US20090131886A1 - Steerable vertebroplasty system - Google Patents

Steerable vertebroplasty system Download PDF

Info

Publication number
US20090131886A1
US20090131886A1 US11/941,764 US94176407A US2009131886A1 US 20090131886 A1 US20090131886 A1 US 20090131886A1 US 94176407 A US94176407 A US 94176407A US 2009131886 A1 US2009131886 A1 US 2009131886A1
Authority
US
United States
Prior art keywords
bone cement
steerable
injection needle
bone
needle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/941,764
Inventor
Y. King Liu
Jan R. Lau
Judson E. Threlkeld
Michael T. Lyster
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osseon LLC
Vilex LLC
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/941,733 external-priority patent/US20090131950A1/en
Priority to US11/941,733 priority Critical patent/US20090131950A1/en
Priority to US11/941,764 priority patent/US20090131886A1/en
Application filed by Individual filed Critical Individual
Priority to US12/029,428 priority patent/US20090131867A1/en
Priority to US12/261,987 priority patent/US7842041B2/en
Priority to US12/262,064 priority patent/US7811291B2/en
Priority to KR20107013294A priority patent/KR20100107449A/en
Priority to CN200880124572.3A priority patent/CN101909532B/en
Priority to EP08849845.6A priority patent/EP2222236B1/en
Priority to AU2008322467A priority patent/AU2008322467A1/en
Priority to CA 2705762 priority patent/CA2705762A1/en
Priority to PCT/US2008/083698 priority patent/WO2009065085A1/en
Assigned to OSSEON THERAPEUTICS, INC. reassignment OSSEON THERAPEUTICS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: THRELKELD, JUDSON E., LYSTER, MICHAEL T., LAU, JAN R., LIU, Y. KING
Priority to US12/469,654 priority patent/US20090299282A1/en
Publication of US20090131886A1 publication Critical patent/US20090131886A1/en
Priority to HK11105730.1A priority patent/HK1151706A1/en
Priority to US13/182,335 priority patent/US20120158004A1/en
Assigned to VENTURE LENDING & LEASING VI, INC. reassignment VENTURE LENDING & LEASING VI, INC. SECURITY AGREEMENT Assignors: OSSEON THERAPEUTICS, INC.
Priority to US13/452,784 priority patent/US8827981B2/en
Assigned to J. & P. O'DONNELL REVOCABLE TRUST, DATED OCTOBER 20, 1982 reassignment J. & P. O'DONNELL REVOCABLE TRUST, DATED OCTOBER 20, 1982 SECURITY AGREEMENT Assignors: OSSEON THERAPEUTICS, INC., VENTURE LENDING & LEASING VI, INC.
Priority to US13/736,871 priority patent/US9510885B2/en
Assigned to SQUADRON NEWCO LLC reassignment SQUADRON NEWCO LLC TRANSFER PURSUANT TO FORECLOSURE Assignors: OSSEON THERAPEUTICS, INC.
Assigned to OSSEON LLC reassignment OSSEON LLC CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: SQUADRON NEWCO LLC
Assigned to SQUADRON NEWCO LLC reassignment SQUADRON NEWCO LLC SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: O'DONNELL REVOCABLE TRUST, DATED OCTOBER 30, 1982, OSSEON THERAPEUTICS, INC,
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0043Catheters; Hollow probes characterised by structural features
    • A61M25/0054Catheters; Hollow probes characterised by structural features with regions for increasing flexibility
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/88Osteosynthesis instruments; Methods or means for implanting or extracting internal or external fixation devices
    • A61B17/8802Equipment for handling bone cement or other fluid fillers
    • A61B17/8805Equipment for handling bone cement or other fluid fillers for introducing fluid filler into bone or extracting it
    • A61B17/8811Equipment for handling bone cement or other fluid fillers for introducing fluid filler into bone or extracting it characterised by the introducer tip, i.e. the part inserted into or onto the bone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/88Osteosynthesis instruments; Methods or means for implanting or extracting internal or external fixation devices
    • A61B17/8802Equipment for handling bone cement or other fluid fillers
    • A61B17/8805Equipment for handling bone cement or other fluid fillers for introducing fluid filler into bone or extracting it
    • A61B17/8827Equipment for handling bone cement or other fluid fillers for introducing fluid filler into bone or extracting it with filtering, degassing, venting or pressure relief means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/0105Steering means as part of the catheter or advancing means; Markers for positioning
    • A61M25/0133Tip steering devices
    • A61M25/0138Tip steering devices having flexible regions as a result of weakened outer material, e.g. slots, slits, cuts, joints or coils
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/0105Steering means as part of the catheter or advancing means; Markers for positioning
    • A61M25/0133Tip steering devices
    • A61M25/0147Tip steering devices with movable mechanical means, e.g. pull wires
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/0105Steering means as part of the catheter or advancing means; Markers for positioning
    • A61M25/0133Tip steering devices
    • A61M25/0152Tip steering devices with pre-shaped mechanisms, e.g. pre-shaped stylets or pre-shaped outer tubes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00535Surgical instruments, devices or methods, e.g. tourniquets pneumatically or hydraulically operated
    • A61B2017/00557Surgical instruments, devices or methods, e.g. tourniquets pneumatically or hydraulically operated inflatable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0067Catheters; Hollow probes characterised by the distal end, e.g. tips
    • A61M25/0082Catheter tip comprising a tool
    • A61M25/0084Catheter tip comprising a tool being one or more injection needles
    • A61M2025/0089Single injection needle protruding axially, i.e. along the longitudinal axis of the catheter, from the distal tip
    • A61M2025/009Single injection needle protruding axially, i.e. along the longitudinal axis of the catheter, from the distal tip the needle having a bent tip, i.e. the needle distal tip is angled in relation to the longitudinal axis of the catheter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0067Catheters; Hollow probes characterised by the distal end, e.g. tips
    • A61M25/0082Catheter tip comprising a tool
    • A61M25/0084Catheter tip comprising a tool being one or more injection needles
    • A61M2025/0092Single injection needle protruding laterally from the distal tip
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0067Catheters; Hollow probes characterised by the distal end, e.g. tips
    • A61M25/0068Static characteristics of the catheter tip, e.g. shape, atraumatic tip, curved tip or tip structure
    • A61M25/007Side holes, e.g. their profiles or arrangements; Provisions to keep side holes unblocked
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/0105Steering means as part of the catheter or advancing means; Markers for positioning
    • A61M25/0133Tip steering devices
    • A61M25/0136Handles therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/19Syringes having more than one chamber, e.g. including a manifold coupling two parallelly aligned syringes through separate channels to a common discharge assembly

Definitions

  • the present invention relates to bone augmentation devices and procedures.
  • the present invention relates to steerable injection devices and systems for introducing conventional or novel bone cement formulations such as in performing vertebroplasty.
  • Morbidity associated with vertebral fractures includes severe back pain, loss of height and deformity, all of which negatively affect quality of life.
  • Vertebroplasty stabilizes the collapsed vertebra by injecting polymethylmethacrylate (PMMA) or a substantially equivalent bone cement into cancellous bone space of the vertebrae.
  • PMMA polymethylmethacrylate
  • the exothermic reaction of PMMA polymerization is said to kill off the nociceptors or pain receptors in the bone, although no proof of this hypothesis has been provided in the literature.
  • This procedure is typically performed as an outpatient procedure and requires only a short-acting local or general anesthetic.
  • the physician inserts one or two needles through small skin incisions into either the pedicle (uni-transpedicular) or the pedicles of the vertebral body i.e., bi-transpedicular.
  • PMMA is injected through the needle and into the cancellous-bone space of the vertebra.
  • Kyphoplasty mirrors the vertebroplasty procedure but has the additional step of inserting and expanding a nylon balloon in the interior of the vertebral body. Expansion of the balloon under pressure reduces the compression fracture and creates a cavity. After withdrawal of the balloon, PMMA is injected into the cavity to stabilize the reduction. The kyphoplasty procedure may restore the vertebral body height. Kyphoplasty is an in-patient surgery that requires hospitalization and a general anesthetic. Kyphon Inc. claims over 275,000 spinal fractures have been treated using their PMMA derivative and their “balloon” kyphoplasty procedure worldwide (Sunnyvale, Calif., Sep. 5, 2006, (PR NEWSWIRE) Kyphon study 2006).
  • Bone cement for both vertebroplasty and kyphoplasty procedures currently employ variations of standard PMMA in a powder and a methyl methacrylate monomer liquid.
  • an exothermic polymerization takes place resulting in the formation of a “dough-like” material, which is then inserted into the cancellous bone space.
  • the dough when hardened, becomes either the reinforcing structure or the grout between the bone and prosthesis.
  • the average clinical in vivo life of the PMMA grout is approximately 10 years due to corrosion fatigue of either the bone-cement/prosthesis and/or the bone cement/bone interfaces.
  • Jasty et al. (1991) showed that in cemented total hip replacements: “Fractures in the cement mantle itself were found on cut sections around all prostheses which had been in use for over three years.” Jasty et al. also noted: “In general, specimens less than 10 years in situ showed small incomplete fractures while the specimens in place more than 10 years all showed large complete cement mantle fractures.”
  • a revision becomes mandatory. After removal of the cement and hardware, a cemented arthroplasty can be repeated if enough cancellous bone matrix exists to grip the new PMMA. Alternatively, cement-less prosthesis can be installed. Such a revision, however, can only be applied to total joint replacement failures. For vertebroplasty and/or kyphoplasty, a classical screw and plate internal fixation with autograft fusion is necessary.
  • a steerable vertebroplasty device including an elongate tubular body having a proximal end, a distal end, and a central lumen extending therethrough; a deflectable zone on the distal end of the tubular body, deflectable through an angular range; a handle on the proximal end of the tubular body; and a deflection control on the handle.
  • the handle and deflection control are configured for single hand operation.
  • the deflection control can include a rotatable element.
  • the distal end can include a distally facing exit port in communication with the central lumen, or a laterally facing exit port in some embodiments.
  • the device can also include an actuator extending axially between the deflection control and the deflectable zone.
  • the actuator can be an axially moveable element.
  • the device can also include a port on the proximal end of the vertebroplasty device, in communication with the central lumen.
  • the deflectable zone can be deflectable within a plane, and the port can reside in the same plane.
  • the tubular body includes a proximal zone and a distal, deflectable zone separated by a transition, and the transition can be at least about 15% of the length of the tubular body from the distal end.
  • Also disclosed herein is a method of treating a vertebral body.
  • the method includes the steps of introducing a tubular injector having a longitudinal axis through cortical bone and into cancellous bone of a vertebral body; deflecting a distal section of the injector angularly with respect to the longitudinal axis; and introducing media through the injector and into the vertebral body.
  • a system for performing vertebroplasty includes a steerable injection needle, a cement dispensing pump, and a mixing nozzle.
  • the steerable injection needle has a proximal portion, elongate shaft, and a distal portion, the distal portion movable from a first substantially straight configuration to a second configuration not substantially coaxial with the proximal portion.
  • the cement dispensing pump can include a first cartridge housing configured to house a cartridge containing two separate bone cement components.
  • the mixing nozzle is present for mixing the first bone cement component and second bone cement component material into a bone cement composite.
  • the system also includes a stylet for creating an access pathway in a pedicle.
  • the system can also include an introducer cannula.
  • the first and/or second bone cement component can also be present in the system.
  • the first bone cement component can include MMA.
  • the second bone cement component can include from about 25% to about 35% by weight of bone particles, or at least about 35% weight percent of bone particles in other embodiments.
  • the steerable injection needle can also include an input port for receiving bone cement from the cement dispensing pump.
  • the input port can include a Luer lock.
  • the steerable injection needle can include an adjustment control configured to adjust the curvature of the distal end.
  • the steerable injection needle includes an end cap on the distal end of the needle.
  • the steerable injection needle can include a pull wire operably connected to the distal end of the needle.
  • the steerable injection needle includes a filter operably connected to a distal opening of the needle.
  • the distal portion of the steerable needle can have a working length of at least about 20% of the total working length of the needle.
  • the steerable injection needle may also include a spring coil.
  • Also disclosed herein is a method of treating a bone, including the steps of creating a pedicular access channel in a pedicle to access the interior of a vertebral body; inserting an introducer cannula into the pedicle; inserting a steerable injection needle through the introducer cannula into the interior of a vertebral body, the steerable injection needle having a proximal end and a distal end, the distal end having a first configuration substantially coaxial with a long axis of the proximal end; deflecting the distal end of the steerable injection needle to a second configuration that is not substantially coaxial with the long axis of the proximal end; and flowing bone cement through the steerable injection needle into the interior of the vertebral body.
  • the second configuration of the distal end of the steerable injection needle includes a curved portion.
  • deflecting the distal end of the steerable injection needle is accomplished by exerting tension on a pull wire operably connected to the distal end.
  • deflecting the distal end of the steerable injection needle is accomplished by withdrawing a sheath at least partially covering the distal end.
  • the method can also include the steps of: providing a cement dispensing pump with a cartridge containing a first bone cement material and a second bone cement material out of contact with the first bone cement material, and a mixing nozzle; flowing the first bone cement material and the second bone cement material into the mixing nozzle, creating a bone cement; and flowing the bone cement into an input port of the steerable injection needle.
  • Flowing bone cement through the steerable injection needle into the interior of the vertebral body can include releasing a first bone cement within the interior of the vertebral body.
  • the bone cement can have at least 35% particles by weight in some embodiments.
  • flowing bone cement through the steerable injection needle into the interior of the vertebral body additionally includes releasing a second bone cement within the first bone cement, where the second bone cement includes less than about 35% particles by weight.
  • a closed vertebroplasty bone cement injection system that includes a cartridge containing at least a first chamber and a second chamber; a first bone cement component in the first chamber and a second bone cement component in the second chamber; a mixing chamber, for mixing the first and second bone cement components; an elongate injection needle, for directing bone cement into a treatment site in the spine; and a closed flow path for directing the first and second bone cement components from the first and second chambers, through the mixing chamber, through the injection needle and into the spine at the treatment site.
  • the cartridge, mixing chamber, and/or injection needle can be releaseably connected to the flow path.
  • the injection needle can have a deflectable distal end.
  • Also disclosed herein is a method of injecting bone cement into a treatment site in a bone, including the steps of: providing a first chamber having a first bone cement component, and a second chamber having a second bone cement component, the first and second bone cement components formulated to form a hardenable bone cement following mixing; providing a mixing chamber for mixing the first and second bone cement components; providing an elongate, tubular injection needle; connecting the first and second bone cement chambers, the mixing chamber and the injection needle into a closed flow path; and expressing first and second bone cement components through the mixing chamber, through the injection needle and into the site.
  • the first and the second chambers can be contained in a single cartridge.
  • FIG. 1 is a perspective view of a steerable injection needle in accordance with one aspect of the present invention.
  • FIG. 2 is a perspective view of an introducer in accordance with one aspect of the present invention.
  • FIG. 3 is a perspective view of a stylet in accordance with one aspect of the present invention.
  • FIG. 4 is a side elevational view of the steerable injection needle moveably coaxially disposed within the introducer, in a substantially linear configuration.
  • FIG. 5 is a side elevational view of the assembly of FIG. 4 , showing the steerable injection needle in a curved configuration.
  • FIG. 6 is a side elevational schematic view of another steerable injection needle in accordance with the present invention.
  • FIG. 7A is a schematic view of a distal portion of the steerable needle of FIG. 6 , shown in a linear configuration.
  • FIG. 7B is a schematic view as in FIG. 7A , following proximal retraction of a pull wire to laterally deflect the distal end.
  • FIG. 8 is a schematic view of a distal portion of a steerable needle, having a side port.
  • FIG. 9A is a schematic view of a distal portion of a steerable needle, positioned within an outer sheath.
  • FIG. 9B is an illustration as in FIG. 9A , with the distal sheath partially proximally retracted.
  • FIG. 9C is an illustration as in FIG. 9B , with the outer sheath proximally retracted a sufficient distance to fully expose the deflection zone.
  • FIGS. 10A-10C illustrate various aspects of an alternative deflectable needle in accordance with the present invention.
  • FIGS. 11A-11C illustrate various views of a further embodiment of a deflectable needle in accordance with the present invention.
  • FIGS. 12A-12C illustrate a distal section of a deflectable needle, comprising a helically wound coil structure.
  • FIG. 13 is a partially exploded schematic view of a cement gun, dual chamber cement cartridge and mixing chamber for use with the present invention.
  • FIG. 14 is a schematic view of an alternate two-part dispensing system for the cement of the present invention.
  • FIGS. 15A and 15B are schematic views of a bone cement delivery system in accordance with the present invention.
  • FIGS. 16A through 16F show stages in the method of accomplishing vertebroplasty in accordance with present invention.
  • the present invention provides improved delivery systems for delivery of a bone cement or bone cement composite for the treatment of vertebral compression fractures due to osteoporosis (OSP), osteo-trauma, and benign or malignant lesions such as metastatic cancers and myeloma, and associated access and deployment tools and procedures.
  • OSP osteoporosis
  • osteo-trauma a bone cement or bone cement composite for the treatment of vertebral compression fractures due to osteoporosis (OSP), osteo-trauma, and benign or malignant lesions such as metastatic cancers and myeloma, and associated access and deployment tools and procedures.
  • benign or malignant lesions such as metastatic cancers and myeloma
  • the primary materials in the preferred bone cement composite are methyl methacrylate and inorganic cancellous and/or cortical bone chips or particles. Suitable inorganic bone chips or particles are sold by Allosource, Osteotech and LifeNet (K053098); all have been cleared for marketing by FDA
  • the preferred bone cement also may contain the additives: barium sulfate for radio-opacity, benzoyl peroxide as an initiator, N,N-dimethyl-p-toluidine as a promoter and hydroquinone as a stabilizer.
  • One preferred bone cement implant procedure involves a two-step injection process with two different concentrations of the bone particle impregnated cement.
  • the bone cement materials are packaged in separate cartridges containing specific bone cement and inorganic bone particle concentrations for each step.
  • Tables 1 and 2, infra list one example of the respective contents and concentrations in Cartridges 1 A and 1 B for the first injection step, and Cartridges 2 A and 2 B for the second injection step.
  • the bone cement delivery system generally includes at least three main components: 1) stylet; 2) introducer cannula; and 3) steerable injection needle. See FIGS. 1-3 .
  • Packaged with the system or packaged separately is a cement dispensing pump.
  • the complete system also preferably includes at least one cement cartridge having at least two chambers therein, and a spiral mixing nozzle.
  • the stylet is used to perforate a hole into the pedicle of the vertebra to gain access to the interior of the vertebral body.
  • the introducer cannula is used for bone access and as a guide for the steerable injection needle.
  • the introducer cannula is sized to allow physicians to perform vertebroplasty or kyphoplasty on vertebrae with small pedicles such as the thoracic vertebra T5 as well as larger vertebrae.
  • this system is designed for uni-transpedicular access and/or bi-pedicular access.
  • the steerable injection needle can be inserted through the introducer cannula into the vertebra.
  • the entire interior vertebral body may be accessed using the steerable injection needle.
  • the distal end of the needle can be manually shaped to any desired radius within the product specifications. The radius is adjusted by means of a knob on the proximal end of the device.
  • the hand-held cement dispensing pump may be attached to the steerable injection needle by a slip-ring luer fitting.
  • the pre-filled 2-chambered cartridges ( 1 A and 1 B, and 2 A and 2 B) are loaded into the dispensing pump.
  • each piston pushes the cartridge material into the spiral mixing tube.
  • the materials are mixed in the spiral mixing nozzle prior to entering the steerable injection needle.
  • the ratio of diameters of the cartridge chambers determines the mixing ratio for achieving the desired viscosity.
  • the bone cement implant procedures described herein use established vertebroplasty and kyphoplasty surgical procedures to stabilize the collapsed vertebra by injecting bone cement into cancellous bone.
  • the preferred procedure is designed for uni-transpedicular access and may be accomplished under either a local anesthetic or short-duration general anesthetic.
  • Injection of the preferred bone cement involves a two-step procedure.
  • the pre-filled Cartridges 1 A and 1 B are loaded into the dispensing pump.
  • each piston pushes material into the spiral mixing tube.
  • the diameter of each chamber may be utilized to determine the mixing ratio for achieving the desired viscosity.
  • the first step involves injecting a small quantity of PMMA with more than about 35%, e.g., 60% inorganic bone particles, onto the outer periphery of the cancellous bone matrix, i.e., next to the inner wall of the cortical bone of the vertebral body.
  • the cement composite is designed to harden relatively quickly, forming a firm but still pliable shell. This shell is intended to prevent bone marrow/PMMA content from being ejected through any venules or micro-fractures in the vertebral body wall.
  • the second step of the procedure involves a second injection of PMMA with an approximately 30% inorganic bone particles to stabilize the remainder of the weakened, compressed cancellous bone.
  • the steerable needle disclosed herein and discussed in greater detail below can be used in conventional vertebroplasty procedures, using a single step bone cement injection.
  • Injection control for the first and second steps is provided by a 2 mm ID flexible injection needle, which is coupled to the hand operated bone cement injection pump.
  • the 60% (>35%) and 30% ratio of inorganic bone particle to PMMA concentrations may be controlled by the pre-filled cartridge sets 1 A and 1 B, and 2 A and 2 B.
  • the amount of the injectate is under the direct control of the surgeon or intervention radiologist and visualized by fluoroscopy.
  • the introducer cannula is slowly withdrawn from the cancellous space as the second injection of bone cement begins to harden, thus preventing bone marrow/PMMA content from exiting the vertebral body.
  • the procedure concludes with closure of the surgical incision with bone filler.
  • In vitro and in vivo studies have shown that the 60% (>35%) bone-particle impregnated bone cement hardens in 2-3 minutes and 30% bone-particle impregnated bone cement hardens between 4 to 10 minutes.
  • a steerable injection device that can be used to introduce any of a variety of materials or devices for diagnostic or therapeutic purposes.
  • the system is used to inject bone cement, e.g., PMMA or any of the bone cement compositions disclosed elsewhere herein.
  • the injection system most preferably includes a tubular body with a steerable (i.e., deflectable) distal portion for introducing bone cement into various locations displaced laterally from the longitudinal axis of the device within a vertebral body during a vertebroplasty procedure.
  • the steerable injection needle 10 comprises an elongate tubular body 12 having a proximal end 14 and a distal end 16 .
  • the proximal end 14 is provided with a handle or manifold 18 , adapted to remain outside of the patient and enable introduction and/or aspiration of bone cement or other media, and control of the distal end as will be described herein.
  • manifold 18 is provided with at least one injection port 20 , which is in fluid communication with a central lumen (not illustrated) extending through tubular body 12 to at least one distal exit port 22 .
  • the manifold 18 is additionally provided with a control 26 such as a rotatable knob, slider, or other moveable control, for controllably deflecting a deflection zone 24 on the distal end 16 of the tubular body 12 .
  • a control 26 such as a rotatable knob, slider, or other moveable control, for controllably deflecting a deflection zone 24 on the distal end 16 of the tubular body 12 .
  • the deflection zone 24 may be advanced from a relatively linear configuration as illustrated in FIG. 1 to a deflected configuration throughout an angular range of motion.
  • an elongate tubular introducer 30 having a proximal end 32 , a distal end 34 and an elongate tubular body 36 extending therebetween.
  • a central lumen 38 (not shown) extends between a proximal access port 40 and a distal access port 42 .
  • the central lumen 38 has an inside diameter which is adapted to slideably axially receive the steerable injection needle 10 therethrough. This enables placement of the distal end 34 adjacent a treatment site within the body, to establish an access pathway from outside of the body to the treatment site.
  • the introducer 30 enables procedures deep within the body such as within the spine, through a minimally invasive and/or percutaneous access.
  • the steerable injection needle 10 and/or other procedure tools may be introduced into port 40 , through lumen 38 and out of port 42 to reach the treatment site.
  • the proximal end 32 of introducer 30 may be provided with a handle 44 for manipulation during the procedure.
  • Handle 44 may be configured in any of a variety of ways, such as having a frame 46 with at least a first aperture 48 and a second aperture 50 to facilitate grasping by the clinician.
  • Stylet 60 comprises a proximal end 62 , a distal end 64 and an elongate body 66 extending therebetween.
  • the proximal end 62 may be provided with a stop 68 such as a grasping block, manifold or other structure, to facilitate manipulation by the clinician.
  • the block 68 is configured to nest within a recess 70 on the proximal end of the introducer 30 .
  • the stylet 60 has an outside diameter which is adapted to coaxially slide within the central lumen on introducer 30 .
  • block 68 is nested within recess 70 , a distal end 64 of stylet 60 is exposed beyond the distal end 34 of introducer 30 .
  • the distal end 64 of stylet 60 may be provided with a pointed tip 72 , such as for anchoring into the surface of a bone.
  • FIG. 4 there is illustrated a side elevational view of an assembly in accordance with the present invention in which a steerable injection needle 10 is coaxially positioned within an introducer 30 .
  • the introducer 30 is axially moveably carried on the steerable injection needle 10 .
  • the introducer 30 is illustrated in a distal position such that it covers at least a portion of the deflection zone 24 on injection needle 10 .
  • FIG. 5 illustrates an assembly as in FIG. 4 , in which the introducer 30 has been proximally retracted along the injection needle 10 to fully expose the deflection zone 24 on injection needle 10 .
  • the control 26 has been manipulated to deflect the deflection zone 24 through an angle of approximately 90°. Additional details of the steerable needle will be discussed below.
  • FIG. 6 illustrates a schematic perspective view of an alternate steerable vertebroplasty injector, according to one embodiment of the invention.
  • the steerable injector 700 includes a body or shaft portion 702 that is preferably elongate and tubular, input port 704 , adjustment control 706 , and handle portion 708 .
  • the elongate shaft 702 preferably has a first proximal portion 710 and a second distal portion 712 which merge at a transition point 714 .
  • Shaft 702 may be made of stainless steel, such as 304 stainless steel, Nitinol, Elgiloy, or other appropriate material.
  • tubular body 702 may be extruded from any of a variety of polymers well known in the catheter arts, such as PEEK, PEBAX, nylon and various polyethylenes. Extruded tubular bodies 702 may be reinforced using metal or polymeric spiral wrapping or braided wall patterns, as is known in the art.
  • the shaft 702 defines at least one lumen therethrough that is preferably configured to carry a flowable bone cement prior to hardening.
  • Proximal portion 710 of shaft 702 is preferably relatively rigid, having sufficient column strength to push through cancellous bone.
  • Distal portion 712 of shaft 702 is preferably flexible and/or deflectable and reversibly actuatable between a relatively straight configuration and one or more deflected configurations or curved configurations as illustrated, for example, in FIG. 5 , as will be described in greater detail below.
  • the distal portion 712 of shaft 702 may include a plurality of transverse slots 718 that extend partially circumferentially around the distal portion 712 of the shaft 702 to provide a plurality of flexion joints to facilitate bending.
  • Input port 704 may be provided with a Luer lock connector although a wide variety of other connector configurations, e.g., hose barb or slip fit connectors can also be used. Lumen 705 of input port 704 is fluidly connected to central lumen 720 of shaft 702 such that material can flow from a source, through input port 704 into central lumen 720 of the shaft 702 and out the open distal end or out of a side opening on distal portion 712 . Input port 704 is preferably at least about 20 gauge and may be at least about 18, 16, 14, or 12 gauge or larger in diameter.
  • Input port 704 advantageously allows for releasable connection of the steerable injection device 700 to a source of hardenable media, such as a bone cement mixing device described herein.
  • a plurality of input ports 704 such as 2, 3, 4, or more ports are present, for example, for irrigation, aspiration, introduction of medication, hardenable media precursors, hardenable media components, catalysts or as a port for other tools, such as a light source, cautery, cutting tool, visualization devices, or the like.
  • a first and second input port may be provided, for simultaneous introduction of first and second bone cement components such as from a dual chamber syringe or other dispenser.
  • a mixing chamber may be provided within the injection device 700 , such as within the proximal handle, or within the tubular shaft 702
  • adjustment controls 706 may be used with the steerable injection system, for actuating the curvature of the distal portion 712 of the shaft 702 .
  • the adjustment control 706 advantageously allows for one-handed operation by a physician.
  • the adjustment control 706 is a rotatable member, such as a thumb wheel or dial.
  • the dial can be operably connected to a proximal end of an axially movable actuator such as pull wire 724 . See FIG. 7A .
  • a proximally directed tension force is exerted on the pull wire 724 , actively changing the curvature of the distal portion 712 of the shaft 702 as desired.
  • the degree of deflection can be observed fluoroscopically, and/or by printed or other indicium associated with the control 706 .
  • Alternative controls include rotatable knobs, slider switches, compression grips, triggers such as on a gun grip handle, or other depending upon the desired functionality.
  • the adjustment control 706 allows for continuous adjustment of the curvature of the distal portion 712 of shaft 702 throughout a working range.
  • the adjustment control is configured for discontinuous (i.e., stepwise) adjustment, e.g., via a ratcheting mechanism, preset slots, deflecting stops, a rack and pinion system with stops, ratcheting band (adjustable zip-tie), adjustable cam, or a rotating dial of spring loaded stops.
  • the adjustment control 706 may include an automated mechanism, such as a motor or hydraulic system to facilitate adjustment.
  • the adjustment control may be configured to allow deflection of the distal portion 712 through a range of angular deviations from 0 degrees (i.e., linear) to at least about 15°, and often at least about 25°, 35°, 60°, 90°, 120°, 150°, or more degrees from linear.
  • the length X of the flexible distal portion 712 of shaft 702 is at least about 10%, in some embodiments at least about 15%, 25%, 35%, 45%, or more of the length Y of the entire shaft 702 for optimal delivery of bone cement into a vertebral body.
  • the ratio of lengths X:Y can vary depending on desired clinical application.
  • the maximum working length of needle 702 is no more than about 15′′, 10′′, 8′′, 7′′, 6′′, or less depending upon the target and access pathway.
  • the adjustable distal portion 712 of shaft has a length of at least about 1′′ and preferably at least about 1.5′′ or 2′′.
  • FIGS. 7A-B are schematic perspective views of a distal portion of shaft 702 of a steerable vertebroplasty injector, according to one embodiment of the invention. Shown is the preferably rigid proximal portion 710 and deflectable distal portion 712 .
  • the distal portion 712 of shaft 702 includes a plurality of transverse slots 718 that extend partially circumferentially around the distal portion 712 of the shaft 702 , leaving a relatively axially non-compressible spine 719 in the form of the unslotted portion of the tubular wall.
  • the slots 718 can be machined or laser cut out of the tube stock that becomes shaft 702 , and each slot may have a linear, chevron or other shape.
  • the distal portion 712 of shaft 702 may be created from an elongate coil rather than a continuous tube.
  • Slots 718 provide small compression hinge joints to assist in the reversible deflection of distal portion 712 of shaft 702 between a relatively straightened configuration and one or more curved configurations.
  • One of ordinary skill in the art will appreciate that adjusting the size, shape, and/or spacing of the slots 718 can impart various constraints on the radius of curvature and/or limits of deflection for a selected portion of the distal portion 712 of shaft 702 .
  • the distal portion 712 of shaft 702 may be configured to assume a second, fully deflected shape with a relatively constant radius of curvature throughout its length.
  • the distal portion 712 may assume a progressive curve shape with a variable radius of curvature which may, for example, have a decreasing radius distally.
  • the distal portion may be laterally displaced through an arc having a radius of at least about 0.5′′, 0.75′′, 1.0′′, 1.25′′, or 1.5′′ minimum radius (fully deflected) to ⁇ (straight) to optimize delivery of bone cement within a vertebral body.
  • Wall patterns and deflection systems for bendable slotted tubes are disclosed, for example, in U.S. Pat. Nos. 5,378,234 or 5,480,382 to Hammerslag et al., the disclosures of which are incorporated in its entirety by reference herein.
  • a pull wire 724 resides within the lumen 720 of shaft 702 .
  • the distal end 722 of the pull wire 724 is preferably operably attached, such as by adhesive, welding, soldering, crimping or the like, to an inner side wall of the distal portion 712 of the shaft 702 .
  • the attachment point will be approximately 180° offset from the center of the axially extending spine 719 .
  • Proximal portion of pull wire 724 is preferably operably attached to adjustment control 706 .
  • the adjustment control 706 may be configured to provide an axial pulling force in the proximal direction toward the proximal end of pull wire 724 .
  • the slotted side of the tubular body shortens under compression, while the spine side 719 retains its axial length causing the distal portion 712 of shaft 702 to assume a relatively curved or deflected configuration.
  • a plurality of pull wires, such as two, three, four, or more pull wires 724 may be present within the lumen 720 with distal points of attachment spaced axially apart to allow the distal portion 712 of shaft 702 to move through compound bending curves depending on the desired bending characteristic. Distal axial advance of the actuator will cause a deflection in an opposite direction, by increasing the width of the slots 718 .
  • a distal opening 728 is provided on shaft 702 in communication with central lumen 720 to permit expression of material, such as bone cement, from the injector 700 .
  • Some embodiments may include a filter such as mesh 812 .
  • Mesh structure 812 can advantageously control cement output by controlling bubbles and/or preventing undesired large or unwieldy aggregations of bone cement from being released at one location and thus promote a more even distribution of bone cement within the vertebral body.
  • the mesh 812 may be created by a laser-cut crisscrossing pattern within distal end as shown, or can alternatively be separately formed and adhered, welded, or soldered on to the distal opening 728 .
  • the distal shaft portion 712 may also include an end cap 730 or other structure for occluding central lumen 720 , and a distal opening 728 on the sidewall of shaft 702 .
  • the distal shaft 712 can generate a lateral force of at least about 0.125 pounds, 0.25 pounds, 0.5 pounds, 1 pound, 1.5 pounds, 2 pounds, 3 pounds, 4 pounds, 5 pounds, 6 pounds, 7 pounds, 8 pounds, 9 pounds, 10 pounds, or more by activating control 706 . This can be advantageous to ensure that the distal portion 712 is sufficiently navigable laterally through cancellous bone to distribute cement to the desired locations.
  • the distal shaft 712 can generate a lateral force of at least about 0.125 pounds but no more than about 10 pounds; at least about 0.25 pounds but no more than about 7 pounds; or at least about 0.5 pounds but no more than about 5 pounds.
  • the distal portion 712 of shaft 702 (or end cap 730 ) has visible indicia, such as, for example, a marker visible via one or more imaging techniques such as fluoroscopy, ultrasound, CT, or MRI.
  • FIGS. 9A-C illustrate in schematic cross-section another embodiment of a distal portion 734 of a steerable injection device 740 .
  • the tubular shaft 736 can include a distal portion 734 made of or containing, for example, a shape memory material that is biased into an arc when in an unconstrained configuration. Some materials that can be used for the distal curved portion 734 include Nitinol, Elgiloy, stainless steel, or a shape memory polymer.
  • a proximal portion 732 of the shaft 736 is preferably relatively straight as shown. Also shown is end cap 730 , distal lateral opening 728 and mesh 812 .
  • the distal curved portion 734 may be configured to be axially movably received within an outer tubular sheath 738 .
  • the sheath 738 is preferably configured to have sufficient rigidity and radial strength to maintain the curved distal portion 734 of shaft 732 in a relatively straightened configuration while the outer tubular sheath 738 coaxially covers the curved distal portion 734 .
  • Sheath 738 can be made of, for example, a metal such as stainless steel or various polymers known in the catheter arts. Axial proximal withdrawal of the sheath 738 with respect to tubular shaft 736 will expose an unconstrained portion of the shape memory distal end 734 which will revert to its unstressed arcuate configuration.
  • Retraction of the sheath 738 may be accomplished by manual retraction by an operator at the proximal end, retraction of a pull wire attached to a distal portion of the sheath 738 , or other ways as known in the art.
  • the straightening function of the outer sheath 738 may alternatively be accomplished using an internal stiffening wire, which is axially movably positionable within a lumen extending through the tubular shaft 736 .
  • the length, specific curvature, and other details of the distal end may be as described elsewhere herein.
  • tubular shaft 802 of a steerable vertebroplasty injector may be generally substantially straight throughout its length in its unstressed state, or have a laterally biased distal end.
  • a distally facing or side facing opening 810 is provided for the release of a material, such as bone cement.
  • introducer 800 includes an elongate tubular body 801 with a lumen 805 therethrough configured to receive the tubular shaft (also referred to as a needle) 802 .
  • Introducer 800 can be made of any appropriate material, such as, stainless steel and others disclosed elsewhere herein.
  • Needle 802 may be made of a shape memory material, such as nitinol, with superelastic properties, and has an outside diameter within the range of between about 1 to about 3 mm, about 1.5-2.5 mm, or about 2.1 mm in some embodiments.
  • Introducer 800 includes a needle-redirecting element 804 such as an inclined surface near its distal end.
  • Needle-redirecting element 804 can be, for example, a laser-cut tang or a plug having a proximal surface configured such that when needle 802 is advanced distally into introducer 800 and comes in contact with the needle-redirecting element 804 , a distal portion 814 of needle 802 is redirected out an exit port 806 of introducer 800 at an angle 808 , while proximal portion 816 of needle 802 remains in a relatively straightened configuration, as shown in FIG. 10B .
  • Bone cement can then be ejected from distal opening 810 on the end or side of needle 802 within bone 1000 .
  • Distal opening 810 may be present at the distal tip of the needle 802 (coaxial with the long axis of the needle 802 ) or alternatively located on a distal radial wall of needle 802 as shown in FIG. 10C .
  • the angle 808 is at least about 15 degrees and may be at least about 30, 45, 60, 90, 105 degrees or more with respect to the long axis of the introducer 800 .
  • FIGS. 10A-C and other embodiments disclosed herein are steerable through multiple degrees of freedom to distribute bone cement to any area within a vertebral body.
  • the introducer 800 and needle 802 can both rotate about their longitudinal axes with respect to each other, and needle 802 can move coaxially with respect to the introducer 800 , allowing an operator to actuate the injection system three dimensionally.
  • the distal portion 814 of needle 802 can be deflected to a position that is angularly displaced from the long axis of proximal portion 816 of needle without requiring a discrete curved distal needle portion as shown in other embodiments herein.
  • FIGS. 11A-C illustrate another embodiment of a steerable vertebroplasty injector.
  • FIG. 11A schematically shows handle portion 708 , adjustment control 706 , and elongate needle shaft 702 , including proximal portion 710 , distal portion 712 , and transition point 714 .
  • FIG. 11B is a vertical cross-section through line A-A of FIG. 11A , and shows adjustment control 706 operably connected to pull wire 724 such as through a threaded engagement. Also shown is input port 704 , and proximal portion 710 and distal portion 712 of needle shaft 702 .
  • FIG. 11C illustrates a cross-sectional view of distal portion 712 of shaft 702 .
  • pull wire 724 is attached at an attachment point 723 to the distal portion 712 of shaft 702 .
  • Proximal retraction on pullwire 724 will collapse transverse slots 718 and deflect the injector as has been discussed.
  • an inner tubular sleeve 705 which can be advantageous to facilitate negotiation of objects or media such as bone cement, through the central lumen of the needle shaft 702 .
  • the interior sleeve 705 is preferably in the form of a continuous, tubular flexible material, such as nylon or polyethylene.
  • the interior tubular sleeve 705 may have an exterior diameter in the area of about 0.074 inches and an interior diameter in the area of about 0.069 inches.
  • the use of this thin walled tube 705 on the inside of the needle shaft 702 is particularly useful for guiding a fiber through the needle shaft 702 .
  • the interior tube 705 described above is additionally preferably fluid-tight, and can be used to either protect the implements transmitted therethrough from moisture, or can be used to transmit bone cement through the steerable needle.
  • an outer tubular coating or sleeve (not shown) is provided for surrounding the steerable needle shaft at least partially throughout the distal end of the needle.
  • the outer tubular sleeve may be provided in accordance with techniques known in the art and, in one embodiment, is a thin wall polyester (e.g., ABS) heat shrink tubing such as that available from Advanced Polymers, Inc. in Salem, N.H. Such heat shrink tubings have a wall thickness of as little as about 0.0002 inches and tube diameter as little as about 0.010 inches.
  • the outer tubular sleeve enhances the structural integrity of the needle, and also provides a fluid seal and improved lubricity at the distal end over embodiments with distal joints 718 . Furthermore, the outer tubular sleeve tends to prevent the device from collapsing under a proximal force on a pull wire. The sleeve also improves pushability of the tubular members, and improves torque transmission.
  • the needle shaft of a vertebroplasty injection system may include a metal or polymeric coil.
  • Steerable helical coil-type devices are described, for example, in U.S. Pat. Nos. 5,378,234 or 5,480,382 to Hammerslag et al., which are both incorporated by reference herein in their entirety.
  • steerable sheath 1010 includes an elongate tubular body 1012 which is laterally flexible at least in the distal steering region thereof.
  • Tubular body 1012 generally includes a spring coil portion 1014 as known in the art.
  • Spring coil 1014 may additionally be coupled to a proximal hypodermic needle tubing section.
  • Spring coil 1014 defines a central elongate lumen 1016 for guiding materials, such as bone cement axially through the sheath and out a distal opening 728 .
  • an end cap 730 may be provided.
  • End cap 730 may be preferably additionally provided with one or more axially extending support structures such as annular flange 1024 which extends in a proximal direction through central lumen 1016 to securely anchor end cap 730 .
  • Axial flange 1024 and radial flange 1022 can be mounting surfaces for attachment of a deflection wire 1026 and pull ribbon 724 as will be discussed.
  • Portion of spring coil 1014 which extends around axial flange 1024 is relatively inflexible.
  • the axial length of flange 1024 can be varied to affect the deflected profile of the steerable sheath 1010 .
  • a deflection wire 1026 or other column support enhancing element is preferably secured with respect to a relatively noncompressible portion of tubular body 1012 at a proximal point 1028 and extends distally to a distal point of attachment 1030 to provide column strength.
  • the distal point of attachment may secure the deflection wire 1026 to either or both of the spring coil 1014 and end cap 730 .
  • Deflection wire 1026 bends upon axial displacement of pull wire 724 , with proximal point of attachment 1028 functioning as a fulcrum or platform.
  • Proximal attachment 1028 may be a solder, braze or weld joint, as is known in the art, with any excess on the radial outside surface of the tubular body 1012 being trimmed or polished to minimize rough edges.
  • Distal point of attachment 1030 is similarly provided by any of a variety of conventional securing techniques which is appropriate for the construction materials of the steerable sheath 1010 .
  • the length of the space between the proximal point of attachment 1028 and distal point of attachment 1030 affects the radius of the curve of the deflection wire 1026 and hence of the region 712 , as will be appreciated by one of skill in the art.
  • the deflection wire 1026 will tend to remain positioned along the exterior circumference of the curve during deflection by axial compression of the steerable sheath 1010 . Since the circumference in a given steerable sheath 1010 will be a fixed distance, the radius of the curve during deflection will differ, depending upon the degree of deflection achieved.
  • Deflection at distal steering region 712 of steerable sheath 1010 is accomplished by providing a pull wire 724 .
  • Pull wire 724 is preferably secured at a distal point of attachment 1036 and extends proximally to the control end of the steerable sheath 1010 .
  • Axial displacement of the pull wire 724 will tend to pivot the steering region 712 of the tubular body 1012 around proximal point of attachment 1028 , as shown in FIG. 12B .
  • lateral displacement of steering region 712 is accomplished by axial proximal displacement of pull wire 724 .
  • Pull wire 724 is rotationally offset from deflection wire 1026 by at least about 90°.
  • pull wire 724 is rotationally offset from deflection wire 1026 by about 180°, as illustrated in FIGS. 12A-B and cross-sectional view FIG. 12C .
  • opposing placement of deflection wire 1026 and pull wire 1035 tends to maintain central lumen 1016 open while the steering region 712 is laterally deflected in response to proximal displacement of pull wire 724 . This tends to optimize the flowability of bone cement through the central lumen.
  • an interior tubular sleeve (not illustrated) is additionally provided to facilitate flow of media through central lumen 1016 as described elsewhere in the application.
  • a heat-shrink outer tubular sleeve as described elsewhere in the application is also provided to enhance the structural integrity of the sheath, provide a fluid seal, as well as improve lubricity.
  • the steerable injection needle (also referred to as the injection shaft) has an outside diameter of between about 8 to 24 gauge, more preferably between about 10 to 18 gauge, e.g., 12 gauge, 13 gauge (0.095′′ or 2.41 mm), 14 gauge, 15 gauge, or 16 gauge.
  • the inside diameter (luminal diameter) of the injection needle is between about 9 to 26 gauge, more preferably between about 11 to 19 gauge, e.g., 13 gauge, 14 gauge, 15 gauge, 16 gauge, or 17 gauge.
  • the inside diameter of the injection needle is no more than about 4 gauge, 3 gauge, 2 gauge, or 1 gauge smaller than the outside diameter of the injection needle.
  • the inside luminal diameter of all of the embodiments disclosed herein is preferably optimized to allow a minimal exterior delivery profile while maximizing the amount of bone cement that can be carried by the needle.
  • the outside diameter of the injection needle is 13 gauge (0.095′′ or 2.41 mm) with a 0.077′′ (1.96 mm) lumen.
  • the percentage of the inside diameter with respect to the outside diameter of the injection needle is at least about 60%, 65%, 70%, 75%, 80%, 85%, or more.
  • a cement dispensing pump is a hand-held device having an interface such as a tray or chamber for receiving one or more cartridges.
  • the pump is configured to removably receive a double-barreled cartridge for simultaneously dispensing first and second bone cement components.
  • the system additionally includes a mixing chamber, for mixing the components sufficiently and reproducibly to fully automate the mixing and dispensing process within a closed system.
  • Bone cement components have conventionally been mixed, such as by hand, e.g., in mixing bowls in the operating room, which can be a time-consuming and unelegant process.
  • Use of a mixing device such as a double-barreled dispensing pump as disclosed herein is highly advantageous in reducing bone cement preparation time, ensuring that premature cement curing does not occur (i.e., the components are mixed immediately prior to delivery into the body), and ensuring adequate mixing of components.
  • Two separate chambers contain respective materials to be mixed in a specific ratio.
  • Manual dispensing e.g., rotating a knob or squeezing a handle
  • forces both materials into a mixing nozzle which may be a spiral mixing chamber within or in communication with a nozzle.
  • a mixing nozzle which may be a spiral mixing chamber within or in communication with a nozzle.
  • all or substantially all mixing preferably occurs prior to the bone cement entering the steerable injection needle and, subsequently, into the vertebra.
  • the cement dispensing hand pump may be attached to the steerable injection needle permanently, or removably via a connector, such as slip-ring Luer fittings.
  • a wide range of dispensing pumps can be modified for use with the present invention, including dispensing pumps described in, for example, U.S. Pat. Nos. 5,184,757, 5,535,922, 6,484,904, and Patent Publication No. 2007/0114248, all of which are incorporated by reference in their entirety.
  • FIG. 13 illustrates an exploded perspective view of a double-barreled cement dispensing pump, which may be used to practice the present invention.
  • FIG. 13 shows a dispenser gun 976 having a cartridge tray 977 affixed to an actuator 978 , for ejecting the compounds contained in a removable, disposable, two-chamber, two-component cartridge 910 .
  • the actuator 978 can be any of a variety of mechanisms known in the art, such as found in a caulking gun having either a friction or ratchet advance mechanism.
  • the degree of advancement of the actuator mechanism is controlled by turning a rotatable control such as a wheel or knob (not shown) or by squeezing handles 979 , 980 , one or both of which moves relative to the other in a conventional manner.
  • a rotatable control such as a wheel or knob (not shown) or by squeezing handles 979 , 980 , one or both of which moves relative to the other in a conventional manner.
  • the dispensing pump can also be used with a hydraulic, compressed air or electromagnetic advance mechanism.
  • the ejector gun 976 may have at least one actuator rod 981 and may have a piston rod 982 , 983 for each cylinder 912 , 914 , respectively.
  • the actuator rod 981 and piston rods 982 , 983 may be linked at a proximal end such as by a bridge 984 to which a pull knob 985 is attached, such that all rods 981 , 982 , 983 move simultaneously as an assembly.
  • a piston plate 986 is attached to piston rod 983 at the distal end thereof proximate to the cartridge tray 977 .
  • a second piston plate 987 (illustrated as larger than first plate 986 ) is affixed to the distal end of piston rod 982 and optionally actuator rod 981 . In this manner, the ejector gun 976 can be utilized with cartridges having cylinders 912 , 914 of the same or different diameters. As depicted in FIG.
  • the cylinders 912 , 914 are the same diameter but they could be of different diameters for the purpose of dispensing reactive compounds in other than a 1:1 ratio.
  • the larger of the cylinders 912 , 914 can be positioned proximate the larger piston plate 987 , with the smaller of the cylinders 912 , 914 positioned proximate piston plate 986 .
  • the pistons 986 , 987 could have the same dimensions in other embodiments.
  • the tray 977 is held to the actuator portion 978 by a plurality of fasteners 989 , or by welding, gluing, integral molding or other conventional means.
  • the tray Distal to the actuator 978 , the tray has an end plate 990 with a cartridge docking cutout 991 for slideably receiving and embracing the cartridge 910 at the base of the outlet 922 .
  • a cartridge support 997 may extend up from the bottom of the tray 977 and engage the cartridge to retain alignment with the motion of the piston plates 986 , 987 to maximize the transfer of force from piston plates 986 , 987 to expel the compound from the cartridge 910 .
  • the present disclosure is directed primarily to a cartridge embodiment having two cylindrical chambers. This permits expression of media from the chambers using a plunger arrangement such as a common syringe. However, any of a wide variety of chamber configurations and structures for expressing media from the chamber may be utilized.
  • the bone cement components are transmitted from their storage and/or shipping containers, into a mixing chamber, and into the patient, all within a closed system.
  • the system of the present invention includes at least one mixing chamber positioned in the flow path between the bone cement component container and the distal opening on the bone cement injection needle. This permits uniform and automated or semi-automated mixing of the bone cement precursors, within a closed system, and thus not exposing any of the components or the mixing process at the clinical site.
  • the mixing chamber may be formed as a part of the cartridge, may be positioned downstream from the cartridge, such as in-between the cartridge and the proximal manifold on the injection needle, or within the proximal manifold on the injection needle or the injection needle itself, depending upon the desired performance of the device.
  • the mixing chamber may be a discrete component which may be removably or permanently coupled in series flow communication with the other components of the invention, or may be integrally formed within any of the foregoing components.
  • the mixing chamber includes an influent flow path for accommodating at least two bone cement components.
  • the first and second incoming flow path are combined, and mixing structures for facilitating mixing of the components are provided.
  • This may include any of a variety of structures, such as a helical flow path, baffles and or additional turbulence inducing structures.
  • a discrete mixing device 994 includes a proximal connector 997 in fluid flow communication with a distal aperture 996 through a mixing chamber 995 .
  • Mixing chamber 995 may include any of a variety of turbulence inducing structures as has been discussed.
  • FIG. 13 The cement mixing gun, cartridge and mixing chamber are illustrated in FIG. 13 in a highly schematic form to assist in understanding the invention.
  • the cement mixing and dispensing systems in accordance with the present invention may be constructed in any of wide variety of forms which may differ significantly in appearance from that illustrated in FIG. 13 .
  • the cement is preferably immediately or eventually directed into the input port 704 of a steerable delivery device, either directly, such as via a Luer lock connector, or through a bridging tubing set.
  • Cement dispensing pump 976 is preferably configured to accommodate cartridges of appropriate volume for the formation of the amount of bone cement likely to be needed in a single level or a two level vertebroplasty.
  • cartridges have a volume sufficient to produce a unit volume of mixed bone cement between about 25-200 cc, preferably between 25-100 cc, and in one implementation about 50 cc.
  • FIG. 14 illustrates schematically another, simplified embodiment of a bone cement mixing dispenser. Shown are first syringe 1102 and second syringe 1104 filled with first and second bone cement precursor materials respectively (e.g., the contents of cartridges 1 A and 1 B, or 2 A and 2 B, respectively and described below). First 1102 and second 1104 syringes may be integrally molded together or coupled together, e.g., by an adhesive and share a common plunger top 1106 such that contents of syringes 1102 and 1104 may be dispensed approximately in a 1:1 or other preset ratio.
  • first syringe 1102 and second syringe 1104 filled with first and second bone cement precursor materials respectively (e.g., the contents of cartridges 1 A and 1 B, or 2 A and 2 B, respectively and described below).
  • First 1102 and second 1104 syringes may be integrally molded together or coupled together, e.g., by an adhesive and share a common plunger top
  • a bone cement composite is packaged in two separate chambers contained in a single cartridge. This may be useful, for example, for delivering conventional two part PMMA formulations in an otherwise conventional vertebroplasty or kyphoplasty procedure.
  • the system is adapted for delivering a bone cement composite in which the final construct comprises a mass of hardened cement having a particulate content with a non uniform spatial distribution.
  • the final construct comprises a mass of hardened cement having a particulate content with a non uniform spatial distribution.
  • a total of three or four chambers will normally be used which may conveniently be distributed into two chambers each in two cartridges.
  • Chambers 1 A and 1 B contain precursors for a first cement composition for distribution around the periphery of the formed in place vertebral body implant with a higher particle concentration to promote osteoinduction, as discussed previously in the application.
  • Chambers 2 A and 2 B contain precursors for a second cement composition for expression more centrally within the implanted mass within the vertebral body, for stability and crack arresting, as discussed previously in the application.
  • a first cartridge includes pre-polymerized PMMA and a polymerization catalyst
  • a second cartridge includes a liquid monomer of MMA as is common with some conventional bone cement formulations.
  • the contents of two cartridges can be combined into a single cartridge having multiple (e.g., four) chambers. Chambers may be separated by a frangible membrane (e.g., 1 A and 2 A in a first cartridge and 1 B and 2 B in a second cartridge, each component separated by the frangible membrane or other pierceable or removable barrier).
  • contents of the below cartridges can be manually pre-mixed and loaded into the input port of the injection system without the use of a cement mixing dispenser.
  • Chamber 1A Methyl methacrylate (balance) Hydroquinone ( ⁇ 75 ppm) (stabilizer) N,N-dimethyl-p-toluidine ( ⁇ 0.9%) (catalyst Sterile bone for polymerization) particles ( ⁇ 35 wt. %) Barium sulfate ( ⁇ 20 wt. %) (radio-opacifier) Chamber 1B Benzoyl peroxide ( ⁇ 2%) (activator for Physiological saline or polymerization) poppy seed oil (balance)
  • a system or kit for implanting bone cement includes at least some of the following components: a stylet configured to perforate a hole into the pedicle of the vertebral body; an introducer cannula 800 for providing an access pathway to the treatment site, a steerable injection needle 700 to deliver bone cement to a desired location, and, a cement dispensing pump 910 preferably configured to accommodate one or two or more dual chamber cartridges 1200 as well as a mixing nozzle 995 .
  • the stylet may have a diameter of between about 0.030′′ to 0.300′′, 0.050′′ to about 0.200′′ and preferably about 0.100′′ in some embodiments.
  • the introducer cannula 800 is between about 8-14 gauge, preferably between about 10-12 gauge, more preferably 11 gauge in some embodiments.
  • the introducer cannula 800 which may be made of any appropriate material, such as stainless steel (e.g., 304 stainless steel) may have a maximum working length of no more than about 12′′, 8′′, or 6′′ in some embodiments.
  • One or two or more bone cement cartridges, each having one or two or more chambers, may also be provided. Various other details of the components have been described above in the application.
  • FIGS. 16A-F One embodiment of a method for delivering bone cement into a vertebral body is now described, and illustrated in FIGS. 16A-F .
  • the method involves the general concept of vertebroplasty and kyphoplasty in which a collapsed or weakened vertebra is stabilized by injecting bone cement into cancellous bone.
  • the cement implantation procedure is designed for uni-transpedicular access and generally requires either a local anesthetic or short-duration general anesthetic for minimally invasive surgery.
  • the physician inserts a stylet 1302 to perforate a lumen 1304 into the pedicle wall 1300 of the vertebra 1308 to gain access to the interior of the vertebral body 1310 .
  • the introducer cannula 800 is then inserted through the lumen 1304 for bone access as well as acting as the guide for the steerable injection needle 700 .
  • the introducer cannula 800 is sized to allow physicians to perform vertebroplasty or kyphoplasty on vertebrae with small pedicles 1300 such as the thoracic vertebra (e.g., T5) as well as larger vertebrae.
  • this system and method is advantageously designed to allow uni-transpedicular access as opposed to bi-pedicular access, resulting in a less invasive surgical procedure.
  • the steerable injection needle 700 such as any of the devices described above can be inserted through the introducer cannula 800 and into the vertebra 1308 .
  • the entire interior 1310 of the target vertebral body may be accessed using the steerable injection needle 800 .
  • the distal end 712 of the needle 700 can be laterally deflected, rotated, and/or proximally retracted or distally advanced to position the bone cement effluent port at any desired site as previously described in the application.
  • the radius can be adjusted by means of an adjustment control, such as a knob on the proximal end of the device as previously described.
  • the actual injection procedure may utilize either one or two basic steps.
  • a homogenous bone cement is introduced as is done in conventional vertebroplasty.
  • the first step in the two step injection involves injection of a small quantity of PMMA with more than about 35%, e.g., 60% particles such as inorganic bone particles onto the periphery of the treatment site, i.e., next to the cortical bone of the vertebral body as shown in FIG. 16D .
  • This first cement composite 1312 begins to harden rather quickly, forming a firm but still pliable shell, which is intended to minimize or prevent any bone marrow/PMMA content from being ejected through any venules or micro-fractures in the vertebral body wall.
  • the second step in the procedure involves an injection of a bolus of a second formulation of PMMA with a smaller concentration such as approximately 30% inorganic bone particles (second cement composite 1314 ) to stabilize the remainder of the weakened, compressed cancellous bone, as illustrated in FIG. 16E .
  • Injection control for the first and second steps is provided by an approximately 2 mm inside diameter flexible introducer cannula 800 coupled to a bone cement injection pump (not shown) that is preferably hand-operated.
  • a bone cement injection pump (not shown) that is preferably hand-operated.
  • Two separate cartridges containing respective bone cement and inorganic bone particle concentrations that are mixed in the 60% and 30% ratios are utilized to control inorganic bone particle to PMMA concentrations.
  • the amount of the injectate is under the direct control of the surgeon or interventional radiologist by fluoroscopic observation.
  • the introducer cannula 800 is slowly withdrawn from the cancellous space as the bolus begins to harden, thus preventing bone marrow/PMMA content from exiting the vertebral body 1308 .
  • the procedure concludes with the surgical incision being closed, for example, with bone void filler 1306 as shown in FIG. 16F .
  • Both the high and low bone cement particle concentration cement composites 1312 , 1314 harden after several minutes.
  • In vitro and in vivo studies have shown that the 60% bone-particle impregnated bone cement hardens in 2-3 minutes and 30% bone-particle impregnated bone cement hardens between 4 to 10 minutes.
  • the aforementioned bone cement implant procedure process eliminates the need for the external mixing of PMMA powder with MMA monomer. This mixing process sometimes entraps air in the dough, thus creating porosity in the hardened PMMA in the cancellous bone area. These pores weaken the PMMA. Direct mixing and hardening of the PMMA using an implant procedure such as the above eliminates this porosity since no air is entrapped in the injectate. This, too, eliminates further weakening, loosening, or migration of the PMMA.

Abstract

Methods and devices for augmenting bone, such as in performing vertebroplasty are disclosed. A bone cement injection needle is provided, having a laterally deflectable distal end. Systems are also disclosed, including the steerable injection needle, introducer and stylet. The system may additionally include a cement delivery gun, one-time use disposable cement cartridges and a cement mixing chamber. Methods are also disclosed.

Description

  • The present invention relates to bone augmentation devices and procedures. In particular, the present invention relates to steerable injection devices and systems for introducing conventional or novel bone cement formulations such as in performing vertebroplasty.
  • BACKGROUND OF THE INVENTION
  • According to the National Osteoporosis Foundation ten million Americans have osteoporosis, and an estimated 34 million with low bone mass are at risk of developing osteoporosis (http://www.nof.org/osteoporosis/diseasefacts.htm). Called the “silent disease,” OSP develops slowly over a number of years without symptoms. Eighty percent of those affected are women, particularly petite Caucasian and Asian women, although older men and women of all races and ethnicities are at significant risk.
  • In the United States, 700,000 people are diagnosed with vertebral compression fractures as a result of OSP each year. Morbidity associated with vertebral fractures includes severe back pain, loss of height and deformity, all of which negatively affect quality of life.
  • Once microfracture of the vertebra begins, there is little the clinician can do except palliative medical treatment using analgesics, bed rest and/or restriction of activity. With time, the microfractures widen at one level and without surgical intervention, the fractures cascade downward with increasing kyphosis or “hunching” of the back. Once a mechanical lesion develops, surgery is the only option. Vertebroplasty or kyphoplasty are the primary minimally-invasive surgical procedures performed for the treatment of compression-wedge fractures due to OSP.
  • Vertebroplasty stabilizes the collapsed vertebra by injecting polymethylmethacrylate (PMMA) or a substantially equivalent bone cement into cancellous bone space of the vertebrae. Besides providing structural support to the vertebra, the exothermic reaction of PMMA polymerization is said to kill off the nociceptors or pain receptors in the bone, although no proof of this hypothesis has been provided in the literature. This procedure is typically performed as an outpatient procedure and requires only a short-acting local or general anesthetic. Once the surgical area of the spine is anesthetized, the physician inserts one or two needles through small skin incisions into either the pedicle (uni-transpedicular) or the pedicles of the vertebral body i.e., bi-transpedicular. PMMA is injected through the needle and into the cancellous-bone space of the vertebra.
  • Kyphoplasty mirrors the vertebroplasty procedure but has the additional step of inserting and expanding a nylon balloon in the interior of the vertebral body. Expansion of the balloon under pressure reduces the compression fracture and creates a cavity. After withdrawal of the balloon, PMMA is injected into the cavity to stabilize the reduction. The kyphoplasty procedure may restore the vertebral body height. Kyphoplasty is an in-patient surgery that requires hospitalization and a general anesthetic. Kyphon Inc. claims over 275,000 spinal fractures have been treated using their PMMA derivative and their “balloon” kyphoplasty procedure worldwide (Sunnyvale, Calif., Sep. 5, 2006, (PR NEWSWIRE) Kyphon study 2006).
  • Bone cement for both vertebroplasty and kyphoplasty procedures currently employ variations of standard PMMA in a powder and a methyl methacrylate monomer liquid. When the powder and liquid monomer are mixed, an exothermic polymerization takes place resulting in the formation of a “dough-like” material, which is then inserted into the cancellous bone space. The dough, when hardened, becomes either the reinforcing structure or the grout between the bone and prosthesis.
  • The average clinical in vivo life of the PMMA grout is approximately 10 years due to corrosion fatigue of either the bone-cement/prosthesis and/or the bone cement/bone interfaces. Jasty et al. (1991) showed that in cemented total hip replacements: “Fractures in the cement mantle itself were found on cut sections around all prostheses which had been in use for over three years.” Jasty et al. also noted: “In general, specimens less than 10 years in situ showed small incomplete fractures while the specimens in place more than 10 years all showed large complete cement mantle fractures.”
  • When an implant fails, a revision becomes mandatory. After removal of the cement and hardware, a cemented arthroplasty can be repeated if enough cancellous bone matrix exists to grip the new PMMA. Alternatively, cement-less prosthesis can be installed. Such a revision, however, can only be applied to total joint replacement failures. For vertebroplasty and/or kyphoplasty, a classical screw and plate internal fixation with autograft fusion is necessary.
  • Despite advances in the foregoing procedures, there remains a need for improved bone cement delivery systems which enable rapid and controllable deployment of bone cement for the treatment of conditions such as vertebral compression fractures.
  • SUMMARY OF THE INVENTION
  • According to one embodiment of the present invention, disclosed is a steerable vertebroplasty device, including an elongate tubular body having a proximal end, a distal end, and a central lumen extending therethrough; a deflectable zone on the distal end of the tubular body, deflectable through an angular range; a handle on the proximal end of the tubular body; and a deflection control on the handle. The handle and deflection control are configured for single hand operation. The deflection control can include a rotatable element. The distal end can include a distally facing exit port in communication with the central lumen, or a laterally facing exit port in some embodiments. The device can also include an actuator extending axially between the deflection control and the deflectable zone. The actuator can be an axially moveable element. The device can also include a port on the proximal end of the vertebroplasty device, in communication with the central lumen. The deflectable zone can be deflectable within a plane, and the port can reside in the same plane. In some embodiments, the tubular body includes a proximal zone and a distal, deflectable zone separated by a transition, and the transition can be at least about 15% of the length of the tubular body from the distal end.
  • Also disclosed herein is a method of treating a vertebral body. The method includes the steps of introducing a tubular injector having a longitudinal axis through cortical bone and into cancellous bone of a vertebral body; deflecting a distal section of the injector angularly with respect to the longitudinal axis; and introducing media through the injector and into the vertebral body.
  • In another embodiment, disclosed is a system for performing vertebroplasty. The system includes a steerable injection needle, a cement dispensing pump, and a mixing nozzle. The steerable injection needle has a proximal portion, elongate shaft, and a distal portion, the distal portion movable from a first substantially straight configuration to a second configuration not substantially coaxial with the proximal portion. The cement dispensing pump can include a first cartridge housing configured to house a cartridge containing two separate bone cement components. The mixing nozzle is present for mixing the first bone cement component and second bone cement component material into a bone cement composite. In some embodiments, the system also includes a stylet for creating an access pathway in a pedicle. The system can also include an introducer cannula. The first and/or second bone cement component can also be present in the system. The first bone cement component can include MMA. The second bone cement component can include from about 25% to about 35% by weight of bone particles, or at least about 35% weight percent of bone particles in other embodiments. The steerable injection needle can also include an input port for receiving bone cement from the cement dispensing pump. The input port can include a Luer lock. The steerable injection needle can include an adjustment control configured to adjust the curvature of the distal end. In some embodiments, the steerable injection needle includes an end cap on the distal end of the needle. The steerable injection needle can include a pull wire operably connected to the distal end of the needle. In other embodiments, the steerable injection needle includes a filter operably connected to a distal opening of the needle. The distal portion of the steerable needle can have a working length of at least about 20% of the total working length of the needle. The steerable injection needle may also include a spring coil.
  • Also disclosed herein is a method of treating a bone, including the steps of creating a pedicular access channel in a pedicle to access the interior of a vertebral body; inserting an introducer cannula into the pedicle; inserting a steerable injection needle through the introducer cannula into the interior of a vertebral body, the steerable injection needle having a proximal end and a distal end, the distal end having a first configuration substantially coaxial with a long axis of the proximal end; deflecting the distal end of the steerable injection needle to a second configuration that is not substantially coaxial with the long axis of the proximal end; and flowing bone cement through the steerable injection needle into the interior of the vertebral body. In some embodiments, the second configuration of the distal end of the steerable injection needle includes a curved portion. In some embodiments, deflecting the distal end of the steerable injection needle is accomplished by exerting tension on a pull wire operably connected to the distal end. In some embodiments, deflecting the distal end of the steerable injection needle is accomplished by withdrawing a sheath at least partially covering the distal end. The method can also include the steps of: providing a cement dispensing pump with a cartridge containing a first bone cement material and a second bone cement material out of contact with the first bone cement material, and a mixing nozzle; flowing the first bone cement material and the second bone cement material into the mixing nozzle, creating a bone cement; and flowing the bone cement into an input port of the steerable injection needle. Flowing bone cement through the steerable injection needle into the interior of the vertebral body can include releasing a first bone cement within the interior of the vertebral body. The bone cement can have at least 35% particles by weight in some embodiments. In some embodiments, flowing bone cement through the steerable injection needle into the interior of the vertebral body additionally includes releasing a second bone cement within the first bone cement, where the second bone cement includes less than about 35% particles by weight.
  • Also disclosed herein is a closed vertebroplasty bone cement injection system, that includes a cartridge containing at least a first chamber and a second chamber; a first bone cement component in the first chamber and a second bone cement component in the second chamber; a mixing chamber, for mixing the first and second bone cement components; an elongate injection needle, for directing bone cement into a treatment site in the spine; and a closed flow path for directing the first and second bone cement components from the first and second chambers, through the mixing chamber, through the injection needle and into the spine at the treatment site. The cartridge, mixing chamber, and/or injection needle can be releaseably connected to the flow path. The injection needle can have a deflectable distal end.
  • Also disclosed herein is a method of injecting bone cement into a treatment site in a bone, including the steps of: providing a first chamber having a first bone cement component, and a second chamber having a second bone cement component, the first and second bone cement components formulated to form a hardenable bone cement following mixing; providing a mixing chamber for mixing the first and second bone cement components; providing an elongate, tubular injection needle; connecting the first and second bone cement chambers, the mixing chamber and the injection needle into a closed flow path; and expressing first and second bone cement components through the mixing chamber, through the injection needle and into the site. The first and the second chambers can be contained in a single cartridge.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a perspective view of a steerable injection needle in accordance with one aspect of the present invention.
  • FIG. 2 is a perspective view of an introducer in accordance with one aspect of the present invention.
  • FIG. 3 is a perspective view of a stylet in accordance with one aspect of the present invention.
  • FIG. 4 is a side elevational view of the steerable injection needle moveably coaxially disposed within the introducer, in a substantially linear configuration.
  • FIG. 5 is a side elevational view of the assembly of FIG. 4, showing the steerable injection needle in a curved configuration.
  • FIG. 6 is a side elevational schematic view of another steerable injection needle in accordance with the present invention.
  • FIG. 7A is a schematic view of a distal portion of the steerable needle of FIG. 6, shown in a linear configuration.
  • FIG. 7B is a schematic view as in FIG. 7A, following proximal retraction of a pull wire to laterally deflect the distal end.
  • FIG. 8 is a schematic view of a distal portion of a steerable needle, having a side port.
  • FIG. 9A is a schematic view of a distal portion of a steerable needle, positioned within an outer sheath.
  • FIG. 9B is an illustration as in FIG. 9A, with the distal sheath partially proximally retracted.
  • FIG. 9C is an illustration as in FIG. 9B, with the outer sheath proximally retracted a sufficient distance to fully expose the deflection zone.
  • FIGS. 10A-10C illustrate various aspects of an alternative deflectable needle in accordance with the present invention.
  • FIGS. 11A-11C illustrate various views of a further embodiment of a deflectable needle in accordance with the present invention.
  • FIGS. 12A-12C illustrate a distal section of a deflectable needle, comprising a helically wound coil structure.
  • FIG. 13 is a partially exploded schematic view of a cement gun, dual chamber cement cartridge and mixing chamber for use with the present invention.
  • FIG. 14 is a schematic view of an alternate two-part dispensing system for the cement of the present invention.
  • FIGS. 15A and 15B are schematic views of a bone cement delivery system in accordance with the present invention.
  • FIGS. 16A through 16F show stages in the method of accomplishing vertebroplasty in accordance with present invention.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
  • The present invention provides improved delivery systems for delivery of a bone cement or bone cement composite for the treatment of vertebral compression fractures due to osteoporosis (OSP), osteo-trauma, and benign or malignant lesions such as metastatic cancers and myeloma, and associated access and deployment tools and procedures.
  • The primary materials in the preferred bone cement composite are methyl methacrylate and inorganic cancellous and/or cortical bone chips or particles. Suitable inorganic bone chips or particles are sold by Allosource, Osteotech and LifeNet (K053098); all have been cleared for marketing by FDA The preferred bone cement also may contain the additives: barium sulfate for radio-opacity, benzoyl peroxide as an initiator, N,N-dimethyl-p-toluidine as a promoter and hydroquinone as a stabilizer. Other details of bone cements and systems are disclosed in U.S. patent application Ser. No. 11/626,336, filed Jan. 23, 2007, the disclosure of which is hereby incorporated in its entirety herein by reference.
  • One preferred bone cement implant procedure involves a two-step injection process with two different concentrations of the bone particle impregnated cement. To facilitate the implant procedure the bone cement materials are packaged in separate cartridges containing specific bone cement and inorganic bone particle concentrations for each step. Tables 1 and 2, infra, list one example of the respective contents and concentrations in Cartridges 1A and 1B for the first injection step, and Cartridges 2A and 2B for the second injection step.
  • The bone cement delivery system generally includes at least three main components: 1) stylet; 2) introducer cannula; and 3) steerable injection needle. See FIGS. 1-3. Packaged with the system or packaged separately is a cement dispensing pump. The complete system also preferably includes at least one cement cartridge having at least two chambers therein, and a spiral mixing nozzle.
  • The stylet is used to perforate a hole into the pedicle of the vertebra to gain access to the interior of the vertebral body.
  • The introducer cannula is used for bone access and as a guide for the steerable injection needle. The introducer cannula is sized to allow physicians to perform vertebroplasty or kyphoplasty on vertebrae with small pedicles such as the thoracic vertebra T5 as well as larger vertebrae. In addition, this system is designed for uni-transpedicular access and/or bi-pedicular access.
  • Once bone access has been achieved, the steerable injection needle can be inserted through the introducer cannula into the vertebra. The entire interior vertebral body may be accessed using the steerable injection needle. The distal end of the needle can be manually shaped to any desired radius within the product specifications. The radius is adjusted by means of a knob on the proximal end of the device.
  • The hand-held cement dispensing pump may be attached to the steerable injection needle by a slip-ring luer fitting. The pre-filled 2-chambered cartridges (1A and 1B, and 2A and 2B) are loaded into the dispensing pump. As the handle of the dispensing pump is squeezed, each piston pushes the cartridge material into the spiral mixing tube. The materials are mixed in the spiral mixing nozzle prior to entering the steerable injection needle. The ratio of diameters of the cartridge chambers determines the mixing ratio for achieving the desired viscosity. One particular non-limiting example of an exemplary system is described below.
  • Delivery System Component Specifications
  • Stylet
    • Diameter 0.110″±0.010″
    • Length 5.25″±0.125″
    • 304 stainless steel and/or ABS materials
  • Introducer Cannula
    • Cannula profile 10 gauge (0.134″)
    • Cannula length 4.9″±0.125 (124 mm)
    • Cannula internal diameter 0.120″±0.002″
    • 304 stainless steel and/or ABS materials
  • Steerable Injection Needle
    • Needle profile 12 gauge (0.109″) with a 0.077″ (1.96 mm) lumen
    • Needle working length 7.0″±0.125″(178 mm)
    • 2.25″±0.125″ adjustable section on distal tip
    • 0.688″±0.125″ Minimum needle radius to ∞ (straight)
    • Luer fitting for connection to dispensing gun
    • 304 stainless steel and ABS Hub
  • Cement Dispensing Pump and Spiral Mixing Nozzle
    • Manual dispensing of cement
    • Approximately 10:1 by volume mixing ratio cartridges
    • Liquid-Liquid Cartridge 9 mL±0.5 mL
    • Real-time mixing through screw nozzle
    • Luer fitting for connection to steerable injection needle
    • Mixing tube length 2.0″±0.100″
    • Mixing tube inside diameter 0.187″±0.025″
    • 1000 psi HP (high pressure) Extension Tubing
    • Volume per ratchet 0.5 mL+0.25/−0.0 mL
  • The bone cement implant procedures described herein use established vertebroplasty and kyphoplasty surgical procedures to stabilize the collapsed vertebra by injecting bone cement into cancellous bone.
  • The preferred procedure is designed for uni-transpedicular access and may be accomplished under either a local anesthetic or short-duration general anesthetic. Once the area of the spine is anesthetized, an incision is made and the stylet is used to perforate the vertebral pedicle and gain access to the interior of the vertebral body. The introducer cannula is then inserted and acts as a guide for the steerable injection needle.
  • Injection of the preferred bone cement involves a two-step procedure. The pre-filled Cartridges 1A and 1B are loaded into the dispensing pump. As the dispensing pump handle is squeezed, each piston pushes material into the spiral mixing tube. The diameter of each chamber may be utilized to determine the mixing ratio for achieving the desired viscosity.
  • The first step involves injecting a small quantity of PMMA with more than about 35%, e.g., 60% inorganic bone particles, onto the outer periphery of the cancellous bone matrix, i.e., next to the inner wall of the cortical bone of the vertebral body. The cement composite is designed to harden relatively quickly, forming a firm but still pliable shell. This shell is intended to prevent bone marrow/PMMA content from being ejected through any venules or micro-fractures in the vertebral body wall. The second step of the procedure involves a second injection of PMMA with an approximately 30% inorganic bone particles to stabilize the remainder of the weakened, compressed cancellous bone.
  • Alternatively, the steerable needle disclosed herein and discussed in greater detail below, can be used in conventional vertebroplasty procedures, using a single step bone cement injection.
  • Injection control for the first and second steps is provided by a 2 mm ID flexible injection needle, which is coupled to the hand operated bone cement injection pump. The 60% (>35%) and 30% ratio of inorganic bone particle to PMMA concentrations may be controlled by the pre-filled cartridge sets 1A and 1B, and 2A and 2B. At all times, the amount of the injectate is under the direct control of the surgeon or intervention radiologist and visualized by fluoroscopy. The introducer cannula is slowly withdrawn from the cancellous space as the second injection of bone cement begins to harden, thus preventing bone marrow/PMMA content from exiting the vertebral body. The procedure concludes with closure of the surgical incision with bone filler. In vitro and in vivo studies have shown that the 60% (>35%) bone-particle impregnated bone cement hardens in 2-3 minutes and 30% bone-particle impregnated bone cement hardens between 4 to 10 minutes.
  • Details of the system components will be discussed below.
  • There is provided in accordance with the present invention a steerable injection device that can be used to introduce any of a variety of materials or devices for diagnostic or therapeutic purposes. In one embodiment, the system is used to inject bone cement, e.g., PMMA or any of the bone cement compositions disclosed elsewhere herein. The injection system most preferably includes a tubular body with a steerable (i.e., deflectable) distal portion for introducing bone cement into various locations displaced laterally from the longitudinal axis of the device within a vertebral body during a vertebroplasty procedure.
  • Referring to FIG. 1, there is illustrated a side perspective view of a steerable injection needle 10 in accordance with one aspect of the present invention. The steerable injection needle 10 comprises an elongate tubular body 12 having a proximal end 14 and a distal end 16. The proximal end 14 is provided with a handle or manifold 18, adapted to remain outside of the patient and enable introduction and/or aspiration of bone cement or other media, and control of the distal end as will be described herein. In general, manifold 18 is provided with at least one injection port 20, which is in fluid communication with a central lumen (not illustrated) extending through tubular body 12 to at least one distal exit port 22.
  • The manifold 18 is additionally provided with a control 26 such as a rotatable knob, slider, or other moveable control, for controllably deflecting a deflection zone 24 on the distal end 16 of the tubular body 12. As is described elsewhere herein, the deflection zone 24 may be advanced from a relatively linear configuration as illustrated in FIG. 1 to a deflected configuration throughout an angular range of motion.
  • Referring to FIG. 2, there is illustrated an elongate tubular introducer 30, having a proximal end 32, a distal end 34 and an elongate tubular body 36 extending therebetween. A central lumen 38 (not shown) extends between a proximal access port 40 and a distal access port 42.
  • The central lumen 38 has an inside diameter which is adapted to slideably axially receive the steerable injection needle 10 therethrough. This enables placement of the distal end 34 adjacent a treatment site within the body, to establish an access pathway from outside of the body to the treatment site. As will be appreciated by those of skill in the art, the introducer 30 enables procedures deep within the body such as within the spine, through a minimally invasive and/or percutaneous access. The steerable injection needle 10 and/or other procedure tools may be introduced into port 40, through lumen 38 and out of port 42 to reach the treatment site.
  • The proximal end 32 of introducer 30 may be provided with a handle 44 for manipulation during the procedure. Handle 44 may be configured in any of a variety of ways, such as having a frame 46 with at least a first aperture 48 and a second aperture 50 to facilitate grasping by the clinician.
  • Referring to FIG. 3, there is illustrated a perspective view of stylet 60. Stylet 60 comprises a proximal end 62, a distal end 64 and an elongate body 66 extending therebetween. The proximal end 62 may be provided with a stop 68 such as a grasping block, manifold or other structure, to facilitate manipulation by the clinician. In the illustrated embodiment, the block 68 is configured to nest within a recess 70 on the proximal end of the introducer 30.
  • As will be appreciated by those of skill in the art, the stylet 60 has an outside diameter which is adapted to coaxially slide within the central lumen on introducer 30. When block 68 is nested within recess 70, a distal end 64 of stylet 60 is exposed beyond the distal end 34 of introducer 30. The distal end 64 of stylet 60 may be provided with a pointed tip 72, such as for anchoring into the surface of a bone.
  • Referring to FIG. 4, there is illustrated a side elevational view of an assembly in accordance with the present invention in which a steerable injection needle 10 is coaxially positioned within an introducer 30. The introducer 30 is axially moveably carried on the steerable injection needle 10. In the illustration of FIG. 4, the introducer 30 is illustrated in a distal position such that it covers at least a portion of the deflection zone 24 on injection needle 10.
  • FIG. 5 illustrates an assembly as in FIG. 4, in which the introducer 30 has been proximally retracted along the injection needle 10 to fully expose the deflection zone 24 on injection needle 10. In addition, the control 26 has been manipulated to deflect the deflection zone 24 through an angle of approximately 90°. Additional details of the steerable needle will be discussed below.
  • FIG. 6 illustrates a schematic perspective view of an alternate steerable vertebroplasty injector, according to one embodiment of the invention. The steerable injector 700 includes a body or shaft portion 702 that is preferably elongate and tubular, input port 704, adjustment control 706, and handle portion 708. The elongate shaft 702 preferably has a first proximal portion 710 and a second distal portion 712 which merge at a transition point 714. Shaft 702 may be made of stainless steel, such as 304 stainless steel, Nitinol, Elgiloy, or other appropriate material. Alternatively, the tubular body 702 may be extruded from any of a variety of polymers well known in the catheter arts, such as PEEK, PEBAX, nylon and various polyethylenes. Extruded tubular bodies 702 may be reinforced using metal or polymeric spiral wrapping or braided wall patterns, as is known in the art.
  • The shaft 702 defines at least one lumen therethrough that is preferably configured to carry a flowable bone cement prior to hardening. Proximal portion 710 of shaft 702 is preferably relatively rigid, having sufficient column strength to push through cancellous bone. Distal portion 712 of shaft 702 is preferably flexible and/or deflectable and reversibly actuatable between a relatively straight configuration and one or more deflected configurations or curved configurations as illustrated, for example, in FIG. 5, as will be described in greater detail below. The distal portion 712 of shaft 702 may include a plurality of transverse slots 718 that extend partially circumferentially around the distal portion 712 of the shaft 702 to provide a plurality of flexion joints to facilitate bending.
  • Input port 704 may be provided with a Luer lock connector although a wide variety of other connector configurations, e.g., hose barb or slip fit connectors can also be used. Lumen 705 of input port 704 is fluidly connected to central lumen 720 of shaft 702 such that material can flow from a source, through input port 704 into central lumen 720 of the shaft 702 and out the open distal end or out of a side opening on distal portion 712. Input port 704 is preferably at least about 20 gauge and may be at least about 18, 16, 14, or 12 gauge or larger in diameter.
  • Input port 704 advantageously allows for releasable connection of the steerable injection device 700 to a source of hardenable media, such as a bone cement mixing device described herein. In some embodiments, a plurality of input ports 704, such as 2, 3, 4, or more ports are present, for example, for irrigation, aspiration, introduction of medication, hardenable media precursors, hardenable media components, catalysts or as a port for other tools, such as a light source, cautery, cutting tool, visualization devices, or the like. A first and second input port may be provided, for simultaneous introduction of first and second bone cement components such as from a dual chamber syringe or other dispenser. A mixing chamber may be provided within the injection device 700, such as within the proximal handle, or within the tubular shaft 702
  • A variety of adjustment controls 706 may be used with the steerable injection system, for actuating the curvature of the distal portion 712 of the shaft 702. Preferably, the adjustment control 706 advantageously allows for one-handed operation by a physician. In one embodiment, the adjustment control 706 is a rotatable member, such as a thumb wheel or dial. The dial can be operably connected to a proximal end of an axially movable actuator such as pull wire 724. See FIG. 7A. When the dial is rotated in a first direction, a proximally directed tension force is exerted on the pull wire 724, actively changing the curvature of the distal portion 712 of the shaft 702 as desired. The degree of deflection can be observed fluoroscopically, and/or by printed or other indicium associated with the control 706. Alternative controls include rotatable knobs, slider switches, compression grips, triggers such as on a gun grip handle, or other depending upon the desired functionality.
  • In some embodiments, the adjustment control 706 allows for continuous adjustment of the curvature of the distal portion 712 of shaft 702 throughout a working range. In other embodiments, the adjustment control is configured for discontinuous (i.e., stepwise) adjustment, e.g., via a ratcheting mechanism, preset slots, deflecting stops, a rack and pinion system with stops, ratcheting band (adjustable zip-tie), adjustable cam, or a rotating dial of spring loaded stops. In still other embodiments, the adjustment control 706 may include an automated mechanism, such as a motor or hydraulic system to facilitate adjustment.
  • The adjustment control may be configured to allow deflection of the distal portion 712 through a range of angular deviations from 0 degrees (i.e., linear) to at least about 15°, and often at least about 25°, 35°, 60°, 90°, 120°, 150°, or more degrees from linear.
  • In some embodiments, the length X of the flexible distal portion 712 of shaft 702 is at least about 10%, in some embodiments at least about 15%, 25%, 35%, 45%, or more of the length Y of the entire shaft 702 for optimal delivery of bone cement into a vertebral body. One of ordinary skill in the art will recognize that the ratio of lengths X:Y can vary depending on desired clinical application. In some embodiments, the maximum working length of needle 702 is no more than about 15″, 10″, 8″, 7″, 6″, or less depending upon the target and access pathway. In one embodiment, when the working length of needle 702 is no more than about 8″, the adjustable distal portion 712 of shaft has a length of at least about 1″ and preferably at least about 1.5″ or 2″.
  • FIGS. 7A-B are schematic perspective views of a distal portion of shaft 702 of a steerable vertebroplasty injector, according to one embodiment of the invention. Shown is the preferably rigid proximal portion 710 and deflectable distal portion 712. The distal portion 712 of shaft 702 includes a plurality of transverse slots 718 that extend partially circumferentially around the distal portion 712 of the shaft 702, leaving a relatively axially non-compressible spine 719 in the form of the unslotted portion of the tubular wall.
  • In some embodiments, the slots 718 can be machined or laser cut out of the tube stock that becomes shaft 702, and each slot may have a linear, chevron or other shape. In other embodiments, the distal portion 712 of shaft 702 may be created from an elongate coil rather than a continuous tube.
  • Slots 718 provide small compression hinge joints to assist in the reversible deflection of distal portion 712 of shaft 702 between a relatively straightened configuration and one or more curved configurations. One of ordinary skill in the art will appreciate that adjusting the size, shape, and/or spacing of the slots 718 can impart various constraints on the radius of curvature and/or limits of deflection for a selected portion of the distal portion 712 of shaft 702. For example, the distal portion 712 of shaft 702 may be configured to assume a second, fully deflected shape with a relatively constant radius of curvature throughout its length. In other embodiments, the distal portion 712 may assume a progressive curve shape with a variable radius of curvature which may, for example, have a decreasing radius distally. In some embodiments, the distal portion may be laterally displaced through an arc having a radius of at least about 0.5″, 0.75″, 1.0″, 1.25″, or 1.5″ minimum radius (fully deflected) to ∞ (straight) to optimize delivery of bone cement within a vertebral body. Wall patterns and deflection systems for bendable slotted tubes are disclosed, for example, in U.S. Pat. Nos. 5,378,234 or 5,480,382 to Hammerslag et al., the disclosures of which are incorporated in its entirety by reference herein.
  • Still referring to FIGS. 7A-B, a pull wire 724 resides within the lumen 720 of shaft 702. The distal end 722 of the pull wire 724 is preferably operably attached, such as by adhesive, welding, soldering, crimping or the like, to an inner side wall of the distal portion 712 of the shaft 702. Preferably, the attachment point will be approximately 180° offset from the center of the axially extending spine 719. Proximal portion of pull wire 724 is preferably operably attached to adjustment control 706. The adjustment control 706 may be configured to provide an axial pulling force in the proximal direction toward the proximal end of pull wire 724. This in turn exerts a proximal traction on the distal portion 712 of shaft 702 operably attached to distal end 722 of pull wire 724. The slotted side of the tubular body shortens under compression, while the spine side 719 retains its axial length causing the distal portion 712 of shaft 702 to assume a relatively curved or deflected configuration. In some embodiments, a plurality of pull wires, such as two, three, four, or more pull wires 724 may be present within the lumen 720 with distal points of attachment spaced axially apart to allow the distal portion 712 of shaft 702 to move through compound bending curves depending on the desired bending characteristic. Distal axial advance of the actuator will cause a deflection in an opposite direction, by increasing the width of the slots 718.
  • A distal opening 728 is provided on shaft 702 in communication with central lumen 720 to permit expression of material, such as bone cement, from the injector 700. Some embodiments may include a filter such as mesh 812. Mesh structure 812 can advantageously control cement output by controlling bubbles and/or preventing undesired large or unwieldy aggregations of bone cement from being released at one location and thus promote a more even distribution of bone cement within the vertebral body. The mesh 812 may be created by a laser-cut crisscrossing pattern within distal end as shown, or can alternatively be separately formed and adhered, welded, or soldered on to the distal opening 728. Referring to FIG. 8, the distal shaft portion 712 may also include an end cap 730 or other structure for occluding central lumen 720, and a distal opening 728 on the sidewall of shaft 702.
  • In some embodiments, the distal shaft 712 can generate a lateral force of at least about 0.125 pounds, 0.25 pounds, 0.5 pounds, 1 pound, 1.5 pounds, 2 pounds, 3 pounds, 4 pounds, 5 pounds, 6 pounds, 7 pounds, 8 pounds, 9 pounds, 10 pounds, or more by activating control 706. This can be advantageous to ensure that the distal portion 712 is sufficiently navigable laterally through cancellous bone to distribute cement to the desired locations. In some embodiments, the distal shaft 712 can generate a lateral force of at least about 0.125 pounds but no more than about 10 pounds; at least about 0.25 pounds but no more than about 7 pounds; or at least about 0.5 pounds but no more than about 5 pounds.
  • In some embodiments, the distal portion 712 of shaft 702 (or end cap 730) has visible indicia, such as, for example, a marker visible via one or more imaging techniques such as fluoroscopy, ultrasound, CT, or MRI.
  • FIGS. 9A-C illustrate in schematic cross-section another embodiment of a distal portion 734 of a steerable injection device 740. The tubular shaft 736 can include a distal portion 734 made of or containing, for example, a shape memory material that is biased into an arc when in an unconstrained configuration. Some materials that can be used for the distal curved portion 734 include Nitinol, Elgiloy, stainless steel, or a shape memory polymer. A proximal portion 732 of the shaft 736 is preferably relatively straight as shown. Also shown is end cap 730, distal lateral opening 728 and mesh 812.
  • The distal curved portion 734 may be configured to be axially movably received within an outer tubular sheath 738. The sheath 738 is preferably configured to have sufficient rigidity and radial strength to maintain the curved distal portion 734 of shaft 732 in a relatively straightened configuration while the outer tubular sheath 738 coaxially covers the curved distal portion 734. Sheath 738 can be made of, for example, a metal such as stainless steel or various polymers known in the catheter arts. Axial proximal withdrawal of the sheath 738 with respect to tubular shaft 736 will expose an unconstrained portion of the shape memory distal end 734 which will revert to its unstressed arcuate configuration. Retraction of the sheath 738 may be accomplished by manual retraction by an operator at the proximal end, retraction of a pull wire attached to a distal portion of the sheath 738, or other ways as known in the art. The straightening function of the outer sheath 738 may alternatively be accomplished using an internal stiffening wire, which is axially movably positionable within a lumen extending through the tubular shaft 736. The length, specific curvature, and other details of the distal end may be as described elsewhere herein.
  • In another embodiment, as shown in FIGS. 10A-C, tubular shaft 802 of a steerable vertebroplasty injector may be generally substantially straight throughout its length in its unstressed state, or have a laterally biased distal end. A distally facing or side facing opening 810 is provided for the release of a material, such as bone cement. In this embodiment, introducer 800 includes an elongate tubular body 801 with a lumen 805 therethrough configured to receive the tubular shaft (also referred to as a needle) 802. Introducer 800 can be made of any appropriate material, such as, stainless steel and others disclosed elsewhere herein. Needle 802 may be made of a shape memory material, such as nitinol, with superelastic properties, and has an outside diameter within the range of between about 1 to about 3 mm, about 1.5-2.5 mm, or about 2.1 mm in some embodiments.
  • Introducer 800 includes a needle-redirecting element 804 such as an inclined surface near its distal end. Needle-redirecting element 804 can be, for example, a laser-cut tang or a plug having a proximal surface configured such that when needle 802 is advanced distally into introducer 800 and comes in contact with the needle-redirecting element 804, a distal portion 814 of needle 802 is redirected out an exit port 806 of introducer 800 at an angle 808, while proximal portion 816 of needle 802 remains in a relatively straightened configuration, as shown in FIG. 10B. Bone cement can then be ejected from distal opening 810 on the end or side of needle 802 within bone 1000. Distal opening 810 may be present at the distal tip of the needle 802 (coaxial with the long axis of the needle 802) or alternatively located on a distal radial wall of needle 802 as shown in FIG. 10C. In some embodiments, the angle 808 is at least about 15 degrees and may be at least about 30, 45, 60, 90, 105 degrees or more with respect to the long axis of the introducer 800.
  • The illustrated embodiment of FIGS. 10A-C and other embodiments disclosed herein are steerable through multiple degrees of freedom to distribute bone cement to any area within a vertebral body. For example, the introducer 800 and needle 802 can both rotate about their longitudinal axes with respect to each other, and needle 802 can move coaxially with respect to the introducer 800, allowing an operator to actuate the injection system three dimensionally. The distal portion 814 of needle 802 can be deflected to a position that is angularly displaced from the long axis of proximal portion 816 of needle without requiring a discrete curved distal needle portion as shown in other embodiments herein.
  • FIGS. 11A-C illustrate another embodiment of a steerable vertebroplasty injector. FIG. 11A schematically shows handle portion 708, adjustment control 706, and elongate needle shaft 702, including proximal portion 710, distal portion 712, and transition point 714. FIG. 11B is a vertical cross-section through line A-A of FIG. 11A, and shows adjustment control 706 operably connected to pull wire 724 such as through a threaded engagement. Also shown is input port 704, and proximal portion 710 and distal portion 712 of needle shaft 702. FIG. 11C illustrates a cross-sectional view of distal portion 712 of shaft 702. The distal end 722 of pull wire 724 is attached at an attachment point 723 to the distal portion 712 of shaft 702. Proximal retraction on pullwire 724 will collapse transverse slots 718 and deflect the injector as has been discussed. Also shown is an inner tubular sleeve 705, which can be advantageous to facilitate negotiation of objects or media such as bone cement, through the central lumen of the needle shaft 702.
  • The interior sleeve 705 is preferably in the form of a continuous, tubular flexible material, such as nylon or polyethylene. In an embodiment in which the needle 702 has an outside diameter of 0.095 inches (0.093 inch coil with a 0.001 inch thick outer sleeve) and an inside diameter of 0.077 inches, the interior tubular sleeve 705 may have an exterior diameter in the area of about 0.074 inches and an interior diameter in the area of about 0.069 inches. The use of this thin walled tube 705 on the inside of the needle shaft 702 is particularly useful for guiding a fiber through the needle shaft 702. The interior tube 705 described above is additionally preferably fluid-tight, and can be used to either protect the implements transmitted therethrough from moisture, or can be used to transmit bone cement through the steerable needle.
  • In some embodiments, an outer tubular coating or sleeve (not shown) is provided for surrounding the steerable needle shaft at least partially throughout the distal end of the needle. The outer tubular sleeve may be provided in accordance with techniques known in the art and, in one embodiment, is a thin wall polyester (e.g., ABS) heat shrink tubing such as that available from Advanced Polymers, Inc. in Salem, N.H. Such heat shrink tubings have a wall thickness of as little as about 0.0002 inches and tube diameter as little as about 0.010 inches. The outer tubular sleeve enhances the structural integrity of the needle, and also provides a fluid seal and improved lubricity at the distal end over embodiments with distal joints 718. Furthermore, the outer tubular sleeve tends to prevent the device from collapsing under a proximal force on a pull wire. The sleeve also improves pushability of the tubular members, and improves torque transmission.
  • In other embodiments, instead of a slotted tube, the needle shaft of a vertebroplasty injection system may include a metal or polymeric coil. Steerable helical coil-type devices are described, for example, in U.S. Pat. Nos. 5,378,234 or 5,480,382 to Hammerslag et al., which are both incorporated by reference herein in their entirety. As shown in FIGS. 12A-C, steerable sheath 1010 includes an elongate tubular body 1012 which is laterally flexible at least in the distal steering region thereof. Tubular body 1012 generally includes a spring coil portion 1014 as known in the art. Spring coil 1014 may additionally be coupled to a proximal hypodermic needle tubing section. Spring coil 1014 defines a central elongate lumen 1016 for guiding materials, such as bone cement axially through the sheath and out a distal opening 728. In some embodiments, an end cap 730 may be provided. End cap 730 may be preferably additionally provided with one or more axially extending support structures such as annular flange 1024 which extends in a proximal direction through central lumen 1016 to securely anchor end cap 730. Axial flange 1024 and radial flange 1022 can be mounting surfaces for attachment of a deflection wire 1026 and pull ribbon 724 as will be discussed.
  • Portion of spring coil 1014 which extends around axial flange 1024 is relatively inflexible. Thus, the axial length of flange 1024 can be varied to affect the deflected profile of the steerable sheath 1010. A deflection wire 1026 or other column support enhancing element is preferably secured with respect to a relatively noncompressible portion of tubular body 1012 at a proximal point 1028 and extends distally to a distal point of attachment 1030 to provide column strength. The distal point of attachment may secure the deflection wire 1026 to either or both of the spring coil 1014 and end cap 730. Deflection wire 1026 bends upon axial displacement of pull wire 724, with proximal point of attachment 1028 functioning as a fulcrum or platform.
  • Proximal attachment 1028 may be a solder, braze or weld joint, as is known in the art, with any excess on the radial outside surface of the tubular body 1012 being trimmed or polished to minimize rough edges. Distal point of attachment 1030 is similarly provided by any of a variety of conventional securing techniques which is appropriate for the construction materials of the steerable sheath 1010.
  • The length of the space between the proximal point of attachment 1028 and distal point of attachment 1030 affects the radius of the curve of the deflection wire 1026 and hence of the region 712, as will be appreciated by one of skill in the art. The deflection wire 1026 will tend to remain positioned along the exterior circumference of the curve during deflection by axial compression of the steerable sheath 1010. Since the circumference in a given steerable sheath 1010 will be a fixed distance, the radius of the curve during deflection will differ, depending upon the degree of deflection achieved.
  • Deflection at distal steering region 712 of steerable sheath 1010 is accomplished by providing a pull wire 724. Pull wire 724 is preferably secured at a distal point of attachment 1036 and extends proximally to the control end of the steerable sheath 1010. Axial displacement of the pull wire 724 will tend to pivot the steering region 712 of the tubular body 1012 around proximal point of attachment 1028, as shown in FIG. 12B. Preferably, lateral displacement of steering region 712 is accomplished by axial proximal displacement of pull wire 724.
  • Pull wire 724 is rotationally offset from deflection wire 1026 by at least about 90°. Preferably, pull wire 724 is rotationally offset from deflection wire 1026 by about 180°, as illustrated in FIGS. 12A-B and cross-sectional view FIG. 12C. Among other advantages of this configuration, opposing placement of deflection wire 1026 and pull wire 1035 tends to maintain central lumen 1016 open while the steering region 712 is laterally deflected in response to proximal displacement of pull wire 724. This tends to optimize the flowability of bone cement through the central lumen.
  • In another embodiment, an interior tubular sleeve (not illustrated) is additionally provided to facilitate flow of media through central lumen 1016 as described elsewhere in the application. In some embodiments, a heat-shrink outer tubular sleeve as described elsewhere in the application is also provided to enhance the structural integrity of the sheath, provide a fluid seal, as well as improve lubricity.
  • In one embodiment, the steerable injection needle (also referred to as the injection shaft) has an outside diameter of between about 8 to 24 gauge, more preferably between about 10 to 18 gauge, e.g., 12 gauge, 13 gauge (0.095″ or 2.41 mm), 14 gauge, 15 gauge, or 16 gauge. In some embodiments, the inside diameter (luminal diameter) of the injection needle is between about 9 to 26 gauge, more preferably between about 11 to 19 gauge, e.g., 13 gauge, 14 gauge, 15 gauge, 16 gauge, or 17 gauge. In some embodiments, the inside diameter of the injection needle is no more than about 4 gauge, 3 gauge, 2 gauge, or 1 gauge smaller than the outside diameter of the injection needle.
  • The inside luminal diameter of all of the embodiments disclosed herein is preferably optimized to allow a minimal exterior delivery profile while maximizing the amount of bone cement that can be carried by the needle. In one embodiment, the outside diameter of the injection needle is 13 gauge (0.095″ or 2.41 mm) with a 0.077″ (1.96 mm) lumen. In some embodiments, the percentage of the inside diameter with respect to the outside diameter of the injection needle is at least about 60%, 65%, 70%, 75%, 80%, 85%, or more.
  • The steerable injection systems described above are preferably used in conjunction with a mixing and dispensing pump for use with a multi-component cement. In some embodiments, a cement dispensing pump is a hand-held device having an interface such as a tray or chamber for receiving one or more cartridges. In one embodiment, the pump is configured to removably receive a double-barreled cartridge for simultaneously dispensing first and second bone cement components. The system additionally includes a mixing chamber, for mixing the components sufficiently and reproducibly to fully automate the mixing and dispensing process within a closed system.
  • Bone cement components have conventionally been mixed, such as by hand, e.g., in mixing bowls in the operating room, which can be a time-consuming and unelegant process. Use of a mixing device such as a double-barreled dispensing pump as disclosed herein is highly advantageous in reducing bone cement preparation time, ensuring that premature cement curing does not occur (i.e., the components are mixed immediately prior to delivery into the body), and ensuring adequate mixing of components.
  • Two separate chambers contain respective materials to be mixed in a specific ratio. Manual dispensing (e.g., rotating a knob or squeezing a handle) forces both materials into a mixing nozzle, which may be a spiral mixing chamber within or in communication with a nozzle. In the spiral mixing nozzle, all or substantially all mixing preferably occurs prior to the bone cement entering the steerable injection needle and, subsequently, into the vertebra. The cement dispensing hand pump may be attached to the steerable injection needle permanently, or removably via a connector, such as slip-ring Luer fittings. A wide range of dispensing pumps can be modified for use with the present invention, including dispensing pumps described in, for example, U.S. Pat. Nos. 5,184,757, 5,535,922, 6,484,904, and Patent Publication No. 2007/0114248, all of which are incorporated by reference in their entirety.
  • FIG. 13 illustrates an exploded perspective view of a double-barreled cement dispensing pump, which may be used to practice the present invention. FIG. 13 shows a dispenser gun 976 having a cartridge tray 977 affixed to an actuator 978, for ejecting the compounds contained in a removable, disposable, two-chamber, two-component cartridge 910. The actuator 978 can be any of a variety of mechanisms known in the art, such as found in a caulking gun having either a friction or ratchet advance mechanism. The degree of advancement of the actuator mechanism is controlled by turning a rotatable control such as a wheel or knob (not shown) or by squeezing handles 979, 980, one or both of which moves relative to the other in a conventional manner. In addition to purely mechanical advance mechanisms, the dispensing pump can also be used with a hydraulic, compressed air or electromagnetic advance mechanism. The ejector gun 976 may have at least one actuator rod 981 and may have a piston rod 982, 983 for each cylinder 912, 914, respectively.
  • The actuator rod 981 and piston rods 982, 983 may be linked at a proximal end such as by a bridge 984 to which a pull knob 985 is attached, such that all rods 981, 982, 983 move simultaneously as an assembly. A piston plate 986 is attached to piston rod 983 at the distal end thereof proximate to the cartridge tray 977. A second piston plate 987 (illustrated as larger than first plate 986) is affixed to the distal end of piston rod 982 and optionally actuator rod 981. In this manner, the ejector gun 976 can be utilized with cartridges having cylinders 912, 914 of the same or different diameters. As depicted in FIG. 13, the cylinders 912, 914 are the same diameter but they could be of different diameters for the purpose of dispensing reactive compounds in other than a 1:1 ratio. In that instance, the larger of the cylinders 912, 914 can be positioned proximate the larger piston plate 987, with the smaller of the cylinders 912, 914 positioned proximate piston plate 986. The pistons 986, 987 could have the same dimensions in other embodiments.
  • The tray 977 is held to the actuator portion 978 by a plurality of fasteners 989, or by welding, gluing, integral molding or other conventional means. Distal to the actuator 978, the tray has an end plate 990 with a cartridge docking cutout 991 for slideably receiving and embracing the cartridge 910 at the base of the outlet 922.
  • A cartridge support 997 may extend up from the bottom of the tray 977 and engage the cartridge to retain alignment with the motion of the piston plates 986, 987 to maximize the transfer of force from piston plates 986, 987 to expel the compound from the cartridge 910.
  • The present disclosure is directed primarily to a cartridge embodiment having two cylindrical chambers. This permits expression of media from the chambers using a plunger arrangement such as a common syringe. However, any of a wide variety of chamber configurations and structures for expressing media from the chamber may be utilized.
  • Currently favored bone cement compositions are normally stored as two separate components or precursors, for mixing at the clinical site shortly prior to implantation. As has been described above, mixing of the bone cement components has traditionally been accomplished manually, such as by expressing the components into a mixing bowl in or near the operating room. In accordance with the present invention, the bone cement components may be transmitted from their storage and/or shipping containers, into a mixing chamber, and into the patient, all within a closed system. For this purpose, the system of the present invention includes at least one mixing chamber positioned in the flow path between the bone cement component container and the distal opening on the bone cement injection needle. This permits uniform and automated or semi-automated mixing of the bone cement precursors, within a closed system, and thus not exposing any of the components or the mixing process at the clinical site.
  • Thus, the mixing chamber may be formed as a part of the cartridge, may be positioned downstream from the cartridge, such as in-between the cartridge and the proximal manifold on the injection needle, or within the proximal manifold on the injection needle or the injection needle itself, depending upon the desired performance of the device. The mixing chamber may be a discrete component which may be removably or permanently coupled in series flow communication with the other components of the invention, or may be integrally formed within any of the foregoing components.
  • In general, the mixing chamber includes an influent flow path for accommodating at least two bone cement components. The first and second incoming flow path are combined, and mixing structures for facilitating mixing of the components are provided. This may include any of a variety of structures, such as a helical flow path, baffles and or additional turbulence inducing structures.
  • In the embodiment illustrated in FIG. 13, a discrete mixing device 994 includes a proximal connector 997 in fluid flow communication with a distal aperture 996 through a mixing chamber 995. Mixing chamber 995 may include any of a variety of turbulence inducing structures as has been discussed.
  • The cement mixing gun, cartridge and mixing chamber are illustrated in FIG. 13 in a highly schematic form to assist in understanding the invention. However, as will be appreciated by those of skill in the art, the cement mixing and dispensing systems in accordance with the present invention may be constructed in any of wide variety of forms which may differ significantly in appearance from that illustrated in FIG. 13.
  • After cement is mixed in mixing nozzle 994, the cement is preferably immediately or eventually directed into the input port 704 of a steerable delivery device, either directly, such as via a Luer lock connector, or through a bridging tubing set.
  • Cement dispensing pump 976 is preferably configured to accommodate cartridges of appropriate volume for the formation of the amount of bone cement likely to be needed in a single level or a two level vertebroplasty. In some embodiments, cartridges have a volume sufficient to produce a unit volume of mixed bone cement between about 25-200 cc, preferably between 25-100 cc, and in one implementation about 50 cc.
  • FIG. 14 illustrates schematically another, simplified embodiment of a bone cement mixing dispenser. Shown are first syringe 1102 and second syringe 1104 filled with first and second bone cement precursor materials respectively (e.g., the contents of cartridges 1A and 1B, or 2A and 2B, respectively and described below). First 1102 and second 1104 syringes may be integrally molded together or coupled together, e.g., by an adhesive and share a common plunger top 1106 such that contents of syringes 1102 and 1104 may be dispensed approximately in a 1:1 or other preset ratio. Applying an axially distally directed force to plunger top 1106 either by hand or by a dispensing device will result in stopper 1108 portions of the plunger to advance distally thereby expressing contents of first 1102 and second 1104 syringes out through nozzles 1110, 1112 and into Y-connector tubing 114 into mixing nozzle 995, and thereafter into the input port 704 of a steerable delivery device.
  • In some embodiments, a bone cement composite is packaged in two separate chambers contained in a single cartridge. This may be useful, for example, for delivering conventional two part PMMA formulations in an otherwise conventional vertebroplasty or kyphoplasty procedure.
  • In other embodiments, the system is adapted for delivering a bone cement composite in which the final construct comprises a mass of hardened cement having a particulate content with a non uniform spatial distribution. In this embodiment, a total of three or four chambers will normally be used which may conveniently be distributed into two chambers each in two cartridges.
  • Tables 1-2 below depict the contents and concentrations of one exemplary embodiment of bone cement precursors. Chambers 1A and 1B contain precursors for a first cement composition for distribution around the periphery of the formed in place vertebral body implant with a higher particle concentration to promote osteoinduction, as discussed previously in the application. Chambers 2A and 2B contain precursors for a second cement composition for expression more centrally within the implanted mass within the vertebral body, for stability and crack arresting, as discussed previously in the application.
  • One of ordinary skill in the art will recognize that a wide variety of chamber or cartridge configurations, and bone cements, can be used with the present injection system. For example, in one embodiment, a first cartridge includes pre-polymerized PMMA and a polymerization catalyst, while a second cartridge includes a liquid monomer of MMA as is common with some conventional bone cement formulations.
  • In some embodiments, the contents of two cartridges can be combined into a single cartridge having multiple (e.g., four) chambers. Chambers may be separated by a frangible membrane (e.g., 1A and 2A in a first cartridge and 1B and 2B in a second cartridge, each component separated by the frangible membrane or other pierceable or removable barrier). In other embodiments, contents of the below cartridges can be manually pre-mixed and loaded into the input port of the injection system without the use of a cement mixing dispenser.
  • TABLE 1
    Chamber 1A
    Methyl methacrylate (balance) Hydroquinone (~75 ppm)
    (stabilizer)
    N,N-dimethyl-p-toluidine (~0.9%) (catalyst Sterile bone
    for polymerization) particles (≧35 wt. %)
    Barium sulfate (~20 wt. %) (radio-opacifier)
    Chamber 1B
    Benzoyl peroxide (~2%) (activator for Physiological saline or
    polymerization) poppy seed oil (balance)
  • TABLE 2
    Chamber 2A
    Methyl methacrylate (balance) Hydroquinone (~75 ppm)
    (stabilizer)
    N,N-dimethyl-p-toluidine (~0.9%) (catalyst Sterile bone particles
    for polymerization) (~30 wt. %)
    Barium sulfate (~20 wt. %) (radio-opacifier)
    Chamber 2B
    Benzoyl peroxide (~2%) (activator for Physiological saline or
    polymerization) poppy seed oil (balance)
  • As illustrated in FIGS. 15A-B, in one embodiment, a system or kit for implanting bone cement includes at least some of the following components: a stylet configured to perforate a hole into the pedicle of the vertebral body; an introducer cannula 800 for providing an access pathway to the treatment site, a steerable injection needle 700 to deliver bone cement to a desired location, and, a cement dispensing pump 910 preferably configured to accommodate one or two or more dual chamber cartridges 1200 as well as a mixing nozzle 995.
  • The stylet may have a diameter of between about 0.030″ to 0.300″, 0.050″ to about 0.200″ and preferably about 0.100″ in some embodiments. The introducer cannula 800 is between about 8-14 gauge, preferably between about 10-12 gauge, more preferably 11 gauge in some embodiments. The introducer cannula 800, which may be made of any appropriate material, such as stainless steel (e.g., 304 stainless steel) may have a maximum working length of no more than about 12″, 8″, or 6″ in some embodiments. One or two or more bone cement cartridges, each having one or two or more chambers, may also be provided. Various other details of the components have been described above in the application.
  • One embodiment of a method for delivering bone cement into a vertebral body is now described, and illustrated in FIGS. 16A-F. The method involves the general concept of vertebroplasty and kyphoplasty in which a collapsed or weakened vertebra is stabilized by injecting bone cement into cancellous bone.
  • The cement implantation procedure is designed for uni-transpedicular access and generally requires either a local anesthetic or short-duration general anesthetic for minimally invasive surgery. Once the area of the spine is anesthetized, as shown in FIGS. 16A-B, the physician inserts a stylet 1302 to perforate a lumen 1304 into the pedicle wall 1300 of the vertebra 1308 to gain access to the interior of the vertebral body 1310. As illustrated in FIG. 16C, the introducer cannula 800 is then inserted through the lumen 1304 for bone access as well as acting as the guide for the steerable injection needle 700. The introducer cannula 800 is sized to allow physicians to perform vertebroplasty or kyphoplasty on vertebrae with small pedicles 1300 such as the thoracic vertebra (e.g., T5) as well as larger vertebrae. In addition, this system and method is advantageously designed to allow uni-transpedicular access as opposed to bi-pedicular access, resulting in a less invasive surgical procedure.
  • Once bone access has been achieved, as shown in FIG. 16C the steerable injection needle 700 such as any of the devices described above can be inserted through the introducer cannula 800 and into the vertebra 1308. The entire interior 1310 of the target vertebral body may be accessed using the steerable injection needle 800. The distal end 712 of the needle 700 can be laterally deflected, rotated, and/or proximally retracted or distally advanced to position the bone cement effluent port at any desired site as previously described in the application. The radius can be adjusted by means of an adjustment control, such as a knob on the proximal end of the device as previously described.
  • The actual injection procedure may utilize either one or two basic steps. In a one step procedure, a homogenous bone cement is introduced as is done in conventional vertebroplasty. The first step in the two step injection involves injection of a small quantity of PMMA with more than about 35%, e.g., 60% particles such as inorganic bone particles onto the periphery of the treatment site, i.e., next to the cortical bone of the vertebral body as shown in FIG. 16D. This first cement composite 1312 begins to harden rather quickly, forming a firm but still pliable shell, which is intended to minimize or prevent any bone marrow/PMMA content from being ejected through any venules or micro-fractures in the vertebral body wall. The second step in the procedure involves an injection of a bolus of a second formulation of PMMA with a smaller concentration such as approximately 30% inorganic bone particles (second cement composite 1314) to stabilize the remainder of the weakened, compressed cancellous bone, as illustrated in FIG. 16E.
  • Injection control for the first and second steps is provided by an approximately 2 mm inside diameter flexible introducer cannula 800 coupled to a bone cement injection pump (not shown) that is preferably hand-operated. Two separate cartridges containing respective bone cement and inorganic bone particle concentrations that are mixed in the 60% and 30% ratios are utilized to control inorganic bone particle to PMMA concentrations. The amount of the injectate is under the direct control of the surgeon or interventional radiologist by fluoroscopic observation. The introducer cannula 800 is slowly withdrawn from the cancellous space as the bolus begins to harden, thus preventing bone marrow/PMMA content from exiting the vertebral body 1308. The procedure concludes with the surgical incision being closed, for example, with bone void filler 1306 as shown in FIG. 16F. Both the high and low bone cement particle concentration cement composites 1312, 1314 harden after several minutes. In vitro and in vivo studies have shown that the 60% bone-particle impregnated bone cement hardens in 2-3 minutes and 30% bone-particle impregnated bone cement hardens between 4 to 10 minutes.
  • The aforementioned bone cement implant procedure process eliminates the need for the external mixing of PMMA powder with MMA monomer. This mixing process sometimes entraps air in the dough, thus creating porosity in the hardened PMMA in the cancellous bone area. These pores weaken the PMMA. Direct mixing and hardening of the PMMA using an implant procedure such as the above eliminates this porosity since no air is entrapped in the injectate. This, too, eliminates further weakening, loosening, or migration of the PMMA.
  • While described herein primarily in the context of vertebroplasty, one of ordinary skill in the art will appreciate that the disclosed injection system can be used or modified in a wide range of clinical applications, such as, for example, other orthopedic applications such as kyphoplasty, treatment of any other bones, pulmonary, cardiovascular, gastrointestinal, gynecological, or genitourinary applications. While this invention has been particularly shown and described with references to embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the invention. For all of the embodiments described above, the steps of the methods need not be performed sequentially and the individual components of the devices may be combined permanently or be designed for removable attachment at the clinical site.

Claims (28)

1. A steerable vertebroplasty device, comprising:
an elongate, tubular body, having a proximal end, a distal end, and a central lumen extending therethrough;
a deflectable zone on the distal end of the tubular body, deflectable through an angular range;
a handle on the proximal end of the tubular body; and
a deflection control on the handle;
wherein the handle and deflection control are configured for single hand operation.
2. A steerable vertebroplasty device as in claim 1, wherein the deflection control comprises a rotatable element.
3. A steerable vertebroplasty device as in claim 1, wherein the distal end comprises a distally facing exit port in communication with the central lumen.
4. A steerable vertebroplasty device as in claim 1, wherein the distal end comprises a laterally facing exit port in communication with the central lumen.
5. A steerable vertebroplasty device as in claim 1, further comprising an actuator extending axially between the deflection control and the deflectable zone.
6. A steerable vertebroplasty device as in claim 5, wherein the actuator comprises an axially moveable element.
7. A steerable vertebroplasty device as in claim 1, further comprising a port on the proximal end of the vertebroplasty device, in communication with the central lumen.
8. A steerable vertebroplasty device as in claim 7, wherein the deflectable zone is deflectable within a plane, and the port resides in the same plane.
9. A steerable vertebroplasty device as in claim 1, wherein the tubular body comprises a proximal zone and a distal, deflectable zone separated by a transition, and the transition is at least about 15% of the length of the tubular body from the distal end.
10. A system for performing vertebroplasty, comprising:
a steerable injection needle with a proximal portion, elongate shaft, and a distal portion, the distal portion movable from a first substantially straight configuration to a second configuration not substantially coaxial with the proximal portion; and
a cement dispensing pump comprising a first cartridge housing configured to house a cartridge containing two separate bone cement components; and
a mixing nozzle for mixing the first bone cement component and second bone cement component material into a bone cement composite.
11. The system of claim 10, further comprising a stylet for creating an access pathway in a pedicle.
12. The system of claim 10, further comprising an introducer cannula.
13. The system of claim 10, further comprising the first bone cement component, wherein the first bone cement component comprises MMA.
14. The system of claim 13, further comprising the second bone cement component, wherein the second bone cement component comprises from about 25% to about 35% by weight of bone particles.
15. The system of claim 13, further comprising the second bone cement material, wherein the second bone cement material comprises at least about 35% weight percent of bone particles.
16. The system of claim 10, wherein the steerable injection needle comprises an input port for receiving bone cement from the cement dispensing pump.
17. The system of claim 16, wherein the input port comprises a Luer lock.
18. The system of claim 10, wherein the steerable injection needle comprises an adjustment control configured to adjust the curvature of the distal end.
19. The system of claim 10, wherein the steerable injection needle comprises an end cap on the distal end of the needle.
20. The system of claim 10, wherein the steerable injection needle comprises a pull wire operably connected to the distal end of the needle.
21. The system of claim 10, wherein the steerable injection needle comprises a filter operably connected to a distal opening of the needle.
22. The system of claim 10, wherein the distal portion of the steerable injection needle has a working length of at least about 20% of the total working length of the needle.
23. The system of claim 10, wherein the steerable injection needle comprises a spring coil.
24. A closed vertebroplasty bone cement injection system, comprising:
a cartridge containing at least a first chamber and a second chamber;
a first bone cement component in the first chamber and a second bone cement component in the second chamber;
a mixing chamber, for mixing the first and second bone cement components;
an elongate injection needle, for directing bone cement into a treatment site in the spine; and
a closed flow path for directing the first and second bone cement components from the first and second chambers, through the mixing chamber, through the injection needle and into the spine at the treatment site.
25. A closed vertebroplasty bone cement injection system as in claim 24, wherein the cartridge is releaseably connected to the flow path.
26. A closed vertebroplasty bone cement injection system as in claim 24, wherein the mixing chamber is releaseably connected to the flow path.
27. A closed vertebroplasty bone cement injection system as in claim 24, wherein the injection needle is releaseably connected to the flow path.
28. A closed vertebroplasty bone cement injection system as in claim 24, wherein the injection needle has a deflectable distal end.
US11/941,764 2007-11-16 2007-11-16 Steerable vertebroplasty system Abandoned US20090131886A1 (en)

Priority Applications (16)

Application Number Priority Date Filing Date Title
US11/941,733 US20090131950A1 (en) 2007-11-16 2007-11-16 Vertebroplasty method with enhanced control
US11/941,764 US20090131886A1 (en) 2007-11-16 2007-11-16 Steerable vertebroplasty system
US12/029,428 US20090131867A1 (en) 2007-11-16 2008-02-11 Steerable vertebroplasty system with cavity creation element
US12/261,987 US7842041B2 (en) 2007-11-16 2008-10-30 Steerable vertebroplasty system
US12/262,064 US7811291B2 (en) 2007-11-16 2008-10-30 Closed vertebroplasty bone cement injection system
KR20107013294A KR20100107449A (en) 2007-11-16 2008-11-14 Steerable vertebroplasty system with cavity creation element
PCT/US2008/083698 WO2009065085A1 (en) 2007-11-16 2008-11-14 Steerable vertebroplasty system with cavity creation element
CN200880124572.3A CN101909532B (en) 2007-11-16 2008-11-14 Steerable vertebroplasty system with cavity creation element
EP08849845.6A EP2222236B1 (en) 2007-11-16 2008-11-14 Steerable vertebroplasty system with cavity creation element
AU2008322467A AU2008322467A1 (en) 2007-11-16 2008-11-14 Steerable vertebroplasty system with cavity creation element
CA 2705762 CA2705762A1 (en) 2007-11-16 2008-11-14 Steerable vertebroplasty system with cavity creation element
US12/469,654 US20090299282A1 (en) 2007-11-16 2009-05-20 Steerable vertebroplasty system with a plurality of cavity creation elements
HK11105730.1A HK1151706A1 (en) 2007-11-16 2011-06-07 Steerable vertebroplasty system with cavity creation element
US13/182,335 US20120158004A1 (en) 2007-11-16 2011-07-13 Steerable and curvable vertebroplasty system with clog-resistant exit ports
US13/452,784 US8827981B2 (en) 2007-11-16 2012-04-20 Steerable vertebroplasty system with cavity creation element
US13/736,871 US9510885B2 (en) 2007-11-16 2013-01-08 Steerable and curvable cavity creation system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/941,764 US20090131886A1 (en) 2007-11-16 2007-11-16 Steerable vertebroplasty system
US11/941,733 US20090131950A1 (en) 2007-11-16 2007-11-16 Vertebroplasty method with enhanced control

Related Child Applications (4)

Application Number Title Priority Date Filing Date
US12/029,428 Continuation-In-Part US20090131867A1 (en) 2007-11-16 2008-02-11 Steerable vertebroplasty system with cavity creation element
US12/029,428 Continuation US20090131867A1 (en) 2007-11-16 2008-02-11 Steerable vertebroplasty system with cavity creation element
US12/261,987 Division US7842041B2 (en) 2007-11-16 2008-10-30 Steerable vertebroplasty system
US12/262,064 Division US7811291B2 (en) 2007-11-16 2008-10-30 Closed vertebroplasty bone cement injection system

Publications (1)

Publication Number Publication Date
US20090131886A1 true US20090131886A1 (en) 2009-05-21

Family

ID=46331824

Family Applications (3)

Application Number Title Priority Date Filing Date
US11/941,764 Abandoned US20090131886A1 (en) 2007-11-16 2007-11-16 Steerable vertebroplasty system
US12/262,064 Active US7811291B2 (en) 2007-11-16 2008-10-30 Closed vertebroplasty bone cement injection system
US12/261,987 Active US7842041B2 (en) 2007-11-16 2008-10-30 Steerable vertebroplasty system

Family Applications After (2)

Application Number Title Priority Date Filing Date
US12/262,064 Active US7811291B2 (en) 2007-11-16 2008-10-30 Closed vertebroplasty bone cement injection system
US12/261,987 Active US7842041B2 (en) 2007-11-16 2008-10-30 Steerable vertebroplasty system

Country Status (1)

Country Link
US (3) US20090131886A1 (en)

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090198243A1 (en) * 2008-02-06 2009-08-06 Melsheimer Jeffry S Device and method for stabilizing a damaged bone with a bone cement mixture
US7811291B2 (en) 2007-11-16 2010-10-12 Osseon Therapeutics, Inc. Closed vertebroplasty bone cement injection system
US20100262242A1 (en) * 2009-04-09 2010-10-14 Kris Chavatte Minimally invasive spine augmentation and stabilization system and method
US20100312274A1 (en) * 2009-06-09 2010-12-09 Grifols, S.A. Device for the application of fibrin adhesive
US20100324506A1 (en) * 2008-09-26 2010-12-23 Relievant Medsystems, Inc. Systems and methods for navigating an instrument through bone
US20110015574A1 (en) * 2008-03-28 2011-01-20 Jean-Charles Persat Device for injecting a viscous fluid into the body
US20110034885A1 (en) * 2009-08-05 2011-02-10 The University Of Toledo Needle for directional control of the injection of bone cement into a vertebral compression fracture
US20110166531A1 (en) * 2010-01-05 2011-07-07 Allergan, Inc. Syringe
US20110226647A1 (en) * 2010-03-17 2011-09-22 Cook Incorporated Introducer assembly extension and method of use
WO2012047984A1 (en) * 2010-10-05 2012-04-12 Synthes Usa, Llc Bone marrow harvesting device having flexible needle
WO2012054632A1 (en) 2010-10-21 2012-04-26 Allergan, Inc. Dual cartridge mixer syringe
WO2013166209A1 (en) 2012-05-01 2013-11-07 Osseon Therapeutics, Inc. Steerable and curvable cavity creation system
US8827981B2 (en) 2007-11-16 2014-09-09 Osseon Llc Steerable vertebroplasty system with cavity creation element
WO2014138226A1 (en) * 2013-03-07 2014-09-12 Allergan, Inc. Double-cartridge syringe for mixing and dispensing adipose tissue with additive
US8882764B2 (en) 2003-03-28 2014-11-11 Relievant Medsystems, Inc. Thermal denervation devices
US8992523B2 (en) 2002-09-30 2015-03-31 Relievant Medsystems, Inc. Vertebral treatment
EP2594212A3 (en) * 2011-11-16 2015-04-22 Cook Medical Technologies LLC Tip deflecting puncture needle
US9017325B2 (en) 2002-09-30 2015-04-28 Relievant Medsystems, Inc. Nerve modulation systems
WO2013059737A3 (en) * 2011-10-19 2015-05-21 Nitinol Devices And Components, Inc. Tissue treatment device and related methods
US9039701B2 (en) 2008-09-26 2015-05-26 Relievant Medsystems, Inc. Channeling paths into bone
US9119639B2 (en) 2011-08-09 2015-09-01 DePuy Synthes Products, Inc. Articulated cavity creator
WO2015183663A1 (en) * 2014-05-30 2015-12-03 Cook Medical Technologies Llc Laser cut needle cannula with increased flexibility
US9439693B2 (en) 2013-02-01 2016-09-13 DePuy Synthes Products, Inc. Steerable needle assembly for use in vertebral body augmentation
US9463304B2 (en) 2009-12-02 2016-10-11 Renovorx, Inc. Devices, methods and kits for delivery of therapeutic materials to a pancreas
EP2985048A4 (en) * 2013-04-08 2016-10-12 Olympus Corp Injection needle
US9526872B2 (en) 2010-03-17 2016-12-27 Cook Medical Technologies Llc Introducer assembly extension and method of use
USRE46356E1 (en) 2002-09-30 2017-04-04 Relievant Medsystems, Inc. Method of treating an intraosseous nerve
EP3178426A1 (en) * 2015-12-09 2017-06-14 Laurian Mark Dean Delivery device for vertebroplasty and kyphoplasty procedures
US9724107B2 (en) 2008-09-26 2017-08-08 Relievant Medsystems, Inc. Nerve modulation systems
US9724151B2 (en) 2013-08-08 2017-08-08 Relievant Medsystems, Inc. Modulating nerves within bone using bone fasteners
US9775627B2 (en) 2012-11-05 2017-10-03 Relievant Medsystems, Inc. Systems and methods for creating curved paths through bone and modulating nerves within the bone
US9867939B2 (en) 2013-03-12 2018-01-16 Allergan, Inc. Adipose tissue combinations, devices, and uses thereof
US10265477B2 (en) 2013-05-23 2019-04-23 Allergan, Inc. Mechanical syringe accessory
CN109862834A (en) * 2016-10-27 2019-06-07 Dfine有限公司 Hinged osteotome with cement delivering channel
US10369500B2 (en) 2013-10-02 2019-08-06 Allergan, Inc. Fat processing system
US10390877B2 (en) 2011-12-30 2019-08-27 Relievant Medsystems, Inc. Systems and methods for treating back pain
US10433928B2 (en) 2015-03-10 2019-10-08 Allergan Pharmaceuticals Holdings (Ireland) Unlimited Company Multiple needle injector
US10463380B2 (en) 2016-12-09 2019-11-05 Dfine, Inc. Medical devices for treating hard tissues and related methods
US10588691B2 (en) 2012-09-12 2020-03-17 Relievant Medsystems, Inc. Radiofrequency ablation of tissue within a vertebral body
US10596321B2 (en) 2016-04-08 2020-03-24 Allergan, Inc. Aspiration and injection device
US10624652B2 (en) 2010-04-29 2020-04-21 Dfine, Inc. System for use in treatment of vertebral fractures
US10660656B2 (en) 2017-01-06 2020-05-26 Dfine, Inc. Osteotome with a distal portion for simultaneous advancement and articulation
US10792427B2 (en) 2014-05-13 2020-10-06 Allergan, Inc. High force injection devices
US10973499B2 (en) 2017-02-28 2021-04-13 Boston Scientific Scimed, Inc. Articulating needles and related methods of use
US11007010B2 (en) 2019-09-12 2021-05-18 Relevant Medsysterns, Inc. Curved bone access systems
US11026744B2 (en) 2016-11-28 2021-06-08 Dfine, Inc. Tumor ablation devices and related methods
US11197681B2 (en) 2009-05-20 2021-12-14 Merit Medical Systems, Inc. Steerable curvable vertebroplasty drill
US11510723B2 (en) 2018-11-08 2022-11-29 Dfine, Inc. Tumor ablation device and related systems and methods

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101370465A (en) * 2006-01-23 2009-02-18 奥赛恩治疗公司 Bone cement composite containing particles in a non-uniform spatial distribution and devices for implementation
CA2781407A1 (en) 2008-01-14 2009-07-23 Michael P. Brenzel Apparatus and methods for fracture repair
US9161798B2 (en) 2008-02-01 2015-10-20 Dfine, Inc. Bone treatment systems and methods
US8033483B2 (en) * 2008-04-25 2011-10-11 Confluent Surgical Inc. Silicone spray tip
JP5575777B2 (en) 2008-09-30 2014-08-20 ディファイン, インコーポレイテッド System used to treat vertebral fractures
US8758349B2 (en) * 2008-10-13 2014-06-24 Dfine, Inc. Systems for treating a vertebral body
KR101781653B1 (en) * 2009-02-20 2017-09-25 코비디엔 엘피 Methods and devices for venous occlusion for the treatment of venous insufficiency
US9498271B2 (en) * 2009-10-29 2016-11-22 Cook Medical Technologies Llc Coaxial needle cannula with distal spiral mixer and side ports for fluid injection
US8894658B2 (en) * 2009-11-10 2014-11-25 Carefusion 2200, Inc. Apparatus and method for stylet-guided vertebral augmentation
US8142194B2 (en) * 2009-11-16 2012-03-27 Innovative Health Technologies, Llc Implants and methods for performing gums and bone augmentation and preservation
US8568417B2 (en) 2009-12-18 2013-10-29 Charles River Engineering Solutions And Technologies, Llc Articulating tool and methods of using
WO2011088172A1 (en) 2010-01-15 2011-07-21 Brenzel Michael P Rotary-rigid orthopaedic rod
AU2011207550B2 (en) 2010-01-20 2016-03-10 Conventus Orthopaedics, Inc. Apparatus and methods for bone access and cavity preparation
CN103002824B (en) 2010-03-08 2015-07-29 康文图斯整形外科公司 For the device and method of fixing bone implant
US10058336B2 (en) 2010-04-08 2018-08-28 Dfine, Inc. System for use in treatment of vertebral fractures
US9526507B2 (en) 2010-04-29 2016-12-27 Dfine, Inc. System for use in treatment of vertebral fractures
BR112012027707A2 (en) 2010-04-29 2018-05-08 Dfine Inc medical device to treat rigid tissue
US20110319905A1 (en) * 2010-06-23 2011-12-29 Palme Robert A Multiple function vascular device
US9144501B1 (en) 2010-07-16 2015-09-29 Nuvasive, Inc. Fracture reduction device and methods
US8696620B2 (en) * 2010-07-30 2014-04-15 St. Jude Medical, Atrial Fibrillation Division, Inc. Catheter with a mechanism for omni-directional deflection of a catheter shaft
JP5865387B2 (en) 2010-11-22 2016-02-17 ディファイン, インコーポレイテッド System for use in the treatment of vertebral fractures
EP2663357A4 (en) * 2011-01-10 2017-12-06 Spotlight Technology Partners LLC Apparatus and methods for accessing and treating a body cavity, lumen, or ostium
US20120265210A1 (en) * 2011-04-15 2012-10-18 Alexander Grinberg Vertebroplasty Curved Needle
US8932295B1 (en) 2011-06-01 2015-01-13 Surgical Device Exchange, LLC Bone graft delivery system and method for using same
US8387798B1 (en) 2012-04-27 2013-03-05 Abdulmohsen E. A. H. Al-Terki Mutiple oral and nasal surgical procedures method and kit
US10022083B2 (en) 2011-06-02 2018-07-17 Abdulmohsen E. A. H. Al-Terki Multiple oral and nasal surgical procedures method and kit
US9370447B2 (en) * 2011-10-10 2016-06-21 Cygnus LP Probes for use in ophthalmic and vitreoretinal surgery
CN104470453A (en) 2012-03-27 2015-03-25 Dfine有限公司 Methods and systems for use in controlling tissue ablation volume by temperature monitoring
US9095394B2 (en) 2012-04-26 2015-08-04 Kyphon Sarl Cement delivering device and method
US10309430B2 (en) 2012-08-10 2019-06-04 Confluent Surgical, Inc. Pneumatic actuation assembly
US9918766B2 (en) 2012-12-12 2018-03-20 Dfine, Inc. Devices, methods and systems for affixing an access device to a vertebral body for the insertion of bone cement
US9668881B1 (en) 2013-03-15 2017-06-06 Surgentec, Llc Bone graft delivery system and method for using same
US8945137B1 (en) 2013-03-15 2015-02-03 Surgical Device Exchange, LLC Bone graft delivery system and method for using same
US10420888B2 (en) * 2013-09-03 2019-09-24 Max Arocha Double-chamber mixing syringe and method of use
CA2927436C (en) 2013-10-15 2022-04-26 Stryker Corporation Device for creating a void space in living tissue, the device including a handle with a control knob that can be set regardless of the orientation of the handle
CA2969316A1 (en) 2013-12-12 2015-06-18 Conventus Orthopaedics, Inc. Tissue displacement tools and methods
US9351739B2 (en) 2013-12-31 2016-05-31 Amendia, Inc. Tunneling device
EP3125774B1 (en) 2014-04-04 2020-05-27 HyperBranch Medical Technology, Inc. Extended tip spray applicator for two-component surgical selant, and methods of use thereof
US9730707B2 (en) 2014-08-20 2017-08-15 Kyphon SÀRL Surgical instrument with graduated markings correlating to angulation
US10238507B2 (en) 2015-01-12 2019-03-26 Surgentec, Llc Bone graft delivery system and method for using same
US9901392B2 (en) 2015-05-11 2018-02-27 Dfine, Inc. System for use in treatment of vertebral fractures
US11602368B2 (en) * 2015-09-04 2023-03-14 Jeffrey Scott Smith Posterior to lateral interbody fusion approach with associated instrumentation and implants
US11071576B2 (en) * 2015-10-27 2021-07-27 Spinal Simplicity, Llc Flexible guide wire with tantalum marker
US11020160B2 (en) * 2016-03-21 2021-06-01 Warsaw Orthopedic, Inc. Surgical injection system and method
US11364062B2 (en) 2016-08-18 2022-06-21 Spinal Elements, Inc. Material delivery surgical device
US10631881B2 (en) 2017-03-09 2020-04-28 Flower Orthopedics Corporation Plating depth gauge and countersink instrument
US10918426B2 (en) 2017-07-04 2021-02-16 Conventus Orthopaedics, Inc. Apparatus and methods for treatment of a bone
US10695073B2 (en) 2017-08-22 2020-06-30 Arthrex, Inc. Control system for retrograde drill medical device
US11116647B2 (en) 2018-04-13 2021-09-14 Surgentec, Llc Bone graft delivery system and method for using same
US10687828B2 (en) 2018-04-13 2020-06-23 Surgentec, Llc Bone graft delivery system and method for using same
US11849986B2 (en) 2019-04-24 2023-12-26 Stryker Corporation Systems and methods for off-axis augmentation of a vertebral body
US11540896B2 (en) * 2019-06-03 2023-01-03 University Of Miami Steerable guide for minimally invasive surgery
WO2023076529A1 (en) * 2021-10-27 2023-05-04 Encapsulemed, Inc System and device for performing vertebral augmentation
CN113975483B (en) * 2021-11-03 2022-05-13 四川大学 Syringe for joint cavity

Citations (90)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4578061A (en) * 1980-10-28 1986-03-25 Lemelson Jerome H Injection catheter and method
US4586923A (en) * 1984-06-25 1986-05-06 Cordis Corporation Curving tip catheter
US4641654A (en) * 1985-07-30 1987-02-10 Advanced Cardiovascular Systems, Inc. Steerable balloon dilatation catheter assembly having dye injection and pressure measurement capabilities
US4653489A (en) * 1984-04-02 1987-03-31 Tronzo Raymond G Fenestrated hip screw and method of augmented fixation
US4731054A (en) * 1985-07-02 1988-03-15 Sulzer Brothers Limited Medical repository probe
US4747840A (en) * 1986-09-17 1988-05-31 Ladika Joseph E Selective pulmonary arteriograph catheter
US4900303A (en) * 1978-03-10 1990-02-13 Lemelson Jerome H Dispensing catheter and method
US5088991A (en) * 1988-07-14 1992-02-18 Novoste Corporation Fuseless soft tip angiographic catheter
US5092891A (en) * 1990-03-08 1992-03-03 Kummer Frederick J Cement plug for the medullary canal of a bone and coacting tool for installing same
US5108404A (en) * 1989-02-09 1992-04-28 Arie Scholten Surgical protocol for fixation of bone using inflatable device
US5112303A (en) * 1991-05-02 1992-05-12 Pudenz-Schulte Medical Research Corporation Tumor access device and method for delivering medication into a body cavity
US5114414A (en) * 1984-09-18 1992-05-19 Medtronic, Inc. Low profile steerable catheter
US5184757A (en) * 1991-03-25 1993-02-09 Giannuzzi Anthony C Double-barreled epoxy injection gun
US5188619A (en) * 1991-04-24 1993-02-23 Gene E. Myers Enterprises, Inc. Internal thoractic artery catheter
US5197971A (en) * 1990-03-02 1993-03-30 Bonutti Peter M Arthroscopic retractor and method of using the same
US5211631A (en) * 1991-07-24 1993-05-18 Sheaff Charles M Patient warming apparatus
US5280473A (en) * 1990-02-08 1994-01-18 Universal Data Systems, Inc. Modem with echo cancellation
US5285795A (en) * 1991-09-12 1994-02-15 Surgical Dynamics, Inc. Percutaneous discectomy system having a bendable discectomy probe and a steerable cannula
US5295980A (en) * 1989-10-30 1994-03-22 Ersek Robert A Multi-use cannula system
US5308342A (en) * 1991-08-07 1994-05-03 Target Therapeutics, Inc. Variable stiffness catheter
US5378234A (en) * 1993-03-15 1995-01-03 Pilot Cardiovascular Systems, Inc. Coil polymer composite
US5380307A (en) * 1992-09-30 1995-01-10 Target Therapeutics, Inc. Catheter with atraumatic drug delivery tip
US5385563A (en) * 1993-09-14 1995-01-31 The Kendall Company Urodynamic catheter
US5389073A (en) * 1992-12-01 1995-02-14 Cardiac Pathways Corporation Steerable catheter with adjustable bend location
US5480382A (en) * 1989-01-09 1996-01-02 Pilot Cardiovascular Systems, Inc. Steerable medical device
US5484424A (en) * 1992-11-19 1996-01-16 Celsa L.G. (Societe Anonyme) Blood filtering device having a catheter with longitudinally variable rigidity
US5489275A (en) * 1994-11-14 1996-02-06 Ep Technologies, Inc. Identification ring for catheter
US5496330A (en) * 1993-02-19 1996-03-05 Boston Scientific Corporation Surgical extractor with closely angularly spaced individual filaments
US5514137A (en) * 1993-12-06 1996-05-07 Coutts; Richard D. Fixation of orthopedic devices
US5616121A (en) * 1993-08-17 1997-04-01 Mckay; Douglas W. Method for alleviating pain in a wound
US5624396A (en) * 1995-10-30 1997-04-29 Micro Therapeutics, Inc. Longitudinally extendable infusion device
US5704926A (en) * 1994-11-23 1998-01-06 Navarre Biomedical, Ltd. Flexible catheter
US5709697A (en) * 1995-11-22 1998-01-20 United States Surgical Corporation Apparatus and method for removing tissue
US5725568A (en) * 1995-06-27 1998-03-10 Scimed Life Systems, Inc. Method and device for recanalizing and grafting arteries
US5735829A (en) * 1996-03-22 1998-04-07 Cherian; George Intercostal anesthetic infusion catheter
US5741320A (en) * 1995-05-02 1998-04-21 Heart Rhythm Technologies, Inc. Catheter control system having a pulley
US5858003A (en) * 1994-10-20 1999-01-12 Children's Medical Center Corporation Systems and methods for promoting tissue growth
US5860952A (en) * 1996-01-11 1999-01-19 C. R. Bard, Inc. Corporeal access tube assembly and method
US5876373A (en) * 1997-04-04 1999-03-02 Eclipse Surgical Technologies, Inc. Steerable catheter
US6019765A (en) * 1998-05-06 2000-02-01 Johnson & Johnson Professional, Inc. Morsellized bone allograft applicator device
US6027487A (en) * 1993-06-24 2000-02-22 Radiance Medical Systems, Inc. Low profile infusion catheter
US6030360A (en) * 1996-12-30 2000-02-29 Biggs; Robert C. Steerable catheter
US6048346A (en) * 1997-08-13 2000-04-11 Kyphon Inc. Systems and methods for injecting flowable materials into bones
US6059739A (en) * 1998-05-29 2000-05-09 Medtronic, Inc. Method and apparatus for deflecting a catheter or lead
US6183435B1 (en) * 1999-03-22 2001-02-06 Cordis Webster, Inc. Multi-directional steerable catheters and control handles
US6203507B1 (en) * 1999-03-03 2001-03-20 Cordis Webster, Inc. Deflectable catheter with ergonomic handle
US20020013600A1 (en) * 1997-08-15 2002-01-31 Kyphon Inc. Expandable, asymmetric structures for deployment in interior body regions
US20020026195A1 (en) * 2000-04-07 2002-02-28 Kyphon Inc. Insertion devices and method of use
US6358251B1 (en) * 2000-03-21 2002-03-19 University Of Washington Method and apparatus for forming a cavity in soft tissue or bone
US6511471B2 (en) * 2000-12-22 2003-01-28 Biocardia, Inc. Drug delivery catheters that attach to tissue and methods for their use
US20030032929A1 (en) * 1998-12-09 2003-02-13 Mcguckin James F. Hollow curved superelastic medical needle and method
US6524296B1 (en) * 1997-04-17 2003-02-25 Medtronic, Inc. Vessel cannula having properties varying along the axial length
US20030043963A1 (en) * 2001-09-06 2003-03-06 Motoyuki Yamagami X-ray fluorescence spectrometric system and a program for use therein
US20030050644A1 (en) * 2001-09-11 2003-03-13 Boucher Ryan P. Systems and methods for accessing and treating diseased or fractured bone employing a guide wire
US20030073979A1 (en) * 2001-10-15 2003-04-17 Wendy Naimark Medical device for delivering patches
US6676665B2 (en) * 2000-08-11 2004-01-13 Sdgi Holdings, Inc. Surgical instrumentation and method for treatment of the spine
US6679886B2 (en) * 2000-09-01 2004-01-20 Synthes (Usa) Tools and methods for creating cavities in bone
US20040024410A1 (en) * 2002-08-02 2004-02-05 Scimed Life Systems, Inc. Media delivery device for bone structures
US20040024409A1 (en) * 1997-08-13 2004-02-05 Kyphon Inc. Systems and methods for injecting flowable materials into bones
US20040023384A1 (en) * 2002-07-31 2004-02-05 Isis Pharmaceuticals Inc. Antisense modulation of G protein-coupled receptor 12 expression
US20040044350A1 (en) * 1999-04-09 2004-03-04 Evalve, Inc. Steerable access sheath and methods of use
US6719773B1 (en) * 1998-06-01 2004-04-13 Kyphon Inc. Expandable structures for deployment in interior body regions
US6726691B2 (en) * 1998-08-14 2004-04-27 Kyphon Inc. Methods for treating fractured and/or diseased bone
US6837867B2 (en) * 2001-04-30 2005-01-04 Biosense Webster, Inc. Steerable catheter with reinforced tip
US20050027245A1 (en) * 1996-02-23 2005-02-03 Memory Medical Systems, Inc. Medical instrument with slotted memory metal tube
US20050033303A1 (en) * 2001-06-18 2005-02-10 Chappuis James L. Surgical instrumentation and method for forming a passage in bone having an enlarged cross-sectional portion
US6863672B2 (en) * 1998-04-06 2005-03-08 Kyphon Inc. Structures and methods for creating cavities in interior body regions
US20050070912A1 (en) * 2003-09-29 2005-03-31 John Voellmicke Vertebroplasty device having a flexible plunger
US20050070844A1 (en) * 2003-09-30 2005-03-31 Mina Chow Deflectable catheter assembly and method of making same
US6875219B2 (en) * 2003-02-14 2005-04-05 Yves P. Arramon Bone access system
US20050090852A1 (en) * 2000-04-07 2005-04-28 Kyphon Inc. Insertion devices and method of use
US6981981B2 (en) * 1994-01-26 2006-01-03 Kyphon Inc. Inflatable device for use in surgical protocol relating to fixation of bone
US6991616B2 (en) * 1998-10-02 2006-01-31 Boston Scientific Scimed, Inc. Steerable device for introducing diagnostic and therapeutic apparatus into the body
US7004945B2 (en) * 2001-11-01 2006-02-28 Spinewave, Inc. Devices and methods for the restoration of a spinal disc
US7008433B2 (en) * 2001-02-15 2006-03-07 Depuy Acromed, Inc. Vertebroplasty injection device
US20060052743A1 (en) * 2002-11-21 2006-03-09 Reynolds Martin A Methods of performing embolism-free vertebroplasty and devices therefor
US20060064101A1 (en) * 2004-02-12 2006-03-23 Arthrocare Corporation Bone access system
US20060074433A1 (en) * 2004-08-17 2006-04-06 Scimed Life Systems, Inc. Apparatus and methods for delivering compounds into vertebrae for vertebroplasty
US7029468B2 (en) * 2002-06-25 2006-04-18 Enpath Medical, Inc. Catheter assembly with side wall exit lumen and method therefor
US20070010845A1 (en) * 2005-07-08 2007-01-11 Gorman Gong Directionally controlled expandable device and methods for use
US20070016130A1 (en) * 2005-05-06 2007-01-18 Leeflang Stephen A Complex Shaped Steerable Catheters and Methods for Making and Using Them
US20070016211A1 (en) * 2005-05-24 2007-01-18 Gary Botimer Expandable surgical reaming tool
US7166232B2 (en) * 2000-12-21 2007-01-23 Micronas Gmbh Method for producing a solid body including a microstructure
US20070043373A1 (en) * 2004-05-19 2007-02-22 Sintea Biotech S.P.A. Devices and method for widening bone cavities
US20070055201A1 (en) * 2005-07-11 2007-03-08 Seto Christine L Systems and methods for providing cavities in interior body regions
US20070055283A1 (en) * 1998-08-14 2007-03-08 Kyphon Inc. Systems and methods for placing materials into bone
US20070055275A1 (en) * 2005-08-16 2007-03-08 Laurent Schaller Methods for Limiting the Movement of Material Introduced Between Layers of Spinal Tissue
US20070067034A1 (en) * 2005-08-31 2007-03-22 Chirico Paul E Implantable devices and methods for treating micro-architecture deterioration of bone tissue
US20080058840A1 (en) * 2006-09-01 2008-03-06 Albrecht Thomas E Implantable coil for insertion into a hollow body organ
US20090105775A1 (en) * 2007-10-19 2009-04-23 David Mitchell Cannula with lateral access and directional exit port

Family Cites Families (210)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3625200A (en) * 1969-08-26 1971-12-07 Us Catheter & Instr Corp Controlled curvable tip member
US3908637A (en) 1974-04-22 1975-09-30 Louis W Doroshow Rigid urethral instrument
DE2501683C3 (en) 1975-01-17 1979-11-29 Ernst Leitz Wetzlar Gmbh, 6300 Wetzlar Polymer composite material for prosthetic use and process for its manufacture
US4033331A (en) * 1975-07-17 1977-07-05 Guss Stephen B Cardiac catheter and method of using same
DE2862446D1 (en) 1978-06-29 1984-11-15 Osteo Ag Carbon fiber reinforced bone cement
US4276880A (en) 1978-09-14 1981-07-07 Oscar Malmin Cannula and process
US4294251A (en) * 1978-10-17 1981-10-13 Greenwald A Seth Method of suction lavage
US4236520A (en) * 1978-12-04 1980-12-02 Anderson Mark L Fluid drain or injection tube for an animal's udder
US5017627A (en) 1980-10-09 1991-05-21 National Research Development Corporation Composite material for use in orthopaedics
US4337773A (en) 1980-10-20 1982-07-06 Raftopoulos Demetrios D Method of and device for placing a barrier in a cavity provided in a bone shaft
US4399814A (en) * 1981-04-27 1983-08-23 Massachusetts Institute Of Technology Method and apparatus for pressure-coated bones
DE3325111A1 (en) 1983-07-12 1985-01-24 Merck Patent Gmbh, 6100 Darmstadt IMPLANTATION MATERIALS
US4722948A (en) 1984-03-16 1988-02-02 Dynatech Corporation Bone replacement and repair putty material from unsaturated polyester resin and vinyl pyrrolidone
US4888366A (en) 1984-10-24 1989-12-19 Collagen Corporation Inductive collagen-based bone repair preparations
US5246457A (en) 1985-03-28 1993-09-21 Collagen Corporation Xenogeneic collagen/mineral preparations in bone repair
US4668295A (en) 1985-04-25 1987-05-26 University Of Dayton Surgical cements
US4627434A (en) * 1985-05-03 1986-12-09 Murray William M Bone cement system and method
US4846814A (en) 1986-01-16 1989-07-11 Sherwood Medical Company Non-whip catheter
DE3613213A1 (en) 1986-04-18 1987-10-22 Merck Patent Gmbh TRICALCIUMPHOSPHATE FOR IMPLANTATION MATERIALS
US5085861A (en) 1987-03-12 1992-02-04 The Beth Israel Hospital Association Bioerodable implant composition comprising crosslinked biodegradable polyesters
US4843112A (en) 1987-03-12 1989-06-27 The Beth Israel Hospital Association Bioerodable implant composition
US4748969A (en) 1987-05-07 1988-06-07 Circon Corporation Multi-lumen core deflecting endoscope
US4784638A (en) 1987-09-17 1988-11-15 Neurodynamics, Inc. Angled hole ventricular catheter and method of making same
US4865586A (en) 1987-09-21 1989-09-12 Martha Hedberg Suction stylet for endotracheal intubation
US5029558A (en) 1988-02-03 1991-07-09 Sullivan Engine Works Rotary vee engine
IT1234978B (en) 1988-06-01 1992-06-09 Tecres Spa TWO-STAGE CEMENTITIOUS MIXTURE, PARTICULARLY SUITABLE FOR ORTHOPEDIC USES.
US4961731A (en) 1988-06-09 1990-10-09 Sherwood Medical Company Angiographic catheter with balanced dye injection openings
US5156606A (en) 1988-10-11 1992-10-20 Zimmer, Inc. Method and apparatus for removing pre-placed prosthetic joints and preparing for their replacement
US5264214A (en) 1988-11-21 1993-11-23 Collagen Corporation Composition for bone repair
US5296026A (en) 1988-12-02 1994-03-22 Monroe Eugene A Phosphate glass cement
US4982730A (en) 1988-12-21 1991-01-08 Lewis Jr Royce C Ultrasonic wound cleaning method and apparatus
US4963151A (en) 1988-12-28 1990-10-16 Trustees Of The University Of Pennsylvania Reinforced bone cement, method of production thereof and reinforcing fiber bundles therefor
US5372587A (en) 1989-01-09 1994-12-13 Pilot Cariovascular Systems, Inc. Steerable medical device
US4969870A (en) 1989-06-07 1990-11-13 The Regents Of The University Of California Method and apparatus for intraosseous infusions
US5049137A (en) 1989-09-08 1991-09-17 Thompson Jeffrey E Prepackaged syringe and catheter apparatus for deep administration of a fluid, and method of making same
US5196201A (en) 1989-10-20 1993-03-23 Bioapatite Ab Implant material composition, preparation thereof as well as uses thereof and implant product obtainable therefrom
US5059193A (en) 1989-11-20 1991-10-22 Spine-Tech, Inc. Expandable spinal implant and surgical method
US5454365A (en) 1990-11-05 1995-10-03 Bonutti; Peter M. Mechanically expandable arthroscopic retractors
NL9000833A (en) 1990-04-09 1991-11-01 Cordis Europ ANGIOGRAPHY CATHETER.
US5266248A (en) 1990-05-10 1993-11-30 Torao Ohtsuka Method of producing hydroxylapatite base porous beads filler for an organism
US6080801A (en) 1990-09-13 2000-06-27 Klaus Draenert Multi-component material and process for its preparation
DE4033343A1 (en) 1990-10-19 1992-04-23 Draenert Klaus MATERIAL AS THE STARTING MATERIAL FOR THE PRODUCTION OF BONE CEMENT AND METHOD FOR THE PRODUCTION THEREOF
US5147334A (en) 1991-01-02 1992-09-15 Moss James P Catheter for cholangiography
US5368598A (en) 1991-04-19 1994-11-29 Hasson; Harrith M. Method of manipulating an uterus using a bendable manipulator
US5356629A (en) 1991-07-12 1994-10-18 United States Surgical Corporation Composition for effecting bone repair
US5336699A (en) 1992-02-20 1994-08-09 Orthopaedic Research Institute Bone cement having chemically joined reinforcing fillers
ATE269371T1 (en) 1992-02-28 2004-07-15 Cohesion Tech Inc INJECTABLE CERAMIC COMPOUNDS AND METHOD FOR THEIR PRODUCTION AND USE
US5269750A (en) 1992-06-22 1993-12-14 Stryker Corporation Tip unit for fluid transfer surgical handpiece
US5334626A (en) 1992-07-28 1994-08-02 Zimmer, Inc. Bone cement composition and method of manufacture
US5343877A (en) 1992-09-09 1994-09-06 University Of Iowa Research Foundation Orthopedic implant and method
US5549542A (en) 1992-11-17 1996-08-27 Life Medical Technologies, Inc. Deflectable endoscope
US5531715A (en) 1993-05-12 1996-07-02 Target Therapeutics, Inc. Lubricious catheters
US5431639A (en) 1993-08-12 1995-07-11 Boston Scientific Corporation Treating wounds caused by medical procedures
US5431168A (en) 1993-08-23 1995-07-11 Cordis-Webster, Inc. Steerable open-lumen catheter
US5360416A (en) 1993-09-30 1994-11-01 Sherwood Medical Company Thin-walled anesthesia needles
US7044954B2 (en) 1994-01-26 2006-05-16 Kyphon Inc. Method for treating a vertebral body
US20060100635A1 (en) 1994-01-26 2006-05-11 Kyphon, Inc. Inflatable device for use in surgical protocol relating to fixation of bone
US20030032963A1 (en) 2001-10-24 2003-02-13 Kyphon Inc. Devices and methods using an expandable body with internal restraint for compressing cancellous bone
US6248110B1 (en) 1994-01-26 2001-06-19 Kyphon, Inc. Systems and methods for treating fractured or diseased bone using expandable bodies
US6716216B1 (en) 1998-08-14 2004-04-06 Kyphon Inc. Systems and methods for treating vertebral bodies
US7166121B2 (en) 1994-01-26 2007-01-23 Kyphon Inc. Systems and methods using expandable bodies to push apart cortical bone surfaces
US5533985A (en) 1994-04-20 1996-07-09 Wang; James C. Tubing
US5571189A (en) 1994-05-20 1996-11-05 Kuslich; Stephen D. Expandable fabric implant for stabilizing the spinal motion segment
US5554114A (en) 1994-10-20 1996-09-10 Micro Therapeutics, Inc. Infusion device with preformed shape
US5535922A (en) 1994-11-29 1996-07-16 Tah Industries, Inc. Caulking gun dispensing module for multi-component cartridge
GB0102529D0 (en) 2001-01-31 2001-03-21 Thales Optronics Staines Ltd Improvements relating to thermal imaging cameras
US6291547B1 (en) 1995-02-08 2001-09-18 Materials Evolution And Development Usa Inc. Bone cement compositions comprising fused fibrous compounds
US5571085A (en) 1995-03-24 1996-11-05 Electro-Catheter Corporation Steerable open lumen catheter
US6280413B1 (en) 1995-06-07 2001-08-28 Medtronic Ave, Inc. Thrombolytic filtration and drug delivery catheter with a self-expanding portion
US5681289A (en) 1995-08-14 1997-10-28 Medicinelodge Inc. Chemical dispensing system
US5637091A (en) 1995-08-31 1997-06-10 Hakky; Said I. Collapsible catheter
AU726713B2 (en) 1995-10-13 2000-11-16 Transvascular, Inc. Methods and apparatus for bypassing arterial obstructions and/or performing other transvascular procedures
US5776193A (en) 1995-10-16 1998-07-07 Orquest, Inc. Bone grafting matrix
US6228052B1 (en) 1996-02-29 2001-05-08 Medtronic Inc. Dilator for introducer system having injection port
US6110155A (en) 1996-04-30 2000-08-29 Medtronic, Inc. Anti-inflammatory-agent-loaded catheter and method for preventing tissue fibrosis
US5681317A (en) 1996-06-12 1997-10-28 Johnson & Johnson Professional, Inc. Cement delivery system and method
US6136885A (en) 1996-06-14 2000-10-24 3M Innovative Proprerties Company Glass ionomer cement
US6066176A (en) 1996-07-11 2000-05-23 Oshida; Yoshiki Orthopedic implant system
US5820592A (en) 1996-07-16 1998-10-13 Hammerslag; Gary R. Angiographic and/or guide catheter
AU3669497A (en) 1996-07-18 1998-02-10 Implant Innovations, Inc. Power-driven osteotome tools for compaction of bone tissue
US6126682A (en) 1996-08-13 2000-10-03 Oratec Interventions, Inc. Method for treating annular fissures in intervertebral discs
US6280473B1 (en) 1996-08-19 2001-08-28 Macropore, Inc. Resorbable, macro-porous, non-collapsing and flexible membrane barrier for skeletal repair and regeneration
US5905000A (en) 1996-09-03 1999-05-18 Nanomaterials Research Corporation Nanostructured ion conducting solid electrolytes
US6953594B2 (en) 1996-10-10 2005-10-11 Etex Corporation Method of preparing a poorly crystalline calcium phosphate and methods of its use
US5800408A (en) 1996-11-08 1998-09-01 Micro Therapeutics, Inc. Infusion device for distributing infusate along an elongated infusion segment
US5902839A (en) 1996-12-02 1999-05-11 Northwestern University Bone cement and method of preparation
US5914356A (en) 1996-12-06 1999-06-22 Orthovita, Inc. Bioactive load bearing bone bonding compositions
US6332880B1 (en) 1996-12-19 2001-12-25 Ep Technologies, Inc. Loop structures for supporting multiple electrode elements
US6146355A (en) 1996-12-30 2000-11-14 Myelotec, Inc. Steerable catheter
US6013591A (en) 1997-01-16 2000-01-11 Massachusetts Institute Of Technology Nanocrystalline apatites and composites, prostheses incorporating them, and method for their production
US5931829A (en) 1997-01-21 1999-08-03 Vasca, Inc. Methods and systems for establishing vascular access
JP3527378B2 (en) 1997-01-31 2004-05-17 テルモ株式会社 Contrast catheter
IL128261A0 (en) 1999-01-27 1999-11-30 Disc O Tech Medical Tech Ltd Expandable element
JP2001527437A (en) 1997-03-07 2001-12-25 ベイヤー、モルデキイ System for percutaneous bone and spine stabilization, fixation and repair
US5847046A (en) 1997-03-12 1998-12-08 United States Surgical Corporation Biodegradable bone cement
US5810867A (en) 1997-04-28 1998-09-22 Medtronic, Inc. Dilatation catheter with varied stiffness
US20020077595A1 (en) 1998-06-15 2002-06-20 Ronald R Hundertmark Endovascular coronary sinus catheter and method of use
US5924976A (en) 1997-08-21 1999-07-20 Stelzer; Paul Minimally invasive surgery device
US5997581A (en) 1997-12-29 1999-12-07 Johnson & Johnson Professional, Inc. Hip stem cement spacer
US6251092B1 (en) 1997-12-30 2001-06-26 Medtronic, Inc. Deflectable guiding catheter
US5928239A (en) 1998-03-16 1999-07-27 University Of Washington Percutaneous surgical cavitation device and method
JP3360810B2 (en) 1998-04-14 2003-01-07 ペンタックス株式会社 Method for producing bone replacement material
DE69942858D1 (en) 1998-06-01 2010-11-25 Kyphon S A R L DEFINABLE, PREFORMED STRUCTURES FOR ESTABLISHMENT IN REGIONS INSIDE THE BODY
GB9820369D0 (en) 1998-09-19 1998-11-11 Giltech Ltd Material
AU760593B2 (en) 1999-02-02 2003-05-15 Wright Medical Technology, Inc. Controlled release composite
AU770196B2 (en) 1999-02-04 2004-02-12 Warsaw Orthopedic, Inc. Osteogenic paste compositions and uses thereof
US6770079B2 (en) 1999-03-16 2004-08-03 American Osteomedix, Inc. Apparatus and method for fixation of osteoporotic bone
US6506217B1 (en) 1999-03-29 2003-01-14 Arnett Facial Reconstruction Courses, Inc. Moldable post-implantation bone filler and method
US6689823B1 (en) 1999-03-31 2004-02-10 The Brigham And Women's Hospital, Inc. Nanocomposite surgical materials and method of producing them
US6890329B2 (en) 1999-06-15 2005-05-10 Cryocath Technologies Inc. Defined deflection structure
US6479565B1 (en) 1999-08-16 2002-11-12 Harold R. Stanley Bioactive ceramic cement
US6783515B1 (en) 1999-09-30 2004-08-31 Arthrocare Corporation High pressure delivery system
US6575919B1 (en) 1999-10-19 2003-06-10 Kyphon Inc. Hand-held instruments that access interior body regions
US7081122B1 (en) 1999-10-19 2006-07-25 Kyphon Inc. Hand-held instruments that access interior body regions
US6241710B1 (en) 1999-12-20 2001-06-05 Tricardia Llc Hypodermic needle with weeping tip and method of use
US6599961B1 (en) 2000-02-01 2003-07-29 University Of Kentucky Research Foundation Polymethylmethacrylate augmented with carbon nanotubes
US6383188B2 (en) 2000-02-15 2002-05-07 The Spineology Group Llc Expandable reamer
US6740093B2 (en) 2000-02-28 2004-05-25 Stephen Hochschuler Method and apparatus for treating a vertebral body
US6332894B1 (en) 2000-03-07 2001-12-25 Zimmer, Inc. Polymer filled spinal fusion cage
US6447514B1 (en) 2000-03-07 2002-09-10 Zimmer Polymer filled hip fracture fixation device
AU2001253173B2 (en) 2000-04-05 2005-05-12 Boston Scientific Limited Intralumenal material removal systems and methods
US6565588B1 (en) 2000-04-05 2003-05-20 Pathway Medical Technologies, Inc. Intralumenal material removal using an expandable cutting device
US6638268B2 (en) 2000-04-07 2003-10-28 Imran K. Niazi Catheter to cannulate the coronary sinus
US6869445B1 (en) 2000-05-04 2005-03-22 Phillips Plastics Corp. Packable ceramic beads for bone repair
US6743239B1 (en) 2000-05-25 2004-06-01 St. Jude Medical, Inc. Devices with a bendable tip for medical procedures
DE60141653D1 (en) 2000-07-21 2010-05-06 Spineology Group Llc A STRONG, POROUS NET BAG DEVICE AND ITS USE IN BONE SURGERY
US7114501B2 (en) 2000-08-14 2006-10-03 Spine Wave, Inc. Transverse cavity device and method
CA2425612A1 (en) 2000-10-16 2002-04-25 Brian R. Genge Biocompatible cement containing reactive calcium phosphate nanoparticles and methods for making and using such cement
DE60140558D1 (en) 2000-10-25 2009-12-31 Kyphon S A R L SYSTEMS FOR THE REPOSITION OF BROKEN BONE BY MEANS OF A CANNULA FOR THE REPONATION OF BONE FRACTURES
US6916306B1 (en) 2000-11-10 2005-07-12 Boston Scientific Scimed, Inc. Steerable loop structures for supporting diagnostic and therapeutic elements in contact with body tissue
US6576249B1 (en) 2000-11-13 2003-06-10 El Gendler Bone putty and method
US7544196B2 (en) 2001-02-20 2009-06-09 Orthovita, Inc. System and kit for delivery of restorative materials
DE10108261B4 (en) 2001-02-21 2006-07-20 Ivoclar Vivadent Ag Polymerizable composition with particulate composite based filler
US20020115742A1 (en) 2001-02-22 2002-08-22 Trieu Hai H. Bioactive nanocomposites and methods for their use
CN1162187C (en) 2001-02-22 2004-08-18 华东理工大学 Inorganic bane adhesive and its application in body's hard tissue repair
US6623448B2 (en) 2001-03-30 2003-09-23 Advanced Cardiovascular Systems, Inc. Steerable drug delivery device
US6575978B2 (en) 2001-04-05 2003-06-10 Spineology, Inc. Circumferential resecting reamer tool
US6979312B2 (en) 2001-04-12 2005-12-27 Biotran Corporation, Inc. Steerable sheath catheters
US6610058B2 (en) 2001-05-02 2003-08-26 Cardiac Pacemakers, Inc. Dual-profile steerable catheter
US6484904B1 (en) 2001-05-21 2002-11-26 Tah Industries, Inc. Two-component cartridge system
ITVI20010126A1 (en) 2001-05-30 2002-11-30 Tecres Spa RADIOPACO BONE CEMENT FOR ORTHOPEDIC USE AND METHOD OF REALIZATION
US6746451B2 (en) 2001-06-01 2004-06-08 Lance M. Middleton Tissue cavitation device and method
DE10129842C1 (en) 2001-06-15 2003-04-24 Bam Bundesanstalt Matforschung Process for the production of a bioactive bone cement and bone cement kit
NL1018438C1 (en) 2001-07-02 2003-01-08 Baat Medical Engineering B V Foldable and foldable tools for placement in a spine.
US6835193B2 (en) 2001-07-10 2004-12-28 Myocardial Therapeutics, Inc. Methods for controlled depth injections into interior body cavities
US6620162B2 (en) 2001-07-20 2003-09-16 Spineology, Inc. Device for inserting fill material particles into body cavities
CN1835720B (en) 2001-07-25 2011-09-28 Disc整形外科技术股份有限公司 Deformable tools and implants
US20040034384A1 (en) 2001-08-08 2004-02-19 Kohei Fukaya Expansion catheter
GB0124742D0 (en) 2001-10-16 2001-12-05 Biocomposites Ltd Biodegradable materials
US6913594B2 (en) 2001-12-31 2005-07-05 Biosense Webster, Inc. Dual-function catheter handle
US6955716B2 (en) 2002-03-01 2005-10-18 American Dental Association Foundation Self-hardening calcium phosphate materials with high resistance to fracture, controlled strength histories and tailored macropore formation rates
SE0201052D0 (en) 2002-04-04 2002-04-04 Cerbio Tech Ab Biocompatible cement compositions and method of manufacturing
PT1366774E (en) 2002-05-29 2007-08-16 Heraeus Kulzer Gmbh Bone cement and x-ray contrast agent
US20030225432A1 (en) 2002-05-31 2003-12-04 Baptiste Reginald C. Soft tissue retraction device for an endoscopic instrument
US7166133B2 (en) 2002-06-13 2007-01-23 Kensey Nash Corporation Devices and methods for treating defects in the tissue of a living being
KR100465985B1 (en) 2002-07-30 2005-01-15 재단법인서울대학교산학협력재단 Bioactive Biphasic Ceramic Compositions for Artificial Bone and Method for Making the Same
US20040087994A1 (en) 2002-08-29 2004-05-06 Loubert Suddaby Mechanical bone tamping device for repair of osteoporotic bone fractures
US7138442B2 (en) 2002-08-30 2006-11-21 Biomet, Inc. Reduced exothermic bone replacement cement
US7066942B2 (en) 2002-10-03 2006-06-27 Wright Medical Technology, Inc. Bendable needle for delivering bone graft material and method of use
US7582309B2 (en) 2002-11-15 2009-09-01 Etex Corporation Cohesive demineralized bone compositions
AU2003290806A1 (en) 2002-11-15 2004-06-15 The Government Of The United States As Represented By The Secretary Of The Department Of Health And Human Services Variable curve catheter
US20050251267A1 (en) 2004-05-04 2005-11-10 John Winterbottom Cell permeable structural implant
US6945956B2 (en) 2002-12-23 2005-09-20 Medtronic, Inc. Steerable catheter
SE524494C2 (en) 2002-12-31 2004-08-17 Doxa Ab Chemically bonded biomaterial elements with tailored properties
US20060024348A1 (en) 2002-12-31 2006-02-02 Doxa Aktiebolag Chemically bonded biomaterial element with tailored properties
US7390298B2 (en) 2003-01-06 2008-06-24 City Of Hope Expandable surgical retractor for internal body spaces approached with minimally invasive incisions or through existing orifices
CA2516113A1 (en) 2003-02-13 2004-08-26 Synthes (U.S.A.) Injectable bone-replacement mixture
WO2004073563A2 (en) 2003-02-14 2004-09-02 Depuy Spine, Inc. In-situ formed intervertebral fusion device
GB0307834D0 (en) 2003-04-04 2003-05-14 Ta Contrast Ab Composition
US20060206116A1 (en) * 2003-05-07 2006-09-14 Yeung Jeffrey E Injection device for the invertebral disc
US7112205B2 (en) 2003-06-17 2006-09-26 Boston Scientific Scimed, Inc. Apparatus and methods for delivering compounds into vertebrae for vertebroplasty
WO2005018507A2 (en) 2003-07-18 2005-03-03 Ev3 Santa Rosa, Inc. Remotely activated mitral annuloplasty system and methods
US7887557B2 (en) 2003-08-14 2011-02-15 Boston Scientific Scimed, Inc. Catheter having a cutting balloon including multiple cavities or multiple channels
AU2004270128B2 (en) 2003-09-03 2010-12-23 Kyphon Sarl Devices for creating voids in interior body regions and related methods
US7094202B2 (en) 2003-09-29 2006-08-22 Ethicon Endo-Surgery, Inc. Method of operating an endoscopic device with one hand
EP1596736B1 (en) 2003-11-18 2006-08-30 SOMATEX Medical Technologies GmbH Injection pump
US20050113836A1 (en) 2003-11-25 2005-05-26 Lozier Antony J. Expandable reamer
WO2005053581A1 (en) 2003-12-01 2005-06-16 Broockeville Corporation N.V. A tow-component mixing and dispensing device
US7351280B2 (en) 2004-02-10 2008-04-01 New York University Macroporous, resorbable and injectible calcium phosphate-based cements (MCPC) for bone repair, augmentation, regeneration, and osteoporosis treatment
US20050187556A1 (en) 2004-02-25 2005-08-25 Synecor, Llc Universal percutaneous spinal access system
US7959634B2 (en) 2004-03-29 2011-06-14 Soteira Inc. Orthopedic surgery access devices
US7507241B2 (en) 2004-04-05 2009-03-24 Expanding Orthopedics Inc. Expandable bone device
US7465318B2 (en) 2004-04-15 2008-12-16 Soteira, Inc. Cement-directing orthopedic implants
US7452351B2 (en) 2004-04-16 2008-11-18 Kyphon Sarl Spinal diagnostic methods and apparatus
US8163030B2 (en) 2004-05-06 2012-04-24 Degradable Solutions Ag Biocompatible bone implant compositions and methods for repairing a bone defect
AU2005258328A1 (en) 2004-06-16 2006-01-05 Warsaw Orthopedic, Inc. Surgical instrumentation for the repair of vertebral bodies
US20060106459A1 (en) 2004-08-30 2006-05-18 Csaba Truckai Bone treatment systems and methods
US7682378B2 (en) 2004-11-10 2010-03-23 Dfine, Inc. Bone treatment systems and methods for introducing an abrading structure to abrade bone
US20060100706A1 (en) 2004-11-10 2006-05-11 Shadduck John H Stent systems and methods for spine treatment
US8663225B2 (en) 2004-11-12 2014-03-04 Medtronic, Inc. Hydrogel bone void filler
US8562607B2 (en) 2004-11-19 2013-10-22 Dfine, Inc. Bone treatment systems and methods
US20060184192A1 (en) 2005-02-11 2006-08-17 Markworth Aaron D Systems and methods for providing cavities in interior body regions
US7959601B2 (en) 2005-02-14 2011-06-14 Biosense Webster, Inc. Steerable catheter with in-plane deflection
JP2006263184A (en) 2005-03-24 2006-10-05 Gc Corp Bone cement injection and filling method and leakage prevention bag for injecting and filling bone cement
US8187327B2 (en) 2005-05-18 2012-05-29 Kyphon Sarl Selectively-expandable bone scaffold
US20060276797A1 (en) 2005-05-24 2006-12-07 Gary Botimer Expandable reaming device
US20060293687A1 (en) 2005-06-07 2006-12-28 Bogert Roy B Syringe plunger seal
WO2007030616A2 (en) 2005-09-09 2007-03-15 Wright Medical Technology, Inc. Composite bone graft substitute cement and articles produced therefrom
US7823753B2 (en) 2005-11-18 2010-11-02 Kovac Karen S Double barrel caulking gun caddy
US7713273B2 (en) 2005-11-18 2010-05-11 Carefusion 2200, Inc. Device, system and method for delivering a curable material into bone
US20070173939A1 (en) 2005-12-23 2007-07-26 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for fixation of bone with an expandable device
CN101370465A (en) 2006-01-23 2009-02-18 奥赛恩治疗公司 Bone cement composite containing particles in a non-uniform spatial distribution and devices for implementation
EP1983917B1 (en) 2006-01-27 2014-06-25 Spinal Ventures, LLC Low pressure delivery system for delivering a solid and liquid mixture into a target site for medical treatment
US20070270876A1 (en) 2006-04-07 2007-11-22 Yi-Chen Kuo Vertebra bone cement introduction system
US7615044B2 (en) 2006-05-03 2009-11-10 Greatbatch Ltd. Deflectable sheath handle assembly and method therefor
US9237916B2 (en) 2006-12-15 2016-01-19 Gmedeleware 2 Llc Devices and methods for vertebrostenting
US20090131950A1 (en) 2007-11-16 2009-05-21 Liu Y King Vertebroplasty method with enhanced control
US20090131886A1 (en) 2007-11-16 2009-05-21 Liu Y King Steerable vertebroplasty system
US20090131867A1 (en) 2007-11-16 2009-05-21 Liu Y King Steerable vertebroplasty system with cavity creation element
WO2009073209A1 (en) 2007-12-06 2009-06-11 Osseon Therapeutics, Inc. Vertebroplasty implant with enhanced interfacial shear strength

Patent Citations (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4900303A (en) * 1978-03-10 1990-02-13 Lemelson Jerome H Dispensing catheter and method
US4578061A (en) * 1980-10-28 1986-03-25 Lemelson Jerome H Injection catheter and method
US4653489A (en) * 1984-04-02 1987-03-31 Tronzo Raymond G Fenestrated hip screw and method of augmented fixation
US4586923A (en) * 1984-06-25 1986-05-06 Cordis Corporation Curving tip catheter
US5114414A (en) * 1984-09-18 1992-05-19 Medtronic, Inc. Low profile steerable catheter
US4731054A (en) * 1985-07-02 1988-03-15 Sulzer Brothers Limited Medical repository probe
US4641654A (en) * 1985-07-30 1987-02-10 Advanced Cardiovascular Systems, Inc. Steerable balloon dilatation catheter assembly having dye injection and pressure measurement capabilities
US4747840A (en) * 1986-09-17 1988-05-31 Ladika Joseph E Selective pulmonary arteriograph catheter
US5088991A (en) * 1988-07-14 1992-02-18 Novoste Corporation Fuseless soft tip angiographic catheter
US5480382A (en) * 1989-01-09 1996-01-02 Pilot Cardiovascular Systems, Inc. Steerable medical device
US5108404A (en) * 1989-02-09 1992-04-28 Arie Scholten Surgical protocol for fixation of bone using inflatable device
US5295980A (en) * 1989-10-30 1994-03-22 Ersek Robert A Multi-use cannula system
US5280473A (en) * 1990-02-08 1994-01-18 Universal Data Systems, Inc. Modem with echo cancellation
US5197971A (en) * 1990-03-02 1993-03-30 Bonutti Peter M Arthroscopic retractor and method of using the same
US5092891A (en) * 1990-03-08 1992-03-03 Kummer Frederick J Cement plug for the medullary canal of a bone and coacting tool for installing same
US5184757A (en) * 1991-03-25 1993-02-09 Giannuzzi Anthony C Double-barreled epoxy injection gun
US5188619A (en) * 1991-04-24 1993-02-23 Gene E. Myers Enterprises, Inc. Internal thoractic artery catheter
US5112303A (en) * 1991-05-02 1992-05-12 Pudenz-Schulte Medical Research Corporation Tumor access device and method for delivering medication into a body cavity
US5211631A (en) * 1991-07-24 1993-05-18 Sheaff Charles M Patient warming apparatus
US5308342A (en) * 1991-08-07 1994-05-03 Target Therapeutics, Inc. Variable stiffness catheter
US5285795A (en) * 1991-09-12 1994-02-15 Surgical Dynamics, Inc. Percutaneous discectomy system having a bendable discectomy probe and a steerable cannula
US5380307A (en) * 1992-09-30 1995-01-10 Target Therapeutics, Inc. Catheter with atraumatic drug delivery tip
US5484424A (en) * 1992-11-19 1996-01-16 Celsa L.G. (Societe Anonyme) Blood filtering device having a catheter with longitudinally variable rigidity
US5389073A (en) * 1992-12-01 1995-02-14 Cardiac Pathways Corporation Steerable catheter with adjustable bend location
US5496330A (en) * 1993-02-19 1996-03-05 Boston Scientific Corporation Surgical extractor with closely angularly spaced individual filaments
US5378234A (en) * 1993-03-15 1995-01-03 Pilot Cardiovascular Systems, Inc. Coil polymer composite
US6027487A (en) * 1993-06-24 2000-02-22 Radiance Medical Systems, Inc. Low profile infusion catheter
US5616121A (en) * 1993-08-17 1997-04-01 Mckay; Douglas W. Method for alleviating pain in a wound
US5385563A (en) * 1993-09-14 1995-01-31 The Kendall Company Urodynamic catheter
US5514137A (en) * 1993-12-06 1996-05-07 Coutts; Richard D. Fixation of orthopedic devices
US6981981B2 (en) * 1994-01-26 2006-01-03 Kyphon Inc. Inflatable device for use in surgical protocol relating to fixation of bone
US20070055266A1 (en) * 1994-01-26 2007-03-08 Kyphon Inc. Methods and devices for treating fractured and/or diseased bone using an expandable stent structure that remains within the bone
US20070055300A1 (en) * 1994-01-26 2007-03-08 Kyphon Inc. Methods and devices for treating fractured and/or diseased bone using an expandable balloon structure that remains within the bone
US20070055278A1 (en) * 1994-01-26 2007-03-08 Kyphon Inc. Method and devices for treating fractured and/or diseased bone using an expandable mesh structure that remains within the bone
US20070055284A1 (en) * 1994-01-26 2007-03-08 Kyphon Inc. Methods and devices for treating fractured and/or diseased bone using an expandable structure that remains within the bone
US5858003A (en) * 1994-10-20 1999-01-12 Children's Medical Center Corporation Systems and methods for promoting tissue growth
US5489275A (en) * 1994-11-14 1996-02-06 Ep Technologies, Inc. Identification ring for catheter
US5704926A (en) * 1994-11-23 1998-01-06 Navarre Biomedical, Ltd. Flexible catheter
US5741320A (en) * 1995-05-02 1998-04-21 Heart Rhythm Technologies, Inc. Catheter control system having a pulley
US5725568A (en) * 1995-06-27 1998-03-10 Scimed Life Systems, Inc. Method and device for recanalizing and grafting arteries
US5624396A (en) * 1995-10-30 1997-04-29 Micro Therapeutics, Inc. Longitudinally extendable infusion device
US5709697A (en) * 1995-11-22 1998-01-20 United States Surgical Corporation Apparatus and method for removing tissue
US5860952A (en) * 1996-01-11 1999-01-19 C. R. Bard, Inc. Corporeal access tube assembly and method
US20050027245A1 (en) * 1996-02-23 2005-02-03 Memory Medical Systems, Inc. Medical instrument with slotted memory metal tube
US5735829A (en) * 1996-03-22 1998-04-07 Cherian; George Intercostal anesthetic infusion catheter
US6030360A (en) * 1996-12-30 2000-02-29 Biggs; Robert C. Steerable catheter
US5876373A (en) * 1997-04-04 1999-03-02 Eclipse Surgical Technologies, Inc. Steerable catheter
US6524296B1 (en) * 1997-04-17 2003-02-25 Medtronic, Inc. Vessel cannula having properties varying along the axial length
US20070055279A1 (en) * 1997-08-13 2007-03-08 Kyphon Inc. Systems and methods for injecting flowable materials into bones
US6048346A (en) * 1997-08-13 2000-04-11 Kyphon Inc. Systems and methods for injecting flowable materials into bones
US6719761B1 (en) * 1997-08-13 2004-04-13 Kyphon Inc. System and methods for injecting flowable materials into bones
US20040024409A1 (en) * 1997-08-13 2004-02-05 Kyphon Inc. Systems and methods for injecting flowable materials into bones
US20020013600A1 (en) * 1997-08-15 2002-01-31 Kyphon Inc. Expandable, asymmetric structures for deployment in interior body regions
US20070021769A1 (en) * 1997-08-15 2007-01-25 Kyphon Inc. Systems and methods for forming a cavity in cancellous bone
US6863672B2 (en) * 1998-04-06 2005-03-08 Kyphon Inc. Structures and methods for creating cavities in interior body regions
US20070055277A1 (en) * 1998-04-06 2007-03-08 Kyphon Inc. Methods and devices for treating fractured and/or diseased bone using an expandable whisk structure
US6019765A (en) * 1998-05-06 2000-02-01 Johnson & Johnson Professional, Inc. Morsellized bone allograft applicator device
US6059739A (en) * 1998-05-29 2000-05-09 Medtronic, Inc. Method and apparatus for deflecting a catheter or lead
US6719773B1 (en) * 1998-06-01 2004-04-13 Kyphon Inc. Expandable structures for deployment in interior body regions
US20070055283A1 (en) * 1998-08-14 2007-03-08 Kyphon Inc. Systems and methods for placing materials into bone
US20070055285A1 (en) * 1998-08-14 2007-03-08 Kyphon Inc. Methods and devices for treating fractured and/or diseased bone using an expandable stent structure
US6726691B2 (en) * 1998-08-14 2004-04-27 Kyphon Inc. Methods for treating fractured and/or diseased bone
US6991616B2 (en) * 1998-10-02 2006-01-31 Boston Scientific Scimed, Inc. Steerable device for introducing diagnostic and therapeutic apparatus into the body
US20030032929A1 (en) * 1998-12-09 2003-02-13 Mcguckin James F. Hollow curved superelastic medical needle and method
US6203507B1 (en) * 1999-03-03 2001-03-20 Cordis Webster, Inc. Deflectable catheter with ergonomic handle
US6183435B1 (en) * 1999-03-22 2001-02-06 Cordis Webster, Inc. Multi-directional steerable catheters and control handles
US20040044350A1 (en) * 1999-04-09 2004-03-04 Evalve, Inc. Steerable access sheath and methods of use
US6358251B1 (en) * 2000-03-21 2002-03-19 University Of Washington Method and apparatus for forming a cavity in soft tissue or bone
US20020026195A1 (en) * 2000-04-07 2002-02-28 Kyphon Inc. Insertion devices and method of use
US20050090852A1 (en) * 2000-04-07 2005-04-28 Kyphon Inc. Insertion devices and method of use
US6676665B2 (en) * 2000-08-11 2004-01-13 Sdgi Holdings, Inc. Surgical instrumentation and method for treatment of the spine
US6679886B2 (en) * 2000-09-01 2004-01-20 Synthes (Usa) Tools and methods for creating cavities in bone
US7166232B2 (en) * 2000-12-21 2007-01-23 Micronas Gmbh Method for producing a solid body including a microstructure
US6511471B2 (en) * 2000-12-22 2003-01-28 Biocardia, Inc. Drug delivery catheters that attach to tissue and methods for their use
US7008433B2 (en) * 2001-02-15 2006-03-07 Depuy Acromed, Inc. Vertebroplasty injection device
US6837867B2 (en) * 2001-04-30 2005-01-04 Biosense Webster, Inc. Steerable catheter with reinforced tip
US20050033303A1 (en) * 2001-06-18 2005-02-10 Chappuis James L. Surgical instrumentation and method for forming a passage in bone having an enlarged cross-sectional portion
US20030043963A1 (en) * 2001-09-06 2003-03-06 Motoyuki Yamagami X-ray fluorescence spectrometric system and a program for use therein
US20030050644A1 (en) * 2001-09-11 2003-03-13 Boucher Ryan P. Systems and methods for accessing and treating diseased or fractured bone employing a guide wire
US20030073979A1 (en) * 2001-10-15 2003-04-17 Wendy Naimark Medical device for delivering patches
US7004945B2 (en) * 2001-11-01 2006-02-28 Spinewave, Inc. Devices and methods for the restoration of a spinal disc
US7029468B2 (en) * 2002-06-25 2006-04-18 Enpath Medical, Inc. Catheter assembly with side wall exit lumen and method therefor
US20040023384A1 (en) * 2002-07-31 2004-02-05 Isis Pharmaceuticals Inc. Antisense modulation of G protein-coupled receptor 12 expression
US20040024410A1 (en) * 2002-08-02 2004-02-05 Scimed Life Systems, Inc. Media delivery device for bone structures
US20060052743A1 (en) * 2002-11-21 2006-03-09 Reynolds Martin A Methods of performing embolism-free vertebroplasty and devices therefor
US6875219B2 (en) * 2003-02-14 2005-04-05 Yves P. Arramon Bone access system
US20050070912A1 (en) * 2003-09-29 2005-03-31 John Voellmicke Vertebroplasty device having a flexible plunger
US20050070844A1 (en) * 2003-09-30 2005-03-31 Mina Chow Deflectable catheter assembly and method of making same
US20060064101A1 (en) * 2004-02-12 2006-03-23 Arthrocare Corporation Bone access system
US20070043373A1 (en) * 2004-05-19 2007-02-22 Sintea Biotech S.P.A. Devices and method for widening bone cavities
US20060074433A1 (en) * 2004-08-17 2006-04-06 Scimed Life Systems, Inc. Apparatus and methods for delivering compounds into vertebrae for vertebroplasty
US20070016130A1 (en) * 2005-05-06 2007-01-18 Leeflang Stephen A Complex Shaped Steerable Catheters and Methods for Making and Using Them
US20070016211A1 (en) * 2005-05-24 2007-01-18 Gary Botimer Expandable surgical reaming tool
US20070010845A1 (en) * 2005-07-08 2007-01-11 Gorman Gong Directionally controlled expandable device and methods for use
US20070055201A1 (en) * 2005-07-11 2007-03-08 Seto Christine L Systems and methods for providing cavities in interior body regions
US20070055275A1 (en) * 2005-08-16 2007-03-08 Laurent Schaller Methods for Limiting the Movement of Material Introduced Between Layers of Spinal Tissue
US20070067034A1 (en) * 2005-08-31 2007-03-22 Chirico Paul E Implantable devices and methods for treating micro-architecture deterioration of bone tissue
US20080058840A1 (en) * 2006-09-01 2008-03-06 Albrecht Thomas E Implantable coil for insertion into a hollow body organ
US20090105775A1 (en) * 2007-10-19 2009-04-23 David Mitchell Cannula with lateral access and directional exit port

Cited By (108)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9173676B2 (en) 2002-09-30 2015-11-03 Relievant Medsystems, Inc. Nerve modulation methods
US9486279B2 (en) 2002-09-30 2016-11-08 Relievant Medsystems, Inc. Intraosseous nerve treatment
US11596468B2 (en) 2002-09-30 2023-03-07 Relievant Medsystems, Inc. Intraosseous nerve treatment
US9848944B2 (en) 2002-09-30 2017-12-26 Relievant Medsystems, Inc. Thermal denervation devices and methods
US8992523B2 (en) 2002-09-30 2015-03-31 Relievant Medsystems, Inc. Vertebral treatment
USRE48460E1 (en) 2002-09-30 2021-03-09 Relievant Medsystems, Inc. Method of treating an intraosseous nerve
USRE46356E1 (en) 2002-09-30 2017-04-04 Relievant Medsystems, Inc. Method of treating an intraosseous nerve
US8992522B2 (en) 2002-09-30 2015-03-31 Relievant Medsystems, Inc. Back pain treatment methods
US9023038B2 (en) 2002-09-30 2015-05-05 Relievant Medsystems, Inc. Denervation methods
US10478246B2 (en) 2002-09-30 2019-11-19 Relievant Medsystems, Inc. Ablation of tissue within vertebral body involving internal cooling
US9017325B2 (en) 2002-09-30 2015-04-28 Relievant Medsystems, Inc. Nerve modulation systems
US9421064B2 (en) 2002-09-30 2016-08-23 Relievant Medsystems, Inc. Nerve modulation systems
US10111704B2 (en) 2002-09-30 2018-10-30 Relievant Medsystems, Inc. Intraosseous nerve treatment
US8882764B2 (en) 2003-03-28 2014-11-11 Relievant Medsystems, Inc. Thermal denervation devices
US10463423B2 (en) 2003-03-28 2019-11-05 Relievant Medsystems, Inc. Thermal denervation devices and methods
US8827981B2 (en) 2007-11-16 2014-09-09 Osseon Llc Steerable vertebroplasty system with cavity creation element
US7811291B2 (en) 2007-11-16 2010-10-12 Osseon Therapeutics, Inc. Closed vertebroplasty bone cement injection system
US9510885B2 (en) 2007-11-16 2016-12-06 Osseon Llc Steerable and curvable cavity creation system
US7842041B2 (en) 2007-11-16 2010-11-30 Osseon Therapeutics, Inc. Steerable vertebroplasty system
US20090198243A1 (en) * 2008-02-06 2009-08-06 Melsheimer Jeffry S Device and method for stabilizing a damaged bone with a bone cement mixture
US9066752B2 (en) * 2008-03-28 2015-06-30 Jean-Charles Persat Device for injecting a viscous fluid into the body
US20110015574A1 (en) * 2008-03-28 2011-01-20 Jean-Charles Persat Device for injecting a viscous fluid into the body
US9265522B2 (en) 2008-09-26 2016-02-23 Relievant Medsystems, Inc. Methods for navigating an instrument through bone
US9259241B2 (en) 2008-09-26 2016-02-16 Relievant Medsystems, Inc. Methods of treating nerves within bone using fluid
US8808284B2 (en) * 2008-09-26 2014-08-19 Relievant Medsystems, Inc. Systems for navigating an instrument through bone
US20100324506A1 (en) * 2008-09-26 2010-12-23 Relievant Medsystems, Inc. Systems and methods for navigating an instrument through bone
US10905440B2 (en) 2008-09-26 2021-02-02 Relievant Medsystems, Inc. Nerve modulation systems
US10265099B2 (en) 2008-09-26 2019-04-23 Relievant Medsystems, Inc. Systems for accessing nerves within bone
US11471171B2 (en) 2008-09-26 2022-10-18 Relievant Medsystems, Inc. Bipolar radiofrequency ablation systems for treatment within bone
US9724107B2 (en) 2008-09-26 2017-08-08 Relievant Medsystems, Inc. Nerve modulation systems
US9039701B2 (en) 2008-09-26 2015-05-26 Relievant Medsystems, Inc. Channeling paths into bone
US10028753B2 (en) 2008-09-26 2018-07-24 Relievant Medsystems, Inc. Spine treatment kits
US8911497B2 (en) 2009-04-09 2014-12-16 DePuy Synthes Products, LLC Minimally invasive spine augmentation and stabilization system and method
US20100262242A1 (en) * 2009-04-09 2010-10-14 Kris Chavatte Minimally invasive spine augmentation and stabilization system and method
US11197681B2 (en) 2009-05-20 2021-12-14 Merit Medical Systems, Inc. Steerable curvable vertebroplasty drill
RU2481858C2 (en) * 2009-06-09 2013-05-20 Грифольс, С.А. Fibrin adhesive applicator
EP2260771A1 (en) * 2009-06-09 2010-12-15 Grifols, S.A. Device for the application of fibrin adhesive
CN101919721A (en) * 2009-06-09 2010-12-22 基立福有限公司 Device for the application of fibrin adhesive
US20100312274A1 (en) * 2009-06-09 2010-12-09 Grifols, S.A. Device for the application of fibrin adhesive
AU2010201630B2 (en) * 2009-06-09 2011-07-07 Grifols, S.A. Device for the application of fibrin adhesive
US8376188B2 (en) 2009-06-09 2013-02-19 Grifols, S.A. Device for the application of fibrin adhesive
US8377013B2 (en) 2009-08-05 2013-02-19 The University Of Toledo Needle for directional control of the injection of bone cement into a vertebral compression fracture
US20110034885A1 (en) * 2009-08-05 2011-02-10 The University Of Toledo Needle for directional control of the injection of bone cement into a vertebral compression fracture
US9463304B2 (en) 2009-12-02 2016-10-11 Renovorx, Inc. Devices, methods and kits for delivery of therapeutic materials to a pancreas
US20110166531A1 (en) * 2010-01-05 2011-07-07 Allergan, Inc. Syringe
US9750884B2 (en) 2010-01-05 2017-09-05 Allergan, Inc. Syringe
US8961474B2 (en) 2010-01-05 2015-02-24 Allergan, Inc. Syringe
US10974033B2 (en) 2010-03-17 2021-04-13 Cook Medical Technologies Llc Introducer assembly extension and method of use
US9526872B2 (en) 2010-03-17 2016-12-27 Cook Medical Technologies Llc Introducer assembly extension and method of use
US10232149B2 (en) 2010-03-17 2019-03-19 Cook Medical Technologies Llc Introducer assembly extension and method of use
US20110226647A1 (en) * 2010-03-17 2011-09-22 Cook Incorporated Introducer assembly extension and method of use
US10624652B2 (en) 2010-04-29 2020-04-21 Dfine, Inc. System for use in treatment of vertebral fractures
US8852119B2 (en) * 2010-10-05 2014-10-07 DePuy Synthes Products, LLC Bone marrow harvesting device having flexible needle
US20120116247A1 (en) * 2010-10-05 2012-05-10 Kortney Wawrzyniak Bone marrow harvesting device having flexible needle
WO2012047984A1 (en) * 2010-10-05 2012-04-12 Synthes Usa, Llc Bone marrow harvesting device having flexible needle
CN103153201A (en) * 2010-10-05 2013-06-12 斯恩蒂斯有限公司 Bone marrow harvesting device having flexible needle
KR101908148B1 (en) 2010-10-05 2018-10-15 신세스 게엠바하 Bone marrow harvesting device having flexible needle
WO2012054632A1 (en) 2010-10-21 2012-04-26 Allergan, Inc. Dual cartridge mixer syringe
US9610083B2 (en) 2011-08-09 2017-04-04 DePuy Synthes Products, Inc. Articulated cavity creator
US9119639B2 (en) 2011-08-09 2015-09-01 DePuy Synthes Products, Inc. Articulated cavity creator
US9629675B2 (en) 2011-10-19 2017-04-25 Confluent Medical Technologies, Inc. Tissue treatment device and related methods
WO2013059737A3 (en) * 2011-10-19 2015-05-21 Nitinol Devices And Components, Inc. Tissue treatment device and related methods
EP2594212A3 (en) * 2011-11-16 2015-04-22 Cook Medical Technologies LLC Tip deflecting puncture needle
US11471210B2 (en) 2011-12-30 2022-10-18 Relievant Medsystems, Inc. Methods of denervating vertebral body using external energy source
US10390877B2 (en) 2011-12-30 2019-08-27 Relievant Medsystems, Inc. Systems and methods for treating back pain
WO2013166209A1 (en) 2012-05-01 2013-11-07 Osseon Therapeutics, Inc. Steerable and curvable cavity creation system
US11737814B2 (en) 2012-09-12 2023-08-29 Relievant Medsystems, Inc. Cryotherapy treatment for back pain
US10588691B2 (en) 2012-09-12 2020-03-17 Relievant Medsystems, Inc. Radiofrequency ablation of tissue within a vertebral body
US11701168B2 (en) 2012-09-12 2023-07-18 Relievant Medsystems, Inc. Radiofrequency ablation of tissue within a vertebral body
US11690667B2 (en) 2012-09-12 2023-07-04 Relievant Medsystems, Inc. Radiofrequency ablation of tissue within a vertebral body
US10517611B2 (en) 2012-11-05 2019-12-31 Relievant Medsystems, Inc. Systems for navigation and treatment within a vertebral body
US11234764B1 (en) 2012-11-05 2022-02-01 Relievant Medsystems, Inc. Systems for navigation and treatment within a vertebral body
US11160563B2 (en) 2012-11-05 2021-11-02 Relievant Medsystems, Inc. Systems for navigation and treatment within a vertebral body
US9775627B2 (en) 2012-11-05 2017-10-03 Relievant Medsystems, Inc. Systems and methods for creating curved paths through bone and modulating nerves within the bone
US10357258B2 (en) 2012-11-05 2019-07-23 Relievant Medsystems, Inc. Systems and methods for creating curved paths through bone
US11291502B2 (en) 2012-11-05 2022-04-05 Relievant Medsystems, Inc. Methods of navigation and treatment within a vertebral body
US9439693B2 (en) 2013-02-01 2016-09-13 DePuy Synthes Products, Inc. Steerable needle assembly for use in vertebral body augmentation
WO2014138226A1 (en) * 2013-03-07 2014-09-12 Allergan, Inc. Double-cartridge syringe for mixing and dispensing adipose tissue with additive
US9867939B2 (en) 2013-03-12 2018-01-16 Allergan, Inc. Adipose tissue combinations, devices, and uses thereof
EP2985048A4 (en) * 2013-04-08 2016-10-12 Olympus Corp Injection needle
US10265477B2 (en) 2013-05-23 2019-04-23 Allergan, Inc. Mechanical syringe accessory
US9724151B2 (en) 2013-08-08 2017-08-08 Relievant Medsystems, Inc. Modulating nerves within bone using bone fasteners
US10456187B2 (en) 2013-08-08 2019-10-29 Relievant Medsystems, Inc. Modulating nerves within bone using bone fasteners
US11065046B2 (en) 2013-08-08 2021-07-20 Relievant Medsystems, Inc. Modulating nerves within bone
US10369500B2 (en) 2013-10-02 2019-08-06 Allergan, Inc. Fat processing system
US10792427B2 (en) 2014-05-13 2020-10-06 Allergan, Inc. High force injection devices
WO2015183663A1 (en) * 2014-05-30 2015-12-03 Cook Medical Technologies Llc Laser cut needle cannula with increased flexibility
US10433928B2 (en) 2015-03-10 2019-10-08 Allergan Pharmaceuticals Holdings (Ireland) Unlimited Company Multiple needle injector
EP3178426A1 (en) * 2015-12-09 2017-06-14 Laurian Mark Dean Delivery device for vertebroplasty and kyphoplasty procedures
US11890457B2 (en) 2016-04-08 2024-02-06 Allergan, Inc. Aspiration and injection device
US10596321B2 (en) 2016-04-08 2020-03-24 Allergan, Inc. Aspiration and injection device
US10478241B2 (en) 2016-10-27 2019-11-19 Merit Medical Systems, Inc. Articulating osteotome with cement delivery channel
CN109862834A (en) * 2016-10-27 2019-06-07 Dfine有限公司 Hinged osteotome with cement delivering channel
US11344350B2 (en) 2016-10-27 2022-05-31 Dfine, Inc. Articulating osteotome with cement delivery channel and method of use
US11026744B2 (en) 2016-11-28 2021-06-08 Dfine, Inc. Tumor ablation devices and related methods
US11116570B2 (en) 2016-11-28 2021-09-14 Dfine, Inc. Tumor ablation devices and related methods
US10463380B2 (en) 2016-12-09 2019-11-05 Dfine, Inc. Medical devices for treating hard tissues and related methods
US10470781B2 (en) 2016-12-09 2019-11-12 Dfine, Inc. Medical devices for treating hard tissues and related methods
US11540842B2 (en) 2016-12-09 2023-01-03 Dfine, Inc. Medical devices for treating hard tissues and related methods
US11607230B2 (en) 2017-01-06 2023-03-21 Dfine, Inc. Osteotome with a distal portion for simultaneous advancement and articulation
US10660656B2 (en) 2017-01-06 2020-05-26 Dfine, Inc. Osteotome with a distal portion for simultaneous advancement and articulation
US10973499B2 (en) 2017-02-28 2021-04-13 Boston Scientific Scimed, Inc. Articulating needles and related methods of use
US11510723B2 (en) 2018-11-08 2022-11-29 Dfine, Inc. Tumor ablation device and related systems and methods
US11426199B2 (en) 2019-09-12 2022-08-30 Relievant Medsystems, Inc. Methods of treating a vertebral body
US11207100B2 (en) 2019-09-12 2021-12-28 Relievant Medsystems, Inc. Methods of detecting and treating back pain
US11202655B2 (en) 2019-09-12 2021-12-21 Relievant Medsystems, Inc. Accessing and treating tissue within a vertebral body
US11007010B2 (en) 2019-09-12 2021-05-18 Relevant Medsysterns, Inc. Curved bone access systems
US11123103B2 (en) 2019-09-12 2021-09-21 Relievant Medsystems, Inc. Introducer systems for bone access

Also Published As

Publication number Publication date
US20090131945A1 (en) 2009-05-21
US7842041B2 (en) 2010-11-30
US20090131948A1 (en) 2009-05-21
US7811291B2 (en) 2010-10-12

Similar Documents

Publication Publication Date Title
US7842041B2 (en) Steerable vertebroplasty system
US20090131950A1 (en) Vertebroplasty method with enhanced control
US11197681B2 (en) Steerable curvable vertebroplasty drill
US8827981B2 (en) Steerable vertebroplasty system with cavity creation element
CA2872107C (en) Steerable and curvable cavity creation system
US20090299282A1 (en) Steerable vertebroplasty system with a plurality of cavity creation elements
US20120158004A1 (en) Steerable and curvable vertebroplasty system with clog-resistant exit ports
EP3593740B1 (en) System for off-axis tissue manipulation
US7909833B2 (en) Vertebroplasty device having a flexible plunger
US6645213B2 (en) Systems and methods for injecting flowable materials into bones
EP1614403B1 (en) Hydraulic device for the injection of bone cement in percutaneous vertebroplasty
US20050228397A1 (en) Cavity filling device
US20050113843A1 (en) Remotely actuated system for bone cement delivery
AU2017204475B2 (en) Steerable vertebroplasty system with cavity creation element

Legal Events

Date Code Title Description
AS Assignment

Owner name: OSSEON THERAPEUTICS, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LIU, Y. KING;LAU, JAN R.;THRELKELD, JUDSON E.;AND OTHERS;REEL/FRAME:022666/0094;SIGNING DATES FROM 20090305 TO 20090407

AS Assignment

Owner name: VENTURE LENDING & LEASING VI, INC., CALIFORNIA

Free format text: SECURITY AGREEMENT;ASSIGNOR:OSSEON THERAPEUTICS, INC.;REEL/FRAME:027048/0423

Effective date: 20111007

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: J. & P. O'DONNELL REVOCABLE TRUST, DATED OCTOBER 2

Free format text: SECURITY AGREEMENT;ASSIGNORS:OSSEON THERAPEUTICS, INC.;VENTURE LENDING & LEASING VI, INC.;REEL/FRAME:028225/0889

Effective date: 20120330

AS Assignment

Owner name: SQUADRON NEWCO LLC, CONNECTICUT

Free format text: TRANSFER PURSUANT TO FORECLOSURE;ASSIGNOR:OSSEON THERAPEUTICS, INC.;REEL/FRAME:032166/0795

Effective date: 20140206

AS Assignment

Owner name: OSSEON LLC, CONNECTICUT

Free format text: CHANGE OF NAME;ASSIGNOR:SQUADRON NEWCO LLC;REEL/FRAME:033144/0777

Effective date: 20140206

AS Assignment

Owner name: SQUADRON NEWCO LLC, CONNECTICUT

Free format text: SECURITY INTEREST;ASSIGNORS:OSSEON THERAPEUTICS, INC,;O'DONNELL REVOCABLE TRUST, DATED OCTOBER 30, 1982;REEL/FRAME:042869/0364

Effective date: 20140129