WO2002094462A1 - Procede de nettoyage de la surface d'un substrat - Google Patents

Procede de nettoyage de la surface d'un substrat Download PDF

Info

Publication number
WO2002094462A1
WO2002094462A1 PCT/JP2002/004850 JP0204850W WO02094462A1 WO 2002094462 A1 WO2002094462 A1 WO 2002094462A1 JP 0204850 W JP0204850 W JP 0204850W WO 02094462 A1 WO02094462 A1 WO 02094462A1
Authority
WO
WIPO (PCT)
Prior art keywords
cleaning
substrate surface
acid
substrate
agent
Prior art date
Application number
PCT/JP2002/004850
Other languages
English (en)
French (fr)
Inventor
Hitoshi Morinaga
Hideaki Mochizuki
Original Assignee
Mitsubishi Chemical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corporation filed Critical Mitsubishi Chemical Corporation
Priority to EP02726443A priority Critical patent/EP1389496A1/en
Publication of WO2002094462A1 publication Critical patent/WO2002094462A1/ja
Priority to US10/718,574 priority patent/US6896744B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02043Cleaning before device manufacture, i.e. Begin-Of-Line process
    • H01L21/02052Wet cleaning only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/08Cleaning involving contact with liquid the liquid having chemical or dissolving effect
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/02Inorganic compounds
    • C11D7/04Water-soluble compounds
    • C11D7/06Hydroxides
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/02Inorganic compounds
    • C11D7/04Water-soluble compounds
    • C11D7/08Acids
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/22Organic compounds
    • C11D7/32Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/22Organic compounds
    • C11D7/32Organic compounds containing nitrogen
    • C11D7/3245Aminoacids
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D2111/00Cleaning compositions characterised by the objects to be cleaned; Cleaning compositions characterised by non-standard cleaning or washing processes
    • C11D2111/10Objects to be cleaned
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D2111/00Cleaning compositions characterised by the objects to be cleaned; Cleaning compositions characterised by non-standard cleaning or washing processes
    • C11D2111/10Objects to be cleaned
    • C11D2111/14Hard surfaces
    • C11D2111/22Electronic devices, e.g. PCBs or semiconductors

Definitions

  • the present invention is a cleaning method for cleaning the surface of a device substrate in a process of manufacturing a semiconductor device or a display device. Specifically, it is a method of cleaning a substrate surface that removes both metal and fine particles (particles) that are contaminants on the substrate in a short time and highly cleans the substrate surface.
  • Microprocessor, memory mono-, semiconductor devices and the like CCD in the manufacturing process of flat panel display devices such as TFT LCD, silicon (S i) or silicon oxide (S i 0 2), submicron on a substrate surface such as glass Patterns and thin films are formed according to dimensions. When manufacturing these, it is extremely important to reduce the minute amount of contamination on the substrate surface in each manufacturing process.
  • metal contamination and particle contamination in particular, reduce the electrical characteristics and yield of devices, so it is necessary to reduce the contamination as much as possible in the process where the contamination occurred before moving the substrate to the next process.
  • To remove contamination it is common practice to clean the substrate surface with a cleaning agent.
  • S i board and S i 0 2 substrates for semiconductors devices or the cleaning of the surface of the glass substrate for a display device is hydrochloric acid or nitric acid, sulfuric acid, an acid such as hydrofluoric acid as diluted with water, detergent It is used as Cleaning with a cleaning agent consisting of hydrochloric acid, hydrogen peroxide and water (referred to as "SC-2 cleaning agent” or “HPM cleaning agent”) (referred to as “SC-2 cleaning” or “HPM cleaning”) is also widely used. I have.
  • dilute hydrofluoric acid aqueous solution of about 5 to 1% by weight
  • aluminum (A 1) or copper (C u) is easy to make a strong chemical binding by reacting with S i and S i 0 2 of the substrate surface, and so easily be incorporated in the vicinity of the surface of the substrate, the substrate
  • the most effective method for cleaning the surface is to remove the surface layer by etching the substrate surface (Morinaga et al., The Electrochemical Society Proceeding Series PV99-36, pp. 585-592, Pennington, NJ (2000)).
  • cleaning with dilute hydrofluoric acid is performed after SC-1 cleaning, after SC-2 cleaning, or between SC-1 cleaning and SC-2 cleaning.
  • the surface can be obtained.
  • the cleaning process per step generally requires 1 to 15 minutes.
  • a patch-type cleaning device that cleans a plurality of substrates stored in a cassette by immersing them in a cleaning tank that usually stores a cleaning agent.
  • the other is a single-wafer method in which one substrate is mounted on a holder and the cleaning agent is sprayed on the substrate surface while rotating the substrate (for example, rotating in the circumferential direction if the substrate is disk-shaped). It is a cleaning device.
  • Batch type cleaning equipment has a large number of substrates processed per unit time, but the equipment is large, so that contamination detached from the device formation surface of the substrate or its back surface re-adheres to another depice formation surface.
  • There are problems such as re-adhesion (cross-contamination) and the need for a large amount of detergent when only one sheet is to be washed.
  • the single-wafer cleaning apparatus is small and has no cross-con- trol minion, but has the problem that the number of substrates processed per unit time is small because it cleans one by one.
  • the substrate surface is cleaned by a cleaning method having a plurality of steps including ⁇ (: '-1 cleaning, SC-2 cleaning, and further, dilute hydrofluoric acid cleaning and the like.
  • '-1 cleaning, SC-2 cleaning, and further, dilute hydrofluoric acid cleaning and the like.
  • the cleaning time was long and the production efficiency was poor, especially in the single-wafer cleaning system that cleans substrates one by one. Since the number of sheets is small, a large number of cleaning devices are required, which is disadvantageous in terms of cost, and dilute hydrofluoric acid cleaning usually uses a 5% by weight aqueous hydrofluoric acid solution for about 1 to 5 minutes.
  • the present invention has been made in order to solve the above-mentioned problems.
  • the device substrate is (1) short-time, (2) both particle contamination and metal contamination.
  • the purpose of the present invention is to provide a highly efficient substrate cleaning method that significantly reduces, for example, dimensional changes due to contamination reattachment and etching.
  • the present inventors have conducted intensive studies in order to solve the above-mentioned problems, and as a result, first of all, rather than washing with an extremely dilute hydrofluoric acid aqueous solution for a long time as described above, a specific concentration or more is obtained. Specifically, it has been surprisingly found that washing with a hydrofluoric acid aqueous solution of 0.03% by weight or more for a specific time or less can achieve a higher metal contamination removal effect. Furthermore, in the cleaning with hydrofluoric acid aqueous solution, when the hydrofluoric acid concentration (% by weight) and the cleaning time (second) are expressed in a specific relationship, sufficient removal of metal contamination and processing dimensions by etching (described above) are performed. It has been found that problem solving such as change can be compatible.
  • the process of cleaning the substrate surface with an alkaline cleaning agent and the cleaning process with the above-mentioned hydrofluoric acid aqueous solution that is, the substrate in a specific time or less using a hydrofluoric acid content of a specific concentration or more
  • a combination of processes that have a specific relationship between the hydrofluoric acid concentration in the cleaning agent and the cleaning time can remove both particle contamination and metal contamination on the substrate surface in an extremely short time. It has been found that the present invention has an excellent effect that there is almost no problem such as reattachment of particles and a change in processing dimensions due to etching, and has completed the present invention.
  • the gist of the present invention resides in a method for cleaning the surface of a substrate, which comprises at least the following steps (1) and (2), and performs step (2) after performing step (1).
  • Step (1) A cleaning step of cleaning the substrate surface with a complexing agent-containing cleaning agent.
  • Step (2) A cleaning agent having a hydrofluoric acid content C (% by weight) of 0.03 to 3% by weight is used, and a cleaning time t (second) of the substrate with the cleaning agent is 45 seconds or less; And C and t are 0.25 ⁇ t C 1 - 2 9 ⁇ cleaning step in a relation of 5.
  • Step (2) A cleaning agent having a hydrofluoric acid content C (% by weight) of 0.03 to 3% by weight is used, and a cleaning time t (second) of the substrate with the cleaning agent is 45 seconds or less; and C and t is 0 2 5 ⁇ t C 1 -. 2 9 wash step in 5 relationship.
  • Step (3) A cleaning step in which the substrate surface is cleaned with an alkaline cleaning agent.
  • Steps (1) and (3) have much in common, and will be described together.
  • the alkaline detergent used in the present invention is an alkaline aqueous solution containing an alkaline component and having a pH value of more than 7.
  • the component of the solution in the solution is not particularly limited, but typical examples thereof include ammonium hydroxide (aqueous ammonia solution) and organic solution.
  • the organic alkali include amines such as quaternary ammonium hydroxide, amine, and amino alcohol.
  • quaternary ammonium hydroxide those having an alkyl group having 1 to 4 carbon atoms and / or a hydroxyalkyl group are preferable.
  • alkyl group examples include an alkyl group having 1 to 10 carbon atoms such as a methyl group, an ethyl group, a propyl group, and a butyl group.
  • examples of the hydroxyalkyl group include hydroxymethyl, hydroxyethyl, hydroxypropyl, and hydroxybutyl. And a hydroxyalkyl group having 1 to 10 carbon atoms.
  • quaternary ammonium hydroxide examples include tetramethylammonium hydroxide (TMAH), tetraethylammonium hydroxide, and trimethyl (hydroxyethyl) ammonium hydroxide (commonly known as : Choline), triethyl (hydroxyethyl) ammonium hydroxide and the like.
  • TMAH tetramethylammonium hydroxide
  • Choline trimethyl ammonium hydroxide
  • Other amines include ethylenediamine, monoethanolamine, trimethanolamine and the like.
  • hydroxides of alkali metals or alkaline earth metals such as sodium hydroxide, potassium hydroxide and calcium hydroxide
  • alkaline salts such as sodium hydrogen carbonate and ammonium hydrogen carbonate
  • alkaline components ammonium hydroxide, tetramethylammonium hydroxide (TMAH), and trimethyl (TMAH) are preferred as alkaline components because of their cleaning effect, low residual metal content, economy, and stability of the detergent.
  • TMAH tetramethylammonium hydroxide
  • TMAH trimethyl ammonium hydroxide
  • ammonium hydroxide is particularly preferable.
  • These alkaline components may be used alone or in any combination of two or more.
  • the concentration of the alkaline component in the cleaning agent may be appropriately selected, but is generally 0.001 to 5% by weight, and particularly preferably 0.002 to 1% by weight.
  • the concentration of the alkaline component is too low, The intended decontamination effect cannot be obtained. Conversely, if the concentration is too high, a high effect corresponding to the high concentration cannot be expected, which is not only economically disadvantageous, but also increases the risk of damaging the substrate surface by etching.
  • the alkaline detergent used in step (1) of the present invention must contain a complexing agent.
  • any conventionally known complexing agent can be used.
  • the choice of complexing agent should be made based on a comprehensive assessment of the contamination level on the substrate surface, the type of metal, the required cleanliness level on the substrate surface, complexing agent cost, chemical stability, etc. For example, the following may be mentioned.
  • a compound having a nitrogen which is a donor atom, a carboxyl group and a Z or phosphonic acid group, for example, amino acids such as glycine; imino diacetate, tri-triacetate, and ethylenediamine
  • Nitrogen-containing carboxylic acids such as tetraacetic acid [EDTA], trans-1,2-diaminocyclohexanetetraacetic acid [CyDTA], diethylenetriaminepentaacetic acid [DTPA], triethylenetetramine hexaacetic acid [TTHA]; ethylenediaminetetrakis (methylenephosphonic acid)
  • Nitrogen-containing phosphonic acids such as [EDT PO], nitrilotris (methylene phosphonic acid) [NTPO], and propylene diamine tetra (methylene phosphonic acid) [PDTMP].
  • phenols such as catechol, resorcinol, and tyrone, and derivatives thereof, and the like.
  • ethylenediaminediorthohydroxyphenylacetic acid [EDDHA], ethylenediamine-N, N'-bis [(2-hydroxy-15-methylphenyl) acetic acid] [EDDHMA], ethylenediamine-N, N'-bis [(2 —Hydroxy-5-chlorophenyl) acetic acid
  • Aromatic nitrogen-containing carboxylic acids such as [EDDHCA], ethylenediamine-N, N'-bis [(2-hydroxy-5-sulfophenyl) acetic acid] [EDDHSA]; ethylenediamine-N, N'-bis [(2-hydroxy-5 —Methylphenyl) phosphonic acid] and aromatic nitrogen-containing phosphonic acids such as ethylenediamin-N, N′—bis [(2-hydroxy-5-phosphophenyl) phosphonic acid].
  • [EDDHCA] ethylenediamine-N, N'-bis [(2-hydroxy-5-sulfophenyl) acetic acid]
  • EDDHSA ethylenediamine-N, N'-bis [(2-hydroxy-5 —Methylphenyl) phosphonic acid]
  • aromatic nitrogen-containing phosphonic acids such as ethylenediamin-N, N′—bis [(2-hydroxy-5-phosphophenyl) phosphonic acid].
  • Amines such as ethylenediamine, 8-quinolinol and o-phenanthroline; carboxylic acids such as formic acid, acetic acid, oxalic acid and tartaric acid; halogenation of hydrofluoric acid, hydrochloric acid, hydrogen bromide, hydrogen iodide, etc. Hydrogen or a salt thereof; oxo acids such as phosphoric acid and condensed phosphoric acid, and salts thereof.
  • complexing agents may be used in the form of an acid or in the form of a salt such as an ammonium salt.
  • nitrogen-containing carboxylic acids such as ethylenediaminetetraacetic acid [EDTA], diethylenetriaminepentaacetic acid [DTPA], etc .; nitrilotris (methylenephosphonic acid) [NTPO] for reasons of cleaning effect, chemical stability, etc.
  • Nitrogen-containing phosphonic acids such as ethylenediaminetetrakis (methylenephosphonic acid) [EDTPO] and propylenediaminetetra (methylenephosphonic acid) [PDTMP]; ethylenediaminediol-hydroxyphenylphenylacetic acid [EDDHA] and its derivatives; N'-bis (2-hydroxybenzyl) ethylenediamine-N, N'-diacetic acid [HBED] is preferred.
  • ethylenediamine diorthohydroxyphenylacetic acid [EDDH A], ethylenediamine mono N, N'-bis [(2-hydroxy-5-methylphenyl) acetic acid] [EDDHMA], diethylenetriaminepentaacetic acid [DTPA], Preferred are ethylenediamine tetraacetic acid [E DTA], nitrilotris (methylene phosphonic acid) [NTPO], and propylene diamine tetra (methylene phosphonic acid) [PDTMP].
  • E DTA ethylenediamine tetraacetic acid
  • NTPO nitrilotris (methylene phosphonic acid)
  • PTMP propylene diamine tetra (methylene phosphonic acid)
  • the concentration of the complexing agent in the cleaning agent can be arbitrarily selected depending on the type and amount of the contaminating metal impurities and the cleanliness level required for the substrate surface. It is preferably from 5 to 1000 weight ppm, particularly preferably from 10 to 200 weight ppm. If the concentration of the complexing agent is too low, the effect of removing the contamination and preventing adhesion by the complexing agent cannot be obtained. Conversely, if the concentration is too high, the high effect corresponding to the high concentration cannot be expected, so it is economically disadvantageous as well, and the risk that the complexing agent adheres to the substrate surface and remains after the surface treatment increases It is not preferable.
  • the complexing agent may contain metal impurities such as iron (Fe) and zinc (Zn) of about 1 to several thousand ppm in the reagents that are usually sold. Therefore, the complexing agent used in the present invention may be a source of metal contamination. These metal impurities exist as stable complexes with the complexing agent immediately after the preparation of the surface treatment agent, but the complexing agent decomposes during the long-term use of the surface treatment agent. However, there is a possibility that the metal is released and adheres to the substrate surface. Therefore, the complexing agent used in the present invention preferably removes metal impurities such as Fe, A1, and Zn contained in advance to reduce the content of each to 5 ppm or less, particularly 2 ppm or less.
  • metal impurities such as iron (Fe) and zinc (Zn) of about 1 to several thousand ppm in the reagents that are usually sold. Therefore, the complexing agent used in the present invention may be a source of metal contamination. These metal impurities exist as stable complexes
  • any of the cleaning agents can be used as the cleaning agent.
  • ammonium hydroxide tetramethylammonium hydroxide (TMAH), trimethyl (hydroxyethyl) ammonium hydroxide (commonly known as choline) and the like are preferable, and ammonium hydroxide is particularly preferable.
  • An oxidizing agent such as hydrogen peroxide, ozone, or oxygen may be appropriately blended into the cleaning agent used in the present invention.
  • an oxidizing agent such as hydrogen peroxide, ozone, or oxygen
  • an oxidizing agent can suppress etching and surface roughness of the substrate.
  • hydrogen peroxide is contained in the cleaning agent used in the present invention
  • the concentration of hydrogen peroxide in the whole liquid of the cleaning agent is usually 0.001 to 5% by weight, preferably 0.1% by weight. It is used in a concentration range of 0 to 1% by weight.
  • the alkaline cleaning agent used in the present invention further contains a surfactant, since the removal of particle contamination and organic substance contamination on the substrate surface is improved.
  • any conventionally known surfactant can be used.
  • a surfactant In selecting a surfactant, a comprehensive judgment is made based on the level of contamination on the substrate surface, the type of particles and organic contamination, the level of cleanliness required on the substrate surface, surfactant cost, chemical stability, etc. Just choose.
  • the surfactant include anionic, cationic, amphoteric, and nonionic surfactants, and among them, anionic, amphoteric, and nonionic surfactants are preferable. Particularly, an anionic surfactant is preferable.
  • These surfactants may be used alone, or two or more different types may be used in appropriate combination. Above all, a combination of an anionic surfactant and a nonionic surfactant is preferable from the viewpoint of a stain cleaning effect.
  • Nonionic surfactants include amino acid surfactants, betaine surfactants, and the like, and anionic surfactants include amino acid surfactants, sulfonic acid surfactants, sulfate ester surfactants, and phosphate ester surfactants. , Polyethylene glycol type, polyhydric alcohol type and so on. Sulfonic acid type in the Anion surfactant (an SO 3 - having a group), sulfuric acid ester type (-OS 0 3 -) is preferred. Group or single OS 0 3 - - one SO 3 in particular compounds having at least one group are preferable, they may be used alone or may be used in combination of two or more kinds thereof.
  • Ru examples of the surfactant having a group, Ru include compounds of example the following 1 ⁇ 9.
  • alkylsulfonic acid-based compound examples include a compound represented by the following formula (1).
  • R represents an alkyl group, preferably an alkyl group having 8 to 20 carbon atoms
  • X represents hydrogen, a cation atom or a cation atom group.
  • the alkyl sulfonic acids e.g., C 8 H 17 S0 3 H and its salts, C 9 H 19 S_ ⁇ 3 H and its salts, C 10 H 21 S0 3 H and its salts, CuH SOgH and salts thereof, C 12 H 25 S0 3 H and its salts, C 13 H 27 S_ ⁇ 3 H and salts thereof, C 14 H 29 S0 3 H and salts thereof, C 15 H 31 S0 3 H and its salts, C 16 H 33 S_ ⁇ 3 H and its salts, C 17 H 35 S0 3 H and its salts, such as C 18 H 37 SO s H and salts thereof.
  • alkylbenzenesulfonic acid-based compound examples include a compound represented by the following formula (2).
  • R represents an alkyl group, preferably an alkyl group having 8 to 20 carbon atoms
  • X represents hydrogen, a cation atom or a cation atom group
  • ph represents a phenylene group.
  • alkylbenzene sulfonic acids examples include dodecyl benzene sulfonic acid and salts thereof.
  • alkylnaphthalenesulfonic acid-based compound examples include a compound represented by the following formula (3).
  • R 1 and R 2 each represent an alkyl group, preferably an alkyl group having 1 to 10 carbon atoms
  • X represents hydrogen, a cation atom or a cation atom group
  • m and n each represent an integer of 0 to 4.
  • alkylnaphthalenesulfonic acid-based compound examples include dimethylnaphthalenesulfonic acid and a salt thereof.
  • Examples of the methyltauric acid-based compound include a compound represented by the following formula (4).
  • R is a hydrocarbon group, preferably a C n H 2n + have C n H 2n - have C n H 2n 3 or C n H 2 n - 5 hydrocarbon group comprising saturated or unsaturated
  • X is hydrogen Represents a cation atom or a cation atom group
  • n represents an integer of usually 8 to 20, preferably 13 to 17. If n, which is the number of carbon atoms of the hydrocarbon group, is too small, the ability to remove adhered particles decreases. Tend to.
  • Examples of methyltadulphophosphate compounds include C! ! ⁇ 23 ⁇ (CH 3 ) CH 2 CH 2 S0 3 H and its salt, C 13 H 27 CON (CH 3 ) CH 2 CH 2 S0 3 H and its salt, C 15 H 31 CON (CH 3 ) CH 2 CH 2 S0 3 H and its salt, C I 7 H 35 CON (CH 3 ) CH 2 CH 2 S0 3 H and its salts, C 17 H 33 CON (CH 3) CH 2 CH 2 S0 3 H and salts thereof, C 17 H 31 CO N ( CH 3) CH 2 CH 2 S_ ⁇ 3 H and its salts, C 17 H 29 CON (CH 3 ) CH 2 CH 2 SO 3 H and salts thereof.
  • alkyl diphenyl ether disulfonic acid compound examples include a compound represented by the following formula (5).
  • R represents an alkyl group, preferably an alkyl group having 8 to 20 carbon atoms
  • X represents hydrogen, a cation atom or a cation atom group
  • ph represents a phenylene group.
  • alkyl diphenyl ether disulfonic acid compound examples include nonyl diphenyl ether disulfonic acid and a salt thereof, and dodecyl diphenyl ether disulfonic acid and a salt thereof.
  • Examples of the sulfosuccinic acid diester compound include a compound represented by the following formula (6).
  • R represents hydrogen or an alkyl group, preferably an alkyl group having 4 to 20 carbon atoms
  • X represents hydrogen, a cation atom or a cation atom group.
  • sulfosuccinic acid diesters examples include di-2-ethylhexylsulfosuccinic acid and salts thereof, and laurylsulfosuccinic acid and salts thereof.
  • Examples of the olefin sulfonic acid-based compound include a mixture of a compound represented by the following formula (7) and a compound represented by the following formula (8).
  • R is an alkyl group, preferably an alkyl group having 4 to 20 carbon atoms
  • X is hydrogen, a cation atom or a cation atom group
  • m is an integer of 1 to 10
  • n is an integer of 1 to 10.
  • naphthalenesulfonic acid condensate examples include] -naphthalenesulfonic acid formalin condensate and a salt thereof.
  • an alkylbenzene sulfonic acid compound an alkyl diphenyl ether disulfonic acid compound, and a sulfosuccinic acid diester compound are preferably used because they are excellent in removing particle contamination.
  • alkylsulfate compounds examples include a compound represented by the following formula (9).
  • R represents an alkyl group, preferably an alkyl group having 8 to 20 carbon atoms
  • X represents hydrogen, a cation atom or a cation atom group.
  • alkyl sulfate-based compound examples include dodecyl sulfate and salts thereof.
  • alkyl ether sulfate compound examples include a compound represented by the following formula (10).
  • R is an alkyl group, preferably an alkyl group having 8 to 20 carbon atoms
  • X is hydrogen, a cation atom or a cation atom group
  • n is the number of moles of ethylene oxide added, usually 1 to 10, preferably 2 to Indicates an integer of 4.
  • alkyl ether sulfate-based compound examples include tetraoxyethylene lauryl ether sulfate and salts thereof.
  • alkyl phenyl ether sulfate compound examples include a compound represented by the following formula (11), a sulfated oil, a sulfated fatty acid ester compound, and a sulfated olefin compound.
  • R is an alkyl group, preferably an alkyl group having 8 to 20 carbon atoms
  • X is hydrogen, a cation atom or a cation atom group
  • n is the number of moles of ethylene oxide added, usually 1 to 10, and preferably 2 to Represents an integer of 4.
  • ph represents a phenylene group.
  • Surfactants with OSO 3 — groups have excellent particle removal properties, but the effect is reduced when the strength is strong. Can not be said sweepingly because varies according to type, PHL 0 to 12 in one S 0 3 - shows the the higher ability to remove particles of surfactant having a group.
  • nonionic surfactants polyethylene glycol type polyoxyethylene alkyl phenyl ether, polyoxyethylene alkyl ether, polyoxyethylene fatty acid ester, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene polyoxypropylene block polymer And polyoxyethylene / polyoxybutylene block polymers.
  • Examples of the polyhydric alcohol type include glycerin fatty acid ester and sorpitan fatty acid ester.
  • polyoxyethylene alkyl ether, polyoxyethylene / polyoxypropylene / block polymer, and polyoxyethylene are preferable because of their excellent contaminant removal properties and excellent biodegradability.
  • the concentration of the surfactant in the alkaline detergent used in the present invention is usually 0.0001 to 0.5% by weight, preferably 0.003 to 0.1% by weight based on the detergent. It is. If the concentration of the surfactant is too low, the particle contamination removal performance of the surfactant is not sufficient. Conversely, if the concentration is too low, there is no change in the particle contamination removal performance, and foaming is remarkable, making the cleaning process unsuitable. In some cases, the load when raw waste liquid is treated may increase.
  • the surfactant to be added to the cleaning agent used in the present invention may be added in any form of a salt type or an acid type.
  • the salt form include alkali metal salts such as sodium and potassium, ammonium salts, primary, secondary and tertiary amine salts.
  • the surfactant used does not contain metal salts, and is in the form of an acid.
  • a form such as an ammonium salt, a monoethanolamine salt, or a triethanolamine salt is preferable.
  • the alkaline detergent used in the present invention may further contain other components.
  • Other components include organic sulfur-containing compounds (2-mercaptothiazoline, 2-mercaptoimidazoline, 2-mercaptoethanol, Thioglycerol, etc.), organic nitrogen-containing compounds (benzotriazole, 3-aminotriazole, N (R) 3 (R is an alkyl group having 1 to 4 carbon atoms), N (R OH) a (R is 1 to 4 carbon atoms)
  • Anticorrosives such as water-soluble polymers (polyethylene glycol, polyvinyl alcohol, etc.), alkyl alcohol compounds (R OH is an alkyl group having 1 to 4 carbon atoms), sulfuric acid, hydrochloric acid And reducing agents such as hydrazine, and dissolved gases such as hydrogen, argon, and nitrogen.
  • Examples of the solvent of the alkaline detergent used in the present invention include water, an organic solvent, and a mixed solvent thereof.
  • water is preferred as the solvent from the viewpoint of waste liquid treatment cost.
  • deionized water preferably ultrapure water is used.
  • Electrolyzed ionized water obtained by electrolysis of water and hydrogen water in which hydrogen gas is dissolved in water have excellent particle removal and adhesion prevention properties compared to water, so they are not compatible with other solvents. It is also preferable to mix them or use them alone as a solvent.
  • the pH of the cleaning agent used in the present invention depends on the cleaning component used and other additives such as a complexing agent, but is preferably 9 or more to prevent particle removal and adhesion. Preferred from a viewpoint.
  • pH may be 9 or more, it is generally preferably pH 9 to 12, particularly preferably pH 9.5 to 11.5.
  • Known pH regulators may be used as long as the effects of the present invention are not impaired. Even if the pH is too high, a high effect corresponding to the high pH value cannot be expected, so a large amount of power is required, which is not only economically disadvantageous but also increases the risk of the substrate surface being damaged by etching. .
  • the cleaning of the substrate surface using the hydrofluoric acid-containing cleaning agent used in the step (2) of the present invention is performed using a specific hydrofluoric acid.
  • This is a step of cleaning the substrate surface within a specific time using a cleaning agent having a content.
  • a cleaning agent having a hydrofluoric acid content C (% by weight) of 0.03 to 3% by weight is used, and a cleaning time t (second) of the substrate with the cleaning agent is 45 seconds or less, and C t is 0. 25 ⁇ t C 1 a - a relation that 29 ⁇ 5 a cleaning step of said.
  • Step in the present invention (2) the relationship between the hydrofluoric acid content in the cleaning agent C (wt%) and cleaning time t (second), that is represented by 0. 25 ⁇ t C 1 '29 ⁇ 5 Features.
  • cleaning with hydrofluoric acid aqueous solution if the content of hydrofluoric acid in the hydrofluoric acid aqueous solution used is too large or the cleaning time is too long, contamination due to change in processing dimensions due to increase in etching amount and hydrophobicity of silicon surface (Particle contamination, watermarks). On the other hand, if the hydrofluoric acid content is too small or the cleaning time is too short, there is a concern that the metal contamination removal performance may be reduced.
  • the present inventors have intensively studied a cleaning step using a hydrofluoric acid-containing detergent in combination with a cleaning step using an alkaline cleaning agent as in the above-described step (1) or (3).
  • a specific hydrofluoric acid content C % by weight
  • a specific cleaning time t second
  • both C and t have a specific relational expression, 0.25 ⁇ t
  • Value indicated by the t C 1 '29 is from 0.25 to 5, preferably from 0.4 to 4, more preferably from 0.6 to 3.
  • the value is too small, the metal contamination cannot be sufficiently removed. On the other hand, if the value is too large, the etching amount increases unnecessarily, and the contamination due to the change in the processing dimensions and the hydrophobicization of the silicon surface (particle contamination, (Watermark), etc., which is not preferable.
  • the hydrofluoric acid content C (% by weight) in the hydrofluoric acid-containing cleaning agent used in the present invention is usually from 03 to 3% by weight, preferably from 0.1 to 1% by weight, particularly preferably from 0.2 to 0.8%. % By weight. If the content of hydrofluoric acid is too small, the efficiency of removing metal contamination is low. Conversely, if the concentration is too high, a high effect corresponding to the high concentration cannot be expected, and the power etching rate becomes too fast, and it becomes difficult to control the amount of etching to a certain value or less.
  • the cleaning time t (second) of the substrate with the hydrofluoric acid-containing cleaning agent is 45 seconds or less.
  • the cleaning time t (second) may be appropriately determined based on the hydrofluoric acid content C (% by weight) as long as the above-described relational expressions relating to t and C are satisfied.
  • the washing time t (second) depends on the above-mentioned hydrofluoric acid content C (% by weight), but is preferably 20 seconds or less, more preferably 10 seconds or less.
  • the lower limit of the cleaning time t (second) may be appropriately selected depending on the desired substrate cleanliness, but is usually 1 second or more.
  • the lower limit of the cleaning time depends on the movable limit of the apparatus used for cleaning, but when using a single-wafer cleaning apparatus, for example, the lower limit of the cleaning time between the cleaning agent and the substrate is set to about 1 second. I can do things. It is preferable to increase the hydrofluoric acid content in the cleaning agent within the above-mentioned range of the hydrofluoric acid content C (% by weight) because efficient cleaning can be performed in a shorter cleaning time. If the cleaning time in the step (2) of the present invention is too long, not only the contamination removal effect corresponding to the time spent is not obtained, but also the number of substrates processed per unit time is reduced, and furthermore, a single wafer cleaning apparatus is used. If used, a large amount of acid waste liquid must be treated, which is not preferable.
  • Examples of the solvent of the hydrofluoric acid-containing cleaning agent used in the present invention include water, an organic solvent, and a mixed solvent thereof.
  • water is preferred as the solvent from the viewpoint of waste liquid treatment cost.
  • deionized water preferably ultrapure water
  • electrolytic ionic water obtained by electrolysis of water and hydrogen water in which hydrogen gas is dissolved in water are themselves water. It is preferable to mix it with other solvents or use it alone as a solvent, because it has better particle removal and adhesion prevention properties than the above.
  • the hydrofluoric acid-containing cleaning agent used in the present invention may further contain other components.
  • Other components include surfactants such as those used in the alkaline cleaning agent of step (1) or step (3); acids such as hydrochloric acid, sulfuric acid, nitric acid, and acetic acid; alkaline components such as ammonia; and ammonium fluoride.
  • Buffering agents Oxidizing agents such as hydrogen peroxide, ozone, oxygen, etc .; Reducing agents such as hydrazine; Organic sulfur-containing compounds (2-mercaptothiazoline, 2-mercaptoimidazoline, thioglycerol, etc.), organic nitrogen-containing compounds (benzotriazole, 3 —Corrosion inhibitors such as aminotriazole, urea, thioperia, etc., water-soluble polymers (polyethylene glycol, polyvinyl alcohol, etc.) and alkyl alcohol compounds, and dissolved gases such as hydrogen, argon, and nitrogen.
  • Oxidizing agents such as hydrogen peroxide, ozone, oxygen, etc .
  • Reducing agents such as hydrazine
  • Organic sulfur-containing compounds (2-mercaptothiazoline, 2-mercaptoimidazoline, thioglycerol, etc.
  • organic nitrogen-containing compounds benzotriazole, 3 —Corrosion inhibitors such as aminotriazo
  • the method for preparing the above-mentioned detergent (alkaline detergent and hydrofluoric acid-containing detergent) used in the present invention may be a conventionally known method.
  • the components of the cleaning agent for example, ammonium hydroxide, solvent, and, if necessary, other components such as complexing agents, surfactants, etc.
  • any two or three or more components are previously blended. Thereafter, the remaining components may be mixed, or the whole may be mixed at once.
  • step (3) Combination of step (1), step (2), and step (3)
  • the step (2) is performed after the step (1).
  • a highly clean substrate surface can be obtained in a short time. It may be appropriately selected depending on the required cleanliness level of the substrate surface, the type of the material on the substrate or the substrate surface, the type of the additive to the cleaning agent, and the like.
  • the alkaline cleaning agent in step (1) contains a complexing agent, even if the alkaline cleaning agent unintentionally contains metal impurities, the metal impurities are removed by the action of the complexing agent. It is preferable because it can prevent adhesion to metal and can extremely reduce not only particle contamination but also metal contamination.
  • step (2) when a surfactant is added to the alkaline cleaning agent, depending on the type of the surfactant and the substrate surface material, there is a concern that the surfactant may be adsorbed on the substrate surface and may remain in a very small amount. Any contamination can be removed in step (2).
  • the cleaning method of the present invention including the step (2) and the step (3) is characterized in that the step (3) is performed after the step (2). Washing in this order is preferable because a substrate surface with extremely low particle contamination can be obtained. If the hydrofluoric acid-containing cleaning agent contains a small amount of particles unintentionally, it may adhere to the substrate surface, but such particle contamination can be effectively removed in step (3). .
  • the natural oxide film is not completely removed in the step (2).
  • This natural oxide film serves as a protective film on the Si surface and suppresses surface roughness.
  • the cleaning (cleaning with an alkaline cleaning agent or a hydrofluoric acid-containing detergent) may be performed at room temperature, but the heating is performed for the purpose of improving the cleaning effect. You may go.
  • the alkaline detergent in the step (1) or the step (3) is usually used in the range of room temperature to 90 ° C.
  • the hydrofluoric acid-containing cleaning agent of step (2) is usually used at room temperature, but may be heated to about 40. If the temperature of the cleaning agent is too high, the amount of etching of the silicon oxide film or the like increases, and side effects such as a change in the dimensions of the calorie occur.
  • the cleaning may be performed in combination with a cleaning method using physical force, for example, mechanical cleaning such as scrub cleaning using a cleaning brush, or ultrasonic cleaning.
  • a cleaning method using physical force for example, mechanical cleaning such as scrub cleaning using a cleaning brush, or ultrasonic cleaning.
  • ultrasonic cleaning or brush scrub together with the alkaline cleaning agent in step (1) or step (3) using a single-wafer cleaning apparatus described later the removal of particle contamination is further improved. This is preferable because it improves the cleaning time and shortens the cleaning time.
  • washing with electrolytic water obtained by electrolysis of water or hydrogen water in which hydrogen gas is dissolved in water may be combined before, after, or after the washing method of the present invention.
  • the cleaning device using the present invention may have any form as long as the cleaning method of the present invention, that is, the cleaning device capable of performing the method of bringing the cleaning agent into direct contact with the substrate can be implemented.
  • the method of contacting the cleaning agent with the substrate is a dip method in which the cleaning tank is filled with the cleaning agent and immersed in the substrate, a spin method in which the cleaning liquid is flowed from the nozzle onto the substrate, and a high-speed rotation of the substrate while spraying the liquid onto the substrate. Spraying method for washing with water.
  • an apparatus for performing such washing a plurality of sheets housed in a cassette are used. There are a batch-type cleaning apparatus for simultaneously cleaning substrates, and a single-wafer cleaning apparatus for mounting one substrate on a holder for cleaning.
  • the cleaning method of the present invention can be applied to any of the above methods, but is preferably applied to a spin-type or spray-type cleaning apparatus because it can remove contamination more efficiently in a short time. Specifically, it is preferable to apply the cleaning method of the present invention to a single-wafer cleaning apparatus in which reduction of the cleaning time and reduction of the amount of the cleaning agent have become problems, since these problems can be solved.
  • the cleaning method of the present invention is used for cleaning the surface of a substrate such as a semiconductor, a glass, a metal, a ceramic, a resin, a magnetic material, and a superconductor, in which metal contamination and particle contamination pose a problem.
  • a substrate such as a semiconductor, a glass, a metal, a ceramic, a resin, a magnetic material, and a superconductor
  • it is suitably used for cleaning substrates for semiconductor devices and substrates for display devices that require high cleanliness of the substrate surface.
  • S i Ge (germanium), semiconductor materials such as GaAs (gallium arsenide); S i 0 2, silicon nitride, hydrogen silsesguioxane (HSQ ), Glass, aluminum oxide, transition metal oxides (titanium oxide, tantalum oxide, hafnium oxide, zirconium oxide, etc.),
  • Metals such as (ruthenium), Au (gold), Pt (platinum), Ag (silver), and A1 (aluminum) or alloys thereof, silicides, nitrides, and the like.
  • a 4 or 6 inch silicon wafer was immersed in an APM cleaner containing metal ions (Fe, Al, Cu, Zn).
  • This APM detergent is prepared by mixing 29% by weight of ammonia water, 31% by weight of hydrogen peroxide solution, and water at a volume ratio of 1: 1: 5, and adding an aqueous solution containing metal ions.
  • a metal-containing APM detergent containing 20 ppb of Fe, 1 ppb of AI, 1 ppm of Cu, and 200 ppb of Zn was prepared.
  • the silicon wafer after immersion was washed with ultrapure water for 10 minutes, and dried with a nitrogen probe or a spin drier to prepare a silicon wafer 18 contaminated with metal.
  • the analysis of metals (Fe, Al, Cu, Zn) on this silicon wafer was performed by the same method for both the contaminated silicon wafer and the cleaned silicon wafer.
  • an aqueous solution containing 0.1% by weight of hydrofluoric acid and 1% by weight of hydrogen peroxide was brought into contact with the wafer surface and collected.
  • the amount of metal recovered using an inductively coupled plasma mass spectrometer (ICP-MS) was measured and converted into a substrate surface concentration (atoms / cm 2 ), which was taken as an analysis result. Further, the total value of the concentrations of these metals was defined as “total metal concentration (atoms / cm 2 )”.
  • the analysis results of the contaminated silicon wafer are shown in Tables 11 and 12.
  • step (1) the complexing agent shown in Table 11 was added to the APM1 detergent (aqueous solution obtained by mixing 29% by weight ammonia water, 31% by weight hydrogen peroxide solution and water at a volume ratio of 1: 2: 80).
  • a cleaning agent adjusted was used.
  • the pH of the detergent used in step (1) was about 10.
  • the rotation speed of the silicon wafer was 1000 rpm
  • the flow rate of the cleaning agent was 1 liter / min
  • the cleaning time was 30 seconds
  • the liquid temperature was 80 ° C.
  • step (2) a hydrofluoric acid aqueous solution having a hydrofluoric acid content shown in Table 11 was used.
  • the rotation speed of the silicon wafer was 600 rpm
  • the flow rate of the cleaning liquid was 1 liter
  • the cleaning was performed for the cleaning time shown in Table 11 and the liquid temperature was room temperature.
  • Table 1-1 shows the results of this two-step cleaning.
  • Step (1) is not performed, and HP M detergent (35% by weight hydrochloric acid, 31% by weight aqueous hydrogen peroxide, and an aqueous solution in which water is mixed at a volume ratio of 1: 1: 80) is used as the cleaning agent in step (2).
  • HP M detergent 35% by weight hydrochloric acid, 31% by weight aqueous hydrogen peroxide, and an aqueous solution in which water is mixed at a volume ratio of 1: 1: 80
  • the washing was carried out in the same manner as in Example 1 except that the solution temperature was 60 and the washing time was set to the time shown in Table 11-11. The results are shown in Table 1_1.
  • Example 11-11 The cleaning was performed in the same manner as in Example 1 except that Step (2) was not performed, and the same APM1 cleaning agent as in Example 1 was used as the cleaning agent in Step (1) without containing a complexing agent. went.
  • the results are shown in Table 11-11.
  • Example 1 The same APM1 detergent as in Example 1 was used as the detergent in Step (1) without containing a complexing agent, and the same HPM detergent as in Comparative Example 1 was used as the detergent in Step (2).
  • the cleaning was performed in the same manner as in Example 1 except that the temperature was 60 ° C and the cleaning time was the time shown in Table 11-11. The results are shown in Table 11-11. ⁇
  • step (1) the cleaning time was 60 seconds and the liquid temperature was 50 ° C.
  • step (2) the cleaning agent was a hydrofluoric acid aqueous solution with a hydrofluoric acid content shown in Table 11-1.
  • the cleaning was performed in the same manner as in Example 1 except that the temperature was changed to room temperature. The results are shown in Table 11-11. Table 1-1
  • step (1) APM 2 detergent (aqueous solution in which 29% by weight ammonia water, 31% by weight hydrogen peroxide solution and water were mixed at a volume ratio of 1: 2: 40) was used as a detergent, and Table 1-2 Using the complexing agent and surfactant shown, the washing time in step (1) was set to 60 seconds and the liquid temperature was set to 80 ° C. The ⁇ of the detergent used in step (1) was about 10.5. Except as described above, the process was performed in the same manner as in the step (1) in the example (1).
  • step (2) a hydrofluoric acid aqueous solution having a hydrofluoric acid content shown in Table 12 was used as a cleaning agent, and the cleaning time and the sequence of steps were similarly set as shown in Table 12 and carried out. Washing was performed as in Example 1. The results are shown in Table 1-2.
  • Type Type Concentration (ppm) Type Temperature ( ⁇ ) Type (% by weight) (sec) F e A 1 CuZn All metals
  • Example 3 1 ⁇ 2 APM2 E DDHA 70 Hydrofluoric acid 0.2 5 0.63 ⁇ 0.1 1.2 and 0.2 ⁇ 0.3 1.8
  • Example 4 1 ⁇ 2 APM 2 E DDHA 70 Hydrofluoric acid 0.5 7 2.86 0.10.1 ⁇ 0.5 0.20.2 0.30.3 ⁇ 1.1
  • Example 5 1 ⁇ 2
  • Example 6 1- ⁇ 2 APM2 NT PO 70 Hydrofluoric acid 0.5 7 2.86 ⁇ 0.1 ⁇ 0.5% 0.2 0.2 0.3 0.3 1.1
  • Example 7 1 ⁇ 2 AP 2 RDDHA 70 C, 2 H z5 0 (C 2 H40 ) i, H 70 Hydrofluoric acid 0.5 7 2.86 ⁇ 0.1 ⁇ 0.5 ⁇ 0.2 ⁇ 0.3
  • the cleaning method of the present invention is superior in metal contamination cleaning performance even when compared with the conventionally used HPM cleaning, APM cleaning or a cleaning method combining these (RCA cleaning).
  • a silicon wafer with 1000-3000 Si 3 N 4 particles (particles) with a particle size of 13 ⁇ m or more adhered in a 6-inch circle on the substrate was cleaned using a single-wafer cleaning system as shown in Table 2.
  • the particles were cleaned in two steps, step (1) and step (2), as shown.
  • step (1) cleaning was performed using a complexing agent added to an APM2 detergent or a detergent prepared by adding a surfactant shown in Table 2 to the complexing agent.
  • the silicon wafer rotation speed in the single wafer cleaning apparatus was 1000 rpm, the amount of cleaning liquid was 1 liter / min, the cleaning time was 60 seconds, the liquid temperature was room temperature, and the substrate was cleaned while irradiating ultrasonic waves. .
  • the pH of the detergent used in this step (1) was about 10.3.
  • step (2) a hydrofluoric acid aqueous solution having a hydrofluoric acid content shown in Table 2 was used.
  • the rotation speed of the silicon wafer was 1000 rpm
  • the amount of the cleaning liquid was 1 liter
  • the cleaning time was as shown in Table 2
  • the liquid temperature was room temperature. Then, the order of step (1) and step (2) was as shown in Table 2.
  • the contaminant particle removal rate was evaluated in the following five steps.
  • the removal rate was 80% or more as AAA, the removal rate was AA, 60% or more and less than 80% was AA, 40% or more and less than 60% was A, 20% or more and less than 40% was B, and C was less than 20%. Table 2 shows the results.
  • Type Concentration ( ⁇ 1) Type Concentration (PPm) (Weight (sec)
  • Example 8 1 ⁇ 2 A PM 2 EDDH A 70 None Hydrofluoric acid 0.5 7 2.86 BExample 9 1 ⁇ 2 AP 2 E DDH A 70 C 12 H 25 0 (C 2 H 40 ) nH 70 Hydrofluoric acid 0.5 7 2.86 AA Example 1 0 1 ⁇ 2 A PM 2 EDDH A 70 C 12 H 2 50 (C H4O) 13H 70 Hydrofluoric acid 0.5 7 2.86 A Example 1 1 1 1 ⁇ 2 A PM 2 EDDH A 70 1 o0 3 H 70 Acid 0.5 7 2.86 AA Example 1 2 1 ⁇ 2 AP 2 EDDH A TO C18H35O ( ⁇ ⁇ ⁇ ⁇ ⁇ ) 30 H 70 Hydrofluoric acid 0.5 7 2.86 A Comparative example 7 1 ⁇ 2 APM2 Hydrofluoric acid 0.5 7 2.86 C Comparative example s 1 ⁇ 2 AP 2 H PM 30 B
  • the cleaning method of the present invention is clearly superior to the particle contamination cleaning performance as compared with the RCA cleaning method that combines APM cleaning and HPM cleaning, which are conventionally used. .
  • the 4-inch silicon wafer with an oxide film was cleaned using a hydrofluoric acid aqueous solution with a hydrofluoric acid content shown in Table 3, and the processing dimension change of the silicon wafer was evaluated. did.
  • the silicon wafer rotation speed in the single wafer cleaning apparatus was 600 rpm, the flow rate of the cleaning liquid was 1 liter Z minutes, the liquid temperature was room temperature, and the cleaning time was as shown in Table 3.
  • Step (2) and Step (3) evaluation of metal contamination cleaning performance by two-step cleaning: (Step (2) and Step (3))
  • silicon-contaminated metal was cleaned using a single-wafer cleaning apparatus.
  • Metal contamination cleaning was performed by the two-step cleaning method of step (2) and step (3) shown in Table 4-11. Then, evaluation was made in the same manner as in Example 1.
  • the order of step (2) and step (3) is also described in the table. That is, when the step (3) is performed after the step (2), “2 ⁇ 3” is indicated.
  • step (2) a hydrofluoric acid aqueous solution having a hydrofluoric acid content shown in Table 4-1 was used.
  • the silicon wafer rotation speed in the single wafer cleaning apparatus was 600 rpm, the flow rate of the cleaning liquid was 1 liter / min, and the cleaning was performed for the cleaning time shown in Table 41.
  • the liquid temperature was at room temperature.
  • step (3) APM1 detergent (aqueous solution of 29% by weight ammonia water, 31% by weight hydrogen peroxide and water mixed at a volume ratio of 1: 2: 80) or a complexing agent shown in Table 41 , And a cleaning agent was used.
  • the pH of the detergent used in step (3) was about 10.
  • the rotation speed of the silicon wafer was 1000 rpm
  • the flow rate of the cleaning liquid was 1 liter
  • the cleaning time was 30 seconds
  • the liquid temperature was 80 ° C.
  • Table 4-1 shows the results of this two-step cleaning.
  • step (2) a hydrofluoric acid aqueous solution having a hydrofluoric acid content shown in Table 411 was used as a cleaning agent, and the cleaning time was as shown in Table 411.
  • step (3) an APM2 detergent (aqueous solution obtained by mixing 29% by weight ammonia water, 31% by weight hydrogen peroxide solution and water at a volume ratio of 1: 2: 40) was used as the detergent, and the washing time was reduced to 60%. Seconds. The pH of the APM2 detergent was about 10.5.
  • step (2) As the cleaning liquid in step (2), a hydrofluoric acid aqueous solution having a hydrofluoric acid content shown in Table 4-2 was used, and the cleaning time was as shown in Table 4-2.
  • step (3) an APM 2 detergent or a solution to which a complexing agent or a surfactant shown in Table 4-2 was added was used as a washing solution, and the treatment time was 60 seconds.
  • the pH of this APM2 detergent was about 10.5.
  • the step (2) of washing with a hydrofluoric acid aqueous solution and the step (3) of washing with an alkaline cleaning agent were combined in this order. According to the present invention, it is apparent that the total metal concentration on the silicon wafer surface is low and the cleaning property for metal contamination is excellent.
  • a silicon wafer with 1000 to 3000 Si 3 N 4 particles (particles) with a particle size of 0.13; m or more attached in a 6-inch circle on the substrate The particles were washed in two steps of step (2) and step (3) as shown in Fig. 5, and the particles were washed.
  • a hydrofluoric acid aqueous solution having a hydrofluoric acid content shown in Table 5 was used as the cleaning agent in the step (2).
  • the rotation speed of the silicon wafer was 1000 rpm
  • the amount of the cleaning liquid was 1 liter / minute
  • the cleaning time was as shown in Table 5, and the liquid temperature was room temperature.
  • step (3) cleaning was carried out using an APM2 detergent, a complexing agent added thereto, and a detergent adjusted by further adding a surfactant shown in Table 5.
  • the silicon wafer rotation speed was 1000 rpm
  • the cleaning liquid volume was 1 liter / min
  • the cleaning time was 60 seconds
  • the liquid temperature was room temperature
  • the substrate was cleaned while irradiating ultrasonic waves.
  • the pH of the detergent used in this step (3) was about 10.3. Then, the order of step (2) and step (3) was performed as shown in Table 5.
  • the removal rate of contaminant particles was evaluated in the following five steps.
  • the removal rate was 80% or more as AAA, the removal rate was AA, 60% or more and less than 80% was AA, 40% or more and less than 60% was A, 20% or more and less than 40% was B, and C was less than 20%. Table 5 shows the results.
  • Type Type Concentration (PPra) Type Concentration (ppm) Type (Weight (sec)
  • Example 23 2 ⁇ 3 A PM 2 hydrofluoric acid 0.5 7 2.86 A
  • Example 24 2 ⁇ 3 A PM 2 E DDHA 70 Hydrofluoric acid 0.5 ⁇ 7 2.86 A
  • Example 25 2 ⁇ 3 AP 2 EDDHA 70 C 12 H 25 0 ( C 2 H 4 0) obviouslyH 70 hydrofluoric acid 0.5 7 2.86 AA
  • Example 26 2 ⁇ 3 APM 2 E DDHA 70 C12H25O (C2H4O) 13H 70 Hydrofluoric acid 0.5 7 2.86 AA
  • Example 27 2 ⁇ 3 APM 2 E DDHA 70 ⁇ 12 ⁇ 2 5 - C 6 H - S O3H 70 hydrofluoric acid 0.5 7 2.86 AA example 2 8 2 ⁇ 3 AP 2 E DDHA 70 C18H35O ( teeth 30 H 70 hydrofluoric acid 0.5 7 2.86 AA example 2 9 2 ⁇ 3 A PM2 E DDHA 70 C, 2 H 25 0 (C 2 H 40 ) ,, H 70 Hydro
  • the particles were washed in two steps, step (2) and step (3), as shown in Fig. 7.
  • a hydrofluoric acid aqueous solution having a hydrofluoric acid content shown in Table 6 was used as the cleaning agent in the step (2).
  • the rotation speed of the silicon wafer was 1000 rpm
  • the cleaning liquid volume was 1 liter / minute
  • the cleaning time was as shown in Table 6, and the liquid temperature was room temperature.
  • step (3) the complexing agent and surfactant shown in Table 6 were added to the APM3 detergent (aqueous solution obtained by mixing 29% by weight of ammonia water, 31% by weight of hydrogen peroxide and water at a volume ratio of 1: 2: 60).
  • APM3 detergent aqueous solution obtained by mixing 29% by weight of ammonia water, 31% by weight of hydrogen peroxide and water at a volume ratio of 1: 2: 60.
  • cleaning was performed using the adjusted cleaning agent.
  • the silicon wafer rotation speed in the single wafer cleaning apparatus was 1000 rpm
  • the cleaning liquid volume was 1 liter / min
  • the cleaning time was 60 seconds
  • the liquid temperature was 50 ° C
  • the substrate was irradiated with ultrasonic waves. Washed.
  • the pH of this APM3 detergent was about 10.3.
  • the order of step (2) and step (3) was as shown in Table 6.
  • Particles remaining on the cleaned silicon wafer surface obtained after the cleaning were measured by a laser surface inspection device. Table 6 shows the results.
  • step (3) the step (1) in the comparative example 4 was performed.
  • the APM 1 detergent was used instead of the APM 1 as the detergent. Except for this, cleaning was performed in the same manner as in Comparative Example 4, and evaluation was performed in the same manner as in Example 30. Table 6 shows the results.
  • Example 30 2 ⁇ 3 A PM 3 EDDHA 47 None Hydrofluoric acid 0.2 5 0.63 99.2
  • Example 31 '2 ⁇ 3 A PM 3 EDDHA 47 Dote'sincin'sulfonic acid 10 Hydrofluoric acid 0.2 5 0.63 99.4
  • Comparative example 1 1.3 ⁇ 2 A PM 3 HPM 30 93.6
  • the cleaning method of the present invention clearly shows particle contamination cleaning compared to the RC A cleaning method combining the conventionally used APM cleaning and HPM cleaning. It can be seen that the performance is excellent.
  • the cleaning method of the present invention can remove both metal contamination and particle contamination on the substrate surface in a very short time as compared with the conventional cleaning method (Comparative Example). It has an excellent effect that there is almost no side effect such as a change in processing dimensions.
  • the cleaning method of the present invention when cleaning a semiconductor substrate such as a silicon wafer to be cleaned, problems such as a change in processing dimensions of the substrate are extremely suppressed, and metal contamination on the surface of the substrate can be reduced in a very short time. It is possible to effectively remove both the one-ticle contamination. Therefore, it is industrially very useful when used as a surface treatment method such as for cleaning contamination in the manufacturing process of semiconductor device display devices.
  • Japanese Application Japanese Patent Application No. 2001-151960

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Detergent Compositions (AREA)

Description

明 細 書 基板表面洗浄方法 技術分野
本発明は半導体デバイスやディスプレイデバイスなどを製造する工程において、 デバイ ス用基板表面を洗浄するための洗浄方法である。 詳しくは、 短時間で基板上の汚染物であ る金属と微粒子 (パーティクル) の両方を除去し、 基板表面を高度に清浄化する基板表面 の洗浄方法に存する。 背景技術
マイクロプロセッサー、 メモリ一、 C C Dなどの半導体デバイスや、 T F T液晶などの フラットパネルディスプレイデバイスの製造工程では、 シリコン (S i ) や酸化シリコン ( S i 02)、 ガラス等の基板表面にサブミクロンの寸法でパターン形成や薄膜形成を行つ ている。 そしてこれらを製造する際には、 製造の各工程において該基板表面の微量な汚染 を低減することが極めて重要な課題である。
汚染の中でも、 特に金属汚染やパーティクル汚染はデバイスの電気的特性や歩留まりを 低下させるので、 汚染が発生した工程内にて極力これを低減してから、 基板を次の工程に 移す必要がある。 汚染の除去には、 基板表面を洗浄剤により洗浄する事が一般に行われて いる。
近年、 デバイス製造に於いては単位時間当たりの基板処理枚数向上等、 一層の生産効率 化が要求されており、 益々微細化 ·高集積化傾向にあるデバイスを有する基板の製造にお いては、 基板表面の金属汚染及びパ一ティクル汚染の双方の除去性に優れた、 迅速に基板 表面を高度に清浄化する洗浄方法が望まれている。
一般に、 パーティクル汚染の除去にはアル力リ性溶液による洗浄が有効である事が知ら れている。 半導体デバイス用の S i基板や S i 02基板、 あるいはディスプレイデバイス 用のガラス基板の表面洗浄には、 アンモニア水溶液や水酸化カリウム水溶液、 水酸化テト ラメチルアンモニゥム水溶液等のァゾレ力リ性水溶液が用いられている。 またアンモニア、 過酸化水素、 水からなる洗浄剤 (「S C— 1洗浄剤」 または 「A P M洗浄剤」 という) に よる洗浄 (「S C— 1洗浄」 または 「A P M洗浄」 という) も広く用いられている。
一方、 金属汚染の除去には酸性水溶液による洗浄が有効である事が知られている。 半導 体デバイス用の S i基板や S i 02基板、 あるいはディスプレイデバイス用のガラス基板 表面の洗浄には、 塩酸や硝酸、 硫酸、 フッ酸等の酸を水で希釈したものが、 洗浄剤として 用いられている。 また塩酸、 過酸化水素及び水からなる洗浄剤 (「S C— 2洗浄剤」 また は 「H P M洗浄剤」 という) による洗浄 (「S C— 2洗浄」 または 「H P M洗浄」 という) も広く用いられている。
基板表面のパーティクル汚染と金属汚染の双方を除去するためには、 これらの洗浄を組 み合わせた複数のステツプによる洗浄がなされている。 半導体デバイス用基板表面の汚染 洗浄方法としては、 S C—1洗浄でパーティクル汚染を除去し、 続けて S C— 2洗浄で金 属汚染を除去する、 いわゆる R C A洗浄 (Kern and Puot inen: SCA .Review, pp. 187-206, June (1970)等) が広く用いられている。 また、 基板表面の S iや S i〇2と強固に化学結 合した金属汚染、 あるいは基板の表層内部に取り込まれた微量な金属汚染を除去する為に は、 フッ酸含有量が 0 . 2 5〜1重量%程度の希フッ酸水溶液 (以下、 単に 「希フッ酸」 ということがある。) によって、基板の表層をエッチングすることが効果的である。特に、 アルミニウム (A 1 ) や銅 (C u ) は基板表面の S iや S i 02と反応して強固な化学結 合を作り易く、 そして基板の表層近傍にも取り込まれ易いので、 基板表面を清浄化するに は基板表層をエッチングしてこれらを除去する方法が、 最も効果的であることが近年明ら かとなつている (Morinaga et al. , The Electrochemical Society Proceeding Series PV99-36, pp. 585-592, Pennington, NJ (2000)等)。 したがって、 S C— 1洗浄の後に、 または S C— 2洗浄の後に、 あるいは S C— 1洗浄と S C— 2洗浄の間に希フッ酸による 洗浄を行い、 合計 3ステップの洗浄を行うことにより高清浄な表面を得ることが出来る。 これらの 2ステップまたは 3ステップからなる洗浄方法は、 一般に 1ステップあたりの洗 浄工程に 1 ~ 1 5分要するので、 1 タルで数十分を要する。
またデバイス用基板表面の洗浄を行う装置としては、 代表的なものが 2種類ある。 一方 は、 カセットに収容された複数枚の基板を、 通常は洗浄剤を貯めた洗浄槽内に浸して洗浄 するパッチ式洗浄装置である。 他方は、 1枚の基板をホルダ一に装着し、 通常は基板を回 転 (例えば基板がディスク状で有れば円周方向に回転) させながら洗浄剤を基板表面にス プレーする枚葉式洗浄装置である。
バッチ式洗浄装置は単位時間当たりの基板処理枚数が多い反面、 装置が大きく、 基板の デバイス形成表面あるいはその裏面から脱離した汚染が別のデパイス形成表面に再付着 するという、 いわゆる基板間の汚染再付着 (クロスコン夕ミネーシヨン) の発生や、 1枚 のみ洗浄したい場合にも多量の洗浄剤が必要になるなどの問題点を有する。
一方、 枚葉式洗浄装置は装置が小さく、 クロスコン夕ミネーシヨンがない反面、 1枚ず つ洗浄するために、 単位時間あたりの基板処理枚数が少ないという問題がある。
従来の基板表面の洗浄方法においては、 先述した様に、 ≤(:'ー1洗浄、 S C— 2洗浄や 更には希フッ酸洗浄等を含む、 複数のステツプ有する洗浄方法によつて基板表面を高度に 清浄化していた。 よって洗浄時間が長く、 生産効率が悪いと言う問題があった。 特に基板 を 1枚ずつ洗浄する枚葉式洗浄装置では、 装置 1台あたりの単位時間当たりの基板処理枚 数が少ないので洗浄装置が数多く必要となり、 コスト面で不利であると言う問題があった。 また希フッ酸洗浄では、 通常 5重量%程度のフッ酸水溶液を用いて 1〜 5分間程度 の洗浄処理をする間に、 基板表面 (S i 02膜等) を 1 0オングストローム (A) 以上ェ ツチングしてしまうために基板表面のデパイスの加工寸法精度が狂つてしまう等、 近年、 様々な問題が顕在化しつつある。 この問題は、 デバイスの微細化、 ゲート酸化膜の薄膜化 に連れて、 今後急速に顕在化する事が予想される。 またエッチングによって剥き出しとなった疎水性の S i表面にパーテイクルが付着し 汚染したり (一般に疎水面にはパーティクルが付着しやすい)、 更には疎水面に残留した 水滴が乾燥する際に出来るシミ状の汚染、 いわゆるウォーターマークが発生する等の問題 ¾ある。
この様な S i 02のエッチングを抑制するために、 洗浄時間は従来同様だがフッ酸濃度 を極めて低減させた、 例えば 1 0重量 p p m程度の極微量のフッ酸を純水に添加した極め て希薄なフッ酸水溶液で基板表面を洗浄するという洗浄方法も提案されている (特開平 3 — 1 9 0 1 3 0号公報等)。 しかしながらこのような洗浄方法では、 フッ酸濃度が極めて 低いので、 このフッ酸水溶液による洗浄だけでも 5分程度必要となり、 未だに生産効率は 低いままである。 加えてこの方法を枚葉洗浄装置に適用する場合には、 多量の洗浄剤を必 要とするので多量の酸廃液が生じ、 この処分が問題となる。 発明の開示
本発明は上述したような問題を解決するためになされたものであり、 半導体デバイスや ディスプレイデバイスなどの製造工程において、 デバイス用基板に対して、 ①短時間で、 ②パーティクル汚染と金属汚染の両方を除去し、 ③汚染再付着やエッチングによる加工寸 法変化などを極めて低減させた、 高効率な基板洗浄方法を提供することを目的とするもの である。
本発明者らは上述の課題を解決するために鋭意検討を行った結果、 まず第一に、 先述し たような極めて希薄なフッ酸水溶液を用いて長時間洗净するよりも、 特定濃度以上、 具体 的には 0 . 0 3重量%以上のフッ酸水溶液を用いて特定時間以下で洗浄した方が、 より高 い金属汚染除去効果が得られると言う意外な事実を見い出した。 さらに、 フッ酸水溶液に よる洗浄では、 フッ酸濃度 (重量%) と洗浄時間 (秒) が特定の関係で表される場合に、 十分な金属汚染の除去と、 (前述した) エッチングによる加工寸法変化などの問題解決を 両立しうることを見い出した。
さらに検討を重ねた結果、 アルカリ性洗浄剤で基板表面を洗浄する工程と、 先述したフ ッ酸水溶液による洗浄工程、 つまり特定濃度以上のフッ酸含有率の洗浄剤を用いて特定時 間以下で基板表面を洗浄する際に、 洗浄剤中のフッ酸濃度と洗浄時間が特定の関係にある 工程を組み合わせることによって、 極めて短時間で、 基板表面のパーティクル汚染と金属 汚染を共に除去でき、 ウォーターマークやパーティクル再付着、 エッチングによる加工寸 法変化などの問題が殆ど無いという優れた効果を奏することを見いだし、 本発明を完成さ せた。
即ち本発明の要旨は、 少なくとも以下の工程 (1 ) 及び工程 (2 ) を含み、 工程 (1 ) を行った後に工程 (2 ) を行うことを特徴とする基板表面洗浄方法に存する。
工程 ( 1 ) 錯化剤含有アル力リ性洗浄剤で基板表面の洗浄を行う洗浄工程。
工程 (2 ) フッ酸含有率 C (重量%) が 0 . 0 3〜3重量%である洗浄剤を用い、 該洗 浄剤による基板の洗浄時間 t (秒) が 4 5秒以下であり、 且つ Cと tが 0 . 2 5≤ t C 1 - 2 9≤ 5の関係にある洗浄工程。
また本発明の今一つの要旨は、 少なくとも以下の工程 (2 ) 及び工程 (3 ) を含み、 ェ 程 (2 ) を行った後に工程 (3 ) を行うことを特徴とする基板表面洗浄方法に存する。 工程 (2 ) フッ酸含有率 C (重量%) が 0 . 0 3〜 3重量%である洗浄剤を用い、 該洗 浄剤による基板の洗浄時間 t (秒) が 4 5秒以下であり、 且つ Cと tが 0 . 2 5≤ t C 1 - 2 9 5の関係にある洗浄工程。
工程 ( 3 ) アル力リ性洗浄剤で基板表面の洗浄を行う洗浄工程。 発明を実施するための最良の形態
以下、 本発明を詳細に説明する。 尚、 工程 (1 ) と工程 (3 ) は共通事項が多いので、 併せて説明する。
(A) アルカリ性洗浄剤
(A— 1 ) アル力リ性成分
本発明に用いるアルカリ性洗浄剤とは、 アルカリ性成分を含む、 p H値が 7を越えるァ ルカリ性水溶液である。 溶液のアル力リ性成分は特に限定されないが、 代表的なものとし て水酸化アンモニゥム (アンモニア水溶液) と有機アル力リが挙げられる。 有機アルカリ としては水酸化第 4級ァンモニゥム、 ァミン、 ァミノアルコール等のアミン類が挙げられ る。 水酸化第 4級アンモニゥムとしては、 炭素数 1〜4のアルキル基及び/又はヒドロキ シアルキル基を有するものが好ましい。 アルキル基としてはメチル基、 ェチル基、 プロピ ル基、 ブチル基等の炭素数 1〜1 0のアルキル基が挙げられ、 ヒドロキシアルキル基とし てはヒドロキシメチル、 ヒドロキシェチル、 ヒドロキシプロピル、 ヒドロキシブチル等の 炭素数 1〜1 0のヒドロキシアルキル基が挙げられる。 この様な水酸化第 4級アンモニゥ ムとしては具体的には、 テトラメチルアンモニゥムヒドロキシド (TMAH)、 テトラエ チルアンモニゥムヒドロキシド、 卜リメチル (ヒドロキシェチル) アンモニゥムヒドロキ シド (通称:コリン)、 トリェチル (ヒドロキシェチル) アンモニゥムヒドロキシド等が 挙げられる。 この他のアミン類としては、 エチレンジァミン、 モノエタノールァミン、 ト リメタノールアミンなどが挙げられる。
また、 水酸化ナトリウム、 水酸化カリウム、 水酸化カルシウム等のアルカリ金属または アルカリ土類金属の水酸化物、 炭酸水素ナトリウム、 炭酸水素アンモニゥム等のアルカリ 性塩類なども用いられる。
上述のアルカリ性成分の中でも洗浄効果、 金属残留が少ないこと、 経済性、 洗浄剤の安 定性などの理由から、 アル力リ性成分としては水酸化アンモニゥム、 テトラメチルアンモ 二ゥムヒドロキシド (TMAH)、 トリメチル (ヒドロキシェチル) アンモニゥムヒドロ キシド (通称:コリン) などが好ましく、 特に水酸化アンモニゥムが好ましい。 これらの アルカリ性成分は単独、 または 2種以上を任意の割合で使用してもよい。 洗浄剤中におけ るアル力リ性成分の濃度は適宜選択すればよいが、 一般的には 0 . 0 0 1〜 5重量%、 中 でも特に 0 . 0 0 2 ~ 1重量%が好ましい。 アル力リ性成分の濃度が低すぎると本発明の 目的である汚染除去効果が得られない。 逆に濃度が高すぎても、 高濃度に見合つた高い効 果が期待出来ないので経済的に不利であるばかりか、 基板表面がエッチングにより損傷す る危険性が増すので好ましくない。
(A— 2) 錯化剤
本発明に用いるアル力リ性洗浄剤においては、 錯化剤を含有させると基板表面の金属汚 染をさらに低減した極めて高清浄な表面が得られるので好ましい。 尚、 本発明に於けるェ 程 (1) に用いるアルカリ性洗浄剤は、 錯化剤の含有が必須である。
本発明に用いられる錯化剤は従来公知の任意のものを使用できる。 錯化剤の選択にあた つては、 基板表面の汚染レベル、 金属の種類、 基板表面に要求される清浄度レベル、 錯化 剤コスト、 化学的安定性等から総合的に判断して選択すればよく、 例えば、 以下に示すも のが挙げられる。
( 1 ) ドナ一原子である窒素とカルボキシル基及び Z又はホスホン酸基を有する化合物 例えば、 グリシン等のアミノ酸類;ィミノ 2酢酸、 二トリ口 3酢酸、 エチレンジァミン
4酢酸 [EDTA]、 トランス一 1, 2—ジアミノシクロへキサン 4酢酸 [CyDTA]、 ジエチレントリアミン 5酢酸 [DTPA]、 トリエチレンテトラミン 6酢酸 [TTHA] 等の含窒素カルボン酸類;エチレンジアミンテトラキス (メチレンホスホン酸) [EDT PO]、 二トリロトリス (メチレンホスホン酸) [NTPO]、 プロピレンジァミンテトラ (メチレンホスホン酸) [PDTMP] 等の含窒素ホスホン酸類などが挙げられる。
(2)芳香族炭化水素環を有し、 且つ該環を構成する炭素原子に直接結合した OH基及び Z又は 0—基を二つ以上有する化合物
例えば、 カテコール、 レゾルシノール、 タイロン等のフエノール類及びその誘導体など が挙げられる。
(3) 上記 (1)、 (2) の構造を併せ持った化合物
(3— 1) エチレンジァミンジオルトヒドロキシフエニル酢酸 [EDDHA] 及びその誘 導体
例えば、 エチレンジアミンジオルトヒドロキシフエニル酢酸 [EDDHA]、 エチレン ジァミン一 N, N' 一ビス 〔(2—ヒドロキシ一 5—メチルフエニル) 酢酸〕 [EDDHM A]、 エチレンジァミン一 N, N' 一ビス 〔(2—ヒドロキシ一 5—クロルフエニル) 酢酸〕
[EDDHCA], エチレンジァミン一 N, N' 一ビス 〔( 2—ヒドロキシー 5—スルホフ ェニル) 酢酸〕 [EDDHSA] などの芳香族含窒素カルボン酸類;エチレンジァミン一 N, N' 一ビス 〔(2—ヒドロキシー 5—メチルフエニル) ホスホン酸〕、 エチレンジアミ ンー N, N' —ビス 〔(2—ヒドロキシー 5—ホスホフェニル) ホスホン酸〕 などの芳香 族含窒素ホスホン酸類が挙げられる。
(3-2) N, N' 一ビス (2—ヒドロキシベンジル) エチレンジァミン一 N, N, 一二 酢酸 [HBED] 及びその誘導体
例えば、 N, N' 一ビス (2—ヒドロキシベンジル) エチレンジァミン一 N, N' 一二 酢酸 [HBED]、 N, N' 一ビス (2—ヒドロキシー 5—メチルベンジル) エチレンジ ァミン一N, ' —2酢酸 [HMBED]、 N, N' —ビス ( 2—ヒドロキシー 5—クロ ルペンジル) エチレンジァミン一 N, Ν' 一 2酢酸などが挙げられる。
(4) その他
エチレンジァミン、 8—キノリノ一ル、 ο—フエナント口リン等のアミン類;ギ酸、 酢 酸、 シユウ酸、 酒石酸等のカルボン酸類;フッ化水素酸、 塩酸、 臭化水素、 ヨウ化水素等 のハロゲン化水素またはそれらの塩; リン酸、 縮合リン酸等のォキソ酸類またはそれらの 塩等が挙げられる。
これらの錯化剤は、 酸の形態のものを用いてもよいし、 アンモニゥム塩等の塩の形態の ものを用いてもよい。
上述した錯化剤の中でも、 洗浄効果、 化学的安定性等の理由から、 エチレンジァミン 4 酢酸 [EDTA]、 ジエチレントリアミン 5酢酸 [DTPA] などの含窒素カルボン酸類; 二トリロトリス (メチレンホスホン酸) [NTPO]、 エチレンジアミンテトラキス (メチ レンホスホン酸) [EDTPO]、 プロピレンジアミンテトラ (メチレンホスホン酸) [P DTMP] などの含窒素ホスホン酸類;エチレンジァミンジオルトヒドロキシフエニル酢 酸 [EDDHA] 及びその誘導体; N, N' —ビス ( 2—ヒドロキシベンジル) エチレン ジァミン一 N, N' 一 2酢酸 [HBED] などが好ましい。
中でも洗浄効果の観点からェレンジアミンジオルトヒドロキシフエニル酢酸 [EDDH A]、 エチレンジァミン一 N, N' —ビス 〔(2—ヒドロキシー 5—メチルフエニル) 酢酸〕 [EDDHMA]、ジエチレントリアミン 5酢酸 [DTPA]、エチレンジァミン 4酢酸 [E DTA]、 二トリロトリス (メチレンホスホン酸) [NTPO]、 プロピレンジアミンテト ラ (メチレンホスホン酸) [PDTMP] が好ましい。
これらの錯化剤は単独、 または 2種以上を任意の割合で使用してもよい。 洗浄剤中の錯 化剤の濃度は汚染金属不純物の種類と量、 基板表面に要求される清浄度レベルによって任 意に選択すればよいが、 一般的には通常 1〜10000重量 p pm、 中でも 5〜1000 重量 ppm、 特に 10~200重量 p pmが好ましい。 錯化剤の濃度が低すぎると錯化剤 による汚染除去や付着防止効果が得られない。 逆に濃度が高すぎても、 高濃度に見合った 高い効果が期待出来ないので経済的に不利であるばかり力、 基板表面に錯化剤が付着して、 表面処理後に残留する危険性が増すので好ましくない。
なお錯化剤は、 通常販売されている試薬において 1〜数千 p pm程度の鉄 (Fe) や亜 鉛 (Zn) 等の金属不純物が含有している場合がある。 よって本発明に使用する錯化剤が 金属汚染源となる場合が考えられる。 これらの金属不純物は、 表面処理剤を調製した直後 には錯化剤と共に安定な錯体を形成して存在しているが、 表面処理剤を長時間使用してい るうちに錯化剤が分解し、 金属が遊離して基体表面に付着してしまう恐れがある。 そのた め本発明に用いる錯化剤は、予め含まれる F e、 A 1、 Z n等の金属不純物を除去して各々 の含有量を 5 ppm以下とすることが好ましく、 特に 2 p pm以下とするのが好ましい。 このような精製された錯化剤を得るためには、 例えば酸性またはアル力リ性水溶液に錯化 剤を溶解した後、 不溶性不純物をろ過分離等によって除去し、 再び中和して錯化剤の結晶 を析出させて分取する等の方法によって精製すればよい。
本発明に用いるアル力リ性洗浄剤に錯化剤を含有させた場合でも、 アル力リ性成分とし ては任意のものを使用できるが、 中でも金属残留が少ないこと、 経済性、 洗浄剤の安定性 などの理由から、 水酸化アンモニゥム、 テトラメチルアンモニゥムヒドロキシド (TMA H)、 トリメチル (ヒドロキシェチル) アンモニゥムヒドロキシド (通称:コリン) など が好ましく、 特に水酸化ァンモニゥムが好ましい。
(A— 3 ) 界面活性剤等、 他の添加剤
本発明に用いるアル力リ性洗浄剤には過酸化水素、 オゾン、 酸素等の酸化剤が適宜配合 されていてもよい。 半導体デバイス用基板の洗浄工程において、 ベアシリコン基板 (酸化 膜のないシリコン基板) 表面を洗浄する際には、 酸化剤の配合により、 基板のエッチング や表面荒れを抑えることができる。 本発明に用いるアル力リ性洗浄剤に過酸化水素を含有 させる場合には、 通常、 洗浄剤全液中の過酸化水素濃度が 0 . 0 0 1〜5重量%、 好まし くは 0 . 0 1 ~ 1重量%の濃度範囲になるように用いられる。
また本発明に用いるアルカリ性洗浄剤には、 更に界面活性剤を含有することで、 基板表 面のパーティクル汚染や有機物汚染の除去性が向上するので好ましい。
界面活性剤は従来公知の任意のものを使用できる。 界面活性剤の選択にあたっては、 基 板表面の汚染レベル、 パーティクルや有機物汚染の種類、 基板表面に要求される清浄度レ ベル、 界面活性剤コスト、 化学的安定性等から総合的に判断し、 選択すればよい。 界面活 性剤としては、ァニオン系、カチオン系、両性、 ノニオン系の界面活性剤が挙げられるが、 中でもァニオン系、 両性、 ノニオン系の界面活性剤が好ましい。 特にァニオン系の界面活 性剤が好ましい。 これらの界面活性剤は単独で用いても良いし、 異種の 2種以上を適宜組 み合わせて用いても良い。 中でもァニオン系界面活性剤とノニオン系界面活性剤の組み合 わせは汚染洗浄効果の点から好ましい。
ァニオン系界面活性剤としては、 力^/ボン酸型、 スルホン酸型、 硫酸エステル型、 リン 酸エステル型など、 両性界面活性剤としてはアミノ酸型、 ベタイン型など、 ノニオン系界 面活性剤としては、 ポリエチレングリコール型、 多価アルコール型などが拳げられる。 ァニオン系界面活性剤の中ではスルホン酸型 (一 S O 3—基を有する)、 硫酸エステル型 (—O S 03—) が好ましい。 具体的には一 S O 3—基または一 O S 03—基を少なくとも 1つ有する化合物が好ましく、 これらは単独で使用しても、 2種以上を適宜組み合わせて 用いてもよい。
一 S 0 3—基を有する界面活性剤としては、 例えば次に示す①〜⑨の化合物が挙げられ る。
①アルキルスルホン酸系化合物
アルキルスルホン酸系化合物としては、 次式 (1 ) で表される化合物が挙げられる。
R S 03 X …式 (1 )
(式中、 Rはアルキル基、 好ましくは炭素数 8〜2 0のアルキル基、 Xは水素、 カチオン 原子またはカチオン原子団を示す。) アルキルスルホン酸類としては、 例えば、 C8H17S03H及びその塩、 C9H19S〇3 H及びその塩、 C10H21 S03H及びその塩、 CuH SOgH及びその塩、 C12H25 S03H及びその塩、 C13H27S〇3H及びその塩、 C14H29S03H及びその塩、 C15 H31S03H及びその塩、 C16H33S〇3H及びその塩、 C17H35S03H及びその塩、 C18H37SOs H及びその塩などが挙げられる。
②アルキルベンゼンスルホン酸系化合物
アルキルベンゼンスルホン酸系化合物としては、 次式 (2) で表される化合物が挙げ られる。
R-ph-SOaX …式 (2)
(式中、 Rはアルキル基、 好ましくは炭素数 8〜20のアルキル基、 Xは水素、 カチオン 原子またはカチオン原子団、 phはフエ二レン基を示す。)
アルキルベンゼンスルホン酸類としては、 例えば、 ドデシルベンゼンスルホン酸及びそ の塩などが挙げられる。
③アルキルナフタレンスルホン酸系化合物
アルキルナフタレンスルホン酸系化合物としては、 次式 (3) で表される化合物が挙げ られる。
…式 (3)
Figure imgf000010_0001
(式中、 R1, R2はそれぞれアルキル基、 好ましくは炭素数 1〜10のアルキル基、 Xは 水素、カチオン原子またはカチオン原子団を示す。 m、 nはそれぞれ 0〜4の整数を表す。 但し、 l≤m+n≤7、 好ましくは l≤m+n≤4である。)
アルキルナフタレンスルホン酸系化合物としては、 例えば、 ジメチルナフタレンスルホ ン酸及びその塩などが挙げられる。
④メチルタウリン酸系化合物
メチルタウリン酸系化合物としては、 次式 (4) で表される化合物が挙げられる。
RCON (CH3) CH2CH2S03X …式 (4)
(式中、 Rは炭化水素基、 好ましくは CnH2n +い CnH2n—い CnH2n 3または CnH 2 n5の飽和 ·不飽和の炭化水素基、 Xは水素、 カチオン原子またはカチオン原子団を示 す。 nは、 通常 8〜20、 好ましくは 13〜17の整数を表す。 炭化水素基の炭素数であ る nが小さすぎると付着粒子の除去能力が低下する傾向がある。)
メチルタゥリン酸系化合物としては例えば C! !Η23αθΝ (CH3) CH2CH2S03 H及びその塩、 C13H27CON (CH3) CH2CH2S03H及びその塩、 C15H31CO N (CH3) CH2CH2S03H及びその塩、 CI 7H35CON (CH3) CH2CH2S03 H及びその塩、 C17H33CON (CH3) CH2CH2S03H及びその塩、 C17H31CO N (CH3) CH2CH2S〇3H及びその塩、 C17H29CON (CH3) CH2CH2S03 H及びその塩などが挙げられる。
⑤アルキルジフエ二ルエーテルジスルホン酸系化合物
アルキルジフエエルエーテルジスルホン酸系化合物としては、 次式 (5) で表される化 合物が挙げ.られる。
R-ph (S03X) -0-ph-S03X …式 (5)
(式中、 Rはアルキル基、 好ましくは炭素数 8〜20のアルキル基、 Xは水素、 カチオン 原子またはカチオン原子団、 phはフエ二レン基を示す。)
アルキルジフエニルエーテルジスルホン酸系化合物としては、 例えば、 ノニルジフエ二 ルエーテルジスルホン酸及びその塩、 ドデシルジフエニルエーテルジスルホン酸及びその 塩などが挙げられる。
⑥スルホコハク酸ジエステル系化合物
スルホコハク酸ジエステル系化合物としては、 次式 (6) で示される化合物が挙げられ る。
R—〇— CO— CH2- (R-O-CO-) CH-SO3X …式 (6)
(式中、 Rは水素またはアルキル基、好ましくは炭素数 4〜 20のアルキル基、 Xは水素、 カチオン原子またはカチオン原子団を示す。)
スルホコハク酸ジエステル類としては、 例えば、 ジー 2—ェチルへキシルスルホコハク 酸及びその塩、 ラウリルスルホコハク酸及びその塩などが挙げられる。
⑦ α—才レフィンスルホン酸系化合物
ォレフインスルホン酸系化合物としては、 次式 (7)で表される化合物と次式 (8) で表される化合物の混合物が挙げられる。
RCH=CH (CH2) mSOsX …式 (7)
RCHZCH (OH) (CH2) nSOaX …式 (8)
(式中、 Rはアルキル基、 好ましくは炭素数 4〜 20のアルキル基、 Xは水素、 カチオン 原子またはカチオン原子団、 mは 1〜10の整数を示す。 nは 1〜10の整数を示す。)
⑧ナフタレンスルホン酸縮合物
ナフタレンスルホン酸縮合物としては、 例えば、 ]3—ナフタレンスルホン酸ホルマリン 縮合物及びその塩などが挙げられる。
⑨上記①〜⑧で示される界面活性剤のアルキル基または炭化水素基の水素がフッ素で 置換されたフッ素系界面活性剤類
これらの界面活性剤のうち、 パーティクル汚染の除去性に優れる点で、 好ましくは、 ァ ルキルベンゼンスルホン酸系化合物、 アルキルジフエ二ルエーテルジスルホン酸系化合物、 スルホコハク酸ジエステル系化合物が用いられる。
一 0 S 03—基を有する界面活性剤としては、 次に示す①〜④の化合物が挙げられる。
①アルキル硫酸エステル系化合物 アルキル硫酸エステル系化合物としては、 次式 (9) で表される化合物が挙げられる。
ROS03X …式 (9)
(式中、 Rはアルキル基、 好ましくは炭素数 8〜20のアルキル基、 Xは水素、 カチオン 原子またはカチオン原子団を示す。)
アルキル硫酸エステル系化合物としては、 例えば、 ドデシル硫酸エステル及びその塩な どが挙げられる。
②アルキルエーテル硫酸エステル系化合物
アルキルエーテル硫酸エステル系化合物としては、 次式 (10) で表される化合物が挙 げられる。
RO (CH2CH20) nS03X …式 (10)
(式中、 Rはアルキル基、 好ましくは炭素数 8〜20のアルキル基、 Xは水素、 カチオン 原子またはカチオン原子団、 nはエチレンオキサイドの付加モル数、 通常 1〜10、 好ま しくは 2〜4の整数を示す。)
アルキルエーテル硫酸エステル系化合物としては、 例えば、 テトラオキシエチレンラウ リルエーテル硫酸エステル及びその塩などが挙げられる。
③アルキルフエニルエーテル硫酸エステル系化合物
アルキルフエニルエーテル硫酸エステル系化合物としては、 次式 (11) で表される化 合物、 硫酸化油、 硫酸化脂肪酸エステル系化合物、 硫酸化ォレフイン系化合物が挙げられ る。
R-ph-O- (CH2CH20) nS03X …式 ( 11 )
(式中、 Rはアルキル基、 好ましくは炭素数 8〜20のアルキル基、 Xは水素、 カチオン 原子またはカチオン原子団、 nはエチレンオキサイドの付加モル数、 通常 1〜10、 好ま しくは 2~4の整数を示す。 p hはフエ二レン基を示す。)
④上記①〜③で示される界面活性剤のアルキル基の水素がフッ素で置換されたフッ素 系界面活性剤
— O S O 3—基を有する界面活性剤はパーティクル除去性が優れているが、 アル力リ性 が強くなると効果が低くなる。 タイプによっても異なるので一概には言えないが、 pHl 0〜 12では 一 S 03—基を有する界面活性剤の方が高いパーティクル除去性を示す。 ノ二オン系界面活性剤の中では、 ポリエチレングリコール型としてはポリォキシェチレ ンアルキルフエニルエーテル、 ポリオキシエチレンアルキルエーテル、 ポリオキシェチレ ン脂肪酸エステル、 ポリオキシエチレンソルビタン脂肪酸エステル、 ポリオキシェチレ ン ·ポリオキシプロピレン ·ブロックポリマー、 ポリオキシエチレン ·ポリオキシブチレ ンブロックポリマーなどが挙げられる。 多価アルコール型としてはグリセリン脂肪酸エス テル、 ソルピタン脂肪酸エステルなどが挙げられる。 これらの界面活性剤のうち、 汚染除 去性に優れ、 なおかつ、 生分解性が優れる点で、 好ましくは、 ポリオキシエチレンアルキ ルエーテル、 ポリオキシエチレン ·ポリオキシプロピレン ·ブロックポリマー、 ポリオキ
'ポリマーなどが用いられる。 .本発明に用いるアルカリ性洗浄剤中の界面活性剤の濃度は、 洗浄剤に対して通常 0 . 0 0 0 1〜0 . 5重量%、 好ましくは 0 . 0 0 0 3〜0 . 1重量%である。 界面活性剤の濃 度が低すぎると界面活性剤によるパーティクル汚染除去性能が十分でなく、 逆に濃度は髙 すぎてもパーティクル汚染の除去性能に変化がなく、 泡立ちが顕著となり洗浄工程に不向 きとなつたり、 また廃液を生分军処理する場合の負荷が増大する場合がある。
本発明に用いるアル力リ性洗浄剤へ添加する界面活性剤は、 塩型又は酸型のいずれの形 態で添加してもよい。 塩型としてはナトリウム、 カリウム等のアルカリ金属塩、 アンモニ ゥム塩、 第一、 第二、 もしくは第三アミン塩等を挙げることができる。 半導体デバイスや ディスプレイデバイス製造工程における基板表面の洗浄においては、 金属汚染がトランジ ス夕性能に悪影響を与えることを考慮すると、 使用する界面活性剤においても金属塩を含 まない、 酸型の形態、 あるいはアンモニゥム塩、 モノエタノールアミン塩、 トリエタノー ルァミン塩等の形態が好ましい。
本発明に用いるアルカリ性洗浄剤においては、 更にその他の成分を含有していてもよレ^ 他の成分としては、 有機硫黄含有化合物 (2—メルカプトチアゾリン、 2—メルカプトイ ミダゾリン、 2—メルカプトエタノール、 チォグリセロール等)、 有機窒素含有化合物 (ベ ンゾトリァゾール、 3—ァミノトリァゾ一ル、 N (R) 3 (Rは炭素数 1〜4のアルキル 基)、 N (R OH) a (Rは炭素数 1〜4のアルキル基)、 ゥレア、 チォゥレア等)、 水溶性 ポリマー (ポリエチレングリコール、 ポリビニルアルコール等)、 アルキルアルコール系 化合物 (R OH は炭素数 1〜4のアルキル基)) などの防食剤、 硫酸、 塩酸などの酸、 ヒドラジンなどの還元剤、 水素、 アルゴン、 窒素などの溶存ガスなどが挙げられる。
( A— 4 ) アル力リ性洗浄剤の溶媒
本発明に用いるアルカリ性洗浄剤の溶媒としては、 水、 有機溶媒、 またはこれらの混合 溶媒が挙げられる。 中でも溶媒としては、 廃液処理コストの観点から水が好ましい。 水と しては、 通常、 脱イオン水、 好ましくは超純水が用いられる。 水の電気分解によって得ら れる電解イオン水や、 水に水素ガスを溶存させた水素水は、 それ自身が水に比べて優れた パーティクルの除去性や付着防止性を持っため、 他の溶媒と混ぜたり、 単独で溶媒として 使用することも好ましい。
( A— 5 ) アルカリ性洗净剤の p H
本発明に用いるアル力リ性洗浄剤の p Hは、 用いるアル力リ性成分と錯化剤等の他の添 加剤にもよるが、 9以上であることがパーティクルの除去や付着防止の観点から好ましい。 p Hは 9以上であればよいが、 一般的には、 通常 p H 9〜1 2、 特に p H 9 . 5〜1 1 . 5であることが好ましい。 また、 本発明の効果をそこねない範囲で、 公知の p H調節剤を 用いてもよい。 p Hが高すぎても高い p H値に見合った高い効果が期待出来ないので多量 のアル力リが必要になるので経済的に不利であるばかり 、 基板表面がエツチングにより 損傷する危険性が増す。
(B ) 工程 (2 ) でのフッ酸による洗浄
本発明の工程 (2 ) に用いるフッ酸含有洗浄剤を用いる基板表面洗浄は、 特定のフッ酸 含有率を有する洗浄剤を用いて特定の時間以下で基板表面を洗浄する工程である。 詳しく は、 フッ酸含有率 C (重量%) が 0. 03~3重量%である洗浄剤を用い、 該洗浄剤によ る基板の洗浄時間 t (秒) が 45秒以下であり、 且つ Cと tが 0. 25≤ t C1- 29≤5 の関係にあることを特徴とする洗浄工程である。
(B- 1) 工程 (2) での t C1- 29について
本発明における工程 (2) は、 洗浄剤中のフッ酸含有率 C (重量%) と洗浄時間 t (秒) の関係が、 0. 25≤ t C1' 29≤5で表されることを特徴とする。 通常、 フッ酸水溶液 洗浄においては、 用いるフッ酸水溶液中のフッ酸含有率が多すぎるか、 又は洗浄時間が長 すぎると、 エッチング量の増大によって加工寸法変化、 シリコン表面の疎水化に起因する 汚染 (パーティクル汚染、 ウォーターマーク) などの問題が生じる。 一方でフッ酸含有率 が少なすぎるか又は洗浄時間が短すぎると、 金属汚染除去性の低下が懸念される。
本発明者らは、 先述した工程 (1) 又は (3) の様なアルカリ性洗浄剤による洗浄工程 と組み合わせるフッ酸含有洗狰剤による洗浄工程について鋭意検討した。 その結果、 特定 のフッ酸含有率 C (重量%) と特定の洗浄時間 t (秒) を個別に規定することに加え、 こ の Cと tの両者が特定の関係式、 0. 25≤ t C1' 29≤5で表される場合に、 基板表面 における十分な金属汚染の除去と、 加工寸法変化などの問題解決が両立出来ることを見い 出し、 本発明を完成させた。 この t C1' 29で示される値は、 0. 25~5、 好ましくは 0. 4〜4、 さらに好ましくは 0. 6〜3である。 この値が小さすぎると金属汚染が十分 に除去できず、 反対に大きすぎるとエッチング量が必要以上に増大してしまい、 加工寸法 変化、 シリコン表面の疎水化に起因する汚染 (パ一ティクル汚染、 ウォーターマーク) な どの問題が生じ、 好ましくない。
(B— 2) フッ酸含有量
本発明に用いるフッ酸含有洗浄剤中のフッ酸の含有率 C (重量%) は、 通常 03〜 3重量%、 好ましくは 0. 1~1重量%、 特に好ましくは 0. 2〜0. 8重量%である。 フッ酸の含有率が少なすぎると金属汚染の除去効率が低い。 逆に濃度が高すぎても、 高濃 度に見合った高い効果が期待出来ないばかり力 エッチング速度が早くなりすぎ、 エッチ ング量を一定値以下に制御することが困難となるので好ましくない。
(B- 3) 工程 (2) での洗浄時間
フッ酸含有洗浄剤による基板の洗浄時間 t (秒) は 45秒以下である。洗浄時間 t (秒) は、 前述の tと Cに係る関係式を満たせば、 洗浄剤中のフッ酸含有率 C (重量%) により 適宜決定すればよい。 洗浄時間 t (秒) は前述のフッ酸含有率 C (重量%) にもよるが、 好ましくは 20秒以下、さらに好ましくは 10秒以下である。洗浄時間 t (秒)の下限は、 所望の基板清浄度により適宜選択すればよいが、 通常 1秒以上である。 また、 この洗浄時 間の下限は、 洗浄に用いる装置の可動限界等にもよるが、 例えば枚葉式洗浄装置を用いる 際には、 洗浄剤と基板との洗浄時間下限を 1秒程度にする事が出来る。 前述のフッ酸含有 率 C (重量%) の範囲内において、 洗浄剤中のフッ酸含有率をより高くすれば、 より短い 洗浄時間で効率的な洗浄が可能となり好ましい。 本発明の工程 (2 ) における洗浄時間が長すぎると、 費やした時間に見合うだけの汚染 除去効果は得られないばかりか、 単位時間当たりの基板処理枚数が低下し、 さらに枚葉洗 浄装置で使用した場合には多量の酸廃液の処理が必要となるため好ましくない。
( B— 4 ) フッ酸含有洗浄剤の溶媒
本発明に用いるフッ酸含有洗浄剤の溶媒としては、 水、 有機溶媒、 またはこれらの混合 溶媒が挙げられる。 中でも溶媒としては、 廃液処理コストの観点から水が好ましい。 水と しては、 通常脱イオン水、 好ましくは超純水が用いられるが、 水の電気分解によって得ら れる電解イオン水や、 水に水素ガスを溶存させた水素水は、 それ自身が水に比べて優れた パーティクルの除去性や付着防止性を持っため、 他の溶媒と混ぜたり、 単独で溶媒として 使用することも好ましい。
(B - 5 ) フッ酸含有洗狰剤への添加物等
本発明に用いるフッ酸含有洗浄剤においては、 更にその他の成分を含有していてもよい。 他の成分としては、 工程 (1 ) または工程 (3 ) のアルカリ性洗浄剤に用いられるような 界面活性剤;塩酸、 硫酸、 硝酸、 酢酸などの酸;アンモニアなどのアルカリ性成分;フッ 化アンモニゥムなどの緩衝剤;過酸化水素、 オゾン、 酸素等の酸化剤; ヒドラジンなどの 還元剤;有機硫黄含有化合物( 2—メルカプトチアゾリン、 2—メルカプトイミダゾリン、 チォグリセロール等)、 有機窒素含有化合物 (ベンゾトリアゾール、 3—アミノトリアゾ ール、 ゥレア、 チォゥレア等)、 水溶性ポリマ一 (ポリエチレングリコ一ル、 ポリビニル アルコール等)、 アルキルアルコール系化合物などの防食剤、 水素、 アルゴン、 窒素など の溶存ガスなどが挙げられる。
尚、 上述の本発明に用いる洗浄剤 (アルカリ性洗浄剤、 及びフッ酸含有洗浄剤) の調製 方法は、従来公知の方法によればよい。洗浄剤の構成成分(例えば、水酸化アンモニゥム、 溶媒、 必要に応じて錯化剤、 界面活性剤等、 他の成分) のうち、 いずれか 2成分、 あるい は 3成分以上をにあらかじめ配合し、 その後に残りの成分を混合してもよいし、 一度に全 部を混合してもよい。
( C) 工程 (1 )、 工程 (2 )、 及び工程 (3 ) の組み合わせ
( C一 1 ) 工程 (1 ) と工程 (2 ) の組み合わせ
上述の工程 (1 ) と工程 (2 ) とを含む本発明の洗浄方法においては、 工程 (1 ) を行 つた後に工程 (2 ) を行うことを特徴とする。 この順序で洗浄することにより、 短時間で 高清浄な基板表面を得ることができる。 求められる基板表面の清浄度レベル、 基板や基板 表面にある材料の種類、 洗浄剤への添加剤の種類などによつて適宜選択すればよい。
工程 (1 ) のアルカリ性洗浄剤は錯化剤を含有しているので、 アルカリ性洗浄剤が意図 せずして金属不純物を含有していても、 錯化剤の作用により、 この金属不純物が基板表面 へ付着することを防止出来、 パーティクル汚染だけでなく、 金属汚染をも極めて高度に低 減できるので好ましい。
またアルカリ性洗浄剤に界面活性剤を添加した場合、 界面活性剤と基板表面材料の種類 によっては界面活性剤が基板表面に吸着し、 極微量残留する場合が懸念されるが、 この様 な汚染は工程 (2 ) で除去可能である。
尚、 工程 (1 ) と工程 (2 ) の間には、 他の基板洗浄工程を行ってもよい。
( C— 2 ) 工程 (2 ) と工程 (3 ) の組み合わせ
一方、 (2 ) と工程 (3 ) とを含む本発明の洗浄方法においては、 工程 (2 ) を行った 後に工程 (3 ) を行うことを特徴とする。 この順序で洗浄することにより、 極めてパーテ ィクル汚染の少ない基板表面が得られるので好ましい。 フッ酸含有洗浄剤に意図せずして 微量のパーティクルが含有されていると、 これが基板表面に付着してしまう問題があるが、 この様なパーティクル汚染は工程 (3 ) において効果的に除去できる。
従来、 自然酸化膜で覆われた一般的なシリコン基板表面の洗浄では、 フッ酸水溶液によ る洗浄 (例えば 0 . 5重量%フッ酸水溶液による 1分間洗浄) の後、 アルカリ性洗浄剤で の洗浄を行っていた。 しかし従来の方法では、 フッ酸洗浄によって自然酸化膜が除去され て、 (アルカリ性洗浄剤に浸食されやすい) S i表面が剥き出しとなるので、 アルカリ性 洗浄剤による洗浄の際、 この S i表面が荒れてしまうという問題があった。
本発明の洗浄方法、 つまり工程 (2 ) を行った後に工程 (3 ) を行うことで、 工程 (2 ) では自然酸化膜が完全に除去されないので、 工程 (3 ) のアルカリ性洗浄工程の際にはこ の自然酸化膜が S i表面の保護膜となり、 表面荒れを抑える。
尚、 工程 (2 ) と工程 (3 ) の間には、 他の基板洗浄工程を行ってもよい。
(D) その他洗浄条件
本発明に於ける洗浄 (アル力リ性洗浄剤またはフッ酸含有洗净剤による洗浄) は用いる 洗浄剤の液温度を室温で行ってもよいが、 洗浄効果を向上させる目的で、 加温して行って もよい。 工程 (1 ) や工程 (3 ) のアルカリ性洗浄剤は通常、 室温〜 9 0 °Cの範囲で用い る。 また工程 (2 ) のフッ酸含有洗浄剤は通常、 室温で用いられるが、 4 0 程度まで加 温してもよい。 洗浄剤温度が高すぎるとシリコン酸化膜などのエッチング量が増大し、 カロ ェ寸法変化などの副作用が生じる。
また洗浄の際には、 物理力による洗浄方法、 たとえば洗浄ブラシを用いたスクラブ洗浄 などの機械的洗浄、 あるいは超音波洗浄と併用させてもよい。 特に、 後述する枚葉式洗浄 装置を用いて工程 (1 ) または工程 (3 ) のアルカリ性洗浄剤による洗浄を行う時に、 超 音波照射またはブラシスクラブを併用すると、 パ一ティクル汚染の除去性がさらに向上し、 洗浄時間の短縮にも繋がるので好ましい。 更には水の電気分解によって得られる電解ィォ ン水や、 水に水素ガスを溶存させた水素水による洗浄を、 本発明の洗浄方法の前及び Zま たは後に組み合わせてもよい。
(E) 洗浄装置等
本発明を用いた洗浄装置は、 本発明の洗浄方法、 つまり洗浄剤を直接基板に接触させる 方法を実施できる洗浄装置であれば、 その形態は自由である。 洗浄剤の基板への接触方法 には、 洗浄槽に洗浄剤を満たして基板を浸漬させるディップ式、 ノズルから基板上に洗浄 液を流しながら基板を高速回転させるスピン式、 基板に液を噴霧して洗浄するスプレー式 等が挙げられる。 この様な洗浄を行うための装置としては、 カセットに収容された複数枚 の基板を同時に洗浄するバッチ式洗浄装置や、 1枚の基板をホルダーに装着して洗浄する 枚葉式洗净装置等がある。 本発明の洗浄方法は、 上記いずれの方法にも適用できるが、 短 時間でより効率的な汚染除去が出来る点から、 スピン式やスプレー式の洗浄装置に適用す ることが好ましい。 具体的には、 洗浄時間の短縮、 洗浄剤使用量の削減が問題となってい る枚葉式洗浄装置に本発明の洗浄方法を適用すると、 これらの問題が解消するので好まし レ^
(F) 洗浄対象の基板等
本発明の洗浄方法は、金属汚染やパーティクル汚染が問題となる半導体、ガラス、金属、 セラミックス、 樹脂、 磁性体、 超伝導体などの基板表面の洗浄に用いられる。 特に、 基板 表面の高清浄度が要求される半導体デバイス用基板やディスプレイデバイス用基板の洗 浄に好適に用いられる。 これらの基板、 及びその表面に存在する配線や電極等の材料とし ては、 S i、 Ge (ゲルマニウム)、 GaAs (ガリウム砒素) などの半導体材料; S i 02、 窒化シリコン、 hydrogen silsesguioxane (HSQ)、 ガラス、 酸化アルミニウム、 遷移金属酸化物 (酸化チタン、 酸化タンタル、 酸化ハフニウム、 酸化ジルコニウムなど)、
(B a、 S r) T i 03 (B ST)、 ポリイミド、有機熱硬化性樹脂などの絶縁材料; W (夕 ングステン)、 Cu (銅)、 C r (クロム)、 Co (コバルト)、 Mo (モリブデン)、 Ru
(ルテニウム)、 Au (金)、 P t (白金)、 Ag (銀)、 A 1 (アルミニウム) などの金属 またはこれらの合金、 シリサイド、 窒化物等が挙げられる。
中でもシリコンなどの半導体材料、 窒化シリコン、 酸化シリコン、 ガラスなどの絶縁材 料を、 基板表面の一部あるいは全面に有する半導体デバイス用基板においては、 通常パー ティクル汚染と共に、 金属汚染の低減が非常に強く求められているので、 本発明の洗浄方 法が好適に用いられる。
実施例
以下に実施例を示して、 本発明の具体的態様を説明する。 本発明はその要旨を越えない 限り、 以下の実施例により限定されるものではない。
(汚染されたシリコンゥェ—八の作製等)
4または 6インチシリコンゥエーハを、 金属イオン (Fe、 Al、 Cu、 Z n) を含有 した APM洗浄剤に浸漬した。 この APM洗浄剤は、 29重量%のアンモニア水、 31重 量%の過酸化水素水、 及び水を、 容量比 1 : 1 : 5の割合で混合したものに、 金属イオン 含有水溶液を添加して、 Feを 20ppb、 AIを l ppb、 Cuを l ppm、 そして Z nを 200 p p b含有する金属イオン含有 APM洗浄剤を調整した。
浸漬後のシリコンゥエーハを超純水で 10分間水洗し、 窒素プロ一またはスピン乾燥機 により乾燥し、 金属で汚染されたシリコンゥェ一八を作成した。
このシリコンゥエーハ上にある金属 (Fe、 Al、 Cu、 Zn) の分析は、 汚染された シリコンゥェ一ハ及び洗浄後のシリコンゥエーハ共に同じ方法で行った。 その方法は、 ゥ ェ一ハ表面に、 0. 1重量%のフッ酸と 1重量%の過酸化水素を含む水溶液を接触させて 回収した。 そして誘導結合プラズマ質量分析計 (I CP— MS) を用いて回収した金属量 を測定し、 基板表面濃度 (atoms/cm2) に換算し、 分析結果とした。 更に、 これら金属の濃 度を全て合計した値を 「全金属濃度 (atoms/cm2)」 とした。 汚染されたシリコンゥェ一ハ の分析結果を表 1一 1、 および表 1一 2に示す。
<実施例 1 >
「2ステップ洗浄による金属汚染洗浄性の評価: (工程 (1) と工程 (2))」 金属で汚染されたシリコンゥエーハを、 枚葉式洗浄装置を用いて、 表 1一 1に示す工程 (1)、 工程 (2) の 2ステップ洗狰方法により金属汚染洗浄を行った。 工程 (1) とェ 程 (2) の順番についても表中に記載した。 すなわち、 工程 (1) の後に工程 (2) を行 う場合を、 「1→2」 と記した。 以下、 全ての表において同様である。
工程 (1) では APM1洗浄剤 (29重量%アンモニア水と 31重量%過酸化水素水と 水を容量比 1 : 2 : 80で混合した水溶液) に、 表 1一 1に示す錯化剤を加え、 洗浄剤を 調整したものを使用した。 尚、 これら工程 (1) で使用する洗浄剤の pHは、 約 10であ つた。 枚葉式洗浄装置におけるシリコンゥエーハ回転数は 1000 r pm、 洗浄剤流量は 1リットル/分とし、 洗浄時間は 30秒、 液温度は 80°Cとした。
工程 (2) では、 表 1一 1に示すフッ酸含有率のフッ酸水溶液を使用した。 枚葉式洗浄 装置におけるシリコンゥエーハ回転数は 600 r pm、 洗浄液流量は 1リットルノ分とし、 表 1一 1に示す洗浄時間で洗浄を行い、 液温度は室温で行った。 この 2ステップ洗浄の結 果を表 1― 1に示す。
<比較例 1、 2>
工程 (1) は行わず、 また工程 (2) の洗浄剤として HP M洗浄剤 (35重量%塩酸、 31重量%過酸化水素水、 及び水を容量比 1 : 1 : 80で混合した水溶液) を使用し、 液 温度を 60で、 洗浄時間を表 1一 1に示す時間とした以外は、 実施例 1と同様に洗净を行 つた。 結果を表 1_1に示す。
<比較例 3 >
工程 (2) は行わずに、 また工程 (1) の洗浄剤として実施例 1と同様の A PM1洗浄 剤を錯化剤を含有させずに使用した以外は、 実施例 1と同様に洗浄を行った。 結果を表 1 一 1に示す。
<比較例 4>
工程 (1) の洗浄剤として実施例 1と同様の APM1洗浄剤を錯化剤を含有させずに 用し、工程( 2 )の洗浄剤として比較例 1と同様な H P M洗浄液を使用し、液温度 60 °C、 洗浄時間を表 1一 1に示す時間とした以外は、 実施例 1と同様に洗浄を行った。 結果を表 1一 1に示す。 ·
<実施例 2 >
工程 (1) では洗浄時間を 60秒、 液温度を 50 °Cとし、 また工程 (2) では洗浄剤と して表 1一 1に示すフッ酸含有率のフッ酸水溶液、 洗浄時間で、 液温度を室温で行った以 外は、 実施例 1と同様に洗浄を行った。 結果を表 1一 1に示す。 表 1—1
工程 ( 1 ) 工程 (2)
金属濃度 (X 1 010 atoms/cm2)
工程順序 洗浄剤 錯化剤 洗浄剤 フッ酸含有率 C時間 t
種類 濃度 (ppm) 種類 tc1-29
(重量%) (秒) F e A I C u Z n 全金属 実施例 1 1-→2 A PM 1 EDDHA 36 フッ酸 0.2 5 0.63 1.9 <3.0 く 1.0 <0.5 6.4 実施例 2 1→2 A P 1 EDDHA 36 フッ酸 0.5 7 2.86 く 0.5 く 3.0 1.4 く 0.5 5.4 比較例 1 2 H PM 30 18.8 5.0 5.4 1.6 30.8 比較例 2 2. H PM 5 60.8 10.5 8.0 2.4 81.7 比較例 3 1 A PM 1 11500.0 74.2 1.5 964.0 12539.7 比較例 4 1→2 A PM 1 H P 30 7.7 6.6 7.2 1.3 22.8
洗浄前 (金属で汚染されたシリコンゥエーハ) 1000-3000 ■〜600 3000〜5000 4000-6000 8棚〜 14600
ぐ実施例 3〜 7、 比較例 5、 6>
工程 (1) では洗浄剤として APM 2洗浄剤 (29重量%アンモニア水と 31重量%過 酸化水素水と水を容量比 1 : 2 : 40で混合した水溶液) や、 これに表 1—2に示す錯化 剤や界面活性剤を加えたものを使用し、 工程 (1) の洗浄時間は 60秒、 液温度を 80 ΐ にした。 工程 (1) で用いた洗浄剤の ρΗは、 約 10. 5であった。 そして前述した以外 は、 実施例 (1) での工程 (1) と同様に行った。
また工程 ( 2 ) では、 洗浄剤として表 1一 2に示すフッ酸含有率のフッ酸水溶液を使用 し、 洗浄時間及び工程順序を、 同様に表 1一 2に示す通りとした以外は、 実施例 1と同様 に洗浄を行った。 結果を表 1― 2に示す。
表 1一 2
工程 ( 工程 (2)
界面活性剤 洗浄剤 フッ酸含有率 C 時間 t 各金属濃度 (X 1 0 ' °atoms/cm2) 工程順序 洗浄剤 錯化剤
t C1'23
種類 種類 濃度 (ppm) 種類 ¾度 ( ριη) 種類 (重量%) (秒) F e A 1 C u Z n 全金属 実施例 3 1→2 APM2 E DDHA 70 フッ酸 0.2 5 0.63 〈0.1 1.2 く 0.2 <0.3 1.8 実施例 4 1→2 APM 2 E DDHA 70 フッ酸 0.5 7 2.86 く 0.1 く 0.5 く 0.2 く 0.3 <1.1 実施例 5 1→2 A PM2 EDTA 70 フッ酸 0.5 7 2.86 <0.1 く 0.5 <0.2 ぐ 0.3 く 1.1 実施例 6 1 -→2 APM2 NT PO 70 フッ酸 0.5 7 2.86 <0.1 <0.5 く 0.2 ぐ 0.3 く 1.1 実施例 7 1→2 A P 2 RDDHA 70 C,2Hz50 (C2H40) i,H 70 フッ酸 0.5 7 2.86 <0.1 <0.5 <0.2 く 0.3 <1.1 比較例 5 1→2 A P 2 フッ酸 0.2 5 0.63 2.9 0.9 く 0.2 <0.3 4.3 比較例 6 1→2 A PM 2 E DDHA 70 フッ酸 0.01 7 0.02 9.9 4.6 く 0.2 く 0.3 15.0
洗浄前 (金属で汚染されたシリコンゥ::—八) 画〜 2000 100-300 10000~20000 5000〜,0
表 1一 1、 及び表 1一 2に示したように、 錯化剤含有アル力リ性洗浄剤により洗浄を行 う工程(1) と、 フッ酸水溶液により洗浄を行う工程(2) とを組み合わせた本発明では、 明らかにシリコンゥェ一八表面の全金属濃度が少なく、 金属汚染の洗浄性が優れているこ とが判る。
また従来から使用されている H P M洗浄、 A P M洗浄またはこれらを組み合わせた洗浄 方法 (RCA洗浄) と比較しても、 本発明の洗浄方法は金属汚染洗浄性能に優れているこ とがわかる。
<実施例 8〜 12、 比較例 7 >
「パーティクル汚染洗浄性の評価: (工程 (1) と工程 (2))」
基板上の 6インチの円内に、 粒径 13< m以上の S i 3N4粒子 (パーティクル) が 1000-3000個付着したシリコンゥエーハを、 枚葉式洗浄装置を用いて、 表 2に示 す通りの工程 (1)、 工程 (2) の 2ステップで洗浄し、 パーティクルの洗浄を行った。 工程 (1) では APM2洗浄剤に錯化剤を加えたものや、 更にこれに表 2に示す界面活 性剤を加えて調整した洗浄剤を用いて洗浄を行った。 枚葉式洗浄装置におけるシリコンゥ ェ一ハ回転数は 1000 r pm、 洗浄液量は 1リツトル/分とし、 洗浄時間は 60秒、 液 温度は室温とし、 基板に対して超音波照射を行いつつ洗浄した。 また、 この工程 (1) で 用いた洗净剤の pHは、 約 10. 3であった。
工程 (2) の洗浄剤には、 表 2に示すフッ酸含有率のフッ酸水溶液を使用した。 枚葉式 洗浄装置におけるシリコンゥエーハ回転数は 1000 r pm、 洗浄液量は 1リットル 分 とし、 洗浄時間は表 2に示す通りとし、 液温度は室温で行った。 そして工程 (1) と工程 (2) の順序を、 表 2に示す通りとした。
洗浄後に得られた洗浄済みシリコンゥエーハ表面に残留するパ一ティクル数の測定か ら求めた除去率より、 汚染粒子除去率を次の 5段階で評価した。
即ち、 除去率 80%以上を除去性 AAAとし、 60 %以上 80%未満を AA、 40 %以 上 60%未満を A、 20%以上 40%未満を B、 20%未満を Cとした。 結果を表 2に示 す。
<比較例 8>
工程 ( 2 ) の洗浄剤として比較例 1と同様な H P M洗浄剤を使用し、 液温度を 60 、 洗浄時間を表 2に示す時間とした以外は実施例 8と同様に洗浄を行った。 結果を表 2に示 す。 表 2
工程 ( 1 ) 工程 (2)
工程順序 洗浄剤 錯化剤 界面活性剤 洗浄剤 フッ酸含有率 C 時間 t パーティクルの除去率 種類 種類 tc1-29
種類 濃度(ΡΡΠ1) 種類 濃度 (PPm) (重量 (秒)
実施例 8 1→2 A PM 2 EDDH A 70 無し フッ酸 0.5 7 2.86 B 実施例 9 1→2 A P 2 E DDH A 70 C12H250 (C2H40) nH 70 フッ酸 0.5 7 2.86 AA 実施例 1 0 1→2 A PM 2 EDDH A 70 C12H250 (C H4O) 13H 70 フッ酸 0.5 7 2.86 A 実施例 1 1 1→2 A PM 2 EDDH A 70 一 o03H 70 フッ酸 0.5 7 2.86 AA 実施例 1 2 1→2 A P 2 EDDH A TO C18H35O (Ο^Η^Ο) 30 H 70 フッ酸 0.5 7 2.86 A 比較例 7 1→2 APM2 フッ酸 0.5 7 2.86 C 比較例 s 1→2 AP 2 H PM 30 B
洗淨前 (S i 3M4粒子で汚染されたシリコンゥェーハ) 1000~3000
表 2に示したように、 従来から使用されている A P M洗浄、 H P M洗浄を組み合わせた R C A洗浄方法と比較して、 本発明の洗浄方法は、 明らかにパーティクル汚染洗浄性能に 優れていることがわかる。
<実施例 1 3及び比較例 9 >
「洗浄後のシリコンゥエーハ加工寸法変化の評価」
枚葉式洗浄装置を用いて、 酸化膜付きの 4インチシリコンゥエーハに対して表 3に示す フッ酸含有率のフッ酸水溶液を使用し洗浄を行い、 シリコンゥェ一八の加工寸法変化を評 価した。
枚葉式洗浄装置におけるシリコンゥェ一ハ回転数は 6 0 0 r pm、 洗浄液流量は 1リッ トル Z分、 液温度は室温とし、 洗浄時間は表 3に示す通りとした。 ゥエーハ表面のエッチ ング量 (エッチングされた膜厚) が 1 0 (A) を越えた場合を 「不良」 とし、 1 0 (A) 以下の場合を 「良」 とした。
(洗诤後のシリコンゥエーハ表面状態の観察)
洗浄後のシリコンゥェ一ハ表面に、 水を l m l滴下し、 表面の状態を観察した。 結果を 表 3に示す。
表 3
Figure imgf000025_0001
表 3に示したように、 フッ酸含有率じと、 このフッ酸含有洗浄液による洗浄時間 tから なる式、 t C"sが 5以下である本発明では、 明らかにエッチングが良好で、 更にシリコン ゥェーハ表面が親水性を保持しているので、 酸化膜が過度にエッチングされず加工寸法変 化が少なく好適であることがわかる。
<実施例 14、 15〉
「2ステップ洗浄による金属汚染洗浄性の評価: (工程 (2) と工程 (3))」 実施例 1と同様に、 金属で汚染されたシリコンゥエーハを、 枚葉式洗浄装置を用いて、 表 4一 1に示す工程 (2)、 工程 (3) の 2ステップ洗浄方法により金属汚染洗浄を行つ た。 そして、 実施例 1と同様に評価した。 尚、 工程 (2) と工程 (3) の順番についても 表中に記載した。 すなわち、 工程 (2) の後に工程 (3) を行う場合は 「2→3」 と記し た。 以下、 全ての表において同様である。
工程 (2) では表 4一 1に示すフッ酸含有率のフッ酸水溶液を使用した。 枚葉式洗浄装 置におけるシリコンゥェ一ハ回転数は 600 r pm、 洗浄液流量は 1リットル/分とし、 表 4一 1に示す洗浄時間で洗浄を行い、 液温度は室温で行つた。
工程 (3) では APM1洗浄剤 (29重量%アンモニア水と 31重量%過酸化水素水と 水を容量比 1 : 2 : 80で混合した水溶液)、 またはこれに表 4一 1に示す錯化剤を加え、 洗浄剤を調整したものを使用した。 尚、 これら工程 (3) で使用する洗浄剤の pHは、 約 10であった。 枚葉式洗浄装置におけるシリコンゥエーハ回転数は 1000 r pm、 洗浄 液流量は 1リットルノ分とし、 洗浄時間は 30秒、 液温度は 80■ とした。
この 2ステップ洗浄の結果を表 4— 1に示す。
<実施例 16 >
工程 (2) では、 洗浄剤として表 4一 1に示すフッ酸含有率のフッ酸水溶液を使用し、 洗浄時間を表 4一 1に示す通りとした。 また工程 (3) では、 洗浄剤として APM2洗浄 剤 (29重量%アンモニア水と 31重量%過酸化水素水と水を容量比 1 : 2: 40で混合 した水溶液) を使用し、 洗浄時間を 60秒にした。 APM2洗浄剤の pHは、 約 10. 5 であった。
これらの条件以外は実施例 14と同様に洗浄を行った。 結果を表 4一 1に示す。 表 4一 1
Figure imgf000026_0001
<実施例 17〜 22 >
工程 (2) の洗浄液としては表 4一 2に示すフッ酸含有率のフッ酸水溶液を使用し、 洗 浄時間を表 4一 2に示す通りとした。
工程 (3) では洗浄液として A PM 2洗浄剤か、 またはこれに表 4一 2に示す錯化剤や 界面活性剤を加えたものを使用し、 処理時間を 60秒とした。 この APM2洗浄剤の pH は、 約 10. 5であった。
これらの条件以外は実施例 14と同様に洗浄を行った。 結果を表 4一 2に示す。
<比較例 10 >
工程 (2)は行わず、 工程 (3)のみとした以外は、 実施例 16と同様に洗浄を行った。 結果を表 4— 2に示す。
表 4— 2
工程 (3) 工程 (2)
濃度 ( 1 010atoms/cm2)
工程順序 洗浄剤 化剤 界面活性剤 洗浄剤 フッ酸含有率 C 時間 t
t C'.29
種類 種類 濃度 (ppm) 種類 濃度 (ppm) 種類 (重量%) (秒) F e A I C u Z n 全金属 実施例 1 7 2→3 APM2 フッ酸 0.2 5 0.63 <0.1 3.8 ぐ 0.2 8.0 12.1 実施例 1 8 2→3 A P 2 フッ酸 0.5 7 2.86 <0.1 3.5 く 0.2 6.0 9.8 実施例 1 9 2→3 APM2 EDDHA 70 フッ酸 0.5 7 2.86 く 0.1 <0.5 <0.2 く 0.3 0.1 実施例 20 2→3 A P 2 EDTA 70 フッ酸 0.5 7 2.86 <0.1 3.4 <0.2 0.9 4.6 実施例 21 2→3 A PM 2 画 70 フッ酸 0.5 7 2.86 く 0.1 5.3 <0.2 <0.3 5.9 実施例 22 2→3 A PM 2 EDDHA 70 C12H250 (CzH40) „H 70 フッ酸 0.5 7 2.86 <0.1 <0.5 く 0.2 <0.3 <1.1 比較例 1 0 3のみ APM2 116.0 43.4 0.9 27.9 188.2
洗浄前 (金属で汚染されたシリコンゥェ一八) 1000〜2000 100~300 5000~9000 16100-31300
表 4一 1、及び表 4一 2に示したように、 フッ酸水溶液により洗浄を行う工程(2)と、 アル力リ性洗浄剤により洗浄を行う工程 ( 3 ) とをこの順序で組み合わせた本発明では、 明らかにシリコンゥェーハ表面の全金属濃度が少なく、 金属汚染の洗浄性が優れているこ とが判る。
また表 4一 1や 4一 2の結果を、 従来から使用されている HPM洗浄、 APM洗狰また はこれらを組み合わせた洗浄方法 (R C A洗浄) である従前の表 1一 1に記載の比較例 1 乃至 4の結果と比較することで、 本発明の洗浄方法が金属汚染洗浄性能に優れていること がより明確にわかる。
<実施例 23〜28>
「パーティクル汚染洗浄性の評価: (工程 (2) と工程 (3))」
基板上の 6インチの円内に、 粒径 0. 13; m以上の S i 3N4粒子 (パーティクル) が 1000〜3000個付着したシリコンゥェ一ハを、 枚葉式洗浄装置を用いて、 表 5に示 す通りの工程 (2)、 工程 (3) の 2ステップで洗浄し、 パーティクルの洗浄を行った。 工程 (2) の洗浄剤には、 表 5に示すフッ酸含有率のフッ酸水溶液を使用した。 枚葉式 洗浄装置におけるシリコンゥエーハ回転数は 1000 r pm、 洗浄液量は 1リツトル/分 とし、 洗浄時間は表 5に示す通りとし、 液温度は室温で行った。
工程 (3) では APM2洗浄剤、 これに錯化剤を加えたもの、 そして更に表 5に示す界 面活性剤を加えて調整した洗浄剤を用いて洗浄を行つた。 枚葉式洗浄装置におけるシリコ ンゥエーハ回転数は 1000 r pm、洗浄液量は 1リットル/分とし、洗浄時間は 60秒、 液温度は室温とし、 基板に対して超音波照射を行いつつ洗浄した。 また、 この工程 (3) で用いた洗浄剤の pHは、 約 10. 3であった。 そして工程 (2) と工程 (3)の順序を、 表 5に示す通りに行った。
洗浄後に得られた洗浄済みシリコンゥエー八表面に残留するパーティクル数の測定か ら求めた除去率より、 汚染粒子除去率を次の 5段階で評価した。
即ち、 除去率 80%以上を除去性 AAAとし、 60 %以上 80%未満を AA、 40 %以 上 60%未満を A、 20%以上 40%未満を B、 20%未満を Cとした。 結果を表 5に示 す。
<実施例 29>
工程 (3) の洗浄温度を 50°Cにした以外は、 実施例 23と同様に洗浄を行った。 結果 を表 5に示す。 表 5
工程 (3) 工程 (2)
工程順序 洗浄剤 錯化剤 界面活性剤 洗浄剤 フッ酸含有率 C 時間 t パーティクルの除去率
t c1-29
種類 種類 濃度(PPra) 種類 濃度 (ppm) 種類 (重量 (秒)
実施例 23 2→3 A PM 2 フッ酸 0.5 7 2.86 A 実施例 24 2→3 A PM 2 E DDHA 70 フッ酸 0.5 「 7 2.86 A 実施例 25 2→3 A P 2 EDDHA 70 C12H250 (C2H40) „H 70 フッ酸 0.5 7 2.86 A A 実施例 26 2→3 APM 2 E DDHA 70 C12H25O (C2H4O) 13H 70 フッ酸 0.5 7 2.86 A A 実施例 27 2→3 APM 2 E DDHA 70 ^12Η25 C6H — S O3H 70 フッ酸 0.5 7 2.86 AA 実施例 2 8 2→3 A P 2 E DDHA 70 C18H35O (し 30 H 70 フッ酸 0.5 7 2.86 A A 実施例 2 9 2→3 A PM2 E DDHA 70 C,2H250 (C2H40) ,,H 70 フッ酸 0.5 7 2.86 AAA
洗浄前 (Si3N4粒子で汚染されたシリコンゥェ一八) 1000-3000
く実施例 30、 31 >
基板上の 4インチの円内に、 粒径 0. 21 m以上の S i 3N4粒子 (パーティクル) が 500〜1000個付着したシリコンゥエーハを、 枚葉式洗浄装置を用いて、 表 6に示す 通りの工程 (2)、 工程 (3) の 2ステップで洗浄し、 パーティクルの洗浄を行った。 工程 (2) の洗浄剤には、 表 6に示すフッ酸含有率のフッ酸水溶液を使用した。 枚葉式 洗浄装置におけるシリコンゥエーハ回転数は 1000 r pm、 洗浄液量は 1リットル/分 とし、 洗浄時間は表 6に示す通りとし、 液温度は室温で行った。
工程 (3) では APM3洗浄剤 (29重量%アンモニア水と 31重量%過酸化水素水と 水を容量比 1 : 2 : 60で混合した水溶液) に表 6に示す錯化剤、 界面活性剤を加えて調 整した洗浄剤を用いて洗浄を行った。 枚葉式洗浄装置におけるシリコンゥエーハ回転数は 1000 r pm、 洗浄液量は 1リットル/分とし、 洗浄時間は 60秒、 液温度は 50°Cと し、 基板に対して超音波照射を行いつつ洗浄した。 また、 この APM3洗浄剤の pHは約 10. 3であった。 そして工程 (2) と工程 (3) の順序を、 表 6に示す通りとした。 洗浄後に得られた洗浄済みシリコンゥエーハ表面に残留するパーティクルをレーザー 表面検查装置により測定した。 結果を表 6に示す。 パーティクル測定結果はパーティクル の 「除去率 (%)」 で表記した。
<比較例 11〉
工程 (3) として、 比較例 4における工程 (1) を行い、 その際に洗浄剤として A PM 1に代えて洗浄剤に APM 3洗浄剤を用いた。これ以外は、比較例 4と同様に洗浄を行い、 従前の実施例 30と同様に評価を行った。 結果を表 6に示す。
表 6 工程 (3) 工程 (2)
パーティクンレ 工程順序 洗浄剤 錯化剤 界面活性剤 洗浄剤 フッ酸含有率 C 時間 t
t c1-29 除去率 (%) 種類 濃度 (ppm) 濃度(ppm) 種類 (重量%) (秒)
実施例 30 2→3 A PM 3 EDDHA 47 無し フッ酸 0.2 5 0.63 99.2 実施例 31 '2→3 A PM 3 EDDHA 47 ドテ'シ ンセ'ンスルホン酸 10 フッ酸 0.2 5 0.63 99.4 比較例 1 1. 3→2 A PM 3 H P M 30 93.6
表 5、 及び表 6に示したように、 従来から使用されている A PM洗浄、 HPM洗浄を組 み合わせた RC A洗浄方法と比較して、 本発明の洗浄方法は、 明らかにパーティクル汚染 洗浄性能に優れていることがわかる。
以上の結果から明らかなように、 本発明の洗浄方法では、 従来の洗浄方法 (比較例) に 比べて極めて短時間で、基板表面の金属汚染とパーティクル汚染を共に除去でき、加えて、 エッチングによる加工寸法変化などの副作用が殆ど無いという優れた効果を有する。 産業上の利用可能性
本発明の洗浄方法によれば、 洗浄対象であるシリコンウェハ等の半導体基板を洗浄する 際に、 基板に対する加工寸法変化等の問題を極めて低く抑え、 極めて短時間で、 基板表面 の金属汚染とパ一ティクル汚染の双方を効果的に除去出来る。 よって半導体デバイスゃデ. イスプレイデバイスなどの製造ェ程における汚染洗浄用などの表面処理方法として用い た際、 工業的に非常に有用である。 なお、 本発明の開示内容には、 2001年 5月 22日付けで出願された日本出願 (特願 2001— 151960)の明細書に開示された全体の内容が引用により援用される。

Claims

請求の範囲
1. 少なくとも以下の工程 (1) 及び工程 (2) を含み、 工程 (1) を行った後に工程
(2) を行うことを特徴とする基板表面洗浄方法。
工程 ( 1 ) 錯化剤含有アル力リ性洗浄剤で基板表面の洗浄を行う洗浄工程。
工程 (2) フッ酸含有率 C (重量%) が 0. 03〜3重量%である洗浄剤を用い、 該洗 浄剤による基板の洗浄時間 t (秒) が 45秒以下であり、 且つ Cと tが 0. 25≤ t C1- 29≤ 5の関係にある洗浄工程。
2. 錯化剤が、 ドナー原子である窒素と力ルポキシル基及び Z又はホスホン酸基を有す る化合物であることを特徴とする請求項 1に記載の基板表面洗浄方法。
3. 錯化剤が、 芳香族炭化水素環を有し且つ該環を構成する炭素原子に直接結合した O H基及び Z又は O—基を二つ以上有する化合物であることを特徴とする請求項 2に記載の 基板表面洗浄方法。
4. 錯化剤が、 エチレンジァミン 4酢酸 [EDTA]、 エチレンジァミンジオルトヒド ロキシフエニル酢酸 [EDDHA] 及び/又はその誘導体、 ジエチレントリアミン 5酢酸
[DTPA]、 プロピレンジァミンテトラ (メチレンホスホン酸) [PDTMP] からなる 群より選ばれる一つもしくは二つ以上のものであることを特徴とする請求項 3に記載の 基板表面洗浄方法。
5. 工程 (1) で用いる洗浄剤中の錯化剤濃度が 1〜10000重量 p pmであること を特徴とする請求項 1に記載の基板表面洗浄方法。
6. 工程 (1) で用いる洗浄剤が水酸化アンモニゥムを含有することを特徴とする請求 項 1に記載の基板表面洗浄方法。
7. 工程 (1) で用いる洗浄剤の pHが 9以上であることを特徴とする請求項 6に記載 の基板表面洗浄方法。
8. 請求項 1に記載の基板表面洗浄方法を用いることを特徴とする基板表面洗浄装置。
9. 少なくとも以下の工程 (2) 及び工程 (3) を含み、 工程 (2) を行った後に工程
(3) を行うことを特徴とする基板表面洗浄方法。
工程 (2) フッ酸含有率 C (重量%) が 0. 03〜3重量%である洗浄剤を用い、 該洗 浄剤による基板の洗浄時間 t (秒) が 45秒以下であり、 且つ Cと tが 0. 25≤ t
29≤5の関係にある洗浄工程。
工程 ( 3 ) アル力リ性洗浄剤で基板表面の洗浄を行う洗浄工程。
10. 工程 ( 3 ) で用いる洗浄剤が錯化剤を含有することを特徴とする請求項 9に記載 の基板表面洗浄方法。
11. 錯化剤が、 ドナー原子である窒素とカルボキシル基及び/又はホスホン酸基を有 する化合物であることを特徴とする請求項 10に記載の基板表面洗浄方法。
12. 錯化剤が、 芳香族炭化水素環を有し且つ該環を構成する炭素原子に直接結合した OH基及び Z又は 0—基を二つ以上有する化合物であることを特徴とする請求項 1 1に記 載の基板表面洗浄方法。
13. 錯化剤が、 エチレンジァミン 4酢酸 [EDTA]、 エチレンジアミンジオルトヒ ドロキシフエニル酢酸 [EDDHA] 及び Z又はその誘導体、 ジエチレントリアミン 5酢 酸 [DTPA] 及びプロピレンジアミンテトラ (メチレンホスホン酸) [PDTMP] か らなる群より選ばれる一つもしくは二つ以上のものであることを特徴とする請求項 12 に記載の基板表面洗浄方法。
14. 工程 (3) で用いる洗浄剤中の錯化剤濃度が 1~10000重量 p pmであるこ とを特徴とする請求項 10に記載の基板表面洗挣方法。
15. 工程 (3) で用いる洗浄剤が水酸化アンモニゥムを含有することを特徴とする請 求項 9に記載の基板表面洗浄方法。
16. 工程 ( 3 ) で用いる洗浄剤の p Hが 9以上であることを特徵とする請求項 15に 記載の基板表面洗浄方法。
17. 請求項 9に記載の基板表面洗浄方法を用いることを特徴とする基板表面洗浄装置。
PCT/JP2002/004850 2001-05-22 2002-05-20 Procede de nettoyage de la surface d'un substrat WO2002094462A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP02726443A EP1389496A1 (en) 2001-05-22 2002-05-20 Method for cleaning surface of substrate
US10/718,574 US6896744B2 (en) 2001-05-22 2003-11-24 Method for cleaning a surface of a substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-151960 2001-05-22
JP2001151960 2001-05-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/718,574 Continuation US6896744B2 (en) 2001-05-22 2003-11-24 Method for cleaning a surface of a substrate

Publications (1)

Publication Number Publication Date
WO2002094462A1 true WO2002094462A1 (fr) 2002-11-28

Family

ID=18996704

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/004850 WO2002094462A1 (fr) 2001-05-22 2002-05-20 Procede de nettoyage de la surface d'un substrat

Country Status (3)

Country Link
US (1) US6896744B2 (ja)
EP (1) EP1389496A1 (ja)
WO (1) WO2002094462A1 (ja)

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4207976B2 (ja) * 2006-05-17 2009-01-14 住友電気工業株式会社 化合物半導体基板の表面処理方法、および化合物半導体結晶の製造方法
KR100271762B1 (ko) * 1997-12-05 2000-12-01 윤종용 반도체 제조설비 시료 용융용 케미컬 및 이를 이용한 불순물 분석방법
WO2001071789A1 (fr) * 2000-03-21 2001-09-27 Wako Pure Chemical Industries, Ltd. Agent de nettoyage de tranche de semi-conducteur et procede de nettoyage
WO2003065433A1 (fr) * 2002-01-28 2003-08-07 Mitsubishi Chemical Corporation Detergent liquide pour substrat de dispositif semi-conducteur et procede de nettoyage
US8316866B2 (en) * 2003-06-27 2012-11-27 Lam Research Corporation Method and apparatus for cleaning a semiconductor substrate
JP4498726B2 (ja) * 2003-11-25 2010-07-07 Kisco株式会社 洗浄剤
JP4632290B2 (ja) * 2004-03-23 2011-02-16 日本碍子株式会社 窒化アルミニウム製サセプターの洗浄方法
KR20070026310A (ko) * 2004-06-28 2007-03-08 스미토모덴키고교가부시키가이샤 GaAs 기판의 세정 방법, GaAs 기판의 제조 방법,에피택셜 기판의 제조 방법 및 GaAs 웨이퍼
WO2006007453A1 (en) * 2004-07-01 2006-01-19 Fsi International, Inc. Cleaning process for semiconductor substrates
JPWO2006009003A1 (ja) * 2004-07-16 2008-05-01 国立大学法人東北大学 半導体装置の処理液、処理方法および半導体製造装置
KR101232249B1 (ko) * 2004-08-10 2013-02-12 간또 가가꾸 가부시끼가이샤 반도체 기판 세정액 및 반도체 기판 세정방법
EP1628336B1 (en) * 2004-08-18 2012-01-04 Mitsubishi Gas Chemical Company, Inc. Cleaning liquid and cleaning method
JP4493444B2 (ja) * 2004-08-26 2010-06-30 株式会社ルネサステクノロジ 半導体装置の製造方法
CN100428419C (zh) * 2004-12-08 2008-10-22 中国电子科技集团公司第四十六研究所 一种砷化镓晶片清洗方法
US7247579B2 (en) * 2004-12-23 2007-07-24 Lam Research Corporation Cleaning methods for silicon electrode assembly surface contamination removal
US7186616B2 (en) * 2005-03-16 2007-03-06 Freescale Semiconductor, Inc. Method of removing nanoclusters in a semiconductor device
JP2006352075A (ja) 2005-05-17 2006-12-28 Sumitomo Electric Ind Ltd 窒化物系化合物半導体および化合物半導体の洗浄方法、これらの製造方法および基板
US20060280027A1 (en) * 2005-06-10 2006-12-14 Battelle Memorial Institute Method and apparatus for mixing fluids
US20090212021A1 (en) * 2005-06-13 2009-08-27 Advanced Technology Materials, Inc. Compositions and methods for selective removal of metal or metal alloy after metal silicide formation
US20090130816A1 (en) * 2005-07-22 2009-05-21 Sumco Corporation Method for manufacturing simox wafer and simox wafer manufactured thereby
KR100685738B1 (ko) * 2005-08-08 2007-02-26 삼성전자주식회사 절연 물질 제거용 조성물, 이를 이용한 절연막의 제거 방법및 기판의 재생 방법
KR100706822B1 (ko) * 2005-10-17 2007-04-12 삼성전자주식회사 절연 물질 제거용 조성물, 이를 이용한 절연막의 제거 방법및 기판의 재생 방법
US20070099806A1 (en) * 2005-10-28 2007-05-03 Stewart Michael P Composition and method for selectively removing native oxide from silicon-containing surfaces
WO2007063767A1 (ja) * 2005-12-01 2007-06-07 Mitsubishi Gas Chemical Company, Inc. 半導体素子又は表示素子用洗浄液および洗浄方法
CN101235507A (zh) * 2007-02-02 2008-08-06 深圳富泰宏精密工业有限公司 铍铜合金清洗工艺
JP5276281B2 (ja) * 2007-06-01 2013-08-28 住友電気工業株式会社 GaAs半導体基板およびその製造方法
KR20090005489A (ko) * 2007-07-09 2009-01-14 삼성전자주식회사 반도체 습식 에천트 및 그를 이용한 배선 구조체의형성방법
US7981221B2 (en) 2008-02-21 2011-07-19 Micron Technology, Inc. Rheological fluids for particle removal
CN102405276A (zh) * 2009-04-08 2012-04-04 太阳索尼克斯公司 从基板去除污染物质的方法和装置
US20110079250A1 (en) * 2009-10-01 2011-04-07 Mt Systems, Inc. Post-texturing cleaning method for photovoltaic silicon substrates
DE102010004778B4 (de) 2010-01-14 2014-07-03 Mahle International Gmbh Ventil zur Steuerung eines Fluidstromes
CN103080273A (zh) * 2010-09-01 2013-05-01 巴斯夫欧洲公司 含水酸性溶液和蚀刻溶液以及使单晶和多晶硅衬底表面织构化的方法
KR101846597B1 (ko) 2010-10-01 2018-04-06 미쯔비시 케미컬 주식회사 반도체 디바이스용 기판의 세정액 및 세정 방법
KR20130132828A (ko) 2010-11-03 2013-12-05 쓰리엠 이노베이티브 프로퍼티즈 컴파니 중합체 에칭제 및 그의 사용 방법
US9873838B2 (en) * 2011-02-02 2018-01-23 William Dale Storey Electrolized water—amine compositions and methods of use
JP6123334B2 (ja) * 2012-02-17 2017-05-10 三菱化学株式会社 半導体デバイス用洗浄液及び半導体デバイス用基板の洗浄方法
ITPD20130089A1 (it) * 2013-04-10 2014-10-11 Dario Benin Procedimento per il lavaggio industriale di vetreria da laboratorio
CN103406302B (zh) * 2013-08-23 2015-08-12 深圳市华星光电技术有限公司 基于紫外线的清洗方法及清洗装置
TWI636131B (zh) * 2014-05-20 2018-09-21 日商Jsr股份有限公司 清洗用組成物及清洗方法
US10319605B2 (en) 2016-05-10 2019-06-11 Jsr Corporation Semiconductor treatment composition and treatment method
US10935896B2 (en) * 2016-07-25 2021-03-02 Applied Materials, Inc. Cleaning solution mixing system with ultra-dilute cleaning solution and method of operation thereof
CN109379857B (zh) * 2018-09-18 2021-12-10 宏维科技(深圳)有限公司 一种键结处理剂、该处理剂的制备方法以及使用方法
US20220177811A1 (en) * 2019-04-05 2022-06-09 Conopco Inc., D/B/A Unilever Detergent compositions

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06216098A (ja) * 1992-12-01 1994-08-05 N T T Electron Technol Kk シリコンウェーハの洗浄方法
JP2000049133A (ja) * 1998-07-31 2000-02-18 Mitsubishi Materials Silicon Corp 半導体基板を洗浄する方法
JP2000091277A (ja) * 1998-09-07 2000-03-31 Nec Corp 基板洗浄方法および基板洗浄液
JP2000091289A (ja) * 1998-09-10 2000-03-31 Hitachi Ltd 半導体集積回路装置の製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2713787B2 (ja) 1989-12-19 1998-02-16 コマツ電子金属 株式会社 半導体の湿式洗浄方法
JPH0786220A (ja) 1993-09-16 1995-03-31 Hitachi Ltd 半導体ウエハの洗浄方法
TW274630B (ja) * 1994-01-28 1996-04-21 Wako Zunyaku Kogyo Kk
US5637151A (en) * 1994-06-27 1997-06-10 Siemens Components, Inc. Method for reducing metal contamination of silicon wafers during semiconductor manufacturing
JPH08264500A (ja) 1995-03-27 1996-10-11 Sony Corp 基板の洗浄方法
US6296714B1 (en) * 1997-01-16 2001-10-02 Mitsubishi Materials Silicon Corporation Washing solution of semiconductor substrate and washing method using the same
JPH10256211A (ja) 1997-03-11 1998-09-25 Sony Corp 半導体基板の洗浄方法
EP0982765B1 (en) * 1998-08-28 2004-04-28 Mitsubishi Materials Silicon Corporation Cleaning method of semiconductor substrate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06216098A (ja) * 1992-12-01 1994-08-05 N T T Electron Technol Kk シリコンウェーハの洗浄方法
JP2000049133A (ja) * 1998-07-31 2000-02-18 Mitsubishi Materials Silicon Corp 半導体基板を洗浄する方法
JP2000091277A (ja) * 1998-09-07 2000-03-31 Nec Corp 基板洗浄方法および基板洗浄液
JP2000091289A (ja) * 1998-09-10 2000-03-31 Hitachi Ltd 半導体集積回路装置の製造方法

Also Published As

Publication number Publication date
US20040099290A1 (en) 2004-05-27
EP1389496A1 (en) 2004-02-18
US6896744B2 (en) 2005-05-24

Similar Documents

Publication Publication Date Title
WO2002094462A1 (fr) Procede de nettoyage de la surface d&#39;un substrat
US7235516B2 (en) Semiconductor cleaning composition comprising an ethoxylated surfactant
JP4304988B2 (ja) 半導体デバイス用基板の洗浄方法
JP5428200B2 (ja) 半導体デバイス用基板洗浄液、半導体デバイス用基板の洗浄方法及び半導体デバイス用基板の製造方法
JP6066552B2 (ja) 電子デバイス用洗浄液組成物
KR100913557B1 (ko) 반도체 디바이스용 기판의 세정액 및 세정방법
TWI507521B (zh) 銅鈍化之後段化學機械拋光清洗組成物及利用該組成物之方法
KR100974034B1 (ko) 세정액 및 이것을 이용한 세정방법
JP4736445B2 (ja) 半導体デバイス用基板洗浄液及び洗浄方法
WO2005076332A1 (ja) 半導体デバイス用基板洗浄液及び洗浄方法
TW201102425A (en) Formulations and method for post-CMP cleaning
JPWO2009072529A1 (ja) 半導体デバイス用基板の洗浄方法及び洗浄液
JP3624809B2 (ja) 洗浄剤組成物、洗浄方法及びその用途
KR101572639B1 (ko) Cmp 후 세정액 조성물
JP2003068696A (ja) 基板表面洗浄方法
JP2003109930A (ja) 半導体デバイス用基板の洗浄液及び洗浄方法
JP2003088817A (ja) 基板表面洗浄方法
JP2009071165A (ja) 半導体デバイス用基板洗浄液
JP2001345303A (ja) 基板表面処理方法
JP2012049387A (ja) 半導体デバイス用基板の洗浄液及び洗浄方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002726443

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10718574

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2002726443

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642