WO2002102427A1 - Verfahren zur herstellung eines bioaktiven knochenzements und knochenzement-kit - Google Patents

Verfahren zur herstellung eines bioaktiven knochenzements und knochenzement-kit Download PDF

Info

Publication number
WO2002102427A1
WO2002102427A1 PCT/DE2002/002228 DE0202228W WO02102427A1 WO 2002102427 A1 WO2002102427 A1 WO 2002102427A1 DE 0202228 W DE0202228 W DE 0202228W WO 02102427 A1 WO02102427 A1 WO 02102427A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
bone cement
glassy
crystalline material
mixture
Prior art date
Application number
PCT/DE2002/002228
Other languages
English (en)
French (fr)
Other versions
WO2002102427A8 (de
Inventor
Wolf-Dieter Müller
Emil Nagel
Georg Berger
Original Assignee
Humboldt Universität Berlin
BAM Bundesanstalt für Materialforschung und -prüfung
Vita Zahnfabrik H. Rauter Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Humboldt Universität Berlin, BAM Bundesanstalt für Materialforschung und -prüfung, Vita Zahnfabrik H. Rauter Gmbh & Co. Kg filed Critical Humboldt Universität Berlin
Priority to AT02748596T priority Critical patent/ATE290888T1/de
Priority to JP2003505012A priority patent/JP4573527B2/ja
Priority to US10/480,886 priority patent/US7109254B2/en
Priority to EP02748596A priority patent/EP1395296B1/de
Priority to DE50202488T priority patent/DE50202488D1/de
Priority to AU2002319091A priority patent/AU2002319091A1/en
Publication of WO2002102427A1 publication Critical patent/WO2002102427A1/de
Publication of WO2002102427A8 publication Critical patent/WO2002102427A8/de

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L24/00Surgical adhesives or cements; Adhesives for colostomy devices
    • A61L24/0047Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L24/0073Composite materials, i.e. containing one material dispersed in a matrix of the same or different material with a macromolecular matrix
    • A61L24/0084Composite materials, i.e. containing one material dispersed in a matrix of the same or different material with a macromolecular matrix containing fillers of phosphorus-containing inorganic compounds, e.g. apatite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L24/00Surgical adhesives or cements; Adhesives for colostomy devices
    • A61L24/0047Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L24/0073Composite materials, i.e. containing one material dispersed in a matrix of the same or different material with a macromolecular matrix
    • A61L24/0089Composite materials, i.e. containing one material dispersed in a matrix of the same or different material with a macromolecular matrix containing inorganic fillers not covered by groups A61L24/0078 or A61L24/0084
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/40Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L27/44Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
    • A61L27/446Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix with other specific inorganic fillers other than those covered by A61L27/443 or A61L27/46
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/40Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L27/44Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
    • A61L27/46Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix with phosphorus-containing inorganic fillers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants

Definitions

  • the invention relates to a method for producing a bioactive bone cement and a bone cement kit for anchoring artificial joints and for filling in bone ends.
  • Bone cements for joint anchoring and other bone defects consist of a plastic, usually based on ethyl ethacrylate or related substances, sometimes with the addition of further esters of acrylic or methacrylic acid. Such bone cements are e.g. described in DE 196 41 775 AI.
  • the combination of benzoyl peroxide / dimethyl-p-toluidine is often used as a catalyst in the liquid monomer, as pointed out disadvantageously in DE 196 35 205, and bone cements are usually mixed from two components.
  • One component contains the liquid monomer, the other component a powdery polymer, which is in the form of spherical particles with a diameter of approx. 100 ⁇ m.
  • X-ray contrast media are added for the X-ray opacity required for the control.
  • Known X-ray contrast media are BaS0 4 and Zr0 2 , which are added in amounts between 7 and 30%.
  • a large number of bone cements are now used, but they still have disadvantages.
  • a fundamental problem is that exothermic heat is released during the polymerization. If the temperature rises above 50 ° C, the bone cells in contact are damaged.
  • the actual thermal stress on body cells at the contact zone with the polymerizing bone cement can only be predicted with great inaccuracy. It depends on the thickness of the layer and the thermal conductivity over the prosthetic components and on the bone. Laboratory tests have shown that under certain conditions with commercially available cements, maximum temperatures of up to 110 ° C can occur during the polymerization, so that burns can be observed as a consequence. Improvements seem necessary here.
  • the shrinkage resulting from the polymerization can also have a disadvantage, which can ultimately be reflected in the loosening of the prosthesis.
  • the invention has for its object to avoid previous polymerization-related components or effects and at the same time to give the bone cement long-term stability, bioactivity and chemical resistance.
  • the inventive method for producing a bone cement solves the above. Problems by completely avoiding the polymerization as such in the formation of the bone cement.
  • the method consists in that
  • a monomer-free polymethyl methacrylate PMMA
  • PMMA polymethyl methacrylate
  • the mixture 0.05 to 80 wt .-% of a bioactive, glassy-crystalline material with a grain size in the range of> 20 to 200 microns with stirring and at a temperature of 10 to 50 ° C until to obtain a flowable mixture with an open processing time in the range from 1 to 20 minutes
  • the glassy-crystalline material consisting of 15-45% by weight CaO, 40-45% by weight P 2 0 5 , 10-40% by weight Zr ⁇ 2 and 0.7-3.5% by weight of fluoride and contains apatite and calcium zirconium phosphate as the main crystal phases and a glass phase as the secondary component, in which the main crystal phases together amount to at least 35% by weight and the secondary components are 5 to 15% by weight
  • a polymerization reaction By dispensing with a polymerization reaction taking place within the mixture, it can be set in and hardened at body temperature.
  • a suitable solvent for example ethyl acetyl acetic acid or mixtures of ethyl acetyl acetic ester with ethanol, which can contain up to 4% by volume of water.
  • the resulting sticky, flowing component is then mixed with a powder mixture of the glassy-crystalline material and, if appropriate, from additional fully or partially absorbable and / or long-term stable bioceramics and, if appropriate, TiO 2 .
  • the powdery components have grain sizes in the range of> 20 to 200 ⁇ m.
  • the result of this procedure is a flowable, sprayable and moldable mass ex vivo, which can be processed over a period of a few minutes, for example 1-10 minutes, depending on the powder content.
  • a poly ethyl methacrylate with a proportion of 30 to 35% by weight is preferably used.
  • the average molecular weight of the PMMA can advantageously be in the range from 20,000 and 80,000 daltons.
  • the acid number can advantageously be in the range from 25 to 65 mg KOH per g polymer.
  • the acid number gives this Connects to the number of mg KOH that is used to neutralize 1 g of the polymer sample. It is an essential criterion since the number of free carboxyl groups on the polymer is important for the binding of the metal components.
  • the acid number-modified acrylate can be prepared from methyl methacrylate and methacrylic acid in a suspension polymerization, the molar mass ratio having to be chosen so that the desired acid number is obtained. Furthermore, the acid number-modified polymer is obtained by alkaline saponification of a polymer made from methyl methacrylate and ethyl methacrylate. The proportion of ethyl methacrylate is between 2 and 10 moles, preferably 6 moles.
  • a preferred glassy-crystalline material contains 23-39% by weight CaO, 40-45% by weight P 2 0 5 , 20-35% by weight Zr0 2 and 1-3% by weight fluoride and contains apatite and calcium zirconium phosphate and as the main crystal phases a glass phase as a secondary component, the main crystal phases together amounting to at least 35% by weight and the secondary components being 5 to 15% by weight.
  • a likewise preferred glassy-crystalline material contains 23-39% by weight CaO, 40-45% by weight P 2 0 5 , 20-35% by weight Zr0 2 and 1-3% by weight fluoride as well as 0.1 to 6 % By weight Na 2 0, and it contains apatite and calcium zirconium phosphate as the main crystal phases and a glass phase as the secondary component and additionally a sodium zirconium phosphate phase as the secondary component.
  • the proportion of the main crystal phases together is at least 35% by weight, and the secondary components can each be 5 to 15% by weight.
  • the glassy-crystalline material according to the invention can additionally contain 0.1 to 6% by weight of magnesium oxide and / or potassium oxide and also the corresponding phases.
  • the content of Na 2 0, MgO and / or K 2 0 is preferably in the range from 1 to 6% by weight.
  • the proportion of the corresponding secondary crystal phase sodium zirconium phosphate is preferably in the range from 5 to 10% by weight.
  • the glassy-crystalline material is produced by forming mixtures with suitable substances, that is to say with 15-45% by weight CaO, 40-45% by weight P 2 0 5 , 10-40% by weight Zr0 2 and 0.7-3, 5% by weight fluoride.
  • the fluoride is advantageously introduced as CaF 2 .
  • the batch components are combined with one another and melted at 1550 to 1650 ° C.
  • suitable, mostly multi-stage temperature treatment programs holding stages in the range from 400 to 1500 ° C.
  • a suitable crucible material preferably consisting of a Pt / Rh alloy.
  • the melt is poured and, depending on the intended use, the solidified melt is cooled in air (spontaneous cooling) or in the cooling furnace to room temperature. Then the material is ground.
  • glass ceramic and "glassy crystalline material” used here are generally not always clearly definable. Both crystalline and glassy or X-ray amorphous phases are intimately mixed. It is irrelevant to the present invention whether one phase is present next to the other or whether one phase envelops the other.
  • a “crystalline phase” is referred to here as the "main crystal phase", the proportion of which is at least twice as large as that of a secondary phase, concentrations of 15% and below, preferably below 10% by weight, being referred to as secondary phases.
  • a material which contains sodium, potassium, calcium, magnesium, hydroxyl ions or hydroxyl constituents, fluoride, silicate and / or orthophosphate is advantageously selected as the bioceramic material which can be used in addition to the glassy-crystalline material mentioned.
  • a bioceramic material is preferably one with crystalline phases of Ca 2 KNa (P0 4 ) 6 and an inner open pore structure.
  • the addition of resorbable bioceramics offers the possibility of building porous structures that can be osteoconductive and supportive at the same time. The process of dissolving the bioceramic particles depends on their structure and can be adjusted as desired.
  • a material that has been produced according to DE 19744809 Cl or materials that contain Ca 2 KNa (P0 4 ) 2 or similar phases has proven to be advantageous.
  • one of the crystalline phases should be apatite.
  • a glass ceramic based on apatite / wollastonite according to DD 247574A3 has proven to be advantageous.
  • the particle size (grain size, grain size) can preferably be in the range from 25 to 160 ⁇ m, in particular from 25 to 90 ⁇ m.
  • the particle size is measured using laser granulometry.
  • a material to the bone cement composite to be produced according to the invention which consists of the following components or contains them in proportions greater than 30% by mass, namely: CaZr (P0 4 ) 6 and / or CaTi 4 ( P0 4 ) 6 .
  • CaZr (P0 4 ) 6 and / or CaTi 4 ( P0 4 ) 6 it is of no importance whether calcium-zirconium and / or calcium-titanium orthophosphate is present in the amorphous or the more typical crystalline form.
  • Ti0 2 can be added as an additional inorganic filler, preferably in amounts of 0.1 to 10% by weight, based on the total weight of the cement, and preferably in the rutile modification, and that considerably higher strengths can be achieved as a result ,
  • the cement Due to its structure, the cement is also sticky to metal oxides, with the result of improved adhesion to e.g. ceramic surfaces or implants made of titanium alloys with the respective upstream oxide layer.
  • antibiotics which can advantageously be added to individual mixture components, for example the bioceramic material, or can also be introduced into the mixture on their own can be included in the process according to the invention.
  • Gentamycin with a proportion is preferred from about 0.5 to 2% by weight, preferably 0.8 to 1.3% by weight, based on the total mass of the cement.
  • a particular advantage of the cement according to the invention is that it is a zinc-free and monomer-free cement that is easy to mix, its thixotropy and / or pore size can be adjusted and does not release any toxic substances into the environment.
  • the cement according to the invention is zinc-free, which is particularly advantageous since zinc can have a toxic effect in higher concentrations (Contzen et al., Basics of Alloplasty with Metals and Plastic, Thieme Verlag Stuttgart, 1967, p. 56).
  • the lack of toxicity due to the avoidance of zinc and monomers as well as the usual stabilizers and accelerators should be emphasized. It is furthermore advantageous that it does not harden during the mixing process between 1 and 10 minutes, preferably 4-5 minutes, and thus there is a plastic phase of 3 to 8 minutes on average.
  • Another advantage is the dimensional and volume stability of the bone cement according to the invention, in which shrinking processes can be significantly reduced. Optimization leads to results well below 1%.
  • Another significant advantage of the method according to the invention is that by avoiding the conventional polymerization reaction, the otherwise always occurring temperature increase of the exothermic reaction and thus the damage to surrounding cells by temperatures greater than about 50-60 ° C is completely avoided (for the disadvantages of such polymerization reactions see Liebergall et al ., Clin.Orthop. 1998 Apr. (349) 242-248 and Sturup et al., Acta Orthop. Scand. 1994 Feb. 65 (1), 20-23).
  • the pore size can also be set, for example, pores in the range from 1 ⁇ m to 159 ⁇ m can be achieved.
  • bioactive vitreous-crystalline material and optionally other bio-ceramic powders, optimal cavities can be created for the injecting of cells due to the dissolution of powder particles.
  • the hardening process is caused by the formation of chelate compounds. These can be formed by partially soluble components of the ceramics.
  • the method can be advantageously designed by adjusting the porosity of the hardened cement via a proportion of resorbable bioceramic material which can be in the range from 5 to 80% by weight, preferably 10 to 40% by weight, based on the total weight of the bone cement.
  • the viscosity of the moldable and sprayable cement is adjusted via the proportion of the mixture components and / or the molecular weight of the PMMA.
  • the stability characterized by the modulus of elasticity (determined from flexural strength measurements), can be set in a range from 5 to 50 MPa by the ratio of long-term stable glassy-crystalline or resorbable inorganic material and dissolved polymer.
  • the invention further relates to a bone cement kit based on polymethyl methacrylate, characterized by the following, separately present components a) 15 to 50% by weight of a monomer-free polymethyl methacrylate (PMMA) with an average molecular weight of 3,000 to 200,000 daltons and an acid number of 10 up to 350 mg KOH per g polymer; b) 5 to 40% by weight of a biologically compatible, organic solvent or solvent mixture for the PMMA; c) 0.05 to 80% by weight of a bioactive, glassy-crystalline material with a grain size in the range from> 20 to 200 ⁇ m, the glassy-crystalline material consisting of 15-45% by weight of CaO, 40-45% by weight P 2 0 5 , 10 - 40% by weight Zr0 2 and 0.7 - 3.5% by weight Fluoride exists and contains apatite and calcium zirconium phosphate as the main crystal phases and a glass phase as the secondary component, in which the main crystal phases together amount to at least 35% by weight and the secondary
  • the bone cement kit can additionally, individually or as a mixture with component c), contain constituents which are selected from the group consisting of Ti0 2 , X-ray contrast agents such as CaZr 4 (P0 4 ) 6 or CaTi 4 (P0 4 ) 6 , a resorbable bioceramic material with crystalline phases of Ca 2 KNa (P0 4 ) 6 and an inner open pore structure, a long-term stable glass ceramic based on apatite / wollastonite (according to DD 247574) or mixtures thereof.
  • constituents which are selected from the group consisting of Ti0 2 , X-ray contrast agents such as CaZr 4 (P0 4 ) 6 or CaTi 4 (P0 4 ) 6 , a resorbable bioceramic material with crystalline phases of Ca 2 KNa (P0 4 ) 6 and an inner open pore structure, a long-term stable glass ceramic based on apatite / wollastonite (accord
  • the biologically compatible solvent which belongs to the bone cement kit according to the invention is ethyl acetoacetate or a mixture of ethyl acetoacetate with ethanol, where ethanol can contain up to 4% by volume of water. It is preferably ethyl acetoacetate.
  • the kit according to the invention is in a sterilized form, and the sterilization can be carried out using ethylene oxide or by means of radiation sterilization.
  • kit can contain pharmaceutical components in a mixture with the individual components or separately, in particular antibiotics.
  • a mixture is prepared which corresponds to the following composition (code: Apatit / CZPl): 25.88 CaO 28.44 Zr0 2 43.68 P 2 0 5 5.00 CaF 2 It proves to be practical, the CaO portion in shape of 62.79 CaHP0 4 and the still necessary P 2 0 5 portion in the form of 10.51 ml of an 85% H 3 P0 4 .
  • CaHP0 4 , Zr0 2 and CaF 2 are mixed well, then the phosphoric acid is added, after the reaction is milled, 4-hour drying stages of 120 ° C and 170 ° C were inserted.
  • This reaction mixture is filled in a Pt / Rh crucible and heated via the holding stages 400 and 800 ° C., cooled and then milled.
  • the material pretreated in this way is then melted in the Pt / Rh crucible with a holding time of 15 minutes each in stages 800, 1000, 1300, 1500 and finally 1600 "c and then poured onto a steel plate (room temperature).
  • Part of the melt was crushed by grinding in an agate mill, sieved to below 43 ⁇ m and then subjected to an X-ray diffraction examination.
  • the result in the X-ray diffractogram shows that the crystal phases apatite (fluorapatite / hydroxylapatite) and calcium zirconium phosphate [CaZr 4 (P0 4 ) 6 ] are clearly detectable in the glassy-crystalline product.
  • the remaining part of the melt is brought to a grain size of> 20 to 200 ⁇ m.
  • a mixture is produced according to the procedure of Example 1, with the difference that sodium oxide is introduced as an additional component (code: Apatit / CZP2).
  • the approach provides for the use of the following batch components: 59.93 CaHP0 4 27.10 Zr0 2 3.42 Na 2 0 5.00 CaF 2 and
  • Example 2 The procedure was as in Example 1. After the last temperature holding step, the melt was poured from the crucible onto a steel plate.
  • X-ray diffractogram shows that the crystal phases apatite (fluorapatite / hydroxyapatite) and calcium zirconium phosphate [CaZr 4 (P0 4 ) 6 ] and sodium zirconium u phosphate [NaZr 2 (P0 4 ) 3 ] can be detected in the glassy-crystalline product.
  • the remaining part of the melt is brought to a grain size of> 20 to 200 ⁇ m.
  • Example 3 Coefficient of Expansion Apatite / CZPl
  • a glassy-crystalline material was produced according to Example 1 (Apatite / CZPl).
  • the material is comminuted by milling in a mill lined with zirconium oxide, so that a D 50 value of 8 ⁇ m was obtained.
  • the ground material is mixed with a 5% polyvinyl alcohol (PVA) solution in the ratio of ground material to PVA solution of 90: 10 mass% and pressed into a 4.7 kN rod in a press die. This raw body is sintered at a temperature of 1050 ° C.
  • PVA polyvinyl alcohol
  • the thermal expansion coefficient (AK) is determined on the relatively dense molded body obtained in this way:
  • a glassy-crystalline material is produced according to Example 1 (apatite / CZPl). Then the material is ground and a grain fraction of 315 - 400 ⁇ m is made from it.
  • the granules obtained in this way are compared to a base glass (Ap40 glass ) and a glass ceramic made from this base glass on the basis of apatite and wollastonite (Ap40 krist_ ) [chemical composition thus identical to (% by weight): 44 , 3 Si0 2 ; 11.3 P 2 0 5 ; 31.9 CaO; 4.6 Na 2 0; 0.19 K 2 0; 2.82 MgO and 4.99 CaF 2 ] compared in terms of its chemical resistance.
  • the specific BET surfaces were first determined using krypton as the measurement gas: Apatite / CZPl: 0.364 m 2 / g A P 40 glass : 0.018 m 2 / g A P 40 krist. : 0, 0 55m 2 / g.
  • the glassy-crystalline material used in the bone cement according to the invention has a certain open porosity in comparison with the base glass and the glass ceramic produced therefrom. These differences are taken into account in the solution studies by constantly setting the surface (samples) to the solvent volume (TRIS-HCl buffer solution) to 5 cm "1 .
  • a 0.2M TRIS-HCl buffer solution with pH 7.4 at 37 ° C. was used as solvent. The storage took place at 37 ° C for a period of 120 hours. The total solubility was then determined by determining the individual ions (Ca, P, Zr) in the solution with the aid of an ICP measurement: Apatite / CZPl: 4.1-5.1 mg / L Ap40 GLas : 318-320mg / L Ap40 kr ⁇ . st- : 75.2 - 82.0 mg / L.
  • EXAMPLE 6 Production I of the Bone Cement
  • the starting material was a monomer-free, acid number-modified polymethyl methacrylate (PMMA) with an average molecular weight of approximately 100,000.
  • 3 g of the PMMA (acid number 62 mg KOH / g) were mixed in 7 g of a mixture of 50 parts of ethanol (ab ⁇ .) And 60 Parts of ethyl acetoacetate are transferred to a 30% by weight solution with stirring.
  • a mixture of glassy-crystalline material or bioceramic material was then incorporated with stirring until homogeneous at room temperature (18-25 ° C). The entire mixture obtained with a creamy consistency was processed as bone cement within one of the respective setting times.
  • the added bio-ceramics or the glassy-crystalline material had an average grain size of 50 - 200 ⁇ m.
  • the following materials were used:
  • the material was very easy to mix and had a sticky, creamy consistency. It was sprayable and water resistant. Pore diameters of up to 150 ⁇ m were achieved. The flexural strength was 12.2 MPa.
  • EXAMPLE 7 Production II of the Bone Cement
  • the starting material was a monomer-free, acid number-modified polymethyl methacrylate (PMMA) with an average molar mass of approx. 100,000 Parts of ethyl acetoacetate are transferred to a 30% by weight solution with stirring. A mixture of bioceramic material was then worked in with stirring until homogeneous at room temperature (18-25 ° C.).
  • PMMA polymethyl methacrylate
  • the entire mixture obtained with a creamy consistency was processed as bone cement within one of the respective setting times.
  • the table below shows the respective information for the individual components as a percentage of the total mixture.
  • the added bio-ceramics had an average grain size of 50-200 ⁇ m.
  • the following bioceramics were used: Resorbable bioceramics 56 - 90 ⁇ m 21% by weight
  • Example 2 71-100 ⁇ m 21% by weight
  • the material was easy to mix and had a sticky, creamy consistency. It was sprayable and water resistant. Pore diameters of up to 150 ⁇ m were achieved. The flexural strength was 10.4 MPa.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Epidemiology (AREA)
  • Inorganic Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Surgery (AREA)
  • Dermatology (AREA)
  • Medicinal Chemistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Materials For Medical Uses (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Herstellung eines bioaktiven Knochenzements und einen Knochenzement-Kit zur Verankerung künstlicher Gelenke sowie zum Ausfüllen von Knochendefekten. Erfindungsaufgabe ist die Vermeidung mit der Polymerisation verbundener Nebenprodukte und nachteiliger Auswirkungen und gleichzeitig, dem Knochenzement Langzeitstabilität, Bioaktivität und chemische Beständigkeit zu verleihen. Das erfindungsgemässe Verfahren geht aus von einem monomerfreien Polymethylmethacrylat und vermischt dieses mit einem geeigneten nichttoxischen Lösungsmittel sowie einem bioaktiven, glasig-kristallinen Material mit einer Korngrösse im Bereich von >20 bis 200 νm, bestehend aus 15-45 Gew-% CaO, 40-45 Gew-% P2O5, 10-40 Gew-% ZrO2 und 0,7-3,5 Gew-% Fluorid, und als Hauptkristallphasen Apatit und Calciumzirconiumphosphat und als Nebenbestandteil eine Glasphase aufweisend, bis zum Erhalt einer fliessfähigen Mischung. Ein Knochenzement-Kit aus diesen Bestandteilen wird ebenfalls beschrieben.

Description

Verfahren zur Herstellung eines bioaktiven Knochenzements und Knochenzement-Kit
Die Erfindung betrifft ein Verfahren zur Herstellung eines bioaktiven Knochenzements und einen Knochenzement-Kit zur Verankerung künstlicher Gelenke sowie zum Ausfüllen von Knochende ekten.
Knochenzemente für die Gelenkverankerung und für sonstige Knochendefekte bestehen aus einem Kunststoff, in der Regel basierend auf ethyl ethacrylat bzw. verwandter Substanzen, teilweise unter Zusatz weiterer Ester der Acryl- bzw. Metha- crylsäure. Solche Knochenzemente sind z.B. in der DE 196 41 775 AI beschrieben. Häufig wird dabei die Kombination Benzoyl- peroxid/Dimethyl-p-toluidin als Katalysator im flüssigen Monomer verwendet, wie in der DE 196 35 205 nachteilig herausgestellt, üblicherweise werden Knochenzemente aus zwei Komponenten angemischt. Eine Komponente enthält das flüssige Monomer, die andere Komponente ein pulverformiges Polymerisat, das in Form kugelförmiger Partikel mit einem Durchmesser von ca. 100 μm vorliegt.
Für die zur Kontrolle erforderliche Röntgenopazität werden Röntgenkontrastmittel zugesetzt. Bekannte Röntgenkontrast- mittel sind BaS04 und Zr02, die in Mengen zwischen 7 und 30% zugesetzt werden.
Inzwischen sind eine Vielzahl von Knochenzementen in der Anwendung, dennoch sind sie noch immer mit Nachteilen behaftet. Ein grundsätzliches Problem besteht darin, daß während der Polymerisation exotherm Wärme freigesetzt wird. Steigt die dabei auftretende Temperatur über 50°C an, werden die im Kontakt befindlichen Knochenzellen geschädigt. Die tatsächliche thermische Beanspruchung von Körperzellen an der Kontaktzone zum polymerisierenden Knochenzement ist nur mit großer Unge- nauigkeit vorherzusagen. Sie hängt von der Dicke der eingebrachten Schicht und der Wärmeleitfähigkeit über die Prothesenkomponenten und vom Knochen ab. Laborversuche zeigten, daß unter bestimmten Bedingungen mit handelsüblichen Zementen während der Polymerisation Maximaltemperaturen von bis zu 110°C auftreten können, so daß Verbrennungen als Folgeerscheinungen zu beobachten sind. Hier erscheinen Verbesserungen notwendig.
Ein weiteres Problem der bisher bekannten Knochenzemente ist damit verbunden, daß sowohl stets vorhandenes restliches Monomer als auch andere Zusätze wie der Stabilisator Hydrochi- non (Giftklasse 3) sowie der Akzelerator N,N-Dimethyl-p-tolui- din (Giftklasse 2) herausgelöst und damit schädigend wirken können.
Weiterhin nachteilig kann sich das aus der Polymerisation ergebende Schrumpfen auswirken, was sich schließlich in der Lockerung der Prothese widerspiegeln kann.
Der Erfindung liegt die Aufgabe zugrunde, bisherige polymerisationsbedingte Komponenten oder Wirkungen zu vermeiden und gleichzeitig dem Knochenzement Langzeitstabilitat, Bioaktivität und chemische Beständigkeit zu verleihen.
Das erfindungsgemäße Verfahren zur Herstellung eines Knochenzements löst die o.g. Probleme, indem die Polymerisation als solche bei der Bildung des Knochenzements vollständig vermieden wird. Erfindungsgemäß besteht das Verfahren darin, daß man
15 bis 50 Gew-% eines monomerfreien Polymethylmethacrylates (PMMA) mit einer mittleren Molmasse von 3000 bis 200000 Dalton und einer Säurezahl von 10 bis 350 mg KOH pro g Polymer mit einem biologisch verträglichen, organischen Lösungsmittel oder Lösungsmittelgemisch für das PMMA vermischt, und der Mischung 0,05 bis 80 Gew-% eines bioaktiven, glasig-kristallinen Materials mit einer Korngröße im Bereich von >20 bis 200 μm unter Rühren und bei einer Temperatur von 10 bis 50 °C zusetzt bis zum Erhalt einer fließfähigen Mischung mit einer offenen Verarbeitungszeit im Bereich von 1 bis 20 Minuten, wobei das glasig-kristalline Material aus 15 - 45 Gew-% CaO, 40 - 45 Gew-% P205, 10 - 40 Gew-% Zrθ2 und 0,7 - 3,5 Gew-% Fluorid besteht und als Hauptkristallphasen Apatit und Calciumzirconiumphosphat und als Nebenbestandteil eine Glasphase enthält, worin die Hauptkristallphasen zusammen wenigstens 35 Gew-% betragen und die Nebenbestandteile 5 bis 15 Gew-% betragen.
Durch den Verzicht auf eine innerhalb der Mischung ablaufende Polymerisationsreaktion kann ein Einsetzen und Aushärten bei Körpertemperatur realisiert werden. Zu diesem Zweck wird ein säurezahlmodifiziertes PMMA entsprechender Molmasse in einem dafür geeigneten Lösungsmittel gelöst, z.B. Acetylessig- säure-ethylester oder Mischungen von Acetylessigsäureethyl- ester mit Ethanol, der bis zu 4 Vol-% Wasser enthalten kann. Die sich ergebende klebrige, fließende Komponente wird nun mit einem Pulvergemisch aus dem glasig-kristallinen Material und gegebenenfalls aus zusätzlicher vollständig oder teilweise resorbierbarer und/oder langzeitstabiler Biokeramik sowie gegebenenfalls Ti02 vermengt. Dabei haben die pulverför igen Bestandteile Korngrößen im Bereich von > 20 bis 200 μm. Im Ergebnis dieser Prozedur entsteht ex vivo eine fließfähige, spritzbare und formbare Masse, die über einen Zeitraum von einigen Minuten, z.B. 1 - 10 min, in Abhängigkeit vom Pulveranteil, verarbeitet werden kann.
Bevorzugt wird ein Poly ethylmethacrylat mit einem Anteil von 30 bis 35 Gew-% eingesetzt.
Die mittler Molmasse des PMMA kann vorteilhaft im Bereich von 20000 und 80000 Dalton liegen.
Die Säurezahl kann vorteilhaft im Bereich von 25 bis 65 mg KOH pro g Polymer liegen. Die Säurezahl gibt in diesem Zusammenhang die Anzahl der mg KOH an, die zur Neutralisation von 1 g der Polymerprobe verbraucht wird. Sie ist ein wesentliches Kriterium, da die Anzahl der freien Carboxylgruppen am Polymeren für die Bindung der Metallkomponenten wichtig ist.
Das säurezahlmodifizierte Acrylat kann hergestellt werden aus Methylmethacrylat und Methacrylsäure in einer Suspensionspolymerisation, wobei das Verhältnis der Molmasse so gewählt werden muß, daß die gewünschte Säurezahl erhalten wird. Desweiteren wird das säurezahlmodifizierte Polymere durch alkalische Verseifung eines Polymeren aus Methylmethacrylat und Ethylmethacrylat erhalten. Der Anteil des Ethylmethacrylates liegt zwischen 2 und 10 Mol, vorzugsweise bei 6 Mol.
Ein bevorzugtes glasig-kristallines Material enthält 23 - 39 Gew-% CaO, 40 - 45 Gew-% P205, 20 - 35 Gew-% Zr02 und 1 - 3 Gew-% Fluorid und enthält als Hauptkristallphasen Apatit und Calciumzirconiumphosphat und als Nebenbestandteil eine Glasphase, wobei die Hauptkristallphasen zusammen wenigstens 35 Gew-% betragen und die Nebenbestandteile 5 bis 15 Gew-% betragen.
Ein ebenfalls bevorzugtes glasig-kristallines Material enthält 23 - 39 Gew-% CaO, 40 - 45 Gew-% P205, 20 - 35 Gew-% Zr02 und 1 - 3 Gew-% Fluorid sowie zusätzlich 0,1 bis 6 Gew-% Na20, und es enthält als Hauptkristallphasen Apatit und Calciumzirconiumphosphat und als Nebenbestandteil eine Glasphase und zusätzlich als Nebenbestandteil eine Natriumzirconium- phosphat-Phase. Dabei beträgt der Anteil der Hauptkristal1- phasen zusammen wenigstens 35 Gew-%, und die Nebenbestandteile können jeweils 5 bis 15 Gew-% betragen.
Weiterhin kann das erfindungsgemäße glasig-kristalline Material zusätzlich 0,1 bis 6 Gew-% Magnesiumoxid und/oder Kaliumoxid enthalten und zusätzlich auch die entsprechenden Phasen.
Der Gehalt an Na20, MgO und/oder K20 liegt vorzugsweise im Bereich von 1 bis 6 Gevf-% . Der Anteil der entsprechenden Ne- benkristallphase Natriumzirconiumphosphat liegt vorzugsweise im Bereich von 5 bis 10 Gew-%. Die Herstellung des glasig-kristallinen Materials erfolgt durch Gemengebildung mit geeignete Substanzen, also mit 15 - 45 Gew-% CaO, 40 - 45 Gew-% P205, 10 - 40 Gew-% Zr02 und 0,7 - 3,5 Gew-% Fluorid.Das Fluorid wird vorteilhaft als CaF2 eingebracht. Die Gemengebestandteile werden miteinander kombiniert und in geeigneten meist mehrstufigen Temperaturbehandlungsprogrammen (Haltestufen im Bereich von 400 bis 1500 °C) in einem geeigneten Tiegelmaterial, vorzugsweise bestehend aus einer Pt/Rh-Legierung, bei 1550 bis 1650 °C zum Schmelzen gebracht. Die Schmelze wird vergossen, und die erstarrte Schmelze wird je nach Verwendungszweck an der Luft (spontane Abkühlung) oder im Kühlofen auf Raumtemperatur abgekühlt. Danach wird der Werkstoff aufgemahlen.
Die hier verwendeten Begriffe "Glaskeramik" und "glasigkristallines Material" sind im Allgemeinen nicht immer eindeutig definierbar. Es liegen sowohl kristalline als auch glasige bzw. röntgenamorphe Phasen innig vermischt vor. Für die vorliegende Erfindung ist es ohne Belang, ob eine Phase neben der anderen vorliegt oder ob eine Phase die andere umhüllt.
Als "Hauptkristallphase" wird hier eine kristalline Phase bezeichnet, deren Mengenanteil wenigstens doppelt so groß ist, wie die einer Nebenphase, wobei Konzentrationen um 15% und darunter, vorzugsweise unter 10 Gew-% als Nebenphasen bezeichnet werden.
Als zusätzlich zu dem genannten glasig-kristallinen Material einsetzbares biokeramiεches Material wird vorteilhaft ein Material ausgewählt, das Natrium, Kalium, Calcium, Magnesium, Hydroxyl-Ionen oder Hydroxyl-Bestandteile, Fluorid, Silicat und/oder ortho-Phosphat enthält. Bevorzugt ist ein biokeramisches Material ein solches mit kristallinen Phasen von Ca2KNa(P04)6 und einer inneren offenen Porenstruktur. Der Zusatz von resorbierbaren Biokeramiken bietet die Möglichkeit des Aufbaus poröser Strukturen, die osteokonduktiv und gleichzeitig stützend wirken können. Der Prozeß der Auflösung der Biokeramikpartikelchen ist abhängig von deren Struktur und kann nach Wunsch eingestellt werden. Als vorteilhaft hat sich u.a. ein Material erwiesen, daß gemäß DE 19744809 Cl hergestellt wurde bzw. Werkstoffe, die Ca2KNa(P04)2 oder ähnliche Phasen enthalten. Verwendet man hingegen langzeitstabile, bioaktive Keramiken oder Glaskeramiken, so sollte eine der kristallinen Phasen Apatit sein. Als vorteilhaft hat sich eine Glaskeramik auf der Basis Apatit/Wollastonit gemäß DD 247574A3 erwiesen.
Die Teilchengröße (Korngröße, Körnung) kann vorzugsweise im Bereich von 25 bis 160 μm liegen, insbesondere bei 25 bis 90 μm. Die Messung der Teilchengröße erfolgt mit der Laser- granulometrie.
Zur Erzielung eines röntgendichteren Werkstoffes empfiehlt es sich, ein Material dem erfindungsgemäß herzustellenden Knochenzement-Komposit beizumischen, das aus folgenden Komponenten besteht bzw. sie in Anteilen größer 30 Masse-% enthält, nämlich: CaZr (P04)6 und/oder CaTi4(P04)6. Für den vorliegenden Anwendungsfall ist es von der Sache her gleichgültig, ob Calcium-Zirkonium- und/oder Calcium-Titan- Orthophosphat in amorpher oder der eher typischen kristallinen Form vorliegt.
Es wurde weiterhin gefunden, daß als zusätzlicher anorganischer Füllstoff Ti02 vorzugsweise in Mengen von 0,1 bis 10 Gew-%, bezogen auf das Gesamtgewicht des Zements, und bevorzugt in der Modifikation Rutil zugegeben werden kann und daß dadurch wesentlich erhöhte Festigkeiten erzielt werden können.
Auf Grund seiner Struktur weist der Zement zudem eine Klebrigkeit gegenüber Metalloxiden auf, mit der Folge einer verbesserten Haftung an z.B. keramischen Oberflächen oder Implantaten aus Titanlegierungen mit der jeweils vorgelagerten Oxidschicht.
In das erfindungsgemäße Verfahren miteinbezogen werden können Arzneimittel, wie z.B. Antibiotika, die vorteilhaft einzelnen Mischungskomponenten, z.B. dem biokeramischen Material, zugesetzt werden können oder auch allein in das Gemisch eingebracht werden. Bevorzugt ist Gentamycin mit einem Anteil von etwa 0,5 bis 2 Gew-%, vorzugsweise 0,8 bis 1,3 Gew-%, bezogen auf die Gesamtmasse des Zements.
Ein besonderer Vorteil des erfindungsgemäßen Zements besteht darin, daß es sich hierbei um einen zink- und monomer- freien Zement handelt, der einfach anmischbar ist, in seiner Thixotropie und/oder Porengröße einstellbar ist und keine toxischen Substanzen an die Umgebung abgibt. Der erfindungsgemäße Zement ist zinkfrei, was besonders vorteilhaft ist, da Zink in höheren Konzentrationen toxisch wirken kann (Contzen et al., Grundlagen der Alloplastik mit Metallen und Kunststoff, Thieme Verlag Stuttgart, 1967, S. 56). Insbesondere die fehlende Toxizität infolge der Vermeidung von Zink und Monomeren sowie üblichen Stabilisatoren und Akzeleratoren ist hervorzuheben. Weiterhin vorteilhaft ist, daß er auch nicht während des Anrührvorgangs zwischen 1 und 10 Minuten, vorzugsweise 4-5 min, aushärtet, und somit eine plastische Phase von durchschnittlich 3 bis 8 min gegeben ist.
Alle diese Faktoren führen zu einer guten Benetzung des Zements auf der Implantatoberfläche wie auch des Knochen und somit zu einer gleichmäßigen Schichtdicke. Damit kann ein gleichmäßiger Kontakt zwischen Implantat und Knochen vermittelt durch den Zement gewährleistet werden. Verarbeitungsfehler treten dadurch wesentlich vermindert auf.
Ein weiterer Vorteil ist die Form- und Volumenbeständigkeit des erfindungsgemäßen Knochenzements, bei dem Schrumpf- Vorgänge wesentlich reduziert sein können. Eine Optimierung führt zu Ergebnissen deutlich unter 1 %.
Wesentlicher Vorteil des erfindungsgemäßen Verfahrens ist ferner, daß durch Vermeidung der herkömmlichen Polymerisationsreaktion die sonst stets auftretende Temperaturerhöhung der exothermen Reaktion und damit die Schädigung umliegender Zellen durch Temperaturen größer etwa 50-60 °C vollständig vermieden wird (zu den Nachteilen derartiger Polymerisationsreaktionen siehe Liebergall et al., Clin.Orthop. 1998 Apr. (349)242-248 und Sturup et al., Acta Orthop. Scand. 1994 Feb. 65(1), 20-23). Mit Hilfe des Molekulargewichtes des PMMA und der Anzahl der funktioneilen Gruppen (Säurezahl) kann die Porengröße ebenfalls eingestellt werden, z.B. können Poren im Bereich von lμm bis 159μm erreicht werden.
Durch Einsatz des bioaktiven glasig-kristallinen Material sowie gegebenenfalls weiterer biokeramischer Pulver können für des Einsprießen von Zellen optimale Hohlräume infolge des Auflösens von Pulverteilchen geschaffen werden.
Der Aushärtevorgang wird durch die Ausbildung von Chelat- verbindungen hervorgerufen. Diese können durch teilweise lösliche Bestandteile der Keramiken gebildet werden.
Weiterhin kann das Verfahren vorteilhaft gestaltet werden, indem die Porosität des ausgehärteten Zements über einen Anteil an resorbierbarem biokeramischen Material eingestellt wird, der im Bereich von 5 bis 80 Gew-%, vorzugsweise 10 bis 40 Gew-% liegen kann, bezogen auf das Gesamtgewicht des Knochenzements. Die Viskosität des form- und spritzbaren Zements wird über den Anteil der Mischungskomponenten und/oder das Molekulargewicht des PMMA eingestellt.
Die Stabilität, charakterisiert durch den Elastizitätsmodul (aus Biegefestigkeitsmessungen ermittelt), ist durch das Verhältnis von langzeitstabilem glasig-kristallinem bzw. resorbierbarem anorganischen Material und gelöstem Polymer in einem Bereich von 5 bis 50 MPa einstellbar.
Die Erfindung betrifft ferner einen Knochenzement-Kit auf Basis von Polymethylmethacrylat, gekennzeichnet durch die folgenden, getrennt voneinander vorliegenden Bestandteile a) 15 bis 50 Gew-% eines monomerfreien Polymethylmethacrylates (PMMA) mit einer mittleren Molmasse von 3000 bis 200000 Dalton und einer Säurezahl von 10 bis 350 mg KOH pro g Polymer; b) 5 bis 40 Gew-% eines biologisch verträglichen, organischen Lösungsmittels oder Lösungsmittelgemisches für das PMMA; c) 0,05 bis 80 Gew-% eines bioaktiven, glasig-kristallinen Materials mit einer Korngröße im Bereich von >20 bis 200 μm, wobei das glasig-kristalline Material aus 15 - 45 Gew-% CaO, 40 - 45 Gew-% P205, 10 - 40 Gew-% Zr02 und 0,7 - 3,5 Gew-% Fluorid besteht und als Hauptkristallphasen Apatit und Calciumzirconiumphosphat und als Nebenbestandteil eine Glasphase enthält, worin die Hauptkristallphasen zusammen wenigstens 35 Gew-% betragen und die Nebenbestandteile 5 bis 15 Gew-% betragen.
Der Knochenzement-Kit kann zusätzlich einzeln oder als Gemisch mit der Komponente c) Bestandteile enthalten, die ausgewählt sind aus der Gruppe, bestehend aus Ti02, Röntgenkon- trastmittel wie CaZr4(P04)6 oder CaTi4(P04)6, ein resorbierbares biokeramisches Material mit kristallinen Phasen von Ca2KNa(P04)6 und einer inneren offenen Porenstruktur, eine langzeitstabile Glaskeramik auf der Basis Apatit/Wollastonit (gemäß DD 247574) oder Gemische davon.
Das biologisch verträgliche Lösungsmittel, das zu dem erfindungsgemäßen Knochenzement-Kit gehört, ist Acetessigsäu- reethylester oder ein Gemisch von Acetessigsäureethylester mit Ethanol, wobei Ethanol bis zu 4 Vol-% Wasser enthalten kann. Vorzugsweise ist es Acetessigsäureethylester.
Der erfindungsgemäße Kit liegt in sterilisierter Form vor, wobei die Sterilisation durch Ethylenoxid oder mittels Strahlensterilisation vorgenommen werden kann.
Weiterhin kann der Kit Arzneimittelkomponenten im Gemisch mit den Einzelkomponenten oder gesondert enthalten, insbesondere Antibiotika.
Die Erfindung soll nachstehend durch Beispiele näher erläutert werden. Alle Prozentangaben sind auf das Gewicht bezogen.
Beispiel 1 Herstellung des glasig-kristallinen Materials Apatit/CZPl
Es wird ein Gemenge bereitet, das folgender Zusammensetzung entspricht (Code: Apatit/CZPl): 25,88 CaO 28,44 Zr02 43,68 P205 5,00 CaF2 Dabei erweist es sich als praktikabel, den CaO-Anteil in Form von 62,79 CaHP04 einzusetzen und den noch notwendigen P205- Anteil in Form von 10,51ml einer 85%igen H3P04. Zunächst wird CaHP04, Zr02 und CaF2 gut vermischt, danach mit der Phosphorsäure versetzt, nach Reaktion gemorsert, wobei 4h Trockenhal- testufen von 120° C und 170° C eingelegt wurden. Diese Reaktionsgemisch wird in einem Pt/Rh-Tiegel gefüllt und über die In Haltestufen 400 und 800°C erhitzt, abgekühlt und anschließend gemorsert. Das so vorbehandelte Material wird nunmehr im Pt/Rh-Tiegel mit jeweils 15min Haltezeit in den Stufen 800, 1000, 1300, 1500 und schließlich 1600"c zum Schmelzen gebracht und sodann auf eine Stahlplatte (Raumtemperatur) gegossen.
Ein Teil der Schmelze wurde durch Mahlen in einer Achatmühle zerkleinert, unter 43μm abgesiebt und sodann einer rönt- gendiffraktographischen Untersuchung unterzogen. Das Ergebnis im Röntgendiffraktogramm zeigt, daß in dem glasig-kristallinen Produkt die Kristallphasen Apatit (Fluorapatit/Hydroxylapatit) und Calciumzirconiumphosphat [CaZr4(P04)6] deutlich nachweisbar sind. Der restliche Teil der Schmelze wird auf eine Körnung von >20 bis 200 μm gebracht.
Beispiel 2 Herstellung des glasig-kristallinen Materials Apatit/CZP2
Es wird ein Gemenge nach der Vorschrift des Beispiels 1 hergestellt mit dem Unterschied, daß hier als zusätzliche Komponente Natriumoxid eingebracht wird (Code: Apatit/CZP2 ) . Der Ansatz sieht die Verwendung folgender Gemengebestandteile vor: 59,93 CaHP04 27,10 Zr02 3,42 Na20 5,00 CaF2 und
9,56ml einer 85%igen H3P04-Säure.
Es wurde wie im Beispiel 1 gearbeitet. Nach der letzten Temperaturhaltestufe wurde die Schmelze aus dem Tiegel auf eine Stahlplatte gegossen.
Ein Teil der Schmelze wurde durch Mahlen in einer Achatmühle zerkleinert, unter 43μm abgesiebt und sodann einer röntgendif- fraktographischen Untersuchung unterzogen. Das Ergebnis im Röntgendiffraktogramm zeigt, das in dem glasig-kristallinen Produkt die Kristallphasen Apatit (Fluorapatit/Hydroxylapatit) und Calciumzirconiumphosphat [CaZr4(P04)6] und Natriumzirconi- u phosphat [NaZr2(P04)3] nachweisbar sind.
Der restliche Teil der Schmelze wird auf eine Körnung von >20 bis 200 μm gebracht.
Beispiel 3 Ausdehnungskoeffizienten Apatit/CZPl Es erfolgte die Herstellung eines glasig-kristallinen Materials nach Beispiel 1 (Apatit/CZPl). Das Material wird durch Mahlen in einer mit Zirconiumoxid ausgekleideten Mühle zerkleinert, so daß sich ein D50-Wert von 8μm ergab. Das gemahlene Gut wird mit einer 5%igen Polyvinylalkohol(PVA)-Lösung im Verhältnis Mahlgut zu PVA-Lösung von 90 : 10 Masse-% versetzt und zu einem Stab mit 4,7kN in einem Preßgesenk verpreßt. Dieser Rohkörper wird gesintert bei einer Temperatur von 1050°C.
An dem auf diese Weise erhaltenen relativ dichten Formkörper wird der thermische Ausdehnungskoeffizient(AK) bestimmt:
AK im Bereich von 27 - 400° C: l,90*10"6 grd Celsius'1 AK im Bereich von 50 - 400°C: 1,86*10"6 grd Celsius"1 AK im Bereich von 30 - 300° C: 1,45*10"6 grd Celsius"1 AK im Bereich von 30 - 400°C: 1,88*10"6 grd Celsius"1 AK im Bereich von 30 - 600°C: 2,6*10"6 grd Celsius"1 AK im Bereich von 30 - 800°C: 3,2*10"6 grd Celsius"1 Beispiel 4 Chemische Beständigkeit Apatit/CZPl im basischen Bereich
Es erfolgt die Herstellung eines glasig-kristallinen Materials nach Beispiel 1 (Apatit/CZPl). Sodann wird das Material gemorsert und eine Kornfraktion von 315 - 400μm daraus hergestellt.
Das auf diese Weise erhaltene Granulat wird im Vergleich zu einem Grundglas (Ap40Glas) und einer aus diesem Grundglas hergestellten Glaskeramik auf der Basis von Apatit und Wollastonit (Ap40krist_) [chemische Zusammensetzung also identisch zu (Ge- wichts-%): 44,3 Si02; 11,3 P205; 31,9 CaO; 4,6 Na20; 0,19 K20; 2,82 MgO und 4,99 CaF2] hinsichtlich seiner chemischen Beständigkeit verglichen.
Zu diesem Zweck wurden zunächst die spezifischen Oberflächen nach BET mit Krypton als Meßgas bestimmt zu: Apatit/CZPl: 0,364m2/g AP40 Glas : 0.018 m2/g AP40krist.: 0,055m2/g.
Hier zeigt sich, daß das im erfindungsgemäßen Knochenzement eingesetzte glasig-kristalline Material eine gewisse offene Porosität im Vergleich zum Grundglas und der daraus hergestellten Glaskeramik .aufweist. Diesen Unterschieden wird bei den Lösungsuntersuchungen dadurch Rechnung getragen, indem das Oberflächen(Proben) zu Lösungsmittelvolumen(TRIS-HCl-Puffer- Lösung) konstant auf 5cm"1 eingestellt wird.
Als Lösungsmittel wurde eine 0,2M TRIS-HCl-Puffer-Lösung mit pH=7,4 bei 37°C verwendet. Die Lagerung erfolgte bei 37 °C über eine Zeitdauer von 120h. Danach wurde die Gesamtlöslich- keit durch Bestimmung der Einzelionen (Ca, P, Zr) in der Lösung mit Hilfe einer ICP-Messung bestimmt zu: Apatit/CZPl: 4,1 - 5,1 mg/L Ap40GLas: 318 - 320mg/L Ap40krι.st-: 75,2 - 82,0 mg/L.
Die Werte belegen eindrucksvoll die hohe chemische Beständigkeit des in dem erfindungsgemäßen Knochenzement eingesetzten neuen Werkstoffes unter simulierten physiologischen Bedingungen, einer bekannten Methode zur Bestimmung der Langzeitbeständigkeit in vitro.
Beispiel 5 Chemische Beständigkeit Apatit/CZPl im sauren Bereich
Es wird vorgegangen wie im Beispiel 4, jedoch wird eine 0,2M TRIS-HCl-Puffer-Lösung mit dem pH-Wert von 6,0 bei 37°C zur Messung verwendet. Auf diese Weise läßt sich der Fall simulieren, daß infolge einer Wundheilungs- oder Spätinfektion der pH-Wert von den physiologischen 7,4 in den sauren Bereich abgleitet. Mit Hilfe der ICP wurden nun folgende Werte der Gesamtlösung bestimmt :
Apatit/CZPl: 16-19 mg/L
Ap40GLas: 505-518 mg/L
Ap40kpι.st : 117-125 mg/L.
Die Werte belegen eindrucksvoll die hohe chemische Beständigkeit des für die Erfindung eingesetzten Werkstoffes unter simulierten Bedingungen, wie sie bei einer Entzündungsreaktion vorliegen. Demzufolge ist die Erhöhung der absoluten Werte der Löslichkeit für den erfindungsgemäßen Werkstoff wesentlich geringer im Vergleich zu der doch dramatischen Erhöhung im Falle des Grundglases bzw. der Glaskeramik auf Apatit/Wolla- stonit-Basis .
Beispiel 6 Herstellung I des Knochenzements Ausgangsmaterial war ein monomerfreies, säurezahlmodifiziertes Polymethylmethacrylat (PMMA) mit einer mittleren Molmasse von ca. 100000. 3g des PMMA (Säurezahl 62mg KOH/g) wurden in 7g einer Mischung aus 50 Teilen Ethanol (abε.) und 60 Teilen Acetetessigsäureethylester in eine 30 Gew-% Lösung unter Rühren überführt. Danach wurde ein Gemisch aus glasig-kristallinem Material bzw. biokeramischem Material unter Rühren bis zur Homogenität bei Raumtemperatur (18-25 °C) eingearbeitet. Das erhaltene Gesamtgemisch mit cremiger Konsistenz wurde als Knochenzement innerhalb einer der jeweiligen Abbindezeit verarbeitet.
In der nachfolgenden Tabelle sind die jeweiligen Angaben für die Einzelkomponenten als prozentuale Anteile des Gesamtgemisches angegeben. Polymeransatz bedeutet Polymeres + Lösungsmittel .
Die zugesetzten Biokeramiken bzw. das glasig-kristalline Material hatten eine mittlere Korngröße von 50 - 200 μm. Folgende Materialien wurden eingesetzt:
Resorbierbare Biokeramik 56-90 μm 21 Gew-% (DE 19744809) Apatit/CZP2 (Beispiel 2) 71 - 100 μm 21 Gew-% Tetracalciumphosphat 20 μm 21 Gew-%
Ti02 10,4 Gew-%
Das Material ließ sich sehr leicht anrühren und hatte eine klebrig-cremige Konsistenz. Es war spritzbar und wasserbeständig. Man erreichte Porendurchmesser bis 150 μm. Die Biegefestigkeit betrug 12,2 MPa.
Beispiel 7 Herstellung II des Knochenzements Ausgangsmaterial war ein monomerfreies, säurezahlmodifiziertes Polymethylmethacrylat (PMMA) mit einer mittleren Molmasse von ca. 100000. 3g des PMMA (Säurezahl 62mg KOH/g) wurden in 7g einer Mischung aus 60 Teilen Ethanol (96%) und 50 Teilen Acetessigsäureethylester in eine 30 Gew-% Lösung unter Rühren überführt. Danach wurde ein Gemisch aus biokeramischem Material unter Rühren bis zur Homogenität bei Raumtemperatur (18- 25°C) eingearbeitet.
Das erhaltene Gesamtgemisch mit cremiger Konsistenz wurde als Knochenzement innerhalb einer der jeweiligen Abbindezeit verarbeitet.
In der nachfolgenden Tabelle sind die jeweiligen Angaben für die Einzelkomponenten als prozentuale Anteile des Gesamtgemisches angegeben.
Die zugesetzten Biokeramiken hatten eine mittlere Korngröße von 50 - 200 μm. Folgende Biokeramiken wurden eingesetzt: Resorbierbare Biokeramik 56 - 90μm 21 Gew-%
(DE 19744809)
Apatit/CZP2 (Material von
Beispiel 2) 71 - 100 μm 21 Gew- "'6
Tetracalciumphosphat 20 μm 21 Gew-
Ti02 10,4 Gew-%
Das Material ließ sich leicht anrühren und hatte eine klebrig- cremige Konsistenz. Es war spritzbar und wasserbeständig. Man erreichte Porendurchmesser bis 150 μm. Die Biegefestigkeit betrug 10,4 MPa.

Claims

Patentansprüche
1. Verfahren zur Herstellung eines bioaktiven Knochenzements , dadurch gekennzeichnet, daß man
15 bis 50 Gew-% , bezogen auf das Gesamtgewicht des Knochenzements , eines monomerf reien Polymethylmethacrylates (PMMA) mit einer mittleren Molmasse von 3000 bis 200000 Dalton und einer Säurezahl von 10 bis 350 mg KOH pro g Polymer mit einem biologisch verträglichen , organischen Lösungsmittel oder Lösungsmittelgemisch für das PMMA vermischt, und der Mischung 0 , 05 bis 80 Gew-% , bezogen auf das Gesamtgewicht des Knochenzements , eines bioaktiven, glasig-kristallinen Materials mit einer Korngröße im Bereich von >20 bis 200 μm zusetzt, bestehend aus 15 - 45 Gew-% CaO, 40 - 45 Gew-% P205, 10 - 40 Gew-% Zr02 und 0 , 7 - 3, 5 Gew-% Fluorid, bezogen auf das Gesamtgewicht des glasig-kristallinen Materials , und als Hauptkristallphasen Apatit und Calciumzirconiumphosphat und als Nebenbestandteil eine Glasphase aufweisend, worin die Hauptkristallphasen des glasig-kristallinen Materials zusammen wenigstens 35 Gew-% betragen und die Nebenbestandteile 5 bis 15 Gew-% betragen, unter Rühren und bei einer Temperatur von 10 bis 50 ° C bis zum Erhalt einer fließfähigen Mischung mit einer offenen Verarbeitungszeit im Bereich von 1 bis 20 Minuten .
2 . Verfahren nach Anspruch 1 , dadurch gekennzeichnet , daß ein Polymethylmethacrylat mit einem Anteil von 30 bis 35 Gew-% eingesetzt wird.
3 . Verfahren nach Anspruch 1 , dadurch gekennzeichnet, daß als biologisch verträgliches Lösungsmittel Acetessigsäureethylester oder ein Gemisch von Acetessigsäureethylester mit Ethanol, wobei Ethanol bis zu 4 Vol-% Wasser enthalten kann, eingesetzt wird, vorzugsweise Acetessigsäureethylester.
4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß dem glasig-kristallinen Material ein weiteres biokeramisches Material zugesetzt wird, insbesondere eine langzeitstabile oder vollständig oder teilweise resorbierbare Biokeramik.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß als biokeramisches Material ein solches mit kristallinen Phasen von Ca2KNa(P04)6 ohne oder mit durchgehend offener Porenstruktur eingesetzt wird oder eine langzeitstabile Glaskeramik auf der Basis von Apatit/Wollastonit.
6. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß als glasig-kristallines Material ein solches mit der Zusammensetzung 23 - 39 Gew-% CaO, 40 - 45 Gew-% P205, 20 - 35 Gew-% Zr02 und 1 - 3 Gew-% Fluorid eingesetzt wird.
7. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß als glasig-kristallines Material ein solches eingesetzt wird, das zusätzlich 0,1 bis 6 Gew-% Na20 enthält und zusätzlich als Nebenbestandteil eine Natriumzirconiumphosphat-Phase enthält.
8. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß als glasig-kristallines Material- ein solches eingesetzt wird, das einen oder mehrere der folgenden Parameter aufweist
- Gesamtlöslichkeit von 4 bis 5,5 mg/1, wenn die Prüfung in 0,2M TRIS-HCl-Puffer-Lösung bei pH=7,4, T=37°C, an einer Kornfraktion von 315 - 400μm, 120h lang bei einem Probenberflä- chen-zu-Lösungsittelvolumen-Verhältnis von 5cm"1 erfolgt, thermischer Ausdehnungskoeffizient zwischen 1,4 und 6»10"6 grad"1 zwischen 27° C und 800 °C,
- Stabilität im sauren pH-Bereich zwischen 7,0 und 7,5.
9. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß den Ausgangskomponenten oder Gemischen davon ein Arzneimittel zugesetzt wird.
10. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß als weiterer anorganischer Füllstoff Ti02 zugegeben wird, vorzugsweise 0,1 bis 10 Gew-% und weiterhin bevorzugt in der Modifikation Rutil.
11. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß zur Erzielung eines röntgendichten Zements bis zu 30 Gew-% CaZr4(P04)6 oder CaTi4(P04)6 oder Gemische davon oder Mischkristalle daraus zugegeben werden.
12. Verfahren nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß die Porosität des ausgehärteten Zements über den Anteil an resorbierbarem biokeramischen Material eingestellt wird.
13. Verfahren nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß die Viskosität des form- und spritzbaren Zements über den Anteil der Mischungskomponenten und/oder das Molekulargewicht des PMMA eingestellt wird.
14. Knochenzement-Kit auf Basis von Polymethylmethacrylat, gekennzeichnet durch die folgenden, getrennt voneinander vorliegenden Bestandteile a) 15 bis 50 Gew-%, bezogen auf das Gesamtgewicht des Knochenzements, eines monomerfreien Polymethylmethacrylates (PMMA) mit einer mittleren Molmasse von 3000 bis 200000 Dalton und einer Säurezahl von 10 bis 350 mg KOH pro g Polymer ; b) 10 bis 40 Gew-%, bezogen auf das Gesamtgewicht des Knochenzements, eines biologisch verträglichen, organischen Lösungsmittels oder Lösungsmittelgemisches für das PMMA; c) 0,05 bis 80 Gew-%, bezogen auf das Gesamtgewicht des Knochenzements, eines bioaktiven, glasig-kristallinen Materials mit einer Korngröße im Bereich von > 20 bis 200 μm, bestehend aus 15 - 45 Gew-% CaO, 40 - 45 Gew-% P205, 10 - 40 Gew- % Zr02 und 0,7 - 3,5 Gew-% Fluorid, bezogen auf das Gesamtgewicht des glasig-kristallinen Materials, und als Hauptkristallphasen Apatit und Calciumzirconiumphosphat und als Nebenbestandteil eine Glasphase aufweisend, worin die Hauptkristallphasen des glasig-kristallinen Materials zusammen wenigstens 35 Gew-% betragen und die Nebenbestandteile 5 bis 15 Gew-% betragen.
15. Knochenzement-Kit nach Anspruch 14, dadurch gekennzeichnet, daß er zusätzlich einen Bestandteil enthält, ausgewählt aus der Gruppe, bestehend aus Ti02, Röntgenkontrastmittel wie CaZr4(P04)6 oder CaTi4(P04)6, ein resorbierbares biokeramisches Material mit kristallinen Phasen von Ca2KNa(P04)6 und einer inneren offenen Porenstruktur, eine langzeitstabile Glaskeramik auf der Basis Apatit/Wollastonit oder Gemische davon.
16. Knochenzement-Kit nach Anspruch 14, dadurch gekennzeichnet, daß das biologisch verträgliche Lösungsmittel Acetessigsäureethylester oder ein Gemisch von Acetessigsäureethylester mit Ethanol ist, wobei Ethanol bis zu 4 Vol-% Wasser enthalten kann, vorzugsweise Acetessigsäureethylester.
PCT/DE2002/002228 2001-06-15 2002-06-14 Verfahren zur herstellung eines bioaktiven knochenzements und knochenzement-kit WO2002102427A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AT02748596T ATE290888T1 (de) 2001-06-15 2002-06-14 Verfahren zur herstellung eines bioaktiven knochenzements und knochenzement-kit
JP2003505012A JP4573527B2 (ja) 2001-06-15 2002-06-14 生理活性骨セメントの製造方法および骨セメントキット
US10/480,886 US7109254B2 (en) 2001-06-15 2002-06-14 Method for producing a bioactive bone cement and bone cement kit
EP02748596A EP1395296B1 (de) 2001-06-15 2002-06-14 Verfahren zur herstellung eines bioaktiven knochenzements und knochenzement-kit
DE50202488T DE50202488D1 (de) 2001-06-15 2002-06-14 Verfahren zur herstellung eines bioaktiven knochenzements und knochenzement-kit
AU2002319091A AU2002319091A1 (en) 2001-06-15 2002-06-14 Method for producing a bioactive bone cement and bone cement kit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10129842.0 2001-06-15
DE10129842A DE10129842C1 (de) 2001-06-15 2001-06-15 Verfahren zur Herstellung eines bioaktiven Knochenzements und Knochenzement-Kit

Publications (2)

Publication Number Publication Date
WO2002102427A1 true WO2002102427A1 (de) 2002-12-27
WO2002102427A8 WO2002102427A8 (de) 2003-08-07

Family

ID=7688897

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2002/002228 WO2002102427A1 (de) 2001-06-15 2002-06-14 Verfahren zur herstellung eines bioaktiven knochenzements und knochenzement-kit

Country Status (8)

Country Link
US (1) US7109254B2 (de)
EP (1) EP1395296B1 (de)
JP (1) JP4573527B2 (de)
AT (1) ATE290888T1 (de)
AU (1) AU2002319091A1 (de)
DE (2) DE10129842C1 (de)
ES (1) ES2239720T3 (de)
WO (1) WO2002102427A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006082442A1 (en) * 2005-02-07 2006-08-10 Orthogem Limited Bone cement

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10129845C2 (de) * 2001-06-15 2003-08-21 Bam Bundesanstalt Matforschung Verfahren zur Herstellung eines temporären Adhäsivs für Metall-Metall- und Metall-Keramik-Bindungen und Adhäsiv-Kit
DE10129843A1 (de) * 2001-06-15 2003-03-06 Bam Bundesanstalt Matforschung Oberflächenbehandeltes metallisches Implantat und Strahlgut
AU2003214708A1 (en) 2003-03-14 2004-09-30 Roque Humberto Ferreyro Irigoyen Hydraulic device for the injection of bone cement in percutaneous vertebroplasty
US8066713B2 (en) 2003-03-31 2011-11-29 Depuy Spine, Inc. Remotely-activated vertebroplasty injection device
US8415407B2 (en) 2004-03-21 2013-04-09 Depuy Spine, Inc. Methods, materials, and apparatus for treating bone and other tissue
US8579908B2 (en) 2003-09-26 2013-11-12 DePuy Synthes Products, LLC. Device for delivering viscous material
EP1786343B1 (de) 2004-07-30 2012-05-02 Depuy Spine, Inc. Gerät zur behandlung von knochen und anderem gewebe
DE102004049121B4 (de) * 2004-10-07 2008-01-10 Heraeus Kulzer Gmbh Antibiotikum-/Antibiotika enthaltender PMMA-Knochenzement
KR101277869B1 (ko) * 2004-11-16 2013-07-30 쓰리엠 이노베이티브 프로퍼티즈 컴파니 포스페이트 염을 포함하는 치과용 충전제 및 조성물
JP4555804B2 (ja) * 2005-07-29 2010-10-06 独立行政法人科学技術振興機構 生体活性骨セメント組成物及びその製造方法、並びにそれを製造するためのキット
US9381024B2 (en) 2005-07-31 2016-07-05 DePuy Synthes Products, Inc. Marked tools
US9918767B2 (en) 2005-08-01 2018-03-20 DePuy Synthes Products, Inc. Temperature control system
US8360629B2 (en) 2005-11-22 2013-01-29 Depuy Spine, Inc. Mixing apparatus having central and planetary mixing elements
EP2068898A4 (de) 2006-09-14 2011-07-20 Depuy Spine Inc Knochenzement und anwendungsverfahren dafür
WO2008047371A2 (en) 2006-10-19 2008-04-24 Depuy Spine, Inc. Fluid delivery system
US20090131867A1 (en) 2007-11-16 2009-05-21 Liu Y King Steerable vertebroplasty system with cavity creation element
US9510885B2 (en) 2007-11-16 2016-12-06 Osseon Llc Steerable and curvable cavity creation system
US20090131886A1 (en) 2007-11-16 2009-05-21 Liu Y King Steerable vertebroplasty system
US7789646B2 (en) 2007-12-07 2010-09-07 Zimmer Orthopaedic Surgical Products, Inc. Spacer mold and methods therefor
EP2222349B1 (de) * 2007-12-17 2014-03-12 Anna Love Weichgewebefüller
DE102008022723A1 (de) 2008-05-06 2009-11-12 mü-bond GmbH Verfahren zur Herstellung eines Knochenzements mit Bioaktivität und Knochenzement-Kit
JP5400891B2 (ja) * 2008-10-29 2014-01-29 ジンマー オーソピーディック サージカル プロダクツ,インコーポレーテッド 解除可能な固定構造を有するスぺーサモールド
US20100298832A1 (en) 2009-05-20 2010-11-25 Osseon Therapeutics, Inc. Steerable curvable vertebroplasty drill
CN102958456B (zh) 2010-04-29 2015-12-16 Dfine有限公司 用于治疗椎骨骨折的系统
US8912244B2 (en) * 2012-03-09 2014-12-16 Protocol Environmental Solutions Inc. Non-film forming compositions and methods of protecting cured concrete and cementitious materials
CN109862834B (zh) 2016-10-27 2022-05-24 Dfine有限公司 具有接合剂递送通道的可弯曲的骨凿
US11116570B2 (en) 2016-11-28 2021-09-14 Dfine, Inc. Tumor ablation devices and related methods
US10463380B2 (en) 2016-12-09 2019-11-05 Dfine, Inc. Medical devices for treating hard tissues and related methods
US10660656B2 (en) 2017-01-06 2020-05-26 Dfine, Inc. Osteotome with a distal portion for simultaneous advancement and articulation
WO2020097334A1 (en) 2018-11-08 2020-05-14 Dfine, Inc. Ablation systems with parameter-based modulation and related devices and methods
US11986229B2 (en) 2019-09-18 2024-05-21 Merit Medical Systems, Inc. Osteotome with inflatable portion and multiwire articulation

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1091476A (en) * 1966-07-04 1967-11-15 Gerhard Schoenert Kommanditges Dental filling masses
DE2906413A1 (de) * 1978-02-22 1980-01-10 S E P C S A R L Societe D Expl Zement fuer prothesenimplantate
EP0383595A1 (de) * 1989-02-16 1990-08-22 University of Strathclyde Zementzusammensetzungen
EP0434010A1 (de) * 1989-12-22 1991-06-26 Vita Zahnfabrik H. Rauter GmbH & Co KG Haftmittlergemisch (Blend) für die zahnärtzliche Prothetik und dessen Verwendung als Dentalbindemittel
DE19641775A1 (de) * 1996-08-22 1998-02-26 Merck Patent Gmbh Verfahren zur Herstellung von wirkstoffhaltigen Knochenzementen
DE19744809C1 (de) * 1997-10-02 1999-07-01 Georg Dr Berger Poröser, glasig-kristalliner Formkörper mit schneller Löslichkeit, Verfahren zu seiner Herstellung und Verwendung
WO2001041713A1 (en) * 1999-12-06 2001-06-14 Abonetics 2000 Limited Self curing cements
DE19963251A1 (de) * 1999-12-17 2001-06-21 Mueller Wolf Dieter Verfahren zur Herstellung eines Knochenzements und Knochenzement-Kit

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4362510A (en) * 1981-12-10 1982-12-07 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Cementitious dental compositions which do not inhibit polymerization
JP3495099B2 (ja) * 1993-08-02 2004-02-09 サンメディカル株式会社 硬化性接着材組成物および接着材キット
DE4433201A1 (de) * 1994-09-17 1996-03-21 Merck Patent Gmbh Verfahren zur Herstellung von wirkstoffhaltigen Knochenzementen
AU3795395A (en) * 1994-11-30 1996-06-06 Ethicon Inc. Hard tissue bone cements and substitutes
US5795922A (en) * 1995-06-06 1998-08-18 Clemson University Bone cement composistion containing microencapsulated radiopacifier and method of making same
US6066176A (en) * 1996-07-11 2000-05-23 Oshida; Yoshiki Orthopedic implant system
DE19635205A1 (de) 1996-08-30 1998-03-05 Gerd Hoermansdoerfer Knochenzement
DE10129845C2 (de) * 2001-06-15 2003-08-21 Bam Bundesanstalt Matforschung Verfahren zur Herstellung eines temporären Adhäsivs für Metall-Metall- und Metall-Keramik-Bindungen und Adhäsiv-Kit

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1091476A (en) * 1966-07-04 1967-11-15 Gerhard Schoenert Kommanditges Dental filling masses
DE2906413A1 (de) * 1978-02-22 1980-01-10 S E P C S A R L Societe D Expl Zement fuer prothesenimplantate
EP0383595A1 (de) * 1989-02-16 1990-08-22 University of Strathclyde Zementzusammensetzungen
EP0434010A1 (de) * 1989-12-22 1991-06-26 Vita Zahnfabrik H. Rauter GmbH & Co KG Haftmittlergemisch (Blend) für die zahnärtzliche Prothetik und dessen Verwendung als Dentalbindemittel
DE19641775A1 (de) * 1996-08-22 1998-02-26 Merck Patent Gmbh Verfahren zur Herstellung von wirkstoffhaltigen Knochenzementen
DE19744809C1 (de) * 1997-10-02 1999-07-01 Georg Dr Berger Poröser, glasig-kristalliner Formkörper mit schneller Löslichkeit, Verfahren zu seiner Herstellung und Verwendung
WO2001041713A1 (en) * 1999-12-06 2001-06-14 Abonetics 2000 Limited Self curing cements
DE19963251A1 (de) * 1999-12-17 2001-06-21 Mueller Wolf Dieter Verfahren zur Herstellung eines Knochenzements und Knochenzement-Kit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006082442A1 (en) * 2005-02-07 2006-08-10 Orthogem Limited Bone cement
GB2437679A (en) * 2005-02-07 2007-10-31 Orthogem Ltd Bone cement
GB2437679B (en) * 2005-02-07 2009-10-14 Orthogem Ltd Bone cement

Also Published As

Publication number Publication date
EP1395296B1 (de) 2005-03-16
EP1395296A1 (de) 2004-03-10
ES2239720T3 (es) 2005-10-01
US20040138759A1 (en) 2004-07-15
DE10129842C1 (de) 2003-04-24
ATE290888T1 (de) 2005-04-15
JP4573527B2 (ja) 2010-11-04
AU2002319091A1 (en) 2003-01-02
WO2002102427A8 (de) 2003-08-07
DE50202488D1 (de) 2005-04-21
JP2005508665A (ja) 2005-04-07
US7109254B2 (en) 2006-09-19

Similar Documents

Publication Publication Date Title
EP1395296B1 (de) Verfahren zur herstellung eines bioaktiven knochenzements und knochenzement-kit
Xu et al. Premixed calcium phosphate cements: synthesis, physical properties, and cell cytotoxicity
Burguera et al. Injectable and rapid‐setting calcium phosphate bone cement with dicalcium phosphate dihydrate
EP2142225B1 (de) Biologisce hydraulische fertigzementpastenzusammensetzung und ihre verwendung
Carey et al. Premixed rapid-setting calcium phosphate composites for bone repair
EP0511868B1 (de) Erhärtende Zusammensetzungen zur Verwendung in der Medizin oder Zahnheilkunde
Burguera et al. Injectable calcium phosphate cement: Effects of powder‐to‐liquid ratio and needle size
EP1395300B1 (de) Oberflächenbehandeltes metallisches implantat und strahlgut
DE2750326B2 (de) Härtbare Zementmischung für medizinische Zwecke
AU2005304026A1 (en) Dental glass composition
DE10129845C2 (de) Verfahren zur Herstellung eines temporären Adhäsivs für Metall-Metall- und Metall-Keramik-Bindungen und Adhäsiv-Kit
Khashaba et al. Polymeric-calcium phosphate cement composites-material properties: in vitro and in vivo investigations
DE10249625B4 (de) Pulvergemisch für resorbierbare Calciumphosphat-Biozemente und ihre Verwendung
Cox et al. A cohesive premixed monetite biocement
EP2173392B1 (de) Zubereitung für magnesiumammoniumphosphat-zemente
Mendes et al. Injectable β-TCP/MCPM cement associated with mesoporous silica for bone regeneration: Characterization and toxicity evaluation
EP2976311B1 (de) Sinter- und/oder schmelzfähige keramische masse, deren herstellung und verwendung
de Val et al. Material characterization and in vivo behavior of dicalcium silicate cement modified with phosphorus
DE19963251A1 (de) Verfahren zur Herstellung eines Knochenzements und Knochenzement-Kit
JPH06172008A (ja) 硬化性組成物
WO2009135697A2 (de) Verfahren zur herstellung eines knochenzements mit bioaktivität und knochenzement-kit
Ritts The study and development of calcium phosphate bone cement and hydroxyapatite nanofibers
JPH0523389A (ja) 医科用または歯科用硬化性組成物
Khashaba et al. Properties: In Vitro and In Vivo Investigations
JPH04329961A (ja) 医科用または歯科用硬化性組成物

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
CFP Corrected version of a pamphlet front page
CR1 Correction of entry in section i

Free format text: IN PCT GAZETTE 52/2002 ADD "DECLARATION UNDER RULE 4.17: - AS TO THE APPLICANT?S ENTITLEMENT TO CLAIM THE PRIORITY OF THE EARLIER APPLICATION (RULE 4.17(III)) FOR ALL DESIGNATIONS."

WWE Wipo information: entry into national phase

Ref document number: 2003505012

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2002748596

Country of ref document: EP

Ref document number: 10480886

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2002748596

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2002748596

Country of ref document: EP