WO2002092866A2 - Mit einer diamantschicht überzogener verbundwirkstoff und verfahren zu dessen herstellung - Google Patents

Mit einer diamantschicht überzogener verbundwirkstoff und verfahren zu dessen herstellung Download PDF

Info

Publication number
WO2002092866A2
WO2002092866A2 PCT/DE2002/001710 DE0201710W WO02092866A2 WO 2002092866 A2 WO2002092866 A2 WO 2002092866A2 DE 0201710 W DE0201710 W DE 0201710W WO 02092866 A2 WO02092866 A2 WO 02092866A2
Authority
WO
WIPO (PCT)
Prior art keywords
hard metal
sintered
composite material
cr3c2
content
Prior art date
Application number
PCT/DE2002/001710
Other languages
English (en)
French (fr)
Other versions
WO2002092866A3 (de
Inventor
Klaus Dreyer
Dieter Kassel
Original Assignee
Widia Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10130590A external-priority patent/DE10130590B4/de
Application filed by Widia Gmbh filed Critical Widia Gmbh
Priority to US10/477,981 priority Critical patent/US20040141867A1/en
Priority to EP02740345A priority patent/EP1390566A2/de
Priority to JP2002589729A priority patent/JP2004529270A/ja
Priority to HU0302074A priority patent/HUP0302074A2/hu
Publication of WO2002092866A2 publication Critical patent/WO2002092866A2/de
Publication of WO2002092866A3 publication Critical patent/WO2002092866A3/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/051Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/08Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds based on tungsten carbide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0209Pretreatment of the material to be coated by heating
    • C23C16/0218Pretreatment of the material to be coated by heating in a reactive atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/271Diamond only using hot filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/241Chemical after-treatment on the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/30Self-sustaining carbon mass or layer with impregnant or other layer

Definitions

  • the invention relates to a composite material consisting of a hard metal or cermet substrate body which is coated with at least one diamond layer.
  • Such composites are used in particular as cutting tools and as components.
  • Hard metals are generally understood to be alloys that consist of one or more hard materials and one or more binding metals.
  • Carbides of the IVa to Vla group of the periodic table are particularly suitable as hard materials, with WC always being present and forming the predominant part.
  • Binding metals are iron, cobalt and nickel, preferably cobalt, which represent a 2 to 25 mass% proportion in the hard metal in the alloy.
  • Cermets are hard metals containing high titanium carbonitride, in which the hard material phase consists exclusively of carbonitrides of the elements of the IVa to Vla group of the periodic table.
  • WC-Co-Hart metals additives such as TaC and / or NbC in small proportions up to 3 masses! can serve to improve the high temperature properties and the fracture toughness of the composites.
  • Additions in the form of VC and / or Cr3C2 are added in fine-grained (WC ⁇ 1 ⁇ m) hard metals as so-called grain growth inhibitors up to 10% by mass based on the binder metal content.
  • powdered starting materials hard materials and binding metals
  • pressed into a so-called green compact which is then sintered and aftertreated by hot isostatic pressing if necessary to achieve the desired density.
  • the adjustment of the C content is of crucial importance in hard metals.
  • the sintered structure should have neither an ⁇ phase nor free carbon (C porosity).
  • the C content of the hard metal or cermet substrate body is between 89% and 99%, preferably between 94% and 99%, of the maximum possible C content at which no C porosity occurs.
  • Cobalt is one of the so-called ferromagnetics, so that magnetizing a hard metal leads to an increase in magnetic induction (magnetic flux density) up to a maximum value, which is referred to as magnetic saturation.
  • Magnetic saturation is determined both by the magnetophysical properties that characterize the ferromagnetic cobalt-rich mixed crystal of the binding phase and by the volume of the ferromagnetic.
  • the degree of carbon of the hard metal alloy has a significant influence on the magnetic saturation polarization.
  • the carbon content is balanced in a monotungsten carbide at a stoichiometric content of 6.13% carbon.
  • the atomic ratio W: C is less than 1, carbon separates in the form of graphite and if the atomic ratio W: C is significantly higher than 1, the so-called ⁇ phase.
  • undercooling i.e. If there is an excess of tungsten, tungsten dissolves in cobalt, a double carbide phase Co3W3C of the ⁇ phase being formed from a certain degree of undercarburization. This cobalt bond reduces the ferromagnetic content, which is associated with a lower magnetic saturation.
  • Cr3C2 additives also lower the saturation polarization, since up to 10 mass% Cr3C2 can go into solution in the co-binder phase.
  • the grain size of the carbide particles, especially the tungsten carbides, is also decisive for the hardness of the sintered hard metal body that can be achieved.
  • dopants for inhibiting grain growth such as eg VC, Cr3C2 and / or (Ta, Nb) C added to the starting mixtures.
  • VC is most effective in inhibiting growth and also increases the hardness of the hard metal body.
  • Cr3C2 doping results in a uniform structure with good fracture toughness, which can also be improved by TaC and / or NbC doping.
  • the adhesion of the slide coating can be significantly improved if the C content of the hard metal is limited to 89% to 99%, preferably 94% to 99%, of the maximum C content (Cmax) at which C porosity occurs .
  • Cmax the maximum C content
  • the hard metal substrate body preferably has a composition with 2 to 10 mass%, preferably 3 to 7 masses Co as binding metal and up to 3 masses! TaC and / or NbC and, based on the binder metal content, up to 10 masses! VC and / or Cr3C2, rest WC.
  • the carbon content in the powder mixture batch can be set correspondingly high in order to produce sufficient saturation.
  • the gas atmosphere used during the hard metal sintering process Temperature the pressure and also the furnace components exposed to the sintering temperatures, for example graphite heating elements, also have an influence on the sintered product
  • the method described in claim 3 is preferably used, according to which the powdery starting materials are ground, granulated, pressed to form a green body and the green body is then subsequently sintered and, if necessary, the finished • sintered body is treated before the diamond coating.
  • the green body is preferably heated up at a temperature of 800 ° C to 1100 ° C, in particular 900 ° C in an atmosphere of H2 with up to 1 vol.! CH4 is subjected to a heat treatment under a pressure of 1 bar or in an atmosphere of Ar with at least 0.1% by volume of CH4 under a pressure> 1 bar, by means of which the lack of C saturation set in the starting powder mixture is made up by carburization.
  • This carburization before sintering can take place during the heating phase to the sintering temperature.
  • the finished sintered body which has an insufficient carbon content, at a temperature between 1000 ° C. and 1350 ° C. in a gas atmosphere containing up to 1% by volume of CH4 for carburizing the layers near the surface to be treated in a penetration depth of 200 to 500 ⁇ m.
  • This aftertreatment can also be carried out in a CVD coating system in situ before the diamond deposition.
  • etching and CVD diamond coating processes can be used. These methods are known in the prior art.
  • the substrates can be covered with fine diamond nuclei to increase the nucleus density.
  • a first pretreatment step by moderate blasting with abrasives can also be useful. This step is used to roughen the surface, remove harmful products from upstream processes and / or round the cutting edge. Customized cleaning steps are usually necessary before each of the pretreatment steps. Pretreatment processes that introduce foreign elements into the surface zones or with which intermediate layers are applied are less common, but possible.
  • a powdery starting mixture (grain size of the starting powder approx. 0.7 ⁇ m) is used.
  • the ingredients 93.07% WC, 0.20% VC, 0.53 Cr3C2 and 6.20% Co are ground together, granulated, pressed into a green body and then sintered.
  • the sintering process was designed in such a way that a holding time of 2 hours and a gas atmosphere of H2 with 0.5 vol.CH4 at a pressure of 1000 mbar were interposed during the vacuum heating phase at 850 ° C ,
  • the hard metal sintered body thus obtained has a magnetic saturation polarization of 97% of the maximum value.
  • the sintering process was designed in such a way that during the vacuum heating phase, after reaching a temperature of 950 ° C, the temperature is reduced again to 850 ° C under an argon gas pressure of 900 mbar. This is followed by a standing time of 2.5 hours at 850 ° C under a gas atmosphere of H2 with 0.5 vol.! CH4 at a pressure of 1000 mbar. The sintering cycle is then completed under vacuum.
  • the hard metal sintered body thus obtained has a magnetic saturation polarization of 97.5! of the maximum value.
  • Filament plant becomes a gas atmosphere from 1 vol. CH4 and 99 vol .-% H2 and the following coating parameters:
  • the layer obtained with this coating had a thickness of approximately 6 ⁇ m.
  • sintered, ground or non-ground hard metal bodies with the composition 91.75% WC, 0.94% TaC, 0.62% NbC, 0.14% VC and 6.55! Co whose carbon content at 85! the maximum C content and thus below the range of 89% to 99%, preferably 94% to 99%, which is advantageous for the adhesion of a diamond layer, ultrasonically cleaned for 30 minutes, etched in a 25% nitric acid at room temperature for 10 minutes, Germinated for 30 minutes in ultrasound in ethanol with 6 g / 1 diamond powder with an average grain size of 5 ⁇ m, cleaned for 30 minutes in ultrasound and transferred to the hot filament coating system.
  • the hard metal bodies are treated for one hour at 1100 ° C in a gas atmosphere made of H2 with 0.5 vol% CH4 at a total pressure of 1000 mbar.
  • the substrate temperature is lowered to 850 ° C and the process is carried out exactly as it was previously described.
  • the layer obtained in this example had a thickness of approximately 6 ⁇ m.

Abstract

Die Erfindung betrifft einen Verbundwerkstoff, bestehend aus einem Hartmetall- oder Cermet-Substratkörper, der mit mindestens einer Diamantschicht überzogen ist. Um die Haftung der Diamantbeschichtung auf feinkörnigen Hartmetall- oder Cermet-Substratkörpern zu verbessern, wird vorgeschlagen, dass der C-Gehalt des Hartmetall- oder Cermet-Substratkörpers zwischen 89 % und 99 %, vorzugsweise zwischen 94 % und 99 %, des maximal möglichen Gehaltes, bei der C-Porosität auftritt, beträgt oder bei Hartmetall-Substtatkörpern mit Co-Binder die magnetische Sättigungspolarisation 89 bis 99 %, vorzugsweise 94 bis 99 % der maximalen magnetischen Sättigungspolarisation 4 π σmax = 2 Co - 2,2 Cr3C2 beträgt (Co und Cr3C2 jeweils in Massen-%, 4 π σmax in νT . m3 . kg-1 angegeben) beträgt.

Description

Beschreibung
Verbundwerkstoff und Verfahren zu dessen Herstellung
Die Erfindung betrifft einen Verbundwerkstoff, bestehend aus einem Hartmetall- oder Cermet-Substratkörper, der mit mindestens einer Diamantschicht überzogen ist.
Solche Verbundwerkstoffe finden insbesondere als Zerspanungswerkzeuge und als Bauteile Verwendung.
Unter Hartmetallen werden generell Legierungen verstanden, die aus einem oder mehreren Hartstoff (en) und einem oder mehreren Bindemetall (en) bestehen. Als Hartstoffe kommen insbesondere Carbide der IVa- bis Vla-Gruppe des Periodensystemes in Betracht, wobei WC stets vorhanden ist und den überwiegenden Anteil bildet. Bindemetalle sind Eisen, Cobalt und Nickel, vorzugsweise Cobalt, die in der Legierung einen 2 bis 25 Massen%igen Anteil im Hartmetall darstellen. Cermets sind hochtitancarbonitridhaltige Hartmetalle, bei denen die Hartstoffphase ausschließlich aus Carbonitriden der Elemente der IVa bis Vla-Gruppe des Periodensystems besteht.
Es ist auch bekannt, dass bei WC-Co-Hart etallen Zusatzstoffe wie TaC und/oder NbC in geringen Anteilen bis zu 3 Massen! zur Verbesserung der Hochtemperatureigenschaften und der Bruchzähigkeit der Verbundstoffe dienen können. Zusätze in Form von VC und/oder Cr3C2 werden in feinkörnigen (WC < 1 μm) Hartmetallen als sogenannte Kornwachstumshemmer bis zu 10 Massen% bezogen auf den Bindemetallgehalt zugegeben. Bei dem gängigsten Verfahren zur Herstellung eines Hartmetall-Substratkörpers werden pulverförmige Ausgangsstoffe (Hartstoffe und Bindemetalle) in der gewünschten Zusammensetzung gemahlen, granuliert, zu einem sogenannten Grünling verpreßt, der anschließend gesintert und ggf. durch heißisostatisches Pressen nachbehandelt wird, um die gewünschte Dichte zu erzielen. Die Einstellung des C-Gehaltes ist in den Hartmetallen von entscheidender Bedeutung. Die gesinterten Gefüge sollten weder eine η-Phase noch freien Kohlenstoff (C-Porosität) aufweisen.
Es ist auch allgemein bekannt, solche Substratkörper mittels eines CVD-Verfahrens mit einer Diamantbeschichtung zu versehen. Allerdings, und wie bereits in der DE 199 14 585 Cl erwähnt, ist häufig nicht zu vermeiden, dass Diamantbeschichtungen abplatzen und hierdurch das Werkzeug unbrauchbar wird. Um solche Abplatzungen zu vermeiden, werden in den EP 0 279 898 Bl, der EP 0 752 293 A2, der US 5 139 372 und auch der DE 199 14 585 Cl mehrlagige Kohlenstoff- bzw. Diamant-Beschichtungen vorgeschlagen, bei denen sich die einzelnen Lagen durch verschiedene Diamantanteile, Druckspannungen oder Elastizitätsmodule unterscheiden. Bei grobkörnigen Hartmetallen ist die noch zufriedenstellende Haftung der Diamantschicht auf Verklam- merungseffekte an der Substratoberfläche zurückzuführen. Dennoch sind die mit solchen Verbundkörpern erreichbaren Standzeiten noch unbefriedigend.
Es ist daher Aufgabe der vorliegenden Erfindung, einen Verbundwerkstoff und ein Verfahren zu dessen Herstellung anzugeben, bei dem bzw. mit dem eine bessere Haftung der Diamantbeschichtung auf feinkörnigen Hartmetall- oder Cermet-Substratkörpern gewährleistet ist.
Diese Aufgabe wird durch den Verbundwerkstoff nach Anspruch 1 gelöst .
Erfindungsgemäß wird der C-Gehalt des Hartmetall- oder Cermet- Substratkörpers zwischen 89 % und 99 %, vorzugsweise zwischen 94 % und 99 %, des maximal möglichen C-Gehaltes, bei dem noch keine C-Porosität auftritt, eingestellt. Bei Hartmetallen mit Co-Binder kann der zulässige Bereich für den C-Gehalt auch über die magnetische Sättigungspolarisation angegeben werden, wobei 4 π σ 89 bis 99 %, vorzugsweise 94 bis 99 % , von 4 π σmax = 2 Co - 2,2 Cr3C2 beträgt (Co und Cr3C2 jeweils in Massen-%, 4 π σmax in μT . m3 . kg-1 angegeben) .
Cobalt zählt zu den sogenannten Ferromagnetika, so dass eine Aufmagnetisierung eines Hartmetalles zu einem Anstieg der magnetischen Induktion (magnetischen Flußdichte) bis zu einem Maximalwert führt, der als magnetische Sättigung bezeichnet wird. Die magnetische Sättigung wird sowohl durch die den fer- romagnetischen cobaltreichen Mischkristall der Bindephase kennzeichnenden magnet-physikalischen Eigenschaften als auch durch das Volumen des Ferromagnetikums bestimmt. Maßgeblichen Einfluß auf die magnetische Sättigungspolarisation hat jedoch der Kohlengrad der Hartmetallegierung. Der Kohlenstoffgehalt ist in einem Monowolframcarbid bei einem stöchiometrischen Gehalt von 6,13 % Kohlenstoff ausgeglichen. Bei einem Atomverhältnis W : C unter 1 scheidet sich Kohlenstoff in Form von Graphit und bei einem Atomverhältnis W : C, das wesentlich über 1 liegt, die sogenannte η-Phase aus. Bei einer Unterkohlung, d.h. einem Wolfram-Überschuß löst sich Wolfram in Cobalt, wobei es ab einem gewissen Unterkohlungsgrad zur Ausbildung einer Dop- pelcarbidphase Co3W3C der η-Phase kommt. Durch diese Cobalt- Bindung sinkt der ferromagnetische Anteil, was mit einer geringeren magnetischen Sättigung einhergeht. Auch Cr3C2-Zusätze erniedrigen die Sättigungspolarisation, da in der Co-Binderphase bis zu 10 Massen% Cr3C2 in Lösung gehen kann.
Maßgeblich für die erreichbare Härte des fertiggesinterten Hartmetallkörpers ist auch die Korngröße der Carbidteilchen, insbesondere der Wolframcarbide. Um geringe Korngrößen zu erhalten, werden Dotierungen zur Hemmung des Kornwachstumes wie z.B. VC, Cr3C2 und/oder (Ta,Nb)C den Ausgangsmischungen beigegeben. VC ist im Hinblick auf die Wachstumshemmung am wirksamsten und führt zudem zu einer Erhöhung der Härte des Hartmetallkörpers. Cr3C2-Dotierungen bewirken ein gleichmäßiges Gefüge mit guter Bruchzähigkeit, die sich auch durch TaC- und/oder NbC-Dotierungen verbessern läßt.
Bei der Diamantbeschichtung der genannten Hartmetallkörper, die in einer kohlenstoffhaltigen Atmosphäre mittels eines CVD-Pro- zesses durchgeführt wird, besteht die Gefahr, dass im Hartmetallkörper enthaltenes Vanadium und das Bindermetall Co zur Oberfläche diffundiert, was nach den erfindungsgemäßen Erkenntnissen zu einer schlechteren Haftung der Diamantbeschichtung auf dem Hartmetallkörper führt. Überraschenderweise läßt sich die Haftung der Dia entbeschichtung erheblich verbessern, wenn der C-Gehalt des Hartmetalles auf 89 % bis 99 %, vorzugsweise auf 94 % bis 99 %, des maximalen C-Gehaltes (Cmax) beschränkt wird, bei dem C-Porosität auftritt. Bei Hartmetallen mit Co-Binder kann dieser Bereich auch über 4πσ angegeben werden, wobei 4πσ 89 bis 99 %, vorzugsweise 94 bis 99 %, von 4πσmax = 2 Co - 2,2 Cr3C2 beträgt (Co und Cr3C2 jeweils in Mas- sen-%, 4πσmax in μT . m.3 . kg-1 angegeben).
Vorzugsweise besitzt der Hartmetallsubstratkörper eine Zusammensetzung mit 2 bis 10 Massen%, vorzugsweise 3 bis 7 Massen Co als Bindemetall und bis zu 3 Massen! TaC und/oder NbC sowie, bezogen auf den Bindemetallgehalt, bis zu 10 Massen! VC und/oder Cr3C2, Rest WC.
Um den gewünschten Kohlenstoffgehalt im Hartmetallkörper zu erhalten, können unterschiedliche verfahrenstechnische Maßnahmen getroffen werden. Zunächst kann der Kohlenstoff-Gehalt im Pulver-Mischungsansatz entsprechend hoch eingestellt werden, um eine genügende Sättigung zu erzeugen. Da jedoch während des Hartmetall-Sintervorganges die verwendete Gasatmosphäre, die Temperatur, der Druck sowie die den • Sintertemperaturen ausgesetzten Ofenbestandteile, z.B. Graphitheizstäbe, ebenfalls Einflüsse auf das Sinterprodukt haben, wird vorzugsweise das in Anspruch 3 beschriebene Verfahren verwendet, wonach die pulver- förmigen Ausgangsstoffe gemahlen, granuliert, zu einem Grünling verpreßt und der Grünling anschließend gesintert und ggf. der • fertiggestellte Sinterkörper vor der Diamantbeschichtung nachbehandelt wird.
Um eine nicht gewünschte Unterkühlung des fertigen Sinterkörpers zu vermeiden, wird vorzugsweise der Grünling in der Aufheizphase bei einer Temperatur von 800°C bis 1100°C, insbesondere 900°C in einer Atmosphäre aus H2 mit bis zu 1 Vol.! CH4 unter einem Druck von 1 bar oder in einer Atmosphäre aus Ar mit mindestens 0,1 Vol.% CH4 unter einem Druck > 1 bar einer Wärmebehandlung unterzogen, durch die die in der Ausgangspulvermischung eingestellte fehlende C-Absättigung durch Aufkohlung nachgeholt wird. Diese Aufkohlung vor der Sinterung kann während der Aufheizphase zur Sintertemperatur erfolgen.
Alternativ hierzu ist es nach einer weiteren Ausgestaltung der Erfindung möglich, den fertiggesinterten Sinterkörper, der einen zu geringen Kohlenstoffgehalt aufweist, bei einer Temperatur zwischen 1000°C und 1350°C in einer bis zu 1 Vol.% CH4 enthaltenen Gasatmosphäre zur Aufkohlung der oberflächennahen Schichten in einer Eindringtiefe von 200 bis 500 μm nachzube- handeln.
Diese Nachbehandlung kann auch in einer CVD-Beschichtungsanlage in situ vor der Diamantabscheidung durchgeführt werden.
Im Rahmen der vorliegenden Erfindung ist es auch möglich, die vorgenannten Verfahrenstechniken miteinander zu kombinieren, um die Optimierung des Kohlenstoffgehaltes sicherzustellen. Vorzugsweise wird der hinsichtlich des Kohlenstoffgehaltes optimal eingestellte fertiggesinterte und ggf. durch heißisostatisches Pressen nachbehandelte Sinterkörper vor der Beschichtung noch zusätzlichen Vorbehandlungsschritten wie Strahlen, Reinigen, Ätzen, Bekeimen, dem Einbringen von Fremdelementen in die Oberfläche oder dem Aufbringen von Zwischen- schichten unterzogen.
Vor der CVD-Diamantbeschichtung ist es in der Regel notwendig, den Binder durch naßchemisches Ätzen (oder andere geeignete Maßnahmen) aus der Oberfläche zu entfernen, wodurch auch in den oberflächennahen Randschichten eine Bindemetallverarmung bewirkt wird, die sich positiv auf die Haftfestigkeit der nachfolgend aufgetragenen Diamantbeschichtung auswirkt, es sei denn, dass durch die Herstellung bereits eine entsprechende Binderverarmung oder -entfernung bewirkt worden ist.
Es können alle Arten von Ätz- und CVD-Diamantbeschichtungsver- fahren verwendet werden. Diese Verfahren sind nach dem Stand der Technik bekannt. Als zusätzliche Unterstützung können die Substrate mit feinen Diamantkeimen belegt werden, um die Keimdichte zu erhöhen. Auch ein erster Vorbehandlungsschritt durch moderates Strahlen mit Abrasivmitteln kann zweckmäßig sein. Dieser Schritt dient dazu, die Oberfläche aufzurauhen, schädliche Produkte aus vorgeschalteten Prozessen zu entfernen und/oder die Schneidkante zu verrunden. Vor jedem der Vorbehandlungsschritte sind in der Regel angepaßte Reinigungsschritte notwendig. Weniger gebräuchlich, aber möglich sind Vorbehandlungsverfahren, die Fremdelemente in die Oberflächenzonen einbringen, oder mit deren Hilfe Zwischenschichten aufgebracht werden.
In einem ersten Ausführungsbeispiel wird eine pulverförmige Ausgangsmischung (Korngröße der Ausgangspulver ca. 0,7 μm) mit den Bestandteilen 93,07 % WC, 0,20 % VC, 0,53 Cr3C2 und 6,20 % Co miteinander vermählen, granuliert, zu einem Grünling verpreßt und anschließend gesintert. Zur Einstellung des Kohlen- stoffgehaltes im Hartmetallkörper wurde der Sintervorgang so gestaltet, dass während der Vakuum-Aufheizphase bei 850 °C eine Haltezeit von 2 Std. und eine Gasatmosphäre von H2 mit 0,5 Vol.CH4 bei einem Druck von 1000 mbar zwischengeschaltet wurde. Der so erhaltene Hartmetallsinterkörper besitzt eine magnetische Sättigungspolarisation von 97 % des Maximalwertes.
In einem zweiten Ausführungsbeispiel wird eine Ausgangsmischung mit den Bestandteilen: 91,75 % WC, 0,94 % TaC, 0,62 % NbC, 0,14 ! VC und 6,55 % Co miteinander vermählen, granuliert, zu einem Grünling verpreßt und anschließend gesintert. Zur Einstellung des Kohlenstoffgehaltes im Hartmetallkörper wurde der Sintervorgang so gestaltet, dass während der Vakuum-Aufheizphase nach Erreichen einer Temperatur von 950°C die Temperatur unter einem Argon-Gasdruck von 900 mbar wieder auf 850°C abgesenkt wird. Es folgt eine Standzeit von 2,5 Stunden bei 850°C unter einer Gasatmosphäre von H2 mit 0,5 Vol.! CH4 bei einem Druck von 1000 mbar. Anschließend wird unter Vakuum der Sinterzyklus zu Ende geführt. Der so erhaltene Hartmetallsinterkörper besitzt eine magnetische Sättigungspolarisation von 97,5 ! des Maximalwertes .
Vor der Beschichtung der vorgenannten Hartmetallkörper werden diese einem 30-minütigen Reinigen in Aceton mittels Ultraschall, einem 10-minütigen Ätzen der Oberfläche in einer 25 Vol.-Ügen Salpetersäure bei Raumtemperatur, einem 30-minütigen Bekeimen im Ultraschallbad in Ethanol mit 6 g/1 Diamantpulver mit einer mittleren Korngröße von 5 μm und einem erneuten 30-minütigen Reinigen in Aceton mittels Ultraschall unterzogen. Zur Beschichtung der derart vorbehandelten Körper in einer Hot-
Filament-Anlage wird eine Gasatmosphäre aus 1 Vol.-! CH4 und 99 Vol.-% H2 sowie folgende Beschichtungsparameter eingestellt:
Substrattemperatur: 850°C
Filament-Temperatur: 2000°C
Gesamtdruck: 2000 Pa
Mittlerer Abstand zu den Filamenten: 10 mm
Beschichtungsdauer: 18 h
Gesamtgasfluß pro 1 Anlagenvolumen: 25 ml/n/min
(min bezeichnet "Norm"-ml, die sich auf den physischen Normzustand beo 0°C (= 273,15 K) und 101325 Pa beziehen).
Die mit dieser Beschichtung erhaltene Schicht hatte eine Dicke von etwa 6 μm.
In einem weiteren Ausführungsbeispiel werden fertiggesinterte, geschliffene oder ungeschliffene Hartmetallkörper der Zusammensetzung 91,75 % WC, 0,94 % TaC, 0,62 % NbC, 0,14 % VC und 6,55 ! Co, deren Kohlenstoffgehalt bei 85 ! des maximalen C-Gehaltes und damit unterhalb des für die Haftung einer Diamantschicht vorteilhaften Bereiches von 89 % bis 99 %, vorzugsweise 94 % bis 99 % liegt, 30 Minuten in Ultraschall gereinigt, 10 Minuten in einer 25 %-igen Salpetersäure bei Raumtemperatur geätzt, 30 Minuten in Ultraschall in Ethanol mit 6 g/1 Diamantpulver mit einer mittleren Korngröße von 5 μm bekeimt, 30 Minuten in Ultraschall nachgereinigt und in die Hot-Fila- ment-Beschichtungsanlage verbracht. Zur Aufkohlung der oberflächennahen Schichten werden die Hartmetallkörper eine Stunde bei 1100 °C in einer Gasatmosphäre aus H2 mit 0,5 Vol% CH4 bei 1000 mbar Gesamtdruck behandelt. Zur Aufbringung der Beschichtung wird die Substrattemperatur auf 850 °C erniedrigt und der Prozess genau so gefahren wie er bereits zuvor beschrieben worden ist. Die in diesem Beispiel erhaltene Schicht hatte eine Dicke von ca. 6 μm. Ergänzend wird auf das in der WO 00/60137 beschriebene mehrstufige Diamant-Beschichtungsverfahren verwiesen, das ebenfalls verwendet werden kann.
Die Verbesserung der Schichthaftung mit zunehmendem C-Gehalt bzw. zunehmender Sättigungspolarisation läßt sich an folgendem- Beispiel entnehmen:
Die jeweils untersuchten Proben mit einer Zusammensetzung von 6,55 Massen! Co, 0,14 Massen! VC, Rest WC, besaßen nach der entsprechenden vorbeschriebenen Behandlung eine magnetische Sättiungspolarisation bzw. 4 πσ-Werte, die in folgenden Bereichen lagen:
Bereichs-Nr. % des maximal möglichen 4 πσ C-Gehaltes, bei dem noch μT m3 * kg-1 keine C-Porosität auftritt
1 80-88 10,5-10,8 2 89-93 11,7-11,8 3 94-99 12,8-13,0
Jeweils drei mit etwa gleich dicken Diamantschichten überzogene Versuchskörper, die den obengenannten Bereichen zuzuordnen waren, wurden einem Strahlverschleißtest mit einer maximalen Versuchszeit von 120 s unterzogen, wobei sich die Diamantschicht der Vergleichskörper gemäß Bereich 1 nach 7 s, 2 s und 14 s bereits ablöste, die Diamantschicht der Vergleichskörper gemäß Bereich 2 nach 6 s, 30 s und 55 s bereits ablöste und die Diamantschicht der Vergleichskörper gemäß Bereich 3 noch nach 120 s intakt war. Dies zeigt, dass insbesondere mit magneti- sehen Sättigungspolarisationen zwischen 94 und 99 % eine längstmögliche Haftung der Diamantbeschichtung auf dem Hartmetallsubstratkörper erreichbar ist.

Claims

Patentansprüche
1. Verbundwerkstoff, bestehend aus einem Hartmetall- oder Cer et-Substratkörper, der mit mindestens einer Diamantschicht überzogen ist, d a d u r c h g e k e n n z e i c h n e t, dass der C-Gehalt des Hartmetall- oder Cermet-Substratkör- pers zwischen 89 !und 99 !, vorzugsweise zwischen 94 ! und 99 % , des maximal möglichen Gehaltes, bei dem noch keine C-Porosität auftritt, beträgt oder bei Hartmetall-Substratkörpern mit Co-Binder die magnetische Sättigungspolarisation
89 bis 99 %, vorzugsweise 94 bis 99 ! der maximalen magnetischen Sättigungspolarisation 4 π σmax = 2 Co - 2,2 Cr3C2 beträgt (Co und Cr3C2 jeweils in Massen-!, 4 π σmax in μT . m3 . kg-1 angegeben) beträgt.
2. Verbundwerkstoff nach Anspruch 1, dadurch gekennzeichnet, dass der Hartmetall-Substratkörper 2 bis 10 Massen!, vorzugsweise 3 bis 7 Massen! Cobalt als Bindemetall und bis zu 3 Massen! TaC und/oder NbC sowie, bezogen auf die Bindephase, bis zu 10 Massen! VC und/oder Cr3C2 Rest WC mit einer Feinkörnigkeit < 1 μm aufweist.
3. Verfahren zur Herstellung eines Verbundwerkstoffes nach Anspruch 1 oder 2, bei dem die pulverförmigen Ausgangsstoffe gemahlen, granuliert, zu einem Grünling verpreßt und der Grünling anschließend gesintert, der fertiggestellte Sinterkörper ggf. nachbehandelt und schließlich beschichtet wird, dadurch gekennzeichnet, dass der Grünling in der Äufheizphase bei einer Temperatur von 800°C bis 1100°C, vorzugsweise bei 900°C, in einer Atmosphäre aus H2 mit bis zu 1 Vol.! CH4 unter einem Druck von 1 bar oder in einer Ar-Atmosphäre mit > 0,1 Vol.! CH4 unter einem Druck > 1 bar wärmebehandelt wird, um den gewünschten C-Gehalt einzustellen.
4. Verfahren zur Herstellung eines Verbundwerkstoffes nach Anspruch 1 oder 2, bei dem die pulverförmigen Ausgangsstoffe gemahlen, granuliert, zu einem Grünling verpreßt und der Grünling anschließend gesintert, der fertiggestellte Sinterkörper ggf. nachbehandelt und schließlich beschichtet wird, dadurch gekennzeichnet, dass der C-ungesättigte fertiggesinterte Hartmetall-Sinterkörper bei einer Temperatur zwischen 1250°C und 1350°C in einer bis zu 1 Vol.! CH4 enthaltenen Gasatmosphäre zur Aufkohlung der oberflächennahen Schichten in einer Eindringtiefe von 200 μm bis 500 μm nachbehandelt wird.
5. Verfahren nach einem der Ansprüche 3 oder 4, dadurch gekennzeichnet, dass der fertiggesinterte und ggf. nachbehandelte Sinterkörper vor der Beschichtung noch zusätzlichen Vorbehandlungsschritten wie Strahlen, Reinigen, Ätzen, Bekeimen, dem Einbringen von Fremdelementen in die Oberfläche oder dem Aufbringen von Zwischenschichten unterzogen wird.
PCT/DE2002/001710 2001-05-16 2002-05-13 Mit einer diamantschicht überzogener verbundwirkstoff und verfahren zu dessen herstellung WO2002092866A2 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US10/477,981 US20040141867A1 (en) 2001-05-16 2002-05-13 Composite material and method for production thereof
EP02740345A EP1390566A2 (de) 2001-05-16 2002-05-13 Mit einer diamantschicht überzogener verbundwerkstoff und verfahren zu dessen herstellung
JP2002589729A JP2004529270A (ja) 2001-05-16 2002-05-13 複合材料及びその製造方法
HU0302074A HUP0302074A2 (hu) 2001-05-16 2002-05-13 Kompozit anyag és eljárás annak elżállítására

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE10124051 2001-05-16
DE10124051.1 2001-05-16
DE10130590.7 2001-06-27
DE10130590A DE10130590B4 (de) 2001-05-16 2001-06-27 Verbundwerkstoff und Verfahren zu dessen Herstellung

Publications (2)

Publication Number Publication Date
WO2002092866A2 true WO2002092866A2 (de) 2002-11-21
WO2002092866A3 WO2002092866A3 (de) 2003-03-13

Family

ID=26009321

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2002/001710 WO2002092866A2 (de) 2001-05-16 2002-05-13 Mit einer diamantschicht überzogener verbundwirkstoff und verfahren zu dessen herstellung

Country Status (6)

Country Link
US (1) US20040141867A1 (de)
EP (1) EP1390566A2 (de)
JP (1) JP2004529270A (de)
CN (1) CN1296518C (de)
HU (1) HUP0302074A2 (de)
WO (1) WO2002092866A2 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1649955A1 (de) * 2003-07-31 2006-04-26 A.L.M.T. Corp. Mit diamantfilm überzogenes werkzeug und verfahren zu dessen herstellung
WO2007048154A1 (de) * 2005-10-28 2007-05-03 Boehlerit Gmbh & Co. Kg. Hartmetall für schneidplatten von kurbelwellenfräsern

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE529590C2 (sv) * 2005-06-27 2007-09-25 Sandvik Intellectual Property Finkorniga sintrade hårdmetaller innehållande en gradientzon
CA2685668A1 (en) * 2008-11-24 2010-05-24 Smith International, Inc. A cutting element and a method of manufacturing a cutting element
US8069937B2 (en) 2009-02-26 2011-12-06 Us Synthetic Corporation Polycrystalline diamond compact including a cemented tungsten carbide substrate that is substantially free of tungsten carbide grains exhibiting abnormal grain growth and applications therefor
US8216677B2 (en) 2009-03-30 2012-07-10 Us Synthetic Corporation Polycrystalline diamond compacts, methods of making same, and applications therefor
US8439896B2 (en) * 2009-11-13 2013-05-14 The Invention Science Fund I, Llc Device, system, and method for targeted delivery of anti-inflammatory medicaments to a mammalian subject
US8888761B2 (en) * 2009-11-13 2014-11-18 The Invention Science Fund I, Llc Device, system, and method for targeted delivery of anti-inflammatory medicaments to a mammalian subject
US8894630B2 (en) 2009-11-13 2014-11-25 The Invention Science Fund I, Llc Device, system, and method for targeted delivery of anti-inflammatory medicaments to a mammalian subject
JP5282911B2 (ja) * 2010-03-26 2013-09-04 三菱マテリアル株式会社 ダイヤモンド被覆切削工具
GB201105150D0 (en) 2011-03-28 2011-05-11 Element Six Holding Gmbh Cemented carbide material and tools comprising same
US20140144712A1 (en) * 2012-11-27 2014-05-29 Smith International, Inc. Eruption control in thermally stable pcd products by the addition of transition metal carbide
CN104002537B (zh) * 2013-02-25 2018-02-27 三菱综合材料株式会社 提高了刀尖强度的金刚石包覆硬质合金制切削工具
JP6330999B2 (ja) * 2014-03-03 2018-05-30 三菱マテリアル株式会社 ダイヤモンド被覆超硬合金製切削工具
CN105216021A (zh) * 2014-06-24 2016-01-06 厦门金鹭特种合金有限公司 一种复合材料加工用金刚石涂层刀具及其制备方法
CN104630530B (zh) * 2015-01-29 2017-01-18 南京航空航天大学 一种梯度结构Ti(C,N)基金属陶瓷的制备方法
CN106756171B (zh) * 2016-12-14 2018-09-11 单麒铭 一种WC-Co硬质合金碳量修正的制备方法
CN106623912B (zh) * 2016-12-14 2019-09-24 单麒铭 一种WC-Co硬质合金油田喷嘴的制备方法
GB201711417D0 (en) * 2017-07-17 2017-08-30 Element Six (Uk) Ltd Polycrystalline diamond composite compact elements and methods of making and using same
CN108486465A (zh) * 2018-04-10 2018-09-04 苏州欧美克合金工具有限公司 一种加工铣刀的不锈钢316l材质配方
CN109161821A (zh) * 2018-09-29 2019-01-08 北京金物科技发展有限公司 一种渗碳轴承钢及其制备方法
JP7216916B2 (ja) * 2019-03-28 2023-02-02 三菱マテリアル株式会社 ダイヤモンド被覆超硬合金製工具
JP7216915B2 (ja) * 2019-03-28 2023-02-02 三菱マテリアル株式会社 ダイヤモンド被覆超硬合金製工具

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0279898B1 (de) 1987-02-27 1991-08-14 Ernst Winter &amp; Sohn (GmbH &amp; Co.) Verfahren zum Auftragen einer Verschleissschutzschicht und danach hergestelltes Ezeugnis
US5139372A (en) 1990-03-30 1992-08-18 Sumotomo Electric Industries, Ltd. Polycrystalline diamond tool and method for producing the polycrystalline diamond tool
EP0752293A2 (de) 1995-07-05 1997-01-08 Ngk Spark Plug Co., Ltd Diamantbeschichteter Gegenstand und Verfahren zu seiner Herstellung
US5716170A (en) 1996-05-15 1998-02-10 Kennametal Inc. Diamond coated cutting member and method of making the same
DE19914585C1 (de) 1999-03-31 2000-09-14 Cemecon Ceramic Metal Coatings Diamantbeschichtetes Werkzeug und Verfahren zu seiner Herstellung

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3660050A (en) * 1969-06-23 1972-05-02 Du Pont Heterogeneous cobalt-bonded tungsten carbide
DD118898A1 (de) * 1975-01-29 1976-03-20
US4339272A (en) * 1979-06-29 1982-07-13 National Research Development Corporation Tungsten carbide-based hard metals
USRE34180E (en) * 1981-03-27 1993-02-16 Kennametal Inc. Preferentially binder enriched cemented carbide bodies and method of manufacture
US4579713A (en) * 1985-04-25 1986-04-01 Ultra-Temp Corporation Method for carbon control of carbide preforms
US4708037A (en) * 1985-11-18 1987-11-24 Gte Laboratories Incorporated Coated cemented carbide tool for steel roughing applications and methods for machining
SE456428B (sv) * 1986-05-12 1988-10-03 Santrade Ltd Hardmetallkropp for bergborrning med bindefasgradient och sett att framstella densamma
US4731296A (en) * 1986-07-03 1988-03-15 Mitsubishi Kinzoku Kabushiki Kaisha Diamond-coated tungsten carbide-base sintered hard alloy material for insert of a cutting tool
SE9002136D0 (sv) * 1990-06-15 1990-06-15 Sandvik Ab Cement carbide body for rock drilling, mineral cutting and highway engineering
SE9002135D0 (sv) * 1990-06-15 1990-06-15 Sandvik Ab Improved tools for percussive and rotary crusching rock drilling provided with a diamond layer
JP3191878B2 (ja) * 1991-02-21 2001-07-23 三菱マテリアル株式会社 気相合成ダイヤモンド被覆切削工具の製造法
US5665431A (en) * 1991-09-03 1997-09-09 Valenite Inc. Titanium carbonitride coated stratified substrate and cutting inserts made from the same
US6056999A (en) * 1992-02-18 2000-05-02 Valenite Inc. Titanium carbonitride coated cemented carbide and cutting inserts made from the same
US5310605A (en) * 1992-08-25 1994-05-10 Valenite Inc. Surface-toughened cemented carbide bodies and method of manufacture
KR100193546B1 (ko) * 1992-12-08 1999-06-15 아키오 하라 초경질막 피복부재 및 그 제조방법
US5494635A (en) * 1993-05-20 1996-02-27 Valenite Inc. Stratified enriched zones formed by the gas phase carburization and the slow cooling of cemented carbide substrates, and methods of manufacture
DE4340652C2 (de) * 1993-11-30 2003-10-16 Widia Gmbh Verbundwerkstoff und Verfahren zu seiner Herstellung
US5585176A (en) * 1993-11-30 1996-12-17 Kennametal Inc. Diamond coated tools and wear parts
US5841045A (en) * 1995-08-23 1998-11-24 Nanodyne Incorporated Cemented carbide articles and master alloy composition
SE506949C2 (sv) * 1996-07-19 1998-03-09 Sandvik Ab Hårdmetallverktyg med borerad ytzon och användning av detta för kallbearbetningsoperationer
SE514667C2 (sv) * 1996-07-19 2001-04-02 Sandvik Ab Skärverktygskär av hårdmetall belagt med diamant
SE9603721L (sv) * 1996-10-10 1998-04-11 Sandvik Ab Efterbehandlad diamantbelagd kropp
JPH10138027A (ja) * 1996-11-11 1998-05-26 Shinko Kobelco Tool Kk ドリル用超硬合金および該合金を用いたプリント基板穿孔用ドリル
DE19922057B4 (de) * 1999-05-14 2008-11-27 Widia Gmbh Hartmetall- oder Cermet-Körper und Verfahren zu seiner Herstellung
US6638474B2 (en) * 2000-03-24 2003-10-28 Kennametal Inc. method of making cemented carbide tool
SE521488C2 (sv) * 2000-12-22 2003-11-04 Seco Tools Ab Belagt skär med järn-nickel-baserad bindefas

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0279898B1 (de) 1987-02-27 1991-08-14 Ernst Winter &amp; Sohn (GmbH &amp; Co.) Verfahren zum Auftragen einer Verschleissschutzschicht und danach hergestelltes Ezeugnis
US5139372A (en) 1990-03-30 1992-08-18 Sumotomo Electric Industries, Ltd. Polycrystalline diamond tool and method for producing the polycrystalline diamond tool
EP0752293A2 (de) 1995-07-05 1997-01-08 Ngk Spark Plug Co., Ltd Diamantbeschichteter Gegenstand und Verfahren zu seiner Herstellung
US5716170A (en) 1996-05-15 1998-02-10 Kennametal Inc. Diamond coated cutting member and method of making the same
DE19914585C1 (de) 1999-03-31 2000-09-14 Cemecon Ceramic Metal Coatings Diamantbeschichtetes Werkzeug und Verfahren zu seiner Herstellung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1390566A2

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1649955A1 (de) * 2003-07-31 2006-04-26 A.L.M.T. Corp. Mit diamantfilm überzogenes werkzeug und verfahren zu dessen herstellung
EP1649955A4 (de) * 2003-07-31 2009-10-21 Almt Corp Mit diamantfilm überzogenes werkzeug und verfahren zu dessen herstellung
US7883775B2 (en) 2003-07-31 2011-02-08 A.L.M.T. Corp. Diamond film coated tool and process for producing the same
WO2007048154A1 (de) * 2005-10-28 2007-05-03 Boehlerit Gmbh & Co. Kg. Hartmetall für schneidplatten von kurbelwellenfräsern

Also Published As

Publication number Publication date
CN1463303A (zh) 2003-12-24
JP2004529270A (ja) 2004-09-24
WO2002092866A3 (de) 2003-03-13
EP1390566A2 (de) 2004-02-25
HUP0302074A2 (hu) 2003-09-29
CN1296518C (zh) 2007-01-24
US20040141867A1 (en) 2004-07-22

Similar Documents

Publication Publication Date Title
WO2002092866A2 (de) Mit einer diamantschicht überzogener verbundwirkstoff und verfahren zu dessen herstellung
EP2010687B1 (de) Hartmetallkörper und verfahren zu dessen herstellung
DE60133705T3 (de) Werkzeug aus einem gesinterten Bornitrid Körper mit beschichteter Oberfläche
DE69527124T3 (de) Harter Verbundwerkstoff für Werkzeuge
DE3211047C2 (de)
EP1280629A1 (de) Nickel-diamant beschichteter sägedraht mit verbesserter verankerung der diamantpartikel
AT15596U1 (de) Sputtertarget und Verfahren zur Herstellung eines Sputtertargets
DE112012002094T5 (de) Siliziumcarbidpulver und Verfahren für die Herstellung von Siliziumcarbidpulver
EP0200088B1 (de) Verschleissfester beschichteter Hartmetallkörper und Verfahren zu seiner Herstellung
EP1664363A1 (de) Hartmetall- oder cermetkörper und verfahren zu seiner herstellung
DE69823495T2 (de) Beschichtung eines karbidverbundkörpers oder eines karbidenthaltenden cermets mit hartem material
EP0558485B1 (de) Verfahren zur herstellung eines beschichteten hartmetallschneidkörpers
EP1511870B1 (de) Hartmetall-substratkörper und verfahren zu dessen herstellung
EP1095168A1 (de) Hartmetall- oder cermet-körper und verfahren zu seiner herstellung
DE10360482B4 (de) Harter Überzug mit hervorragender Haftung
EP0758407B1 (de) Cermet und verfahren zu seiner herstellung
DE69829076T2 (de) Beschichtetes schneidwerkzeug aus zementiertem karbid und verfahren zum beschichten desselben mit diamant
EP0599869A1 (de) Herstellung von werkzeug mit verschleissfester diamantschneide.
DE19752289C1 (de) Gesinterter Hartmetall-Formkörper
DE10130590B4 (de) Verbundwerkstoff und Verfahren zu dessen Herstellung
DE10297020T5 (de) Mehrkomponentenkeramikpulver, Verfahren zum Herstellen von Mehrkomponentenkeramikpulver, Sinterkörper und Verfahren zum Herstellen eines Sinterkörpers
DE102008048967A1 (de) Hartmetallkörper und Verfahren zu dessen Herstellung
EP3484643A1 (de) Verfahren zum herstellen eines hartmetallprodukts und hartmetallprodukt
KR20220115559A (ko) 대안적인 바인더를 갖는 구배 초경합금
AT504909B1 (de) Hartmetallkörper mit einer beschichtung aus kubischem bornitrid

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): CN HU IL IN JP PL US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 028016912

Country of ref document: CN

AK Designated states

Kind code of ref document: A3

Designated state(s): CN HU IL IN JP PL US

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

WWE Wipo information: entry into national phase

Ref document number: 2002740345

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 01366/KOLNP/2003

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2002589729

Country of ref document: JP

Ref document number: 10477981

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2002740345

Country of ref document: EP