WO2002101828A2 - Verfahren zum umschmelzen von auf verbindungsstellen aufgebrachtem lotmaterial - Google Patents

Verfahren zum umschmelzen von auf verbindungsstellen aufgebrachtem lotmaterial Download PDF

Info

Publication number
WO2002101828A2
WO2002101828A2 PCT/EP2002/005312 EP0205312W WO02101828A2 WO 2002101828 A2 WO2002101828 A2 WO 2002101828A2 EP 0205312 W EP0205312 W EP 0205312W WO 02101828 A2 WO02101828 A2 WO 02101828A2
Authority
WO
WIPO (PCT)
Prior art keywords
solder material
connection points
target temperature
semiconductor
remelting
Prior art date
Application number
PCT/EP2002/005312
Other languages
English (en)
French (fr)
Other versions
WO2002101828A3 (de
Inventor
Peter Grambow
Thomas Gutt
Marc Tornow
Original Assignee
Infineon Technologies Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Infineon Technologies Ag filed Critical Infineon Technologies Ag
Publication of WO2002101828A2 publication Critical patent/WO2002101828A2/de
Publication of WO2002101828A3 publication Critical patent/WO2002101828A3/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/11Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0556Disposition
    • H01L2224/05568Disposition the whole external layer protruding from the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05573Single external layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01023Vanadium [V]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01058Cerium [Ce]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01075Rhenium [Re]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1032III-V
    • H01L2924/10329Gallium arsenide [GaAs]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13063Metal-Semiconductor Field-Effect Transistor [MESFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13064High Electron Mobility Transistor [HEMT, HFET [heterostructure FET], MODFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • H01L2924/141Analog devices
    • H01L2924/1423Monolithic Microwave Integrated Circuit [MMIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3494Heating methods for reflowing of solder

Definitions

  • the present invention lies in the field of connection technology and in particular in the field of semiconductor technology and relates to a method for U-melting solder material applied to connection points.
  • solder connections are generally made between connection points seated on a semiconductor substrate and corresponding connection points on a carrier material.
  • a certain amount of a solder material is applied to the individual connection points of the semiconductor material, e.g. applied galvanically or in the form of a solder paste.
  • the semiconductor material prepared in this way is brought into contact with the carrier material under the influence of temperature, the solder material being liquefied by the influence of temperature and producing a soldered connection between the respective connection points of the semiconductor material and carrier.
  • the object of the present invention is therefore to provide a simple method for remelting applied solder material, in which the disadvantages of the prior art are avoided.
  • the object of the present invention is in particular to provide a simple method for remelting applied solder material, which can be used in the context of a standard process in mass production.
  • a substrate is provided with at least one connection point, the solder material is applied to the connection point and the solder material is remelted (in a comparatively short time) using an RTP process.
  • an RTP process is clearly superior to an oven process or the process described in document WO 96/24459 with regard to the contamination of the substrate to be heated.
  • the method according to the invention is particularly simple in an already existing manufacturing process integrated. A high throughput can be achieved with the method according to the invention, which is reflected in relatively low production costs.
  • the process according to the invention also has the advantage that a very homogeneous temperature distribution can be achieved over the product to be produced. Accordingly, the remelted solder material has a very homogeneous quality over the product to be produced, so that a good yield of the process can be guaranteed.
  • the solder material is heated to a target temperature and the target temperature is between 100 ° C and 500 ° C, preferably between 180 ° C and 350 ° C. It is further preferred if the solder material is heated to a target temperature and the target temperature is set with an accuracy of less than or equal to 5 ° C. over the entire wafer.
  • the temperature monitoring of the common systems is insufficient.
  • control technology is therefore preferably used which enables reliable temperature monitoring at these temperatures. For temperature measurement, e.g. Use low temperature pyrometers or thermocouples.
  • the solder material is preferably heated to a target temperature and remelted at this target temperature for a maximum of 120 seconds, preferably for a maximum of 60 seconds.
  • the remelting is particularly preferably limited to approximately 20 seconds. It has been shown that with such short remelting times, the material structure that is formed and the material phases that arise are precisely defined.
  • the solder material changes its shape and takes on a mechanically stable spherical shape. According to this procedure, the substrate, for example semiconductor wafers, can be stored for long periods of time without risk of quality and reliability until the substrate is soldered to a carrier.
  • the material system of the solder material is converted into a solderable form.
  • the solder material also forms a solder connection with the metal of the connection point. This is particularly important for low ohmic and thermal contact resistance and mechanical strength.
  • the shape of the applied solder material changes due to the surface tension, which takes on the shape of a solder ball, also called a bump, after liquefaction.
  • solders e.g. Goldtin, soldered without flux.
  • the method according to the invention is particularly suitable for lead-free solder materials, in particular for a solder material made of gold and tin.
  • solder material made of gold and tin.
  • These two as well as all other conceivable metals are applied in layers to the connection points and form a eutectic mixture with a mixing ratio of 80% Au and 20% Sn when remelting.
  • Sufficient gold is preferably applied in comparison to tin so that, in addition to the eutectic mixture formed, almost pure gold also remains, which preferably adjoins the connection point.
  • the eutectic mixture thus largely covers the pure gold, whereby at the interface before another layer forms the so-called "zeta phase" between eutectic and gold.
  • the remelting process according to the invention precedes a subsequent separate soldering process, in which the already remelted solder material is brought into contact with further connection points of a substrate or carrier material and heated, so that a solder connection is established between the mutually assigned connection points.
  • the remelting process is a separate process from the actual soldering process. Between the two processes, the solder material is cooled back below the melting temperature, preferably to room or room temperature, at least for a certain time.
  • the separation in separate remelting and soldering processes has the particular advantage that both processes can be optimized independently of one another to meet their respective requirements. This is not possible in a process in which the solder material is remelted and soldered at the same time.
  • connection points are preferably arranged on a semiconductor material.
  • This can e.g. Silicon or a III-V compound semiconductor, e.g. GaAs.
  • the semiconductor material lies on a graphite carrier (open or closed) during the RTP process.
  • connection points are preferably arranged on an unsawed semiconductor wafer, so that the remelting of the solder material takes place on the unsawed semiconductor wafer.
  • Advantages of this approach compared to remelting solder material on chips that have already been separated are: better temperature distribution due to the significantly larger lateral expansion of the semiconductor wafer compared to the separated chips, Suppression of edge effects that can occur on the edges of individual chips (e.g. local overheating of the edges), crystal errors occurring when sawing the chips cannot expand due to the remelting process, improved handling, since there are many small carriers for each individual chip in favor of a single one large support can be dispensed with, and a higher throughput when remelting, since a wafer comprises a large number of chips.
  • the semiconductor wafer After the remelting of the solder material, the semiconductor wafer is preferably sawn into individual chips, each of which carries part of the connection points with the remelted solder material.
  • the soldering of the individual chips with carrier materials follows in a later process step.
  • Fig. 1 shows an embodiment of the invention
  • Fig. 2 shows the initial and the final state for the method of FIG. 1, and
  • Fig. 3 shows the temperature profile used.
  • solder material 3 is applied to a semiconductor substrate 1, for example GaAs, with a connection point 2, for example a contact pad.
  • the solder material is applied simultaneously to a large number of connection points on the entire wafer. For reasons of clarity, however, only one of these connection put shown.
  • the solder material 3 comprises a first, relatively thick metal layer 4, for example gold, and a second, relatively thin metal layer 5, for example tin. A number of methods are known for the application of these layers, which are not discussed in more detail here.
  • the solder material 3 is then remelted in a comparatively short time by means of an RTP method.
  • the temperature profile is shown in Fig. 2.
  • Curve 10 corresponds to the temperature profile of the solder material, while curves 11 and 12 describe the profile of the electrical power or the temperature setpoint.
  • the GaAs wafer lies on a graphite carrier (not shown) during the RTP process.
  • the solder material is heated from room temperature to a target temperature of 300 ° C within about 50 seconds.
  • the solder material is held at this target temperature for about 20 seconds before the energy supply is stopped and the cooling of the solder material begins.
  • FIG. 2 shows images corresponding to the initial and final states for the method according to FIG. 1.
  • the method according to the invention can be used for a large number of semiconductor products. For example, the solder connections for Bluetooth power amplifiers at 2.4 GHz for the mobile communications market (HBT technology), automotive distance warning radar at 77 GHz (MPA, VCO etc. in HEMT technology) or discrete individual transistors and diodes made of silicon using the method according to the invention remelted.
  • the method according to the invention is designed so that it can be used for all semiconductor materials (for example: single semiconductors and MMIC (HEMT, HBT, MESFET) on GaAs and Si).

Abstract

Bei dem erfindungsgemäßen Verfahren wird ein Lotmaterial mittels eines RTP-Verfahrens in vergleichsweise kurzer Zeit umgeschmolzen. Dadurch wird die thermische Belastung bereits vorhandener Strukturen verringert. Nach dem Umschmelzen ist das Lotmaterial metallurgisch exakt definiert und das Halbleiterprodukt kann nach dieser Prozedur ohne Qualitäts- und Zuverlässigkeitsrisiko über längere Zeiträume gelagert werden, bis das Verloten des Halbleiterprodukts mit einem Träger erfolgt.

Description

Verfahren zum Urnschmelzen von auf Verbindungsstellen aufgebrachtem Lotmaterial
Die vorliegende Erfindung liegt auf dem Gebiet der Verbindungstechnik und insbesondere auf dem Gebiet der Halbleitertechnologie und betrifft ein Verfahren zum U schmelzen von auf Verbindungsstellen aufgebrachtem Lotmaterial.
Zur elektrischen, thermischen und mechanischen Verbindung von Halbleiterbauelementen werden im allgemeinen Lötverbindungen zwischen auf einem Halbleitersubstrat sitzenden Verbindungsstellen und dazu korrespondierenden Verbindungsstellen auf einem Trägermaterial hergestellt. Dazu wird auf die einzelnen Verbindungsstellen des Halbleitermaterials jeweils eine gewisse Menge eines Lotmaterials z.B. galvanisch oder in Form einer Lötpaste aufgebracht. Nachfolgend wird das so vorbereitete Halbleitermaterial mit dem Trägermaterial unter Temperatureinwirkung in Kontakt gebracht, wobei das Lot- material durch den Temperatureinfluß verflüssigt wird und eine Lötverbindung zwischen den jeweiligen Verbindungsstellen von Halbleitermaterial und Träger herstellt. Grundsätzlich ist es auch möglich, das Lotmaterial auf den Träger aufzubringen. Aus der EP 0 977 253 A2 ist z.B. ein Verlöten von einzelnen Chips mit einem Trägermaterial bekannt, bei dem die Chips mittels einer Lampenheizung bis über die Schmelztemperatur des Lotmaterials für einen längeren Zeitraum von mehreren Minuten erwärmt werden.
Es ist weiterhin bekannt, aufgebrachtes Lotmaterial vor dem eigentlichen Verlöten umzuschmelzen. Ein derartiges Verfahren ist z.B. aus dem Dokument WO 96/24459 bekannt, bei dem das Umschmelzen in einem inerten oder reduzierenden Medium erfolgt. Nachteilig bei diesem Verfahren ist die notwendige Verwendung eines flüssigen Mediums, das nachfolgend wieder rückstandsfrei entfernt werden muß. Außerdem läßt sich eine störende Einwirkung des flüssigen Mediums auf die Ausbildung der einzelnen Lötverbindungen nicht mit Sicherheit ausschließen. Daher scheint das Verfahren gemäß dem Dokument WO 96/24459 nicht dazu geeignet sein, bei der Massenfertigung in einer industriellen Umgebung eingesetzt werden zu können.
Aufgabe der vorliegenden Erfindung ist es daher, ein einfaches Verfahren zum Umschmelzen von aufgebrachtem Lotmaterial anzugeben, bei dem die Nachteile des Standes der Tech- nik vermieden werden. Aufgabe der vorliegenden Erfindung ist es insbesondere, ein einfaches Verfahren zum Umschmelzen von aufgebrachtem Lotmaterial anzugeben, das im Rahmen eines Standardprozesses in der Massenfertigung eingesetzt werden kann.
Diese Aufgabe wird von dem Verfahren zum Umschmelzen von auf Verbindungsstellen aufgebrachtem Lotmaterial gemäß dem unabhängigen Patentanspruch 1 gelöst. Weitere vorteilhafte Ausführungsformen, Ausgestaltungen und Aspekte der vorliegen- den Erfindung ergeben sich aus den abhängigen Patentansprüchen, der Beschreibung und den beiliegenden Zeichnungen. Das erfindungsgemäße Verfahren ist dadurch gekennzeichnet, daß das aufgebrachte Lotmaterial mittels eines RTP-Verfahrens (rapid thermal processing) umgeschmolzen wird.
Bei dem erfindungsgemäßen Verfahren wird ein Substrat mit zumindest einer Verbindungstelle bereitgestellt, das Lot- material wird auf die Verbindungsstelle aufgebracht und das Lotmaterial wird mittels eines RTP-Verfahrens (in vergleichs- weise kurzer Zeit) umgeschmolzen. Dadurch wird die thermische Belastung bereits vorhandener Strukturen verringert. Darüber hinaus ist ein RTP-Verfahren hinsichtlich der Kontamination des zu erwärmenden Substrats einem Ofenprozeß oder dem in dem Dokument WO 96/24459 beschriebenen Prozeß deutlich überlegen.
Das erfindungsgemäße Verfahren ist insbesondere auf einfache Weise in einen bereits bestehenden Herstellungsprozeß integrierbar. Mit dem erfindungsgemäße Verfahren kann ein hoher Durchsatz erzielt werden, was sich in relativ geringen Produktionskosten widerspiegelt. Das erfindungsgemäße Verfahren besitzt darüber hinaus den Vorteil, daß sich eine sehr homogene Temperaturverteilung über das zu erzeugende Produkt erzielen läßt. Dementsprechend besitzt auch das umgeschmolzene Lotmaterial eine sehr homogene Qualität über das zu erzeugende Produkt, so daß eine gute Ausbeute des Verfahrens gewährleistet werden kann.
Bisher wurden RTP-Verfahren in der Regel für hohe Temperaturen oberhalb von 500°C eingesetzt. Die dazu erhältlichen Anlagen sind für diese Temperaturen optimiert. Gemäß einer bevorzugten Ausführungsform wird das Lotmaterial auf eine Zieltemperatur erwärmt und die Zieltemperatur ist zwischen 100°C und 500°C, bevorzugt zwischen 180°C und 350°C, gewählt. Weiterhin ist es bevorzugt, wenn das Lotmaterial auf eine Zieltemperatur erwärmt und die Zieltemperatur mit einer Genauigkeit von kleiner oder gleich 5°C über den gesamten Wafer eingestellt wird. Bei den vergleichsweise geringen Temperaturen für das Umschmelzen von Lotmaterial, z.B. etwa 300°C, ist die Temperaturüberwachung der gängigen Anlagen unzureichend. Die Verwendung von RTP-Verfahren in dem für das Umschmelzen von Lotmaterial typischen Temperaturbereichen ist daher neu- artig. In Beseitigung dieses Umstandes wird daher bevorzugt eine Regelungstechnik verwendet, die bei diesen Temperaturen eine sichere Temperaturüberwachung ermöglicht . Zur Temperaturmessung lassen sich z.B. Tieftemperaturpyrometer oder Thermoelemente einsetzen.
Bevorzugt wird das Lotmaterial auf eine Zieltemperatur erwärmt und bei dieser Zieltemperatur für maximal 120 sec, bevorzugt für maximal 60 sec umgeschmolzen. Besonders bevorzugt wird das Umschmelzen auf etwa 20 sec begrenzt. Es hat sich gezeigt, daß bei derart kurzen Umschmelzzeiten das sich herausbildende Materialgefüge und die entstehenden Material- phasen exakt definiert sind. Außerdem ändert das Lotmaterial seine Form und nimmt eine mechanisch stabile kugelähnliche Form an. Das Substrat, z.B. Halbleiterwafer, kann nach dieser Prozedur ohne Qualitäts- und Zuverlässigkeitsrisiko über längere Zeiträume gelagert werden, bis das Verlöten des Sub- strats mit einem Träger erfolgt.
Das erfindungsgemäße Verfahren weist eine Reihe von Vorteilen auf. Zum einen wird das MaterialSystem des Lotmaterials in eine lötfähige Form überführt. Damit ist gemeint, daß sich beim Umschmelzen besonders lötfähige Metallphase bilden, z.B. lötfähige eutektische Mischungen. Andererseits geht das Lotmaterial auch eine Lötverbindung mit dem Metall der Verbindungsstelle ein. Dies ist insbesondere für einen geringen ohmschen und thermischen Übergangswiderstand und die mechani- sehe Festigkeit wichtig. Weiterhin ändert sich aufgrund der Oberflächenspannung die Form des aufgebrachten Lotmaterials, das nach dem Verflüssigen die Form eines Lotkügelchens, auch Bumps genannt, annimmt. Derart umgeschmolzenes Lotmaterial ist gegenüber thermischen und mechanischen Einflüssen stabi- 1er und gerade im Hinblick auf den anschließenden Montageprozeß zuverlässiger nach der Verarbeitung als nicht umgeschmolzenes Lotmaterial . Weiterhin können durch das erfindungsgemäße Verfahren Lote, z.B. GoldZinn, flußmittelfrei verlötet werden.
Besonders eignet sich das erfindungsgemäße Verfahren für bleifreie Lotmaterialien, insbesondere für ein Lotmaterial aus Gold und Zinn. Diese beiden wie auch alle anderen denkbaren Metalle werden schichtweise auf die Verbindungsstellen aufgebracht und bilden bei dem Umschmelzen eine eutektische Mischung mit einem Mischungsverhältnis von 80% Au und 20% Sn. Bevorzugt wird soviel Gold im Vergleich zu Zinn aufgebracht, daß neben der entstehenden eutektischen Mischung auch noch nahezu reines Gold verbleibt, welches bevorzugt direkt an die Verbindungsstelle angrenzt. Die eutektische Mischung bedeckt somit das reine Gold weitgehend, wobei sich an der Grenzflä- ehe zwischen Eutektiku und Gold eine weitere Schicht die sogenannte „Zeta-Phase" ausbildet.
Der erfindungsgemäße Umschmelzprozeß ist einem nachfol- genden separaten Lötprozeß vorgelagert, bei dem das bereits umgeschmolzene Lotmaterial mit weiteren Verbindungsstellen eines Substrats oder Trägermaterials in Kontakt gebracht und erwärmt wird, so daß eine Lötverbindung zwischen den einander zugeordneten Verbindungsstellen hergestellt wird. Demnach ist der Umschmelzprozeß gegenüber dem eigentlichen Lötprozeß ein separater Prozeß. Zwischen beiden Prozessen wird das Lotmaterial zumindest für eine gewisse Zeit wieder unter die Schmelztemperatur, bevorzugt auf Raum- oder Zimmertemperatur abgekühlt. Die Trennung in separaten Umschmelz- und Lötprozeß bringt insbesondere den Vorteil mit sich, daß beide Prozesse unabhängig voneinander auf ihre jeweiligen Anforderungen hin optimiert werden können. Dies ist bei einem Prozeß, bei dem das Lotmaterial gleichzeitig umgeschmolzen und verlötet wird, nicht möglich.
Bevorzugt sind die Verbindungsstellen auf einem Halbleitermaterial angeordnet. Dieses kann z.B. Silizium oder ein III-V-Verbindungshalbleiter, z.B. GaAs, sein. Um die Temperaturverteilung auf dem Halbleitermaterial zu verbessern, liegt das Halbleitermaterial während des RTP-Verfahrens auf einem Graphitträger (offen oder geschlossen) .
Bevorzugt sind die Verbindungsstellen auf einem unzer- sägten Halbleiterwafer angeordnet, so daß das Umschmelzen des Lotmaterials auf dem unzersägten Halbleiterwafer erfolgt.
Vorteile dieser Herangehensweise im Vergleich zum Umschmelzen von Lotmaterial auf bereits vereinzelten Chips sind: eine bessere Temperaturverteilung aufgrund der im Vergleich zu den vereinzelten Chips deutlich größeren late- ralen Ausdehnung des Halbleiterwafers, Unterdrückung von Randeffekten, die an den Rändern von vereinzelten Chips entstehen können (z.B. lokal Überhitzung ron Rändern) , beim Zersägen der Chips auftretende Kristallfehler können sich durch den Umschmelzprozeß nicht ausdehen, verbessertes Handling, da auf viele kleine Träger für jeden einzelnen Chip zugunsten eines einzigen großen Trägers (support) verzichtet werden kann, und einen höheren Durchsatz beim Umschmelzen, da ein Wafer sehr viele Chips umfaßt.
Bevorzugt wird nach dem Umschmelzen des Lotmaterials der Halbleiterwafer in einzelne Chips zersägt, die jeweils einen Teil der Verbindungsstellen mit dem umgeschmolzenen Lotmate- rial tragen. Es folgt in einem späteren Verfahrensschritt das Verlöten der einzelnen Chips mit Trägermaterialen.
Die Erfindung wird nachfolgend anhand von Figuren der Zeichnung näher dargestellt. Es zeigen:
Fig. 1 eine Ausführungsform des erfindungsgemäßen
Verfahrens,
Fig. 2 den Ausgangs- und den Endzustand für das Verfahren gemäß Fig. 1, und
Fig. 3 das dabei verwendete Temperaturprofil.
Die Fig. 1 zeigt eine Ausführungsform des erfindungsgemäßen Verfahrens. Auf ein Halbleitersubstrat 1, beispielsweise GaAs, mit einer Verbindungsstelle 2, beispielsweise einem Kontaktpad, wird das Lotmaterial 3 aufgebracht. Das Lotmate- rial wird dabei gleichzeitig auf eine Vielzahl von Verbindungsstellen auf dem gesamten Wafer aufgebracht. Aus Gründen der Übersichtlichkeit ist jedoch nur eine dieser Verbindungs- stellen gezeigt. Im vorliegenden Beispiel umfaßt das Lotmaterial 3 eine erste, relativ dicke Metallschicht 4, beispielsweise Gold, und eine zweite, relativ dünne Metallschicht 5, beispielsweise Zinn. Für das Aufbringen dieser Schichten sind eine Reihe von Verfahren bekannt, auf die hier nicht näher eingegangen wird.
Anschließend wird das Lotmaterial 3 mittels eines RTP- Verfahrens in vergleichsweise kurzer Zeit umgeschmolzen. Der Temperaturverlauf ist in Fig. 2 gezeigt. Kurve 10 entspricht dabei dem Temperaturverlauf des Lotmaterials während die Kurven 11 und 12 den Verlauf der elektrischen Leistung bzw. den Temperatur Sollwert beschreiben. Um die Temperaturverteilung auf dem Halbleitermaterial zu verbessern, liegt der GaAs- Wafer während des RTP-Verfahrens auf einem Graphitträger (nicht gezeigt) .
Bei diesem RTP-Prozeß wird das Lotmaterial innerhalb von etwa 50 sec von Raumtemperatur auf eine Zieltemperatur von 300°C aufgeheizt. Auf dieser Zieltemperatur wird das Lotmaterial etwa 20 sec gehalten bevor die Energiezufuhr gestoppt wird und die Abkühlung des Lotmaterials beginnt .
Bei dem Umschmelzen bildet sich eine eutektische Mi- schung 6 mit einem Mischungsverhältnis von 80% Au und 20% Sn.
Wie in Fig. 1b zu ersehen ist, bilden sich drei Bereiche Au
(Bereich A) , Zeta Phase (Bereich B) und AuSn 80/20 (Bereich
C) .
Weiterhin wurde in diesem Beispiel soviel Gold im Vergleich zu Zinn aufgebracht, daß neben der entstehenden eutek- tischen Mischung auch noch nahezu reines Gold 4 verbleibt, welches direkt an die Verbindungsstelle 2 angrenzt. Die eutektische 80/20 Mischung 6 bzw. die Zeta-Phase 7 bedecken so- mit weitgehend das reine Gold 4. Fig. 2 zeigt Bilder entsprechend dem Ausgangs- und dem Endzustand für das Verfahren gemäß Fig. 1. Das erfindungsgemäße Verfahren kann für eine Vielzahl von Halbleiterprodukten eingesetzt werden. So wurden die Lötverbindungen für Bluetooth Poweramplifier bei 2,4 GHz für den Mobilfunkmarkt (HBT-Teσhnologie) , KFZ-Abstandswarnradar bei 77GHz (MPA, VCO etc. in HEMT-Technologie) oder diskrete Einzel-Transistoren und Dioden aus Silizium mit dem erfindungsgemäßen Verfahren umgeschmolzen. Das erfindungsgemäße Verfahren ist so konzipiert, daß es für alle Halbleitermaterialien (z.B.: Einzelhalbleiter und MMIC (HEMT, HBT, MESFET) auf GaAs und Si) verwendbar ist.

Claims

Patentansprüche
1. Verfahren zum Umschmelzen von auf Verbindungsstellen aufgebrachtem Lotmaterial, bei dem das aufgebrachte Lotmaterial mittels eines RTP-Verfahrens umgeschmolzen wird.
2. Verfahren nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , daß das Lotmaterial auf eine Zieltemperatur erwärmt und bei die- ser Zieltemperatur für maximal 120 sec, bevorzugt für maximal 60 sec umgeschmolzen wird.
3. Verfahren nach Anspruch 1 oder 2 , d a d u r c h g e k e n n z e i c h n e t , daß das Lotmaterial auf eine Zieltemperatur erwärmt und die Ziel- temperatur mit einer Genauigkeit von kleiner oder gleich 5°C über den gesamten Wafer eingestellt wird.
4. Verfahren nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , daß das Lotmaterial auf eine Zieltemperatur erwärmt wird und die Zieltemperatur zwischen 100°C und 500°C, bevorzugt zwischen 180°C und 350°C, gewählt ist.
5. Verfahren nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , daß das Lotmaterial zumindest zwei Metalle enthält, die ein Materialsystem mit einer Schmelztemperatur bilden und die Zieltemperatur oberhalb der für dieses Materialsystem charakteri- stischen Schmelztemperatur liegt.
6. Verfahren nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c hn e t , daß das Lotmaterial bleifrei ist .
7. Verfahren nach Anspruch 6 , d a d u r c h g e k e n n z e i c h n e t , daß es sich bei dem Lotmaterial um AuSn handelt .
8. Verfahren nach Anspruch 7, d a d u r c h g e k e n n z e i c hn e t , daß das aufgebrachte Lotmaterial auf eine Zieltemperatur von 290 bis 310°C erwärmt wird.
9. Verfahren nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c hn e t , daß der Umschmelzprozeß einem nachfolgenden separaten Lötprozeß vorgelagert ist, bei dem das bereits umgeschmolzene Lotmaterial mit weiteren Verbindungsstellen eines Substrats in Kontakt gebracht und erwärmt wird, so daß eine Lötverbindung zwischen den einander zugeordneten Verbindungsstellen herge- stellt wird.
10. Verfahren nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c hn e t , daß die Verbindungsstellen mit dem aufgebrachten Lotmaterial auf einem Halbleitermaterial angeordnet sind.
11. Verfahren nach Anspruch 10, d a d u r c h g e k e n n z e i c h n e t , daß es sich bei dem Halbleitermaterial um ein Silizium oder um einen III-V-Verbindungshalbleiter handelt.
12. Verfahren nach Anspruch 11, d a d u r c h g e k e n n z e i c h n e t , daß es sich bei dem III-V-Verbindungshalbleiter um GaAs handelt.
13. Verfahren nach einem Ansprüche 10 bis 12, d a d u r c h g e k e n n z e i c h n e t , daß das Halbleitermaterial während des RTP-Verfahrens auf einem Graphitträger liegt .
14. Verfahren nach einem Ansprüche 10 bis 13, d a d u r c h g e k e n n z e i c h n e t , daß die Verbindungsstellen auf einem unzersägten Halbleiterwafer angeordnet sind, so daß das Umschmelzen des Lotmaterials auf dem unzersägten Halbleiterwafer erfolgt.
15. Verfahren nach Anspruch 14, d a d u r c h g e k e n n z e i c h n e t , daß nach dem Umschmelzen des Lotmaterials der Halbleiterwafer in einzelne Chips zersägt wird, die jeweils einen Teil der Verbindungsstellen mit dem umgeschmolzenen Lotmaterial tragen, und die einzelnen Chips auf Trägermaterialen aufgebracht und mit diesen vermittels des umgeschmolzenen Lotmaterials verlötet werden.
PCT/EP2002/005312 2001-06-08 2002-05-14 Verfahren zum umschmelzen von auf verbindungsstellen aufgebrachtem lotmaterial WO2002101828A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10127889A DE10127889A1 (de) 2001-06-08 2001-06-08 Verfahren zum Umschmelzen von auf Verbindungsstellen aufgebrachtem Lotmaterial
DE10127889.6 2001-06-08

Publications (2)

Publication Number Publication Date
WO2002101828A2 true WO2002101828A2 (de) 2002-12-19
WO2002101828A3 WO2002101828A3 (de) 2003-09-12

Family

ID=7687658

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2002/005312 WO2002101828A2 (de) 2001-06-08 2002-05-14 Verfahren zum umschmelzen von auf verbindungsstellen aufgebrachtem lotmaterial

Country Status (2)

Country Link
DE (1) DE10127889A1 (de)
WO (1) WO2002101828A2 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005051330B4 (de) 2005-10-25 2015-04-02 Infineon Technologies Ag Verfahren zum Herstellen und Reinigen von oberflächenmontierbaren Außenkontaktsockeln
CN101197296B (zh) * 2006-12-04 2010-08-11 中芯国际集成电路制造(上海)有限公司 无助焊剂的凸点回流工艺
US20080197493A1 (en) * 2007-02-16 2008-08-21 Stefan Geyer Integrated circuit including conductive bumps

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996016442A1 (de) * 1994-11-17 1996-05-30 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Kernmetall-lothöcker für die flip-chip-technik
US5665639A (en) * 1994-02-23 1997-09-09 Cypress Semiconductor Corp. Process for manufacturing a semiconductor device bump electrode using a rapid thermal anneal
EP0955676A2 (de) * 1997-11-20 1999-11-10 Texas Instruments Incorporated Scheibenbereichsanordnung von Packungen in Chip-Grösse
US6239013B1 (en) * 1998-02-19 2001-05-29 Texas Instruments Incorporated Method for transferring particles from an adhesive sheet to a substrate

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4333155A1 (de) * 1993-09-29 1995-03-30 Siemens Ag RTP-Verfahren mit erhöhter Reaktionsrate
DE19504350C2 (de) * 1995-02-10 1997-04-10 Fraunhofer Ges Forschung Verfahren zum Herstellen eines Kontakthöckers durch Umschmelzen einer Kontaktflächenmetallisierung
DE19839092A1 (de) * 1998-08-27 2000-03-09 Wacker Siltronic Halbleitermat Verfahren und Vorrichtung für die Wärmebehandlung von Halbleiterplatten
DE19920252A1 (de) * 1999-05-03 2000-11-16 Rena Sondermaschinen Gmbh Anlage zur thermischen Behandlung von Substraten
US6312830B1 (en) * 1999-09-02 2001-11-06 Intel Corporation Method and an apparatus for forming an under bump metallization structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5665639A (en) * 1994-02-23 1997-09-09 Cypress Semiconductor Corp. Process for manufacturing a semiconductor device bump electrode using a rapid thermal anneal
WO1996016442A1 (de) * 1994-11-17 1996-05-30 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Kernmetall-lothöcker für die flip-chip-technik
EP0955676A2 (de) * 1997-11-20 1999-11-10 Texas Instruments Incorporated Scheibenbereichsanordnung von Packungen in Chip-Grösse
US6239013B1 (en) * 1998-02-19 2001-05-29 Texas Instruments Incorporated Method for transferring particles from an adhesive sheet to a substrate

Also Published As

Publication number Publication date
DE10127889A1 (de) 2002-12-19
WO2002101828A3 (de) 2003-09-12

Similar Documents

Publication Publication Date Title
EP1717854B1 (de) Halbleiterchip mit einer Lötschichtenfolge und Verfahren zum Löten eines Halbleiterchips
DE102008057817A9 (de) Vorrichtung und Verfahren mit einem Lötprozess
EP1883962B1 (de) Ubm-pad, lötkontakt und verfahren zur herstellung einer lötverbindung
EP2456589B1 (de) Bleifreie hochtemperaturverbindung
EP1027728A1 (de) Bauelement und verfahren zum herstellen des bauelements
DE102005058654B4 (de) Verfahren zum flächigen Fügen von Komponenten von Halbleiterbauelementen
DE102011013172A1 (de) Paste zum Verbinden von Bauteilen elektronischer Leistungsmodule, System und Verfahren zum Auftragen der Paste
WO2014154637A1 (de) Verfahren zum verbinden von fügepartnern mittels isothermer erstarrungsreaktion zur bildung einer in-bi-ag-verbindungsschicht und entsprechende anordnung von fügepartnern
DE10314876B4 (de) Verfahren zum mehrstufigen Herstellen von Diffusionslötverbindungen und seine Verwendung für Leistungsbauteile mit Halbleiterchips
DE102015114521B4 (de) Verfahren zum Auflöten eines Isoliersubstrats auf einen Träger
DE102008011265A1 (de) Lötschicht und Substrat zum Bonden von Vorrichtungen, das diese verwendet, und Verfahren zum Herstellen eines solchen Substrats
EP0888642B1 (de) Halbleitervorrichtung
DE4303790A1 (de) Verfahren zur Erzeugung einer formschlüssigen Verbindung zwischen Halbleiterbauelementen und metallischen Oberflächen von Trägerelementen
DE102013213135B3 (de) Verfahren zum Weichlöten von Halbleiterchips auf Substrate und Verfahren zum Herstellen eines Leistungshalbleitermoduls
WO2002101828A2 (de) Verfahren zum umschmelzen von auf verbindungsstellen aufgebrachtem lotmaterial
DE102015114088B4 (de) Bauelement und Verfahren zur Herstellung eines Bauelements
DE4226167A1 (de) Verfahren zur Montage von Halbleiterbauelementen auf einem Substrat
DE3523808C2 (de)
DE102015114086B4 (de) Bauelement und Verfahren zur Herstellung eines Bauelements
DE102021124877A1 (de) Lotmaterial, schichtstruktur, chipgehäuse, verfahren zum herstellen einer schichtstruktur und verfahren zum herstellen eines chipgehäuses
DE102020130638A1 (de) Lotmaterial, schichtstruktur, chipgehäuse, verfahren zum bilden einer schichtstruktur, verfahren zum bilden eines chipgehäuses, chipanordnung und verfahren zum bilden einer chipanordnung
DE19954319C1 (de) Verfahren zum Herstellen von mehrschichtigen Kontaktelektroden für Verbindungshalbeiter und Anordnung
DE102019120872A1 (de) Löten eines Leiters an eine Aluminiumschicht
EP2287899A1 (de) Lötverbindung mit einer mehrschichtigen lötbaren Schicht
EP3208845A1 (de) Verfahren zur herstellung eines schaltungsträgers, schaltungsträger, verfahren zur herstellung eines halbleitermoduls und halbleitermodul

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP