10 2002-09-02 Separateur pour piles a combustible de type polymere solide, et son procede de production

Country Status (2)

Country Link
JP (1) JP2003086196A (ja)
WO (1) WO2003023887A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4911975B2 (ja) * 2003-02-17 2012-04-04 ジャパンコンポジット株式会社 導電性樹脂組成物及び燃料電池用セパレーター
KR100570640B1 (ko) 2003-10-22 2006-04-12 삼성에스디아이 주식회사 바이폴러 플레이트용 복합재료
FR2958799B1 (fr) * 2010-04-08 2012-09-14 Pragma Ind Bandelettes de liaison d'anodes et de cathodes d'un convertisseur electrochimique et convertisseur le comprenant

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11195422A (ja) * 1997-12-26 1999-07-21 Toyota Motor Corp 燃料電池用セパレータの製造方法および燃料電池用セパレータ
JP2000173630A (ja) * 1998-12-02 2000-06-23 Tokai Carbon Co Ltd 固体高分子型燃料電池用セパレータ部材の製造方法
JP2002164063A (ja) * 2000-09-13 2002-06-07 Mitsui Takeda Chemicals Inc 固体高分子型燃料電池用セパレーターおよびその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11195422A (ja) * 1997-12-26 1999-07-21 Toyota Motor Corp 燃料電池用セパレータの製造方法および燃料電池用セパレータ
JP2000173630A (ja) * 1998-12-02 2000-06-23 Tokai Carbon Co Ltd 固体高分子型燃料電池用セパレータ部材の製造方法
JP2002164063A (ja) * 2000-09-13 2002-06-07 Mitsui Takeda Chemicals Inc 固体高分子型燃料電池用セパレーターおよびその製造方法

Also Published As

Publication number Publication date
JP2003086196A (ja) 2003-03-20

Similar Documents

Publication Publication Date Title
US7125623B2 (en) Separator for solid polymer type fuel cell and process for producing the same
EP1171925B1 (en) Highly conductive molding compounds and fuel cell bipolar plates comprising these compounds
KR100987683B1 (ko) 도전성 수지 조성물, 그 제조 방법 및 연료 전지용세퍼레이터
CA2523755C (en) Curable resin composition
JP4859308B2 (ja) 固体高分子型燃料電池用セパレーターおよびその製造方法
JP4911975B2 (ja) 導電性樹脂組成物及び燃料電池用セパレーター
WO2003023887A1 (fr) Separateur pour piles a combustible de type polymere solide, et son procede de production
JP4687004B2 (ja) 硬化性樹脂組成物、成形材料及び燃料電池セパレーター
JP4020088B2 (ja) 導電性樹脂組成物、その製造方法及び燃料電池用セパレータ
JP7009022B2 (ja) 炭素繊維強化シート状成形材料、その製造方法及び成形品
JP2018090695A (ja) 耐アーク性bmc
JP2005082745A (ja) 導電性樹脂組成物及びそれを用いてなる燃料電池用セパレータ
JP2003040954A (ja) ラジカル重合性樹脂組成物
JPS607663B2 (ja) 低収縮アリル系不飽和ポリエステル樹脂組成物
JPH08127629A (ja) 人工大理石用樹脂組成物
WO2024090084A1 (ja) 樹脂組成物及び複合材料
JP2021160191A (ja) 成形材料および成形品
JPH06271631A (ja) ビニルエステル樹脂組成物
JP2014205803A (ja) 不飽和ポリエステル樹脂組成物およびそれを用いたスライス台
JP2011099108A (ja) 高導電性成形化合物およびこれらの化合物を含有する燃料電池双極プレート
JPH0689239B2 (ja) 低収縮性不飽和ポリエステル樹脂組成物
JPH06107938A (ja) 成形材料用樹脂組成物および成形品の製造法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AU BA BB BR BZ CA CN CR CU DM DZ EC GD GE HR HU ID IL IS KR LC LK LR LT LV MA MG MK MX NO NZ OM PH PL RO SG SI TN UA US UZ VC VN YU

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ UG ZM ZW AM AZ BY KG KZ RU TJ TM AT BE BG CH CY CZ DK EE ES FI FR GB GR IE IT LU MC PT SE SK TR BF BJ CF CG CI GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase