WO2002073770A1 - Dispositif electronique alimente par batterie et procede de commande de ce dispositif - Google Patents

Dispositif electronique alimente par batterie et procede de commande de ce dispositif Download PDF

Info

Publication number
WO2002073770A1
WO2002073770A1 PCT/JP2002/002192 JP0202192W WO02073770A1 WO 2002073770 A1 WO2002073770 A1 WO 2002073770A1 JP 0202192 W JP0202192 W JP 0202192W WO 02073770 A1 WO02073770 A1 WO 02073770A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
unit
control unit
output voltage
driving
Prior art date
Application number
PCT/JP2002/002192
Other languages
English (en)
French (fr)
Inventor
Shunsuke Koyama
Teruhiko Fujisawa
Koji Kitazawa
Original Assignee
Seiko Epson Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corporation filed Critical Seiko Epson Corporation
Priority to JP2002572701A priority Critical patent/JP3945404B2/ja
Priority to CNB028015797A priority patent/CN100361365C/zh
Priority to EP02702838A priority patent/EP1367687A4/en
Publication of WO2002073770A1 publication Critical patent/WO2002073770A1/ja

Links

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04GELECTRONIC TIME-PIECES
    • G04G21/00Input or output devices integrated in time-pieces
    • G04G21/04Input or output devices integrated in time-pieces using radio waves
    • GPHYSICS
    • G04HOROLOGY
    • G04GELECTRONIC TIME-PIECES
    • G04G19/00Electric power supply circuits specially adapted for use in electronic time-pieces
    • G04G19/08Arrangements for preventing voltage drop due to overloading the power supply
    • GPHYSICS
    • G04HOROLOGY
    • G04RRADIO-CONTROLLED TIME-PIECES
    • G04R60/00Constructional details
    • G04R60/06Antennas attached to or integrated in clock or watch bodies
    • G04R60/10Antennas attached to or integrated in clock or watch bodies inside cases
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0063Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with circuits adapted for supplying loads from the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • H02J7/007184Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage in response to battery voltage gradient

Definitions

  • the present invention relates to an electronic device operating with a battery as a power supply and a control method thereof.
  • Portable electronic devices such as laptop personal computers, word processors, electronic organizers, and portable electronic devices such as compact disc players, LCD TVs, and camera-integrated video tape recorders, which are used indoors and out, are powered by batteries. Emphasis is placed on ease of use and basic performance at the time of battery drive. In view of such circumstances, such electronic devices are generally configured to be able to use rechargeable secondary batteries such as rechargeable nickel-power batteries and nickel-hydrogen batteries.
  • FIG. 11 is a block diagram showing an example of the configuration of the electronic device.
  • the electronic device 200 constantly detects the output voltage of the secondary battery, and compares the voltage with a predetermined threshold voltage to monitor the arrival of the charge timing of the secondary battery, and the control unit 210; And a load group 220 configured by various loads.
  • the control unit 210 of the electronic device 200 After starting to detect the output voltage of the secondary battery, the control unit 210 of the electronic device 200 having such a configuration drops the output voltage to a predetermined threshold voltage (for example, 3.0 V). When it detected that the switch SS 1 was switched from on to off, the power supply to the load group 220 was stopped.
  • a predetermined threshold voltage for example, 3.0 V
  • the battery is used for a long time, the characteristics will deteriorate and especially the internal resistance will increase. Therefore, in a situation where the remaining capacity of the battery is reduced and the output voltage is reduced, the power supply voltage drops rapidly even if only a small amount of consumption current flows out of the battery. There was a problem that 10 would lead to a malfunction. Further, in the electronic device, even after the power supply to the load group 220 is stopped, the power supply to the control unit 210 is continued. Here, a load for driving the control unit 210 is lighter than various loads constituting the load group 220. The output voltage of the secondary battery is recovered by releasing it from the heavy load (shown in FIG. 12).
  • the control unit 210 is called a light load
  • the load group 220 is called a heavy load.
  • A) More specifically, the output voltage of the secondary battery drops by the amount obtained by multiplying the consumption current by the internal resistance of the secondary battery, so that the output voltage of the secondary battery is released from the heavy load with a large consumption current.
  • control unit 210 When control unit 210 detects that the output voltage of the secondary battery has recovered, switch SS 1 is switched from off to on again to resume the power supply to the heavy load, but the recovered secondary battery output is restored. The voltage immediately reaches the threshold voltage which turns off switch SS1. As described above, the control unit 210 repeatedly executes processing such as supplying power to heavy load (hereinafter referred to as false detection operation) even though the heavy load can not be driven normally.
  • false detection operation processing such as supplying power to heavy load
  • the present invention has been made in view of the above-described circumstances, and a first object of the present invention is to prevent a malfunction due to a drop in battery output voltage in a situation where the remaining capacity of the battery is decreasing. It is in providing the electronic device which can be done.
  • a second object of the present invention is to provide an electronic device in which the above false detection operation is prevented.
  • a battery, a plurality of load units driven by the battery, and a plurality of the output voltages of the battery at the time of driving the plurality of load units drop to a first threshold voltage.
  • a first control unit for limiting the drive by the battery of a part of the load unit, and an output voltage of the battery having dropped to a second threshold voltage after the drive of a part of the plurality of load units is limited.
  • an electronic device comprising: at least a part of the plurality of load units by the battery; and a second control unit for stopping driving of the first control unit.
  • the second control part monitors the output voltage of the battery, and this is the second threshold value.
  • the driving of the multiple load units and the first control unit is stopped. Be Therefore, it is possible to prevent the malfunction of the first control unit caused by the decrease of the output voltage of the battery.
  • the plurality of load units include a heavy load unit and a light load unit that consumes less power than the heavy load unit
  • the first control unit is configured to drive the plurality of load units.
  • the first control unit outputs a start signal for starting the second control unit when the output voltage of the battery at the time of driving the plurality of load units drops to the first threshold voltage.
  • the voltage drop due to the internal resistance of the battery at the time of driving the light load unit, the first control unit and the second control unit, and the case where only the second control unit is driven The difference from the voltage drop due to the internal resistance of the battery is smaller than the detection resolution of the voltage in the second control unit.
  • the heavy load unit includes a wireless communication unit, and the first control unit controls the heavy load unit to be intermittently driven by the battery.
  • Means for terminating intermittent driving of the heavy load part by the battery when the output voltage of the battery drops when the heavy load part is driven by the battery to the first threshold voltage The second control unit is means for responding to a change in the output voltage of the battery at a higher speed than the first control unit, and intermittent driving of the heavy load unit is performed by the battery. And cutting off the power supply from the battery to the first control unit when the output voltage of the battery falls below a third threshold voltage during a period in which the heavy load unit is not driven by the battery.
  • Heavy load section Means for terminating the intermittent drive of
  • the electronic device is a means that responds faster to the change of the output voltage of the battery than the first control unit, and the heavy load unit is driven by the battery.
  • the battery control apparatus further comprises a third control unit for prohibiting the heavy load unit from being driven by the battery when the output voltage of the battery at the time of falling falls to a fourth threshold voltage lower than the first threshold voltage.
  • the light load unit is The first control unit includes the light load notifying that the pond replacement time has arrived, and the charge time when the output voltage of the battery at the time of driving the plurality of load units drops to the first threshold voltage.
  • drive a light load to notify the arrival of the battery replacement time.
  • the light load notifying the arrival of the charging time may be a display device for displaying the character message or the image and notifying the arrival of the charging time.
  • the light load notifying the arrival of the charging time may be a warning sound or an alarm device generating a vibration to notify the arrival of the charging time.
  • the load unit includes a wireless communication function unit which is driven by the battery and performs intermittent bidirectional wireless communication with an external device, and the electronic device detects the state of the battery. And a wireless communication function unit other than the wireless communication function unit in the plurality of load units when wireless communication is performed when the detection unit detects that the state of the battery has reached a predetermined state. And a fourth control unit that prohibits driving of a predetermined load unit.
  • the wireless communication quality can be maintained even when the output voltage of the battery is lowered.
  • the detection means is a circuit for detecting an output voltage of the battery.
  • the detection means is a circuit that detects the remaining amount of the battery.
  • the fourth control unit may determine a load unit or a combination of a plurality of load units whose driving should be inhibited when wireless communication is performed, according to the state of the battery detected by the detection unit.
  • the electronic device performs low-power consumption mode or wireless communication with the external device for performing wireless communication of the synchronization signal at predetermined intervals in order to maintain synchronization of the wireless communication network formed with the external device. It is possible to take an active mode in which actual wireless data communication is performed, and the fourth control unit performs wireless communication of the synchronization signal in the low power consumption mode and the passive mode. Prohibits driving of one or more load units other than the wireless communication unit Ru.
  • the wireless communication uses, for example, Bluetooth (registered trademark).
  • the load unit whose driving is prohibited when the wireless communication is performed, a sound notification function unit by driving a buzzer, a vibration notification function unit by driving a vibration motor, and an LED. And one of the functional units of the display functional unit by driving the liquid crystal display unit.
  • the present invention provides a detection process of detecting an output voltage of a battery provided as a power source in an electronic device having a heavy load part with high power consumption and a light load part with low power consumption; A first control process for limiting the drive of the heavy load part by the battery when the voltage drops to a threshold voltage of 1; and a second threshold value of the output voltage of the battery after the drive of the heavy load part is limited.
  • a control method of an electronic device comprising: a second control process of stopping driving of the heavy load unit and the light load unit by the battery when the voltage drops to a voltage.
  • a program for causing a computer controlling an electronic device to execute such a control method is distributed to a user via a telecommunication line, or such a program is recorded in a computer readable storage medium. It can also be implemented in the aspect of distributing to users.
  • a plurality of load units including a wireless communication function unit for performing intermittent bidirectional wireless communication with an external device; and the wireless communication at the time of executing the wireless communication And a control unit that prohibits driving of at least a part of the load units excluding the functional unit.
  • the present invention provides a wireless communication function unit that performs intermittent bidirectional wireless communication between a battery, a detection unit that detects an electric state of the battery, and an external device. Other than the wireless communication function unit, when wireless communication is being performed when the detection unit detects that the electrical state of the battery has reached a predetermined state. And a fourth control unit that prohibits driving of a predetermined load unit.
  • the present invention also provides a wireless communication function that performs intermittent bidirectional wireless communication between a battery, a detection unit that detects an electric state of the battery, and an external device.
  • a plurality of load parts including a load part, and limiting driving by a part of the plurality of load parts when the output voltage of the battery at the time of driving the plurality of load parts falls to the first threshold voltage
  • the first control unit may be configured by a CPU, and the function of the fourth control unit and the function of the first control unit may be executed together.
  • the control unit sets one or more levels of electromagnetic noise generated by driving to a predetermined level or higher. Prohibit the driving of the functional part of
  • the detection means is a circuit for detecting an output voltage of the battery.
  • the detection means is a circuit that detects the remaining amount of the battery.
  • the control unit may determine a load unit or a combination of a plurality of load units whose driving should be inhibited when wireless communication is performed, according to the state of the battery detected by the detection unit.
  • the electronic device performs low-power consumption mode or wireless communication with the external device for performing wireless communication of the synchronization signal at predetermined intervals in order to maintain synchronization of the wireless communication network formed with the external device. It is possible to take an active mode in which actual wireless data communication is performed, and the control unit performs wireless communication of the synchronization signal in the low power consumption mode and the active mode. Prohibit the driving of one or more load parts other than the wireless communication part.
  • the wireless communication uses, for example, Bluetooth (registered trademark).
  • the load unit whose driving is prohibited when the wireless communication is performed is: A sound notification function unit by driving a buzzer, a vibration notification function unit by driving a vibration setting motor, a light emission notification function unit by driving an LED, a display function unit by driving a liquid crystal display unit Includes any one of the functional units.
  • the present invention relates to an electronic device having a plurality of load units including a wireless communication function unit that operates with electric power from a battery and performs intermittent bidirectional wireless communication with an external device.
  • a detection process of detecting a state of the battery, and wireless communication is performed when the state of the battery reaches a predetermined state, other than the wireless communication function unit in the plurality of load units And a control process for prohibiting driving of a predetermined functional unit of the electronic apparatus.
  • the method of controlling an electronic device comprises: determining a load unit or a combination of a plurality of load units whose driving is to be inhibited when wireless communication is performed, according to the state of the battery detected by the detection unit. including.
  • the electronic device performs low-power consumption mode or wireless communication with the external device in which wireless communication of a synchronization signal is performed at predetermined intervals in order to maintain synchronization of a wireless communication network formed with the external device.
  • the wireless communication of the synchronization signal in the low power consumption mode and the active mode in the low power consumption mode Prohibit the driving of one or more load parts other than the wireless communication part.
  • a program for causing a computer that controls an electronic device to execute the above control method is distributed to a user via a telecommunication line, or such a program is recorded in a computer readable storage medium. It can also be implemented in the form of distribution to users.
  • FIG. 1 is a view showing an appearance of a portable terminal according to a first embodiment of the present invention.
  • FIG. 2 is a block diagram showing the configuration of the mobile terminal.
  • FIG. 3 is a circuit diagram showing a configuration of a second control unit of the mobile terminal.
  • FIG. 4 is a diagram illustrating the relationship between the state of each switch of the mobile terminal and each operation mode. It is.
  • FIG. 5 is a timing chart showing the operation of the mobile terminal.
  • FIG. 6 is a block diagram showing the configuration of a portable terminal according to the second embodiment of the present invention.
  • FIG. 7 is a block diagram showing the configuration of a portable terminal according to the third embodiment of the present invention.
  • FIG. 8 is a block diagram showing the configuration of a portable terminal according to a modification of the embodiment.
  • FIG. 9 is a block diagram showing the configuration of a portable terminal according to the fourth embodiment of the present invention.
  • FIG. 10 is a diagram for explaining the operation of the embodiment.
  • FIG. 11 is a diagram showing the configuration of a conventional electronic device.
  • FIG. 12 is a diagram showing output voltage characteristics in a conventional electronic device.
  • FIG. 13 is a block diagram of a wireless communication system according to a fifth embodiment of the present invention.
  • FIG. 14 is a block diagram showing the configuration of a portable terminal in the same system.
  • Figure 15 is an external view of a watch in the same system.
  • Figure 16 is a cross-sectional view of the same watch.
  • FIG. 17 is a block diagram showing a circuit configuration of the watch.
  • Figure 18 is a block diagram showing the details of the PL L circuit, the receiving circuit and the transmitting circuit of the same watch.
  • FIG. 19 is a circuit diagram showing a configuration of a drive circuit of the watch.
  • FIG. 20 is a sequence diagram showing the operation of the watch.
  • FIG. 21 and Fig. 22 are sunset timing charts showing the operation content of the same watch.
  • FIG. 23 is a flow chart showing the control contents of the central control circuit of the watch.
  • FIG. 24 is a timing chart showing the operation of the watch.
  • FIG. 25 is a circuit diagram showing a configuration of a battery voltage discrimination circuit according to a sixth embodiment of the present invention.
  • FIG. 26 is a flowchart showing the operation of the embodiment.
  • FIG. 27 is a diagram showing an example of the discharge characteristic of the battery in the wristwatch according to the seventh embodiment of the present invention.
  • FIG. 28 is a flowchart showing the operation of the watch.
  • FIG. 29 is a timing chart showing the operation of the watch.
  • FIG. 30 is a timing chart showing the operation of a modification of the fifth to seventh embodiments.
  • FIG. 31 is a circuit diagram showing a configuration of a battery remaining capacity measurement circuit used in a modification of the seventh embodiment.
  • FIG. 1 is a view showing an appearance of a portable information terminal 100 according to a first embodiment of the present invention
  • FIG. 2 is a block diagram showing a configuration of the portable information terminal 100.
  • the portable information terminal 100 shown in FIG. 1 is a wristwatch-type portable information terminal provided with a short distance wireless communication function (for example, Bluetooth etc.), and incorporates a secondary battery 105 as a power source (see FIG. 2).
  • a short distance wireless communication function for example, Bluetooth etc.
  • a secondary battery 105 as a power source
  • the secondary battery 105 is, for example, a rechargeable lithium storage battery having a nominal voltage of 4.0 V and, as shown in FIG. 2, a first control unit 110, a second control unit 120, a heavy load group 14 0, light load group 1 50 etc. Supply power to each part of the terminal.
  • a rechargeable lithium storage battery having a nominal voltage of 4.0 V and, as shown in FIG. 2, a first control unit 110, a second control unit 120, a heavy load group 14 0, light load group 1 50 etc. Supply power to each part of the terminal.
  • small sealed lead storage batteries, manganese dioxide / lithium storage batteries, nickel / hydrogen storage batteries, silver oxide storage batteries, etc. can be used as power sources.
  • the portable terminal according to the present embodiment has two switches S 1 and S 2.
  • the switch S 1 is a positive power supply terminal of the heavy load group 140 and a positive power supply terminal of the first control unit 1 10 in the current path leading the current from the secondary battery 105 to the heavy load group 140. It is inserted in the space between and. Also, the switch S 2 is inserted on the current path connecting the positive electrode of the secondary battery 105 and the first control unit 110. Therefore, in heavy load group 140, current from secondary battery 105 is transmitted through both switches S1 and S2. The first control unit 110 is supplied with current from the secondary battery 105 via the switch S2.
  • the heavy load group (heavy load part) 140 is composed of various loads with large current consumption.
  • the heavy load group (heavy load unit) 140 includes a wireless circuit RF that performs wireless bucket communication with an external device such as a mobile phone or a personal computer via the antenna RA.
  • the heavy load group (heavy load unit) 140 includes a data processing unit B B that processes a single spanned signal by displaying voice information and the like input via the radio circuit RF.
  • the light load group (light load part) 150 is composed of various loads which consume less current than the heavy load group 140.
  • the light load group 150 includes a display unit 151 and an alarm unit 152.
  • the display device 151 is constituted of, for example, a liquid crystal display (L CD) and a liquid crystal drive circuit (not shown).
  • the display unit 15 1 performs clock display, battery remaining amount display, and the like under the control of the first control unit 1 10 and, based on the drive signal ALM supplied from the first control unit 1 2 0, 2 Perform alarm display (for example, “recharge is required. Charge”, etc.) to notify the user that the charge time of rechargeable battery 150 has come.
  • the alarm device 152 includes a sound source that generates an alarm sound signal, a speaker that outputs the alarm sound signal as a sound, a vibrator (not shown), and the like. Under the control of the first control unit 110, the alarm device 152 generates an alarm sound, a vibration and the like at a preset time. Also, the alarm device 152 drives a speaker, a vibrator or the like based on the drive signal ALT supplied from the first control unit 110, and notifies the user of the charging time of the secondary battery 150. Alarm sound (for example, beep sound), vibration etc.
  • the first control unit 110 is configured by a CPU, a ROM, an RAM, and the like.
  • the first control unit 110 controls each part of the terminal in accordance with various control programs stored in the ROM.
  • the first control unit 110 compares the output voltage VC of the secondary battery 105 with the first threshold voltage VH (for example, 3.0 V) preset in the RAM or the like. And As described below, the power supply to heavy load group 140 is controlled based on the comparison result.
  • VH for example, 3.0 V
  • the first control unit 110 turns on the first switch S1 by setting the switching signal SW1 high.
  • the power is supplied to the heavy load group 140.
  • the first control unit 110 keeps the control signal CC at high level.
  • the first control unit 110 performs the following. First, the first control unit 110 turns off the first switch S1 by setting the switching signal SW1 to low level, and stops the power supply to the heavy load group 140. After this, the first control unit 110 does not monitor the output voltage VC of the secondary battery 105, and the switch S1 turns off regardless of the increase or decrease of the output voltage VC of the secondary battery 105. Maintain. In addition, the first control unit 110 is used to notify each of the display unit 15 1 of the light load group 1 50 and the alarm unit 1 52 in order to notify the user of the arrival of the charging time of the secondary battery 105. Supply drive signal ALM, ALT. Further, the first control unit 1 1 0 switches the control signal C C from the high level to the low level.
  • the second control unit 120 switches the output voltage VC of the secondary battery 1 0 5 in place of the first control unit 1 1 0.
  • control of the power supply to the light load group 150 and the first control unit 110 is performed.
  • FIG. 3 is a diagram showing the configuration of the second control unit 120.
  • the second control unit 120 includes a charging resistor R, a capacitor C, a voltage source 120 b, a comparator 120 c, and a P-channel MOS transistor 120 d.
  • the charging resistor R and the capacitor C are interposed in series between the positive power supply terminal of the secondary battery 105 and the ground line, and constitute a battery voltage holding circuit 120a.
  • the capacitor C holds the output voltage VC of the secondary battery 105.
  • the comparator 120c has a positive power supply terminal and a negative power supply terminal.
  • the positive power supply terminal is connected to the positive electrode of the secondary battery 105
  • the negative power supply terminal is a P-channel M ⁇ S transistor. It is connected to the negative electrode of the secondary battery 105 via d and resistance sequentially.
  • the comparator 120c has a reference input terminal (one) and a comparison input terminal (+), and the second threshold voltage VL generated by the voltage source 120b (for example, , 3.0 V) is applied, and the output voltage VC of the secondary battery 105 held in the capacitor C is applied to the comparison input terminal. Further, the output terminal of the comparator 120 is connected to the positive electrode of the secondary battery 105 via an active load such as a resistor or a transistor (both not shown).
  • the gate of the P-channel MOS transistor 120d is grounded via the pull-down resistor R1.
  • the control signal CC from the first control unit 110 is applied to this gate.
  • the first control unit 110 maintains the control signal CC at the high level. While this control signal CC is high, the P-channel MOS transistor 1 0 0d is turned off, and the negative power supply terminal of the comparator 1 2 0c goes into the floating state. For this reason, the output voltage VC of the secondary battery 105 is applied to the output terminal of the comparator 120c through the active load such as the resistor or transistor described above, and a high level switching signal is output from this output terminal. SW2 is obtained. When the switching signal SW2 is high, the switch S2 is turned on.
  • the second control unit 120 turns on the second switch S2 by setting the switching signal SW2 to a high level. Do. Therefore, power is supplied from the secondary battery 105 to the light load group 150 and the first control unit 110.
  • the second control unit 120 turns the second switch S2 by setting the switching signal SW2 to the open level. Turn off. As a result, the power supply from the secondary battery 105 to the light load group 150 and the first control unit 110 is cut off. In this manner, when the power supply to the first control unit 110 is cut off, the signal level of the control signal CC is maintained at the low level thereafter. This is because the signal line of the control signal CC connecting the first control unit 1 1 0 and the second control unit 1 2 0 is grounded via the Burundant resistance R.
  • the second control unit 120 described above consumes power only in the comparator 120c, power consumption is small compared to the first control unit 110.
  • the secondary battery 1 instead of interposing a P channel MOS transistor 120 d between the negative power supply terminal of the comparator 120 c and the negative electrode of the secondary battery 105, the secondary battery 1 can be used.
  • a P-channel MOS transistor 1 20 d may be inserted between the positive terminal of 0 5 and the positive power supply terminal of the comparator 1 2 0 c.
  • the negative power supply terminal of the comparator 120c may be connected to the negative electrode of the secondary battery 105.
  • Fig. 4 is a diagram showing the relationship between the states of switch S l and switch S 2 and each operation mode
  • Fig. 5 is a timing chart for explaining the control operation of portable information terminal 100. . The operation of this embodiment will be described below with reference to these figures.
  • both the switch S1 and the switch S2 are turned on, and at least the heavy load group 140 and the first control unit 110 operate.
  • This heavy load mode is the one that consumes the most current.
  • the switch S1 is turned off, the switch S2 is turned on, and the light load group 150 and the first control unit 110 operate.
  • the current consumption in this light load mode is less than the current consumption in heavy load mode.
  • both switches S 1 and S 2 are turned off, and only the second control unit 1 20 operates.
  • the lowest current consumption in this light load mode is 50 mA, 50 A, and 0.1 A, respectively (see Figure 4).
  • This output voltage is a voltage obtained by subtracting the voltage drop due to the internal resistance from the battery voltage of the secondary battery 105.
  • a dashed dotted line is a battery voltage of the secondary battery 105.
  • the operation mode of the portable information terminal 100 shifts from the lightest load mode to the light load mode (communication standby state), and power supply to the first control unit 10.10 and the light load group 150 is started. Ru.
  • the first control unit 110 starts supplying power to the heavy load group 140. In order to do so, a high level switching signal SW 1 is output to the first switch S 1.
  • the operation mode of the portable terminal 100 shifts from the light load mode to the heavy load mode (communication state).
  • the first control unit 110 starts detection of the output voltage VC of the secondary battery 105 when it shifts to the heavy load mode, and compares it with the first threshold voltage VH set in the RAM etc. Monitor the While the output voltage VC is larger than the first threshold voltage VH (see C in FIG. 5), the first control unit 1 1 0 maintains the switching signal SW1 at a high level to supply power for the heavy load group 1 40. Continue supply. Then, when the first control unit 110 detects that the output voltage VC has reached the first threshold voltage VH during the evening communication (see B 1 shown in FIG. 5), the switching signal SW 1 is low. At the level, the first switch S1 is turned off, and the power supply to the heavy load group 140 is stopped.
  • the operation mode of the portable information terminal 100 shifts from the heavy load mode to the light load mode.
  • the first control unit 110 maintains the switching signal SW 1 at the same level regardless of the increase or decrease of the output voltage VC of the secondary battery 105.
  • the output voltage VC of the secondary battery 105 drops by the product of the load current and the internal resistance of the battery.
  • Is smaller compared to the voltage drop Vd l (24 V; see Fig. 5) in the large heavy load mode with the consumption current ( 50 mA). Therefore, after the transition to the light load mode, the output voltage VC of the secondary battery 105 recovers from the first threshold voltage VH (shown in FIG. 5, B 1 ⁇ B 2), and the light load group 150 It becomes possible to drive.
  • the first control unit 1 1 0 When the output voltage VC of the secondary battery 1 0 5 is recovered, the first control unit 1 1 0 Generates ALM and ALT and outputs them to the display unit 15 1 and alarm unit 1 52 respectively and switches the control signal CC from high level to low level.
  • the second control unit 120 starts detection of the output voltage VC of the secondary battery 105 instead of the first control unit 110, and the voltage source 1 20
  • the output voltage VC is monitored by comparison with the second threshold voltage VL generated at b. While the output voltage VC is larger than the second threshold voltage VL (see D in FIG. 5), the second control unit 120 maintains the switching signal SW2 at a high level, Continue the power supply.
  • the display device 15 1 displays a message to notify the user that the charging time of the secondary battery 105 has arrived based on the drive signal A LM supplied from the first control unit 110.
  • the alarm device 1 52 also generates an alarm sound, a vibration, etc. to notify the user of the arrival of the charging time based on the drive signal ALT. It will
  • the second control unit 120 detects that the output voltage VC has reached the second threshold voltage VL (see B 3 shown in FIG. 5), the low level switching signal SW2 is switched to the second switch S 2. Output to 2 and stop the power supply to the light load group 150 and the first control gate 110.
  • the second switch S 2 is turned off, the operation mode of the portable information terminal 1 0 0 shifts from the light load mode to the light load mode.
  • the second control unit 120 continues to operate, and detection of the output voltage VC of the secondary battery 105 is continued (see E in FIG. 5).
  • the operation mode of the portable information terminal 100 shifts from the light load mode to the lightest load mode, the voltage drop due to the internal resistance of the secondary battery 105 is further reduced, and the output voltage VC of the secondary battery 105 is reduced. Recovers.
  • the second control unit 120 is the output voltage VC of the secondary battery 105. It is also conceivable to detect the recovery and to switch on the second switch S 2 again.
  • the recovery of the output voltage VC of the secondary battery 105 is extremely small, and the recovery of the output voltage VC is not detected by the second control unit 120.
  • the fluctuation of the output voltage VC which can be generally detected by the second control unit 120 is ⁇ 0.5 V It is an extent
  • the user recognizes that the charging time has come by alarm sound or the like, and charges the secondary battery 105.
  • a charger equipped with a circuit for controlling the charging voltage and charging current in advance and the secondary battery 105 are directly connected by a terminal, a cable or the like.
  • the output voltage V C recovers.
  • the second control unit 120 detects that the output voltage VC is recovered by the charging of the secondary battery 105, the second control unit 120 switches the switching signal SW 2 from the low level to the high level.
  • the second switch S2 is turned on to shift from the lightest load mode to the light load mode, and power supply to the light load group 150 and the first control unit 110 is started.
  • the subsequent operation can be described in the same manner as described above, and thus the description thereof is omitted.
  • the operation mode of the portable information terminal is the small current consumption mode. Transition to the lightest light load mode. Although the output voltage of the secondary battery recovers when entering the light load mode, the output voltage recovered in this case is extremely small, and recovery of the output voltage is not detected. That is, after the second control unit detects that the secondary battery has reached the discharge end voltage, the secondary battery is charged. No error detection operation is performed due to the recovery of the output voltage of the secondary battery or the like until power is supplied.
  • the operation mode is switched from the heavy load mode to the light load mode.
  • the light load group is driven by using the recovery of the output voltage of the secondary battery, and the user is notified of the time to charge the secondary battery. Therefore, it is possible to fully draw out the potential of the secondary battery and to notify the user of the time to charge the secondary battery.
  • the first threshold voltage VH and the second threshold voltage VL are set to the same value
  • the first threshold voltage VH is set to 3.0 V.
  • the second threshold voltage may be set appropriately, for example, set to 2.5 V.
  • the value of these threshold voltages can be set to an optimum value using the above-mentioned voltage drop of the secondary battery due to the consumption current by calculation or experiment.
  • the radio circuit RF and the data processing unit BB may be driven intermittently.
  • the first control unit 110 detects the output voltage VC of the secondary battery 105 while the radio circuit RF and the data processing unit BB are operating, and compares it with the first threshold voltage VH. You can do
  • the wristwatch type portable information terminal 100 equipped with the short distance wireless communication function has been described as an example, but the present invention is not limited to the wristwatch type in which the wireless communication function is not installed. It is applicable also to the portable information terminal of.
  • PHS personal handy phone systems
  • mobile phones laptop computers, personal computers, Bluetooth devices, devices equipped with IEEE 802.11b, White Cap, IEEE 802.11a, Wireless 1394, etc. It can be applied to all electronic devices provided with various loads with different current consumption, such as devices equipped with IrDA.
  • the present invention is also applicable to a portable information terminal using a disposable primary battery as a power source. When applied to a primary battery, it can fully exploit the battery's potential and ensure long-term battery life.
  • FIG. 6 is a view showing the configuration of a portable information terminal 10 OA according to a second embodiment of the present invention.
  • the portable information terminal 1 00 A has a reset switch S3. This is a switch that is turned on only when the reset button (not shown) is pressed.
  • the first control unit 1 10 A also has the functions of the first control unit 1 10 and the second control unit 120 in the first embodiment. Except for these points, the configuration of the portable information terminal 10 OA is almost the same as the portable information terminal 100 shown in FIG. Therefore, the corresponding parts are denoted by the same reference numerals and the description thereof is omitted.
  • the first control unit 110A When it is detected that the output voltage VC of the secondary battery 105 has dropped to reach the first threshold voltage VH, the first control unit 110A turns off the first switch S1. When the output voltage VC of the secondary battery 105 is recovered by turning off the first switch S1, the first control unit 1 10A generates the drive signals ALM and ALT, and the display device 1 5 1 And, while outputting to the alarm device 52 respectively, the second threshold voltage VL is read from the RAM etc. and the monitoring of the output voltage VC is continued. The display device 15 1 and the alarm device 1 52 notify the user of the arrival of the charge timing of the secondary battery 105 based on the drive signals ALM and ALT, as in the first embodiment described above.
  • the first control unit 110A switches the low level switching signal S.
  • Output W2 to the second switch S2 turn off the switch S2, and stop the power supply to all the loads including the first control section 1 1 0 A.
  • the secondary battery 105 is charged and the reset button (not shown) is pressed.
  • the reset button is pressed by the user, the reset switch S3 is turned on and power supply to the first control unit 1 1 0 A is started.
  • the first control unit 1 1 OA is started by such power supply, the first control unit 1 1 OA is configured to switch the high level switching signal SW 2 to the second to resume monitoring of the output voltage VC of the secondary battery 1 0 5.
  • the second switch S 2 is turned on, the first control unit 1 1 O A resumes monitoring of the output voltage VC of the secondary battery 1 0 5.
  • the subsequent operation is the same as that of the above-described embodiment, and thus the description thereof will be omitted.
  • the first control unit 11 OA can be configured to control the switching of the first switch S1 and the second switch 2. According to this configuration, since it is not necessary to newly provide the second control unit 120, it is possible to reduce the number of parts and to reduce the manufacturing cost.
  • the various functions relating to the first control unit 11 OA in the above embodiment can also be realized using software.
  • the software is installed from a recording medium (for example, a CD-ROM or the like) on which the software is recorded to the portable information terminal 100 A via a personal computer, or from a server provided with the software.
  • the software is downloaded via a network (for example, an internet network etc.), and the software is installed on the portable information terminal 10 OA via a personal computer or the like.
  • a network for example, an internet network etc.
  • FIG. 7 is a block diagram showing the configuration of a portable information terminal 100 B according to a third embodiment of the present invention.
  • OR game ⁇ G 1 is added to the configuration shown in FIG.
  • the OR gate G1 outputs a logical sum of the control signal CC output from the first control unit 1 1 0 B and the switching signal SW 2 output from the second control unit 1 2 0 B.
  • switch S 2 is the output of OR gate G 1 It is on when the signal is high and off when the signal is low.
  • the first control unit 1 1 0 B When the switch S 2 is in the on state, the first control unit 1 1 0 B performs on / off switching of the switch S 1 to intermittently drive the heavy load group 140. More specifically, the first control unit 1 1 0 B turns on the switch S 1 by setting the switching signal SW 1 high while communication is being performed by the radio circuit RF and the data processing unit BB. Supply power from battery 1 05 to heavy load group 1 40. In addition, the switch S 1 is turned off by turning the switching signal SW 1 low during the other period, and the power supply to the heavy load group 140 is cut off. In addition, the first control unit 110 B compares the output voltage VC of the secondary battery 105 with the first threshold voltage VH in a period in which the switch S 1 is in the on state, and the former is higher than the latter. Repeat intermittent driving of heavy load group 1 40 under the conditions. Furthermore, the first control unit 1 1 0 B keeps the control signal CC high while the switch S 1 is in the on state, and keeps the control signal CC low during the other
  • the second control unit 120 B does not have the P-channel MOS transistor 120 d and the resistor R 1 as shown in FIG. 3.
  • the negative power supply terminal of the comparator 120 c is directly connected to the negative electrode of the secondary battery 105.
  • the comparator 120c constantly monitors the output voltage VC of the secondary battery 105. If this is higher than the second threshold voltage VL, the switching signal SW2 is set to high level, and if it is lower, the switching signal SW2 is set to low level. Do.
  • the operation of this embodiment is substantially the same as that of the first embodiment, but there are two opportunities for the first control unit 1 10 B to stop its operation in this embodiment.
  • the first trigger is when the output voltage VC of the secondary battery 105 in the heavy load mode reaches the first threshold voltage VH during the intermittent drive of the heavy load group 140, and the second trigger is the heavy load group This is the case where the output voltage VC of the secondary battery 105 in the light load mode reaches the second threshold voltage VL during the intermittent drive of 140.
  • the first control unit 110 B compares the output voltage VC of the secondary battery 105 with the first threshold voltage VH while the switch S 1 is in the on state. Then, when the output voltage VC of the secondary battery 105 is higher than the first threshold voltage VH, the intermittent drive of the heavy load group 140 is continued. On the other hand, when the output voltage VC of the secondary battery 105 drops and reaches the first threshold voltage VH, the first control unit 1 10 B stops the intermittent drive of the heavy load group 140 and the controller.
  • the low signal CC is fixed at the low level, and an operation is performed to notify the user that the charging time has come, as in the first embodiment.
  • the output voltage VC of the secondary battery 1 0 5 is further lowered, and the output voltage in the light load mode VC goes below the second threshold voltage VL.
  • the switching signal SW2 is set to the low level by the second control unit 1 2 0 B, the switch S 2 is turned off, and the power supply to the first control unit 1 1 0 B is cut off.
  • the output voltage VC of secondary battery 105 when switch S 1 is in the off state (in light load mode) is the second threshold voltage VL
  • the switching signal SW2 is set to low level by the second control unit 120B.
  • the switch S 2 is turned off and the power supply to the first control unit 1 1 0 B is cut off, and the first control unit 1 1 0 B stops any operation including the intermittent operation of the heavy load group 1 40 Do.
  • the output voltage VC of the secondary battery 105 may drop sharply.
  • the first control unit 1 10 B is configured of a CPU or the like, it is difficult to respond to a sharp drop in the output voltage VC of the secondary battery 105.
  • the output voltage VC of the secondary battery 105 drops sharply when the heavy load group 140 is being intermittently driven, and the first control unit 1 1 0
  • the voltage lower than the lower limit voltage at which B can operate normally may cause a runaway of the first control unit 110 B.
  • the output voltage VC of the secondary battery 1 0 5 in the light load mode is set by the second control unit 1 2 0 B capable of high-speed response during the intermittent drive of the heavy load group 1 40. It is monitored and as soon as it falls below the second threshold voltage VL, the switch S2 is switched off. Therefore, the operation of the first control unit 1 1 0 B can be stopped before the 1st control unit 1 1 0 B runs away due to the rapid reduction of the power supply voltage.
  • FIG. 8 is a block diagram showing the configuration of a portable information terminal 1 0 0 C according to a modification of the present embodiment FIG. The positions of switches S 1 and S 2 in the third embodiment are changed.
  • the switch S 1 is inserted in the section between the negative power supply terminal of the heavy load group 140 and the negative power supply terminal of the first control unit 110 B, and the switch S 2 is It is inserted between the negative power supply terminal of the first control unit 1 1 0 B and the negative electrode of the secondary battery 1 0 5.
  • the other points are the same as those of the third embodiment. The same operation as the third embodiment can be obtained also in this modification.
  • FIG. 9 is a block diagram showing the configuration of a portable information terminal 100 D according to a fourth embodiment of the present invention.
  • a third control unit 130 and an AND gate G2 are added to a portable information terminal B (see FIG. 7) according to the third embodiment.
  • the technical significance of this newly added element will be described with reference to FIG.
  • the output voltage VC in the light load mode of the secondary battery 105 gradually decreases as the operation time of the portable information terminal increases, and at some time It declines with a steeper time gradient than before.
  • the internal resistance of the secondary battery 105 gradually increases as the operating time increases, as indicated by curve CR 1, and the time gradient of the output voltage VC is As it becomes steep, the time gradient of the increase in internal resistance also becomes steep.
  • the output voltage VC of the secondary battery 105 in the heavy load mode is lower than the output voltage VC in the light load mode by the increase of this voltage drop.
  • the sharp drop of the output voltage VC in the light load mode begins, the sharp drop of the output voltage VC in the heavy load mode also begins . Therefore, at a time when it has not been used, as in the third embodiment, the output voltage VC of the secondary battery 105 in the light load mode becomes less than the second threshold voltage VL. 2 control unit 1 20 B quickly If the switch S2 is detected and shut off, it is possible to prevent the runaway of the first control unit 1 1 0 B due to the drop of the power supply voltage.
  • a third control unit 130 and an AND gate G 2 are added.
  • the third control unit 130 is a simple circuit having, for example, a comparator as a main component, and the output voltage VC of the secondary battery 105 is slightly lower than the first threshold voltage VH. 3)
  • the third switching signal SW3 is set to the high level, and when the output voltage VC is lower, the third switching signal SW3 is set to the one level.
  • the AND gate G2 outputs a logical product of the third switching signal SW3 and the first switching signal SW1 output by the first control unit 1 1 0 B.
  • the switch S 1 is on when the output signal of the AND gate G 2 is high and off when it is low.
  • the first threshold voltage VH is set with some margin. 2. 5 V, 3 V second threshold voltage VL, and 2.4 V third threshold voltage VM.
  • VH first threshold voltage
  • the intermittent drive of heavy load group 1 40 and the operation of the first control unit 1 1 0 B are forcibly stopped.
  • the output voltage VC of the secondary battery 105 in the heavy load mode exhibits a temporal change as shown by a curve CVH 2 in FIG.
  • the third switching signal VM can be made low in a required time of about ms, and the switch S 1 can be forcibly turned off. Therefore, it is possible to prevent the runaway of the first control unit 1 1 0 B due to the reduction of the power supply voltage.
  • the first control unit 1 1 0 is a radio circuit when intermittent operation of the radio circuit RF is performed.
  • the difference between the output voltage of the battery 105 when driving RF and the output voltage when not driving is determined, and the internal resistance of the battery 105 is calculated from this difference. Then, when the internal resistance rises and reaches a predetermined threshold, the switch S 1 is turned off, an alarm is outputted by the alarm device 152, and the second control unit 120 is driven.
  • E. Fifth embodiment Wireless communication technology using the Bluetooth (registered trademark) standard is provided as one of the technologies for wirelessly connecting information terminals such as mobile phones, laptop computers, and watch-type small information devices (hereinafter referred to as watches). There is.
  • wireless data can be transmitted and received between information terminals located at a fixed short distance. For example, when the user operates the watch, the information in the notebook computer is displayed on the watch. If the call is displayed on the unit or the mobile phone is called, the mobile terminal can notify of such a message.
  • a wristwatch generally uses a battery as a power source.
  • some wristwatches have buzzers for alarms and vibrators for vibrators.
  • the output voltage of the battery may drop significantly.
  • the wristwatch is executing wireless data communication by the wireless communication function unit, such a sudden drop in the output voltage of the battery may cause a momentary loss of communication. It may occur. This problem is likely to occur especially when the battery is exhausted and the battery's output voltage is low, when excessive current is consumed from the battery.
  • the present embodiment has been made in consideration of the above points, and it is an object of the present invention to ensure the normal execution of a wireless communication function in a portable wireless device having many functional units including a wireless communication functional unit. It is said that.
  • FIG. 13 is a block diagram of a wireless communication system in which the present invention is applied to a wristwatch (hereinafter simply referred to as a wristwatch) 50 as a portable information device.
  • a wristwatch hereinafter simply referred to as a wristwatch 50 as a portable information device.
  • the system includes a watch 50, a portable terminal 45 owned by the user of the watch 50, and other portable terminals 45 A, 45 B, 45 C, ... ing.
  • Each mobile terminal 4 5, 4 5 A, 4 5 B, 4 5 C is a network 30 through the base station 3 1 and 30 It is possible to connect to each mobile terminal via the network 30, or to another network such as the Internet and a server device (not shown) connected to the network 30. There is.
  • the watch 50 is provided with a local wireless communication function by Bluetooth (registered trademark) with the portable terminal 45.
  • the portable terminal 45 has a function to perform wireless communication between the network 30.
  • FIG. 14 is a diagram showing a main configuration of the portable terminal 45.
  • the portable terminal 45 executes signal exchange between the control circuit 4 5 a that controls the whole portable terminal 4 5 and the wristwatch 50 via the antenna 45 e.
  • High frequency circuit 45 d a transmission circuit 45 b that generates a transmission signal under control of the control circuit 4 5 a and outputs the signal to the high frequency circuit 45 d, and a received signal input from the high frequency circuit 45 d
  • a receiver circuit 45c that demodulates the signal and outputs it as received data to the control circuit 45a.
  • the portable terminal 45 includes a telephone communication circuit 45 f for performing telephone communication with the other portable terminals 45 A, B, C,... Via the network 30.
  • the portable terminal 45 uses Bluetooth as a wireless communication protocol as described above. For this reason, 2.4 [G H z] is used as the frequency of the signal output from the transmitter circuit 45 a. In addition, the wireless communication distance of the output signal of the portable terminal 45 is about 10 m (class 3 defined by the Bluetooth standard). If the wristwatch 50 is within the range of the wireless communication distance, the wristwatch 50 Wirelessly communicate with each other.
  • FIG. 15 is an external view of the watch 50.
  • the watch 50 is composed of a belt 50 B and a belt bracket 5 0 C for attaching the watch body 5 0 A and the arm watch 5 0 to the user's arm.
  • FIG. 16 is a cross-sectional view showing a state in which the watch main body 50 A is cut along line A′—A in FIG.
  • the watch 50 has a cover glass 71, a casing 72, a back cover 76, and an analog watch module 73 and a case formed by these.
  • the circuit board 74 is provided.
  • the circuit board 74 is provided with a crystal oscillator 50 8 for generating a source oscillation signal having a reference frequency, and a battery 5 10 for supplying power to each part of the wristwatch 50.
  • the circuit board 74 includes various circuits such as a circuit for executing wireless communication and a circuit for driving the buzzer 5 1 1 5 12 1 motor 5 2 1 M, and an antenna 5 0 1 is formed.
  • Fig. 1 is a block diagram showing the configuration of various circuits formed on the circuit board 74.
  • a central control circuit 500 consisting of a CPU (Central Processing Unit) etc., an antenna 501, a receiving circuit 500, and a transmission A circuit 500, a switching circuit 502, a PLL circuit 531, and a baseband circuit 5223 are mounted.
  • a CPU Central Processing Unit
  • the switching circuit 520 is a circuit that alternately switches the connection destination of the antenna 501 between the receiving circuit 5 0 3 and the transmitting circuit 5 0 4.
  • the circuit 5 31 constitutes a wireless communication function unit that performs RF layer processing in Bluetooth.
  • the baseband circuit 5 2 3 processes the baseband layer processing in the blue one toe to the output data DRX of the receiving circuit 5 0 3 and outputs it to the central control circuit 5 0 5 as received data, and the central control circuit 5 0 5 It is a circuit that applies baseband layer processing to the transmission data given by and sends the resulting data DTX to the transmission circuit 504.
  • the operation states of the receiving circuit 5 0 3 and the transmitting circuit 5 0 4 are controlled by the central control circuit 5 0 5. Specifically, when the high level RX-EN signal is supplied from the central control circuit 5 05 through the baseband circuit 5 23 3, the receiving circuit 5 0 3 is supplied with a predetermined driving voltage and operates. It becomes a state. Also, when a low level RX-EN signal is supplied, the receiving circuit 5 0 3 is not operated since the drive voltage is not supplied.
  • the transmission circuit 5 0 4 is supplied with a drive voltage to be in an operating state.
  • the transmitter circuit 504 is supplied with a single level TX-EN signal, the transmitter circuit 504 is not operated because the predetermined drive voltage is not supplied.
  • the wristwatch 50 is driven by a drive circuit 51 d, and is driven by a buzzer 5.11 for notifying various information to the user by a buzzer sound, and driven by a drive circuit 5 12 d, and various types are caused by vibration.
  • a vibration control 512 and a drive circuit 513 d to notify the user of the status, and is equipped with light emitting elements such as LED (Light Emitting Diode) and EL (Electronic Luminescent) backlight,
  • a light emitting unit 513 for notifying the user of the state, and a display unit 514 driven by a drive circuit 514 d and displaying various information configured with a liquid crystal display panel or the like are included.
  • a backlight using an EL element when used as the light emitting unit 513, an AC power supply voltage of about 20 V is required to drive the EL backlight.
  • a booster circuit is provided in the drive circuit 5 13 d of the light emitting unit 5 I-3. Such a booster circuit is also one of the factors that generate electromagnetic noise.
  • the wristwatch 50 is composed of a panel, a touch panel, etc., and has an external operation input unit 5 07 for the user to perform various operations, and an oscillator 5 10 8 that generates a source oscillation signal having a reference frequency.
  • 5 2 1 and reference signal generation circuits 5 0 9 and 5 2 2 that create and output various reference signals based on source oscillation signals, nonvolatile memory 5 0 6 that stores various data, and wristwatch 50 It is equipped with a battery 510 that supplies the necessary power to each part.
  • the central control circuit 505 incorporates an encryption circuit for encoding data to be transmitted / received to / from the portable terminal 45 d, and the security of the event is also achieved.
  • the memory 56 is configured of an EEPROM, a flash memory, and the like.
  • Figure 18 shows antenna 5 0 1, PLL circuit 5 3 1, receiver circuit 5 0 3 and transmission The detailed configuration of circuit 504 is shown.
  • the antenna 501 is connected to a switching circuit 502 that performs transmission / reception switching for performing half-duplex bidirectional communication via an antenna filter 501A.
  • the switch circuit 502 connects the antenna filter 50 1 A to the output terminal of the amplifier 533 5 when the watch 50 performs transmission, and the antenna filter 5 0 1 A to the input terminal of the RF amplifier 532 1 when performing reception. Connecting.
  • the 1 ⁇ control unit 53 1 1, the low pass filter 5 3 1 2 and the voltage controlled oscillator (V CO) 513 3 constitute a PLL (Phase Locked Loop) circuit 53 1 that generates an oscillation signal SVCO.
  • the synthesizer control signal S S Y is supplied from the baseband processing unit 523 to the P L L control circuit 5 3 1 1.
  • the frequency of the oscillation signal SVCO is determined by this synthesizer control signal SSY.
  • the baseband processing unit 523 sequentially changes the synthesizer control signal S S Y in order to temporally change the frequency of the oscillation signal S VCO according to a predetermined FH pattern.
  • the buffer amplifier 5314 amplifies the oscillation signal S V CO and supplies it to the mixer 5322.
  • the RF amplifier 532 1, the mixer 5322, the pand-pass filter 532 3, the IF amplifier 5324 and the demodulation circuit 5325 receive the reception signal of the antenna 501 via the antenna filter 50 1 A and the switching circuit 502, and
  • the receiver circuit is configured to demodulate the received data DRX. More specifically, at the time of reception, the above-mentioned antenna filter 501A removes unnecessary components from the reception signal of the antenna 501, and only necessary components are transmitted to the RF amplifier 5321 via the switching circuit 502. Output.
  • the RF amplifier 532 1 amplifies the received signal and sends it to the mixer 53 2 2.
  • the mixer 5322 is supplied with an oscillation signal SVC ⁇ whose frequency changes with time according to the FH pattern.
  • the mixer 5322 performs spectrum despreading on the received signal by mixing the oscillation signal SVCO with the received signal from the RF amplifier 53 21.
  • the band pass filter 5323 selects an intermediate frequency band IF (Intermediate Frequency) signal from among the output signals of the mixer 53 2 2 and outputs it to an IF amplifier 5324.
  • the IF amplifier 5324 amplifies the IF signal and outputs the amplified signal to the demodulation circuit 5325.
  • the demodulation circuit 5325 demodulates the reception data DRX, which is a baseband signal, from the IF signal, and outputs the result to the baseband processing unit 523.
  • Modulator circuit 5 3 3 1, IF amplifier 5 3 2 2, low pass filter 5 3 2 3, mixer 5 3 3 4 and power amplifier 5 3 3 5 are transmissions that generate a transmission signal to be supplied to switching circuit 5 0 2 It constitutes a circuit. More specifically, at the time of transmission, the modulation circuit 5 33 1 modulates the carrier with the transmission data DTX supplied from the baseband processing unit 5 23 3 and outputs an IF signal. This IF signal is supplied to the mixer 5 3 3 4 through an IF amplifier 5 3 2 2 and a single pass filter 5 3 3 3. An oscillation signal SVCO whose frequency changes with time according to the FH pattern is supplied to this mixer 533 4.
  • the mixer 5334 mixes the oscillation signal SVCO with the IF signal, applies FH spectrum spreading to the IF signal, and outputs a transmission signal which is a high frequency signal.
  • the power amplifier 533 5 amplifies this high frequency signal and outputs it to the switching circuit 502.
  • the antenna filter 501A receives the output signal of the power amplifier 5335 through the switching circuit 502, removes unnecessary components therefrom, and outputs only necessary components to the antenna 501.
  • FIG. 19 shows the configuration of the drive circuit 5 1 1 d and the buzzer 5 1 1.
  • a piezoelectric element is used as the buzzer 51 1.
  • VCC power supply voltage
  • FIG. 19 shows a drive circuit 5 1 1 d for driving the buzzer 5 1 1, the same applies to other drive circuits 5 1 2 d, 5 1 3 d, 5 1 4 d.
  • each drive circuit 51 2 d, 5 13 d, 5 14 d is driven / not driven, and the vibrator 5 12 2 and the light emitter 5 are actually made.
  • the operation of the display unit 13 and the display unit 5 14 will be controlled.
  • the buzzer 51 1 which is one of the functional units
  • the electromagnetic noise generated from the buzzer 51 1 or the driving of the buzzer 51 1 is generated. It is assumed that the drop in the power supply voltage accompanying this adversely affects the data transmitted and received via the antenna 501 and normal wireless communication can not be performed. Also, during wireless communication, electromagnetic noise or a drop in the power supply voltage that occurs when the vibrator 512, etc., which is another functional unit, is driven adversely affects data transmitted and received through the antenna 501. It is assumed that normal wireless communication is guaranteed.
  • whether electromagnetic noise generated from each functional unit or reduction in power supply voltage due to driving of each functional unit adversely affects the operation of wireless communication may be determined, for example, by the device of each functional unit that generates electromagnetic (The position of the piezoelectric element or the like for the buzzer 51) can be comprehensively judged based on the positional relationship with the 501, the amount of current flowing through the drive circuit when driving each functional unit, and various factors.
  • a process for establishing a network connection compliant with the Bluetooth standard (hereinafter simply referred to as a Bluetooth connection) between the portable terminal 45 and the wristwatch 50 on the portable terminal 45 and the wristwatch 50 Software programs are pre-installed.
  • the software program for performing the drive inhibition control of the functional unit according to the present invention is installed in advance in the memory 506 functioning as a recording medium in the watch 50.
  • the wristwatch 5 0 executes processing for establishing a Bluetooth connection with the portable terminal 4 5, and the wristwatch 5 0 Between the and the portable terminal 45, a network called a piconet is formed.
  • the portable terminal 45 and the wristwatch 50 shift to the low power consumption mode in Bluetooth.
  • the park mode is assumed as the low power consumption mode.
  • the synchronization signal (beacon signal) exchange is performed to the portable terminal in order to maintain the piconet formed between the portable terminal 45 and the wristwatch 50. It means that it is done between 45 and watch 50, and other actual data transfer is not performed.
  • the portable terminal 45 transmits a synchronization signal (beacon signal) to the wristwatch 50.
  • the watch 50 transmits a response signal of the received beacon signal to the portable terminal 45.
  • the portable terminal 45 and the wristwatch 50 send and receive such beacon signals at regular intervals (for example, beacon period; for example, 1.2 seconds), and during periods when beacon signals are not exchanged, the piconet Performs minimal internal processing to maintain synchronization.
  • step S A 3 it is assumed that another mobile terminal 45 A performs call processing to the mobile terminal 45.
  • the portable terminal 45 needs to notify the wristwatch 50 that the calling process has been received.
  • the portable terminal 45 transmits a signal for shifting the Bluetooth connection between the portable terminal 45 and the wristwatch 50 to the active mode in order to exchange actual data with the wristwatch 50. Do it (step SA 4).
  • the central control circuit 500 of the wristwatch 50 shifts from the low power consumption mode to the active mode, and prepares to receive data (step S A 5).
  • active mode means a state in which data is exchanged between the portable terminal 45 and the wristwatch 50. Between the portable terminal 45 and the wristwatch 50 in the active mode, data transmission / reception is performed every 65 seconds. In the present embodiment, the portable terminal 45 notifies the wristwatch 50 that the calling processing from the portable terminal 45A has been performed, and the wristwatch 50 which has received the notification indicates that it has been received. Send to mobile terminal 4 5 (step SA 6).
  • step S A 7 When such data communication is completed (step S A 7), the portable terminal 45 and the wristwatch 50 re-enter the low power consumption mode described above (step S A 1 1).
  • the wristwatch 50 performs processing relating to the exchange of beacon signals in order to maintain the piconet synchronization with the portable terminal 45, and prepares for the next transition to the adaptive mode.
  • step SA 1 2 If the watch 50 and the portable terminal 45 are not located within the wireless communication distance, it is not possible to exchange beacon signals for maintaining piconet synchronization. Heel If so, the Bluetooth connection established between the watch 50 and the mobile terminal 45 is disconnected (step SA 1 2).
  • the wristwatch 50 when the wristwatch 50 establishes a Bluetooth connection with the portable terminal 45, it shifts to the low power consumption mode. Thereafter, the wristwatch 50 moves from the portable terminal 45 side to the negative mode. The process for maintaining the low power consumption mode is performed until the signal to be transferred to is received. The watch 50 does not voluntarily transition from the low power consumption mode to the adaptive mode.
  • the portable terminal 45 in the relationship between the portable terminal 45 according to the present embodiment and the wristwatch 50, it is premised that the portable terminal 45 always functions as a mass unit and the wristwatch 50 always functions as a slave unit.
  • the wristwatch 50 in the low power consumption mode determines whether or not it can receive the synchronization signal (beacon signal) output from the antenna 45 e of the portable terminal 45 at each predetermined timing.
  • the driving of the buzzer 5 1 1 is prohibited prior to the predetermined timing for receiving the synchronization signal. Then, after the predetermined synchronization signal reception period has elapsed, the drive prohibition of the buzzer 5 1 1 is released. Similarly, the drive of the buzzer is prohibited during a predetermined period including a period for transmitting a response signal corresponding to the synchronization signal.
  • control device 4 5 a of the portable terminal 45 controls the transmitting circuit 4 5 b to generate a beacon signal at predetermined timings, and the beacon signal is a high frequency circuit 4. It continues to be output to the external designated communication area via 5 d and antenna 4 5 e.
  • the beacon signal output from the portable terminal 4 5 is the antenna main body of the antenna 5 0 1 5 0 1 A, antenna filter 5 0 1 B And, it is input to the receiving circuit 5 0 3 through the switching circuit 5 0 2.
  • the central control circuit 5 0 5 makes the receiving circuit 5 0 3 supply the high level RX-EN signal to the receiving circuit 5 0 3 in accordance with the timing when the beacon signal is supplied to the receiving circuit 5 0 3. Bring it into operation. Also, control the switching circuit 502, The signal from 5 0 1 is output to the receiving circuit 5 0 3.
  • the reception data DRX is demodulated from the reception signal of the antenna 501 by the reception circuit 503, and is supplied to the central control circuit 505 via the baseband circuit 523.
  • the central control circuit 5 05 obtains the reception data corresponding to the beacon signal from the portable terminal 45 in this manner, it determines that the Bluetooth connection with the portable terminal 45 is maintained.
  • the central control circuit 5 0 5 sends a low level RX-EN signal to the reception circuit 5 0 3.
  • the receiver circuit 5 0 3 is made inoperative.
  • the central control circuit 5 0 5 controls the receiving circuit 5 0 3 so that power is not consumed more than necessary.
  • the central control circuit 500 outputs the transmission data DTX responsive to the received beacon signal to the transmission circuit 500 via the baseband circuit 52 3.
  • the central control circuit 5 05 makes the transmission data D TX supply timing to the transmission circuit 5 0 4 so that the transmission circuit 5 0 4 performs processing on the transmission data D TX in response to the beacon signal. At the same time, send a high level TX-EN signal to the transmitter circuit 504 to activate the transmitter circuit 504. Also, it controls the switch 520 so that the signal output from the transmitter circuit 504 is supplied to the antenna 501.
  • the transmission circuit 504 carrier modulation is performed by the transmission data D TX, and this modulation wave is subjected to FH spectrum spreading, and the transmission signal obtained by this is output from the antenna 501. Be done.
  • the central control circuit 5 05 sends a low level TX-EN signal to the transmission circuit 5 0 4, and the transmission circuit 5 0 Turn 4 off.
  • the central control circuit 5 0 5 controls the transmission circuit 5 0 4 so that power is not consumed more than necessary.
  • the portable terminal 45 side also receives the response signal RES between the wristwatch 5 0 and the wristwatch 5 0. It recognizes that the establishment of the Bluetooth connection is maintained, and executes control to transmit the next beacon signal to the wristwatch 50 after a predetermined period period has elapsed.
  • FIG. 21 is a timing chart showing the contents of an operation relating to wireless communication with the portable terminal 45 in the wristwatch 50 in the low power consumption mode.
  • a predetermined period including a period for receiving a beacon signal from portable terminal 45 is period R 1, and a period for transmitting a response signal corresponding to the beacon signal received in period R 1 to portable terminal 45.
  • the predetermined period including T is the period T 1.
  • the period R 1 corresponds to a period in which a high level R X-E N signal is supplied to the receiving circuit 5 0 3 under the control of the central control circuit 5 0 5.
  • the period T1 corresponds to a period in which the transmitter circuit 504 is supplied with a high level Tx-EN signal under the control of the central control circuit 505.
  • the predetermined period including the period for receiving the next beacon signal is period R 2
  • the predetermined period including the period for transmitting the response signal corresponding to the beacon signal received in period R 2 corresponds to period T 2.
  • the central control circuit 50 5 of the watch 50 is controlled so as not to drive the buzzer 5 1 1 in each period R 1, R 2,..., T 1, ⁇ 2,. Do. That is, during the period when high level RX-EN signal is supplied to the receiving circuit 5 0 3 or during the period when high level 1 ⁇ 4 ⁇ signal is supplied to the transmitting circuit 5 0 4 Control so that the buzzer 5 1 1 is not driven.
  • the buzzer inhibition signal SX shown in FIG. 2 indicates the control contents of the central control circuit 5 0.
  • the central control circuit 5 0 5 is a buzzer drive circuit 5 while the buzzer inhibition signal SX is at a low level.
  • 1 1 d input terminal 5 1 1 N is forcibly set to 1 level to prohibit the drive of the buzzer drive circuit 5 1 1 d.
  • the wristwatch 50 in the low power consumption mode does not drive the buzzer 51 1 when receiving the beacon signal and transmitting the response signal corresponding to the beacon signal. It can run normally. Further, in the low power consumption mode, since the driving of the buzzer 5 1 1 is prohibited only for a predetermined period including the wireless communication period, the function of the buzzer 5 1 1 is not restricted more than necessary.
  • the watch 50 in the active mode frequently exchanges data (in units of 6 2 5 sec) with the portable terminal 4 5.
  • the operation contents of data exchange with the portable terminal 45 are the same as the operation contents in the low power consumption mode described above.
  • the signal output from the antenna 4 5 e of the portable terminal 45 is received from the antenna 5 0 1
  • the central control circuit 5 0 5 determines the content of the received signal
  • the response signal to the received signal is the antenna 5.
  • the central control circuit 5 0 5 performs level switching control of the RX-EN signal supplied to the receiving circuit 5 0 3, and the signal output from the portable terminal 4 5 is the antenna 5 0 1 A period in which the signal is supplied to the receiving circuit 5 0 0 3 makes the receiving circuit 5 0 3 operate.
  • the central control circuit 5 05 also performs level switching control on the TX-EN signal supplied to the transmission circuit 5 0 4 in the same manner, and the signal to be transmitted from the baseband circuit 5 2 3 to the portable terminal 4 5 For a period in which the signal is supplied to the transmission circuit 504, the transmission circuit 504 is put into operation.
  • FIG. 22 shows the contents of the operation relating to wireless communication with the portable terminal 45 when the wristwatch 50 shifts to the low power consumption mode, the active mode, and the low power consumption mode.
  • the central control circuit 5 0 5 of the wristwatch 50 receives the beacon R 2 1 corresponding to the period for receiving the beacon signal transmitted from the portable terminal 45, and the received beacon Buzzer 5 1 1 drive circuit 5 1 1 d Forces input terminal 5 1 1 N to be low in period T 2 1 corresponding to a period for transmitting a response signal corresponding to the signal to portable terminal 45. , Control the buzzer 5 1 1 not to drive. That is, the central control circuit 5 05 supplies a high level RX-EN signal to the reception circuit 5 0 3 or supplies a high level TX-EN signal to the transmission circuit 5 0 4 The buzzer 51 is controlled so as not to drive the buzzer 5 1 1 during the operation period.
  • the watch 50 frequently exchanges specific bucket data with the portable terminal 45.
  • the watch 50 receives data from the portable terminal 45 in the period R 22 and transmits response data to the received data to the portable terminal 45 in the period T 22.
  • the next data from the portable terminal 45 is received, and in period T23, response data to the reception data is transmitted to the portable terminal 45.
  • the central control circuit 5 0 5 of the watch 50 is the buzzer 5 1 1 drive circuit 5 1 1 d input terminal 5 1 1 N for all periods TA 2. Is forced low, and control is made so that the buzzer 5 1 1 inhibits driving.
  • the central control circuit 50 5 of the wristwatch 50 receives the beacon signal transmitted from the portable terminal 45 5 R 2 5, the received beacon signal In the period T 25 corresponding to the period when the response signal corresponding to is transmitted to the portable terminal 45, the drive circuit 5 1 1 d of the buzzer 5 1 1 is forced to low level at the input terminal 5 1 1 N, Control to inhibit the drive of the buzzer 5 1 1.
  • the buzzer inhibition signal SX shown in FIG. 22 indicates the control contents of the central control circuit 505 shown above.
  • the central control circuit 5 05 forces the buzzer drive circuit 5 1 1 d input terminal 5 1 1 N low while the buzzer inhibit signal SX is at low level, and the buzzer drive circuit 5 1 1 d Prohibit drive.
  • FIG. 23 is a flow chart showing the contents of a program executed when the central control circuit 5 0 5 of the wristwatch 50 drives the buzzer 5 1 1.
  • step SB 1 If the alarm setting time matches the current time (step SB 1), the central control circuit 5 05 first determines whether the wristwatch 50 is in the Bluetooth low power consumption mode in relation to the portable terminal 45. (Step SB 2). Then, if it is not in the low power consumption mode, it is determined that it is in the adaptive mode (step S B 2: NO), and control is performed to inhibit the driving of the buzzer 51 (step S B 6).
  • the central control circuit 5 0 5 receives a synchronization signal (beacon signal) from the portable terminal 4 5 to the wristwatch 5 0. It is determined whether it is a predetermined period including a reception period of (step SB 3) or a period including a period for transmitting a response signal to the received synchronization signal (step SB 4). Specifically, the central control circuit 5 0 5 supplies high level TX-EN signal to the transmitting circuit 5 0 4 during a period in which the high level RX-EN signal is supplied to the receiving circuit 5 0 3 or to the transmitting circuit 5 0 4 It is determined whether or not it is any of the period.
  • a synchronization signal (beacon signal) from the portable terminal 4 5 to the wristwatch 5 0. It is determined whether it is a predetermined period including a reception period of (step SB 3) or a period including a period for transmitting a response signal to the received synchronization signal (step SB 4).
  • the central control circuit 5 0 5 supplies high level TX-EN signal to the transmit
  • Step SB 6 when the high level signal is supplied to the receiving circuit 5 0 3 or the transmitting circuit 5 0 4 (step SB 3 YES or step SB 4: YES), the control for inhibiting the driving of the buzzer 5 1 1 is performed ( Step SB 6).
  • step SB 6 when the high level RX_EN signal or TX—EN signal is not supplied to any of the receiving circuit 5 0 3 3 and the transmitting circuit 5 0 4 (step SB 3: N ⁇ ⁇ and step SB 4: N ⁇ )
  • the central control circuit 5 0 5 executes the driving of the buzzer 5 1 1 (step SB 6).
  • FIG. 24 shows the above-mentioned operation contents in a time chart.
  • the central control circuit 500 executes the processing corresponding to the flowchart of FIG. Buzzer 5 1 1 starts driving because it is in the power consumption mode and wireless data transmission / reception is not performed.
  • the central control circuit 5 05 continues to execute the processing corresponding to the flowchart of FIG. Then, from time T 61 to time T 62, the central control circuit 5 0 5 outputs a high level RX to the receiving circuit 5 0 3 to correspond to a period for receiving a beacon signal from the portable terminal 4 5. — Supplying EN signal. Therefore, the central control circuit 5 0 5 prohibits driving of the buzzer 5 1 1. Similarly, from time T63 to time T64, the driving of the buzzer 51 1 is prohibited in the period from time T61 to time T62.
  • the central control circuit 505 is controlled to prohibit the driving of the buzzer 51 1 only while the wristwatch 50 is performing wireless data communication. I do. Therefore, the watch 50 in the low power consumption mode is the mobile end Even when wireless communication of a synchronization signal (beacon signal) is performed with the other 45, such wireless communication is not hindered by the driving of the buzzer 51 1.
  • the central control circuit 5 05 prohibits the driving of the buzzer 5 11 1. Then, the central control circuit 505 prohibits driving of the buzzer 5 1 1 in a period from time T 6 5 to time T 6 6 in which the wristwatch 50 is in the active mode.
  • the central control circuit 500 performs control to prohibit driving of the buzzer 51 1 in all periods. Therefore, even if the wristwatch 50 in the active mode frequently performs wireless communication with the portable terminal 45, such wireless communication is not blocked by the driving of the buzzer 51.
  • the wristwatch 50 When the data communication between the wristwatch 50 and the portable terminal 45 ends at time T66, the wristwatch 50 returns to the low power consumption mode.
  • central control circuit 505 when transitioning to the low power consumption mode is the same as that described above, and a predetermined period including the period during which wireless communication of wristwatch 50 is performed (time T 6 7 Buzzer 5 1 1) is controlled only during the period from time T 6 to time T 6 8).
  • the central control circuit 5 0 5 determines that the setting time of the buzzer 5 1 1 is finished, and ends the flow of FIG.
  • the buzzer 51 11 is driven. It is forbidden.
  • the central control circuit 505 performs control to prohibit the driving of the buzzer 51 1 that causes a sharp drop in the power supply voltage when driven during wireless communication.
  • the central control circuit 500 when the central control circuit 500 is driven at the time of wireless communication, the output voltage value of the battery 5 10 becomes lower than a predetermined value, and the power required for the circuit for executing wireless communication is Control is performed to prevent the supply from being lost.
  • wireless communication is performed. There is a possibility that sufficient power can not be supplied to the circuit to be executed and normal wireless communication can not be performed.
  • the wristwatch 50 drives the drive 512 only when the output voltage value of the battery 5 10 is larger than a predetermined value during wireless communication. Control to do so.
  • a battery voltage discrimination circuit 90 for discriminating the value of the output voltage of the battery 510 is provided.
  • FIG. 25 is a diagram illustrating the configuration of the battery voltage determination circuit 90.
  • the battery voltage discrimination circuit 90 operates when the control signal S 91 of high level is supplied from the central control circuit 50 5.
  • the control signal S 91 is supplied to the transistors 9 6 and 9 7 of the battery voltage discrimination circuit 90.
  • the transistors 96 and 97 are both N-channel M S S transistors, and are turned on when a high level signal is supplied to the gate terminal, and turned off in other cases.
  • the resistors 91 and 92 constitute a voltage divider circuit.
  • This voltage divider circuit is a voltage value V 1 obtained by dividing the output voltage value of the battery 5 10 when the transistor 96 is in the on state.
  • the reference voltage generation circuit 95 is a circuit that generates a signal V2 having a predetermined voltage level.
  • the reference voltage generation circuit 95 outputs the allowable lower limit value V 2 of the value V 1 obtained by dividing the output voltage of the battery 5 10.
  • the voltage division value V 1 of the output voltage of the battery 5 10 is larger than the allowable lower limit value V 2, it is sufficient for the circuit for performing wireless communication regardless of the drive of the vibrator 5 1 2. Supply of power Is guaranteed.
  • the allowable lower limit value is obtained in advance by experiments and the like.
  • the comparator 94 compares the voltage value V1 of the negative electrode input terminal with the voltage value V2 of the positive electrode input terminal, and compares the low level comparison result signal S9 when the voltage value V1 is higher than the voltage value V2. 2 is output, and when the voltage value V 1 is lower than the voltage value V 2, a high level comparison result signal S 92 is output.
  • the drive circuit 5 12 2 d outputs a drive signal S 9 4 for driving the vibrator 5 1 2 under the control of the central control circuit 5 0 5.
  • the drive circuit 5 12 d outputs a drive signal S 9 4 for driving the vibrator 5 1 2 when a low level control signal S 9 3 is supplied from the central control circuit 5 0 5. Also, when the control circuit S 9 3 of high level is supplied, the drive circuit 5 1 2 d does not output the drive signal S 9 4 to the vibrator 5 1 2. In this case, the drive of the vibrator 5 1 2 is It is stopped.
  • FIG. 26 is a flow chart showing the contents of the program executed by the central control circuit 500 of the wristwatch 50 when driving the vibrator 512.
  • step SC 1 When the central control circuit 50 5 is to drive the vibrator 5 1 2 (step SC 1), first, the vibrator 5 1 2 can be driven simultaneously with the wireless communication operation to the “simultaneous driving possible state”. It is judged whether there is any (step SC 2).
  • the wristwatch 50 is in the “simultaneous driving possible state” is when the output voltage value of the battery 5 10 is larger than a predetermined value and the vibrator 5 1 2 is driven during wireless communication. Also, it refers to a state where sufficient power can be supplied to the circuit for performing wireless communication.
  • the watch 50 is not in the “simultaneous driving possible state”
  • the output voltage value (or remaining capacity) of the battery 5 10 is smaller than a predetermined value, and the vibrator 5 1 2 is driven during wireless communication. In this case, sufficient power can not be supplied to the circuit for performing wireless communication, and wireless communication can not be performed normally.
  • the central control circuit 505 determines whether or not the “simultaneous drive possible state” is present will be described below.
  • the central control circuit 505 intermittently supplies the control signal S 91 at a high level to the reference voltage generation circuit 95 at predetermined intervals (for example, 1 sec). And, it is monitored whether the output voltage value of the battery 510 is larger than a predetermined value.
  • the comparator 94 when the transistor 97 is turned on, the comparator 94 is activated, and the comparator 94 compares the result of comparing the divided voltage value V1 of the output voltage of the battery 510 with the reference voltage value V2.
  • the result signal S 92 is output to the central control circuit 505.
  • the central control circuit 505 determines that the voltage division value V 1 of the output voltage of the battery 5 10 is larger than the allowable lower limit value V 2. In the case, it is determined that the watch 50 is in the “simultaneous driving possible state”. On the other hand, when it is determined from the value of the comparison result signal S 92 that the voltage division value V 1 of the output voltage of the battery 5 10 is smaller than the allowable lower limit value V 2, the watch 50 is not in the “simultaneous driving possible state”. To judge.
  • step S C 2 When the wristwatch 50 is in the “simultaneous driving possible state” (step S C 2: Y E S :), the central control circuit 505 performs control to drive the vibrator 52 (step S C 6). Specifically, the central control circuit 505 supplies a low level signal as the control signal S 93 to the drive circuit 5 1 2 d to drive the vibration control 5 1 2.
  • step S C 2 NO
  • the central control circuit 505 performs the same control as that described in the fifth embodiment (FIG. 23).
  • the central control circuit 505 determines the mode of the wristwatch 50 (step SC3), and if it is not in the low power consumption mode, that is, if it is in the active mode in which wireless communication is frequently performed (step SC 3: NO), vibra 5 12 Control to inhibit the driving of 2 (step SC 7). Specifically, the central control circuit 505 supplies a high level control signal S93 to the drive circuit 512 d so that the vibrator 512 is not driven.
  • the central control circuit 505 receives the reception circuit 503 as to whether the watch 50 is currently performing wireless communication. This is determined based on the value of the RX—EN signal of TX and the TX—EN signal of transmission circuit 504 (step SC4, SC5).
  • the central control circuit 505 is a vibrator 5 1 2 Control to inhibit the drive of the drive (step SC 7). Specifically, the central control circuit 50 5 supplies a high level control signal S 93 to the drive circuit 5 1 2 d to prevent the drive 5 1 2 from being driven.
  • the central control circuit 505 performs vibration control 5 1 Control to drive 2 is performed (step SC 7). Specifically, the central control circuit 505 supplies a low level control signal S 93 to the drive circuit 5 1 2 d to drive the vibrator 5 1 2.
  • the central control circuit 505 performs control not to drive the vibration control 512 during wireless communication.
  • the system configuration in this embodiment is substantially the same as that of the fifth embodiment.
  • the wristwatch 50 has a battery voltage discrimination circuit similar to that of the sixth embodiment.
  • the battery voltage discrimination circuit in this embodiment differs from that of the sixth embodiment in that the output voltage V of the battery 5 10 is a division higher than VI, not more than VI, and a division larger than V2, V It outputs a signal indicating which of the two or less categories it belongs to.
  • FIG. 27 exemplifies the discharge characteristics of the battery 5 10.
  • the horizontal axis represents the operating time of the battery 5 10 and the vertical axis represents the output voltage V of the battery 5 10.
  • the output voltage V of the battery 5 10 is higher than the threshold value VI, the internal resistance of the battery 5 10 is sufficiently low, and an output voltage that adversely affects wireless communication even if an excessive consumption current flows. There is no decline.
  • the output voltage V of battery 5 1 is in the range of V 1 to V 2
  • the internal resistance of battery 5 1 0 is somewhat large, and too much current may not be supplied to adversely affect wireless communication. Care must be taken not to leak from 5 10
  • the output voltage V of battery 510 is less than or equal to V 2
  • the internal resistance of battery 510 is extremely large, and in order not to adversely affect wireless communication, the current flowing out of battery 510 should be minimized I need to suppress it. This is the premise of this embodiment.
  • the wristwatch according to the present embodiment has a function of outputting an alarm by ring alert or vibration alert in a time zone in which the alarm is set.
  • the manner in which the alarm output is performed or the alarm output is not performed depends on whether or not wireless communication is performed at that time, and the output voltage of battery 510 at the time is divided into the above three categories. Depends on which of the This control is performed by the central control circuit 500.
  • the central control circuit 5005 starts execution of a routine whose flow is shown in FIG.
  • the central control circuit 505 determines whether the output voltage V of the battery 5 10 is higher than V 1 based on the output signal of the battery voltage determination circuit (step S D 1). If the result of this determination is "YES", the central control circuit 5 0 5 performs alarm notification by both the buzzer 5 1 1 and the vibrator 5 1 2 (see Fig. 1 7) until the alarm notification period ends. , Measure the duration of this alarm notification (step SD 2). Then, repeat the steps SD1 and SD2 until the end of the alarm notification period, that is, the continuation time of the alarm notification reaches the predetermined alarm notification period, and the routine of FIG. 28 is ended at the end of the alarm notification period. Do it (step SD3).
  • step SD 1 determines whether or not the output voltage V of the battery 5 10 is larger than V 2 (step SD 4).
  • step SD 4 determines whether the RX-EN signal supplied to the receiving circuit 503 is at high level (step SD5). If the judgment result is "YES”, the alarm notification by the buzzer 5 1 1 is not performed but only the alarm notification by the vibrator 5 1 2 is performed, and the duration of the alarm notification is measured (step SD 6) . Then, the steps SD1, SD4, SD5 and SD6 are repeated until the end of the alarm notification period, and the routine of FIG. 28 is ended with the end of the alarm notification period (step SD7).
  • step SD5 determines whether the TX-EN signal supplied to the transmission circuit 504 is at high level (step SD8). If the judgment result is "YES", the central control circuit 505 does not perform alarm notification by the buzzer 51 as in the case where the RX-EN signal is at high level. 1 Perform alarm notification only by 2 and measure the duration of alarm notification (step SD6). Then, the steps SD1, SD4, SD5 and SD6 are repeated until the end of the alarm notification period, and the routine of FIG. 28 is ended at the end of the alarm notification period (step SD7).
  • step S D 9 the central control circuit 505 performs alarm notification by both the buzzer 5 1 1 and the vibrator 5 1 2 and measures the duration of the alarm notification. Then, steps SD1, SD4, SD5, SD8 and SD9 are repeated until the end of the alarm notification period, and the routine of FIG. 28 is ended with the end of the alarm notification period (step SD7).
  • step SD 4 determines whether the RX-EN signal supplied to the receiving circuit 503 is at high level (step SD 1). Five). If the judgment result is "YES”, neither alarm notification by the buzzer 5 1 1 nor alarm notification by the vibrator 5 1 2 is performed (step SD 16), and the alarm notification period has ended. (Step SD1 7) o If the result of determination in step SD1 7 is "NO”, return to step SD1 5; If the result of the determination in step SD15 is "NO”, the central control circuit 505 determines whether the TX-EN signal supplied to the transmission circuit 504 is at a high level (step SD1). 8).
  • step SD 16 neither alarm notification by the buzzer 5 1 1 nor alarm notification by the vibrator 5 1 2 is performed (step SD 16). Then, it is determined whether the alarm notification period has ended (step SD17). If the result of the determination in step SD17 is "NO”, the process returns to step SD15. As described above, as long as either the RX-EN signal or the TX-EN signal is high level, neither alarm notification by the buzzer 5 1 1 nor alarm notification by the vibration receiver 5 1 2 is performed. The loop of SD 1 6, SD 1 7 or the loop of steps SD 1 5, SD 18, SD 1 6, SD 1 7 is repeated. During this time, since the alarm notification is not performed at all, the duration of the alarm notification remains at zero.
  • step SD 19 the steps SD15, SD18, SD19 and SD17 are repeated until the end of the alarm notification period, and the routine of FIG. 28 is ended after the end of the alarm notification period (step SD17).
  • FIG. 29 is a timing chart exemplifying the waveforms of the respective parts when the above operation is performed.
  • the alarm set time period starts, and the drive source signal for instructing alarm notification by the buzzer 5 1 1 and vibration 5 1 2 is high level It has become.
  • the central control circuit 505 foregos the alarm notification and when the TX-EN signal becomes low level, Alarm notification is performed during the alarm period.
  • Such measurement results are stored in advance in the memory 0.56 of the wristwatch 50, and the central control circuit 505 determines the contents in the memory 560, as shown in FIG. The flow shown in 3 may be executed.
  • the portable terminal 45 is a device on the master side and the wristwatch 50 is a device on the slave side in performing wireless communication.
  • the portable terminal 45 may be a device on the slave side, and the watch 50 may be a device on the master side.
  • the central control circuit 500 can perform the same operation as the contents of the above-described embodiment by determining the current mode, and the same effect can be obtained.
  • the central control circuit 5 05 when driving the buzzer 51 1, the central control circuit 5 05 uniformly sets the input signal SB of the buzzer driving circuit 5 1 1 D to the high level (VCC level). Although assumed, the contents of this drive signal SB can also be modified arbitrarily.
  • FIG. 30 is a first view of the operation aiming team when such a method is used.
  • the buzzer inhibition signal S X the alarm setting time and the buzzer driving signal S B are shown.
  • the central control circuit 5005 controls the buzzer 5111 to be driven intermittently.
  • the aspect of the alarm notification limitation during wireless communication is changed according to the output voltage of the battery 510.
  • the remaining capacity of the battery 5 10 is measured instead of the output voltage of the battery 5 10 0, and depending on which classification the remaining capacity belongs to, the alarm notification limitation during wireless communication is Change the way. Specifically, how to change it is, for example, as described in the seventh embodiment with reference to FIG.
  • a circuit for measuring the remaining capacity for example, a circuit as shown in FIG.
  • This circuit includes a current detection resistor R SENSE inserted in the current path between the battery 5 10 and the load (each circuit in the watch 50) and the voltage across the current detection resistor R SENSE.
  • An operational amplifier 600 that outputs a proportional analog signal, an A / D converter 600 that samples the output signal of the operational amplifier 601 every time a clock of a predetermined frequency is given, and converts it into digital data; Each time the same clock is given, it is composed of a discharge counter 603 which accumulates the output data of the AZD converter 602.
  • the discharge counter 603 is reset when the battery 510 is replaced with a new one.
  • the integral value of the current flowing through the current detection resistor R S E N S E that is, the accumulated value corresponding to the total charge amount discharged from the battery 510 can be obtained from the discharge counter 603. Therefore, the central control circuit 5 0 5 can determine the remaining capacity of the battery 5 10 0 based on this accumulated value.
  • the wristwatch 50 it is also possible to configure the wristwatch 50 so that the battery 510 can be charged with the battery 510 attached.
  • a current detection resistor is inserted in both the current path from battery 5 10 to the load and the charge path of battery 5 1 0, and the former current detection resistor is as shown in FIG.
  • a circuit for measuring the amount of discharge of the battery 5 10 is connected, and a circuit for measuring the amount of charge of the battery 5 10 of the same configuration is connected to the current detection resistor of the latter. If such a configuration is adopted, the central control circuit 5 05 determines the remaining capacity of the battery 5 10 from the difference between the amount of discharge and the amount of charge obtained from both measurement circuits, and based on this, an alarm is generated. The notification can be restricted.
  • an internal resistance may be measured, and alarm notification may be limited when the internal resistance rises and reaches a threshold value.
  • a method of measuring the internal resistance of the battery 510 there is a method of obtaining it from the difference between the output voltage of the battery 510 at the time of driving the wireless communication function unit and the output voltage at the time of non-driving.
  • Bluetooth is used as the wireless communication system.
  • a method using a microphone a method using electromagnetic induction, a method using infrared light may be used, and as a modulation method at the time of wireless communication, for example, a Direct Sequence method or the like may be used.
  • Various modulation schemes can be used.
  • the present invention Can be applied.
  • the present invention is not limited to this, and a portable device having a wireless communication function, for example, a calculator, a PDA (Personal Digital Assistants), translators, pedometers, portable sphygmomanometers, etc.
  • a portable device having a wireless communication function for example, a calculator, a PDA (Personal Digital Assistants), translators, pedometers, portable sphygmomanometers, etc.
  • the aspect is not limited to the watch type, and can be configured in various types such as a card type, a necklace type, and a pendant type.
  • the present modification is different from the first control unit 1 1 0 and the second control unit 1 2 0 in the first embodiment. It has added features.
  • the central control circuit 5 0 5 monitors the output voltage of the battery 5 10.
  • the central control unit 5 0 5 intermittently drives the wireless communication function unit including the receiving circuit 5 0 3, the transmitting circuit 5 0 4 and the PLL circuit 5 3 1 to perform the wireless communication. Monitor the 10 output voltage.
  • the central control circuit 5 05 is included in the circuit. Prohibits operation of the circuit for control of the wireless communication function unit by the battery 5 10.
  • the central control circuit 505 makes the output voltage of the battery 5 10 be less than a predetermined threshold voltage slightly larger than the first threshold voltage. If it does, the control disclosed in the fifth to seventh embodiments is performed. That is, when a communication command from the wireless communication function unit is being performed, if a drive instruction of a load with a large current consumption such as the buzzer 51 1 and the vibrator 5 12 is generated, the drive is not performed.
  • the recording medium for recording the program according to the present invention is also optional, for example, an optical disc such as a semiconductor memory, a CD-ROM (Compact Disc-Read Only Memory), a CD-R (Compact Disc-Recordable) or the like, an MO (Magneto Optic) Magneto-optical disks such as MD) (Mini Disc), magnetic disks such as floppy disks, hard disks, etc.
  • an optical disc such as a semiconductor memory, a CD-ROM (Compact Disc-Read Only Memory), a CD-R (Compact Disc-Recordable) or the like, an MO (Magneto Optic) Magneto-optical disks such as MD) (Mini Disc), magnetic disks such as floppy disks, hard disks, etc.
  • the program may be supplied to the memory 5 06 of the wristwatch 50 via these, and may be controlled by the central control circuit 5 0 5 configured by a CPU or the like.
  • the method of installing such a program is optional, and it may be installed on a portable information device such as a wristwatch or the like using the above-mentioned recording medium.
  • a program is supplied to the memory of a portable information device such as a watch via a network such as a network, and is controlled by an MPU (Micro Processing Unit) having a CPU, according to a so-called network distribution format. It is also good.
  • MPU Micro Processing Unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Description

明細書 電池駆動型電子機器およびその制御方法 技術分野
本発明は、 電池を電源として動作する電子機器およびその制御方法に関する。 背景技術
ノート型パーソナルコンピュータ、 ワードプロセッサ、 電子手帳などの携帯型 電子機器、 及び携帯型コンパクトディスクプレーヤ、 液晶テレビ、 カメラ一体型 ビデオテープレコーダのように屋内外で使用される電子機器は、 電池を電源に駆 動する電池駆動時の使い勝手や基本性能が重視されている。こうした電子機器は、 このような事情に鑑み、 充電可能なニッケル ·力ドミゥム電池やニッケル ·水素 電池といった二次電池等が利用できるよう構成されるのが一般的である。
図 1 1は、 上記電子機器の構成の一例を示すブロック図である。
電子機器 2 0 0は、 2次電池の出力電圧を常時検出し、 所定の閾値電圧と比較 して 2次電池の充電時期の到来を監視する制御部 2 1 0と、 該 2次電池によって 駆動される種々の負荷によって構成された負荷群 2 2 0とを備えている。
かかる構成を有する電子機器 2 0 0の制御部 2 1 0は、 2次電池の出力電圧の 検出を開始した後、 該出力電圧が所定の閾値電圧 (例えば、 3 . 0 V等) に降下 したことを検出すると、 スィッチ S S 1をオンからオフに切り換えて負荷群 2 2 0に対する電力供給を停止していた。
ところで、 電池は、 長期に亙って使用すると、 特性が劣化し、 特に内部抵抗が 増加する。 従って、 電池の残容量が少なくなり、 出力電圧が低下しているような 状況においては、 電池から僅かな消費電流が流出しただけでも、 急激な電源電圧 の低下が発生し、 これにより制御部 2 1 0が誤動作に至るという問題があった。 また、 上記電子機器においては、 負荷群 2 2 0に対する電力供給が停止された 後においても、 制御部 2 1 0に対する電力供給は継続される。 ここで、 制御部 2 1 0を駆動するための負荷が負荷群 2 2 0を構成する種々の負荷に比べて軽い場 合 (以下、 制御部 2 1 0を軽負荷といい、 負荷群 2 2 0を重負荷という)、 2次 電池の出力電圧は、 重負荷から解放されることにより回復する (図 1 2に示す A 参照)。 詳述すると、 2次電池の出力電圧は、 消費電流に 2次電池の内部抵抗を 乗じた分だけ電圧降下するため、 該 2次電池の出力電圧は、 消費電流の大きな重 負荷から解放されることにより、 重負荷時における電圧降下と軽負荷時における 電圧降下との差分 (= Δ ν ;図 1 2参照) だけ、 回復する。
制御部 2 1 0は、 2次電池の出力電圧が回復したことを検出すると、 再びスィ ツチ S S 1をオフからオンに切り換え重負荷に対する電力供給を再開するが、 回 復した 2次電池の出力電圧は直ちにスィツチ S S 1をオフにする閾値電圧に到達 してしまう。 このように、 制御部 2 1 0は重負荷を正常に駆動することができな いにも拘わらず、 重負荷に対する電力供給を行う (以下、 誤検出動作と称する) といった処理を繰り返し実行していた。 発明の開示
本発明は、以上説明した事情に鑑みてなされたものであり、その第 1の目的は、 電池の残容量が少なくなつているような状況において、 電池の出力電圧の低下に 起因した誤動作を防止することができる電子機器を提供することにある。 また、 この発明の第 2の目的は、 上記の誤検出動作の防止された電子機器を提供するこ とにある。
かかる目的を達成するため、 電池と、 前記電池によって駆動される複数の負荷 部と、 前記複数の負荷部の駆動時における前記電池の出力電圧が第 1の閾値電圧 に降下した場合に前記複数の負荷部の一部の前記電池による駆動を制限する第 1 制御部と、 前記複数の負荷部の一部の駆動が制限された後において前記電池の出 力電圧が第 2の閾値電圧に降下した場合に前記電池による前記複数の負荷部の少 なくとも一部及び前記第 1の制御部の駆動を停止する第 2制御部とを具備するこ とを特徴とする電子機器を提供する。
かかる発明によれば、 電池の出力電圧が低下して、 一部の負荷部の駆動が制限 されるに至った後は、 第 2制御部によって電池の出力電圧が監視され、 これが第 2の閾値電圧に至ったときには、 複数の負荷部および第 1制御部の駆動が停止さ れる。 従って、 電池の出力電圧の低下に伴う第 1制御部の誤動作を防止すること ができる。
好ましい態様において、 前記複数の負荷部は、 重負荷部と、 前記重負荷部より も消費電力の小さな軽負荷部とを有し、 前記第 1制御部は、 前記複数の負荷部の 駆動時における前記電池の出力電圧が第 1の閾値電圧に降下した場合に前記重負 荷部の前記電池による駆動を停止する。
また、 前記第 1制御部は、 前記複数の負荷部の駆動時における前記電池の出力 電圧が前記第 1の閾値電圧に降下した場合に、 前記第 2制御部を起動するための 起動信号を出してもよい。
また、 好ましい態様において、 前記軽負荷部、 前記第 1制御部及び前記第 2制 御部の駆動時における前記電池の内部抵抗による電圧降下と、 前記第 2制御部の みを駆動した場合における前記電池の内部抵抗による電圧降下との差分は、 前記 第 2制御部における電圧の検出分解能よりも小さい。
また、 別の好ましい態様において、 前記重負荷部は、 無線通信部を有し、 前記 第 1制御部は、 前記電池によって前記重負荷部が間欠的に駆動されるように制御 する手段と、 前記電池によって前記重負荷部が駆動されているときの前記電池の 出力電圧が前記第 1の閾値電圧に降下したときに前記電池による前記重負荷部の 間欠駆動を終了させる手段とを有し、 前記第 2制御部は、 前記電池の出力電圧の 変化に対して前記第 1制御部よりも高速に応答する手段であって、 前記電池によ る前記重負荷部の間欠駆動が行われており、 かつ、 前記電池による前記重負荷部 の駆動が行われていない期間における前記電池の出力電圧が第 3の閾値電圧以下 に降下したときに、 前記第 1制御部に対する前記電池からの電力供給を断ち、 前 記重負荷部の間欠駆動を終了させる手段を具備する。
また、 別の好ましい態様において、 電子機器は、 前記電池の出力電圧の変化に 対して前記第 1制御部よりも高速に応答する手段であって、 前記電池によって前 記重負荷部が駆動されているときの前記電池の出力電圧が前記第 1の閾値電圧よ りも低い第 4の閾値電圧に降下したときに前記電池による前記重負荷部の駆動を 禁止する第 3制御部をさらに具備する。
以上掲げた諸態様において、 好ましくは前記軽負荷部は、 充電時期若しくは電 池交換時期の到来を報知する軽負荷を含み、 前記第 1制御部は、 前記複数の負荷 部の駆動時における前記電池の出力電圧が前記第 1の閾値電圧に降下した場合に、 前記充電時期若しくは電池交換時期の到来を報知する軽負荷を駆動する。
前記充電時期の到来を報知する軽負荷は、 文字メッセージ、 若しくは画像を表 示して充電時期の到来を報知する表示装置であってもよい。
前記充電時期の到来を報知する軽負荷は、 警告音、 若しくは振動を発生して充 電時期の到来を報知する警報装置であってもよい。
好ましい態様において、 前記負荷部は、 前記電池によって駆動され、 外部装置 との間で間欠的な双方向の無線通信を行う無線通信機能部を含み、 前記電子機器 は、 前記電池の状態を検出する検出手段と、 前記電池の状態が所定の状態に至つ ていることが前記検出手段によって検出されているときに無線通信が実行される 場合に、 前記複数の負荷部における前記無線通信機能部以外の所定の負荷部の駆 動を禁止する第 4制御部とを具備する。
かかる電子機器によれば、 無線通信に悪影響のおそれがある無線通信機能部以 外の負荷部の駆動が制限されるため、 電池の出力電圧低下時においても無線通信 品質を維持することができる。
好ましい態様において、 前記検出手段は、 前記電池の出力電圧を検出する回路 である。
また、 別の好ましい態様において、 前記検出手段は、 前記電池の残量を検出す る回路である。
前記第 4制御部は、 無線通信の実行時に駆動を禁止すべき負荷部または複数の 負荷部の組み合わせを、 前記検出手段によって検出された前記電池の状態に応じ て決定してもよい。
また、 好ましい態様において、 電子機器は、 外部装置との間において形成した 無線通信ネッ トワークの同期を維持するために所定周期毎に同期信号の無線通信 を行う低消費電力モードまたは前記外部装置との間で実際の無線データ通信を行 うアクティブモードをとることが可能であり、 前記第 4制御部は、 前記低消費電 力モードにおいて前記同期信号の無線通信を行つている場合および前記ァクティ ブモードにある場合に、 無線通信部以外の一または複数の負荷部の駆動を禁止す る。
前記無線通信は例えば Bluetooth (登録商標) を利用するものである。
好ましい態様において、 前記無線通信の実行時に駆動が禁止される負荷部は、 ブザーを駆動することによる鳴音報知機能部、 バイブレー夕用モータを駆動する ことによる振動報知機能部、 L E Dを駆動することによる発光報知機能部、 液晶 表示部を駆動することによる表示機能部のうちのいずれか一の機能部を含む。 また、 この発明は、 消費電力の大きな重負荷部と消費電力の小さな軽負荷部と を有する電子機器に電源として設けられた電池の出力電圧を検出する検出過程と、 前記電池の出力電圧が第 1の閾値電圧に降下した場合に前記電池による前記重負 荷部の駆動を制限する第 1制御過程と、 前記重負荷部の駆動が制限された後にお いて前記電池の出力電圧が第 2の閾値電圧に降下した場合に前記電池による前記 重負荷部および軽負荷部の駆動を停止する第 2制御過程とを具備することを特徴 とする電子機器の制御方法を提供する。
この発明は、 このような制御方法を電子機器を制御するコンピュータに実行さ せるプログラムを電気通信回線を介してユーザに配信したり、 そのようなプログ ラムをコンピュータ読み取り可能な記憶媒体に記録してユーザに配布するという 態様でも実施され得る。
また、 別の観点から、 この発明は、 外部装置との間で間欠的な双方向の無線通 信を行う無線通信機能部を含む複数の負荷部と、 前記無線通信の実行時に、 前記 無線通信機能部を除く前記負荷部のうち少なくとも一部の駆動を禁止する制御部 とを有することを特徴とする電子機器を提供する。
また、 別の観点から、 この発明は、 電池と、 前記電池の電気的な状態を検出す る検出手段と、 外部装置との間で間欠的な双方向の無線通信を行う無線通信機能 部を含む複数の負荷部と、 前記電池の電気的な状態が所定の状態に至っているこ とが前記検出手段によって検出されているときに無線通信が実行されている場合 に、 前記無線通信機能部以外の所定の負荷部の駆動を禁止する第 4制御部とを有 することを特徴とする電子機器を提供する。
また、 別の観点から、 この発明は、 電池と、 前記電池の電気的な状態を検出す る検出手段と、 外部装置との間で間欠的な双方向の無線通信を行う無線通信機能 部を含む複数の負荷部と、 前記複数の負荷部の駆動時における電池の出力電圧が 第 1の閾値電圧に降下した場合に複数の負荷部の一部の電池による駆動を制限す る第 1の制御部と、 前記複数の負荷部の一部の駆動が制限された後において電池 の出力電圧が第 2の閾値電圧に降下した場合に前記電池による複数の負荷部及び 第 1の制御部の駆動を停止する第 2制御部と、 前記電池の電気的な状態が所定の 状態に至っていることが前記検出手段によって検出されているときに無線通信が 実行される場合に、 前記複数の負荷部における前記無線通信機能部以外の所定の 負荷部の駆動を禁止する第 4制御部とを有することを特徴とする電子機器を提供 する。
この場合、 前記第 1制御部を C P Uにより構成し、 この C P Uに前記第 4制御 部の機能と第 1制御部の機能とを合わせて実行させてもよい。
好ましい態様において、 前記制御部は、 前記無線通信の実行時に、 前記無線通 信機能部を除く前記機能部のうち、 駆動により発生する電磁ノイズのレベルが所 定レベル以上となるような一または複数の機能部の駆動を禁止する。
好ましい態様において、 前記検出手段は、 前記電池の出力電圧を検出する回路 である。
また、 別の好ましい態様において、 前記検出手段は、 前記電池の残量を検出す る回路である。
前記制御部は、 無線通信の実行時に駆動を禁止すべき負荷部または複数の負荷 部の組み合わせを、 前記検出手段によって検出された前記電池の状態に応じて決 定してもよい。
また、 好ましい態様において、 電子機器は、 外部装置との間において形成した 無線通信ネッ トワークの同期を維持するために所定周期毎に同期信号の無線通信 を行う低消費電力モードまたは前記外部装置との間で実際の無線データ通信を行 うアクティブモードをとることが可能であり、 前記制御部は、 前記低消費電力モ ードにおいて前記同期信号の無線通信を行っている場合および前記アクティブモ 一ドにある場合に、 無線通信部以外の一または複数の負荷部の駆動を禁止する。 前記無線通信は例えば Bluetooth (登録商標) を利用するものである。
好ましい態様において、 前記無線通信の実行時に駆動が禁止される負荷部は、 ブザーを駆動することによる鳴音報知機能部、 バイブレー夕用モー夕を駆動する ことによる振動報知機能部、 L E Dを駆動することによる発光報知機能部、 液晶 表示部を駆動することによる表示機能部のうちのいずれか一の機能部を含む。 また、 別の観点から、 この発明は、 電池からの電力により動作し、 外部装置と の間で間欠的な双方向の無線通信を行う無線通信機能部を含む複数の負荷部を有 する電子機器の制御方法において、 前記電池の状態を検出する検出過程と、 前記 電池の状態が所定の状態に至っているときに無線通信が実行される場合に、 前記 複数の負荷部における前記無線通信機能部以外の所定の機能部の駆動を禁止する 制御過程とを具備することを特徴とする電子機器の制御方法を提供する。
好ましい態様において、 電子機器の制御方法は、 無線通信の実行時に駆動を禁 止すべき負荷部または複数の負荷部の組み合わせを、 前記検出手段によって検出 された前記電池の状態に応じて決定する過程を含む。
また、 好ましい態様において、 前記電子機器は、 外部装置との間において形成 した無線通信ネッ トワークの同期を維持するために所定周期毎に同期信号の無線 通信を行う低消費電力モードまたは前記外部装置との間で実際の無線データ通信 を行うアクティブモードをとることが可能であり、 前記制御過程では、 前記低消 費電力モードにおいて前記同期信号の無線通信を行っている場合および前記ァク ティブモ--ドにある場合に、 無線通信部以外の一または複数の負荷部の駆動を禁 止する。
この発明は、 以上のような制御方法を電子機器を制御するコンピュータに実行 させるプログラムを電気通信回線を介してユーザに配信したり、 そのようなプロ グラムをコンピュータ読み取り可能な記憶媒体に記録してユーザに配布するとい う態様でも実施され得る。 図面の簡単な説明
図 1は、 この発明の第 1の実施形態による携帯端末の外観を示す図である。 図 2は、 同携帯端末の構成を示すブロック図である。
図 3は、 同携帯端末の第 2制御部の構成を示す回路図である。
図 4は、 同携帯端末の各スィツチの状態と各動作モードとの関係を例示した図 である。
図 5は、 同携帯端末の動作を示すタイミングチャートである。
図 6は、 この発明の第 2実施形態に係る携帯端末の構成を示すブロック図であ る。
図 7は、 この発明の第 3実施形態に係る携帯端末の構成を示すブロック図であ る。
図 8は、 同実施形態の変形例に係る携帯端末の構成を示すブロック図である。 図 9は、 この発明の第 4実施形態に係る携帯端末の構成を示すプロック図であ る。
図 1 0は、 同実施形態の動作を説明する図である。
図 1 1は、 従来の電子機器の構成を示す図である。
図 1 2は、 従来の電子機器における出力電圧特性を示す図である。
図 1 3は、 この発明の第 5実施形態に係る無線通信システムの構成図である。 図 1 4は、 同システムにおける携帯端末の構成を示すブロック図である。
図 1 5は、 同システムにおける腕時計の外観図である。
図 1 6は、 同腕時計の断面図である。
図 1 7は、 同腕時計の回路構成を示すブロック図である。
図 1 8は、 同腕時計の P L L回路、 受信回路および送信回路の詳細を示すプロ ック図である。
図 1 9は、 同腕時計の駆動回路の構成を示す回路図である。
図 2 0は、 同腕時計の動作を示すシーケンス図である。
図 2 1および図 2 2は、同腕時計の動作内容を示す夕イミングチャートである。 図 2 3は、 同腕時計の中央制御回路の制御内容を示すフローチャートである。 図 2 4は、 同腕時計の動作を示すタイミングチャートである。
図 2 5は、 この発明の第 6実施形態における電池電圧判別回路の構成を示す回 路図である。
図 2 6は、 同実施形態の動作を示すフローチャートである。
図 2 7は、 この発明の第 7実施形態に係る腕時計における電池の放電特性を例 示する図である。 図 2 8は、 同腕時計の動作を示すフローチャートである。
図 2 9は、 同腕時計の動作を示すタイミングチャートである。
図 3 0は、 第 5〜第 7実施形態の変形例の動作を示すタイミングチャートであ る。
図 3 1は、 第 7実施形態の変形例において用いられる電池残容量測定回路の構 成を示す回路図である。 発明を実施するための最良の形態
以下、 本発明をさらに理解しやすくするため、 携帯情報端末に適用した実施の 形態について説明する。かかる実施の形態は、 本発明の一態様を示すものであり、 本発明の技術的思想の範囲で任意に変更可能である。
A . 第 1実施形態
( 1 ) 実施形態の構成
図 1は、 この発明の第 1実施形態に係る携帯情報端末 1 0 0の外観を示す図で あり、 図 2は、 携帯情報端末 1 0 0の構成を示すブロック図である。
図 1に示す携帯情報端末 1 0 0は、 近距離無線通信機能 (例えば、 Bluetooth 等) を備えた腕時計型の携帯情報端末であり、 電源として 2次電池 1 0 5を内蔵 している (図 2参照)。
2次電池 1 0 5は、 例えば公称電圧 4 . 0 Vの充電可能なリチウム蓄電池から なり、 図 2に示すように、 第 1制御部 1 1 0、 第 2制御部 1 2 0、 重負荷群 1 4 0、 軽負荷群 1 5 0等、 端末各部に電力を供給する。 なお、 リチウム蓄電池以外 にも、 小型シール鉛蓄電池、 二酸化マンガン · リチウム蓄電池、 ニッケル ·水素 蓄電池、 酸化銀蓄電池等を電源として使用することが可能である。
本実施形態に係る携帯端末は、 2つのスィツチ S 1および S 2を有している。 スィッチ S 1は、 2次電池 1 0 5からの電流を重負荷群 1 4 0へと導く電流経路 のうち重負荷群 1 4 0の正電源端子と第 1制御部 1 1 0の正電源端子との間の区 間に挿入されている。 また、 スィッチ S 2は、 2次電池 1 0 5の正極と第 1制御 部 1 1 0とを結ぶ電流経路上に挿入されている。 従って、 重負荷群 1 4 0には、 スィッチ S 1および S 2の両方を介することにより 2次電池 1 0 5からの電流が 供給され、 第 1制御部 1 1 0にはスィッチ S 2を介することにより 2次電池 1 0 5からの電流が供給される。
重負荷群 (重負荷部) 140は、 消費電流の大きな種々の負荷によって構成さ れている。 この重負荷群 (重負荷部) 140は、 アンテナ R Aを介して携帯電話、 パーソナルコンピュータ等の外部機器との間で無線によるバケツ 卜通信を行う無 線回路 RFを含んでいる。 また、 重負荷群 (重負荷部) 140は、 無線回路 RF を介して入力された音声情報などを表すべ一スパンド信号を処理するデータ処理 部 B Bを含んでいる。
軽負荷群 (軽負荷部) 1 50は、 上記重負荷群 140に比して消費電流の小さ な種々の負荷によって構成されている。 この軽負荷群 1 50は、 表示装置 1 5 1、 警報装置 1 52を含んでいる。
表示装置 1 5 1は、 例えば液晶ディスプレイ (L CD)、 液晶駆動回路 (図示 略) によって構成される。 この表示装置 1 5 1は、 第 1制御部 1 1 0による制御 の下、 計時表示、 電池の残量表示等を行うとともに、 第 1制御部 1 1 0から供給 される駆動信号 ALMに基づき 2次電池 1 50の充電時期の到来をユーザに報知 するためのアラーム表示 (例えば、 「充電が必要です。 充電してください」 等) を行う。
警報装置 1 52は、 アラーム音信号を生成する音源、 アラーム音信号を音とし て出力するスピーカ、 バイブレータ (図示略) 等により構成されている。 この警 報装置 1 52は、 第 1制御部 1 1 0による制御の下、 予め設定された時刻にァラ ーム音、 振動等を発生する。 また、 警報装置 1 52は、 第 1制御部 1 1 0から供 給される駆動信号 ALTに基づきスピーカ、 バイブレータ等を駆動し、 2次電池 1 50の充電時期の到来をユーザに報知するためのアラーム音 (例えば、 ビープ 音等)、 振動等を発生する。
第 1制御部 1 1 0は、 CPU、 ROM, R AM等により構成されている。 この 第 1制御部 1 1 0は、 ROMに格納された各種制御プログラムに従い端末各部を 制御する。
また、 第 1制御部 1 1 0は、 2次電池 1 0 5の出力電圧 VCと RAM等に予め 設定されている第 1閾値電圧 VH (例えば、 3. 0 V) とを比較する。 そして、 以下説明するように、 この比較結果に基づいて重負荷群 1 40に対する電力供給 を制御する。
まず、 2次電池 1 0 5の出力電圧 VCが第 1閾値電圧 VHよりも大きい場合、 第 1制御部 1 1 0は、 切り換え信号 SW1をハイレベルにすることにより第 1ス イッチ S 1をオン状態とし、 重負荷群 1 40に対して電力を供給する。 また、 第 1制御部 1 1 0は、 コントロール信号 C Cをハイレベルに維持する。
そして、 2次電池 1 0 5の出力電圧 VCが低下して第 1閾値電圧 VHに到達し たとき、 第 1制御部 1 1 0は次のことを行う。 まず、 第 1制御部 1 1 0は、 切り 換え信号 SW 1をローレベルにすることにより第 1スィッチ S 1をオフ状態とし、 重負荷群 1 40に対する電力供給を停止する。 これ以降、 第 1制御部 1 1 0は、 2次電池 1 0 5の出力電圧 VCの監視を行わず、 スィッチ S 1は、 2次電池 1 0 5の出力電圧 VCの増減に拘わらずオフ状態を維持する。 また、 第 1制御部 1 1 0は、 2次電池 1 0 5の充電時期の到来をユーザに報知すべく、 軽負荷群 1 5 0 の表示装置 1 5 1及び警報装置 1 5 2の各々に駆動信号 A L M、 A L Tを供給す る。 さらに第 1制御部 1 1 0は、 コントロール信号 C Cをハイレベルからローレ ベルに切り換える。
第 2制御部 1 2 0は、 このようにしてコントロール信号 C Cがハイレベルから ローレベルに切り換えられた後、 第 1制御部 1 1 0に代わって、 2次電池 1 0 5 の出力電圧 VCを監視するとともに、 監視結果に基づいて、 軽負荷群 1 5 0、 第 1制御部 1 1 0に対する電力供給の制御を行う。
図 3は、 第 2制御部 1 2 0の構成を示す図である。
第 2制御部 1 2 0は、 充電抵抗 Rと、 コンデンサ Cと、 電圧源 1 2 0 bと、 コ ンパレー夕 1 2 0 cと、 Pチャネル M OS トランジスタ 1 2 0 dとを有する。
ここで、 充電抵抗 Rおよびコンデンサ Cは、 2次電池 1 0 5の正電源端子と接 地線との間に直列に介挿されており、電池電圧保持回路 1 2 0 aを構成している。 コンデンサ Cには、 2次電池 1 0 5の出力電圧 VCが保持される。
コンパレータ 1 2 0 cは、 正電源端子と負電源端子を有しており、 正電源端子 は 2次電池 1 0 5の正極に接続され、 負電源端子は Pチャネル M〇 S トランジス 夕 1 2 0 dおよび抵抗を順次介して 2次電池 1 0 5の負極に接続されている。 ま た、 コンパレータ 1 2 0 cは、 基準入力端子 (一) と比較入力端子 (+ ) を有し ており、 基準入力端子には電圧源 1 2 0 bによって発生される第 2閾値電圧 VL (例えば、 3. 0 V等) が印加され、 比較入力端子にはコンデンサ Cに保持され た 2次電池 1 0 5の出力電圧 V Cが印加される。 また、 コンパレータ 1 2 0 じの 出力端子は、 抵抗あるいはトランジスタ等の能動負荷 (いずれも図示略) を介し て 2次電池 1 0 5の正極に接続されている。 Pチャネル MO S トランジス夕 1 2 0 dのゲートは、 プルダウン抵抗 R 1を介して接地されている。 このゲートには、 第 1制御部 1 1 0からのコン卜ロール信号 C Cが印加される。
既に述べたように、 2次電池 1 0 5の出力電圧 VCが第 1閾値電圧 VHよりも 大きい場合、 第 1制御部 1 1 0は、 コントロール信号 C Cをハイレベルに維持す る。 このコントロール信号 C Cがハイレベルである間、 Pチャネル MO S トラン ジス夕 1 2 0 dはオフとなり、 コンパレータ 1 2 0 cの負電源端子がフローティ ング状態になる。 このため、 コンパレータ 1 2 0 cの出力端子には、 上述した抵 抗あるいはトランジスタ等の能動負荷を介して 2次電池 1 0 5の出力電圧 VCが 与えられ、 この出力端子からハイレベルの切り換え信号 SW2が得られる。 切り 換え信号 SW 2がハイレベルである場合、 スィッチ S 2はオン状態となる。
一方、 コントロール信号 C Cがローレベルになると、 Pチャネル MO S トラン ジス夕 1 20 dがオン状態となるため、 コンパレ一夕 1 2 0 cには、 2次電池 1 0 5の出力電圧 VCが電源電圧として与えられる。 従って、 コントロール信号 C Cがローレベルである間、 コンパレー夕 1 2 0。は、 コンデンサ Cに保持された 2次電池 1 0 5の出力電圧 VCと第 2閾値電圧 VLとを比較する。
2次電池 1 0 5の出力電圧 VCが第 2閾値電圧 VLよりも大きい場合、 第 2制 御部 1 2 0は、 切り換え信号 SW2をハイレベルにすることにより第 2スィッチ S 2をオン状態とする。 従って、 2次電池 1 0 5から軽負荷群 1 5 0及び第 1制 御部 1 1 0に電力が供給される。
一方、 2次電池 1 0 5の出力電圧 VCが第 2閾値電圧 VLよりも低下すると、 第 2制御部 1 2 0は、 切り換え信号 SW2を口一レベルにすることにより第 2ス イッチ S 2をオフ状態とする。 これにより、 2次電池 1 0 5から軽負荷群 1 5 0 及び第 1制御部 1 1 0への電力供給が断たれる。 このようにして、 第 1制御部 1 1 0への電力供給が断たれると、 以後、 コント ロール信号 C Cの信号レベルはローレベルに維持される。 何故ならば、 第 1制御 部 1 1 0と第 2制御部 1 2 0とを結ぶコントロール信号 C Cの信号線は、 ブルダ ゥン抵抗 Rを介して接地されているからである。
以上説明した第 2制御部 1 2 0は、 コンパレー夕 1 2 0 c しか電力を消費しな いので、 第 1制御部 1 1 0と比較して消費電力は僅かである。 なお、 図 3に示す ようにコンパレータ 1 2 0 cの負電源端子と 2次電池 1 0 5の負極との間に Pチ ャネル M O S トランジスタ 1 2 0 dを介挿する代わりに、 2次電池 1 0 5の正極 とコンパレータ 1 2 0 cの正電源端子との間に Pチャネル M O S トランジスタ 1 2 0 dを介挿してもよい。 また、 コンパレータ 1 2 0 cの負電源端子は 2次電池 1 0 5の負極に接続しても良い。
( 2 ) 実施形態の動作
図 4は、 スィッチ S l、 スィッチ S 2の状態と各動作モードとの関係を示す図 であり、 図 5は、 携帯情報端末 1 0 0の制御動作を説明するためのタイミングチ ヤー卜である。 以下、 これらの図を参照して本実施形態の動作を説明する。
図 4において、 重負荷モードでは、 スィッチ S 1及びスィッチ S 2の両方がォ ンし、 少なくとも重負荷群 1 4 0及び第 1制御部 1 1 0が動作する。 この重負荷 モードは、 最も消費電流が大きい動作モードである。 軽負荷モードでは、 スイツ チ S 1がオフ、 スィッチ S 2がオンとなり、 軽負荷群 1 5 0及び第 1制御部 1 1 0が動作する。 この軽負荷モードにおける消費電流は、 重負荷モードにおける消 費電流よりも少ない。 最軽負荷モードでは、 スィッチ S 1及びスィッチ S 2を共 にオフし、 第 2制御部 1 2 0のみが動作する。 この最軽負荷モードにおける消費 電流は、 最も少ない。 なお、 以下の説明は、 各動作モードにおける消費電流がそ れぞれ 5 0 m A、 5 0 / A、 0 . 1 Aである場合を想定する (図 4参照)。 ま た、 図 5において実線および破線は、 2次電池 1 0 5の出力電圧の時間経過に伴 う変化を示している。 この出力電圧は、 2次電池 1 0 5の電池電圧から内部抵抗 による電圧降下を差し引いた電圧となっている。 また、 一点鎖線は、 2次電池 1 0 5の電池電圧である。
携帯情報端末 1 0 0の使用に際し、 ユーザが電源キーを押下して電源を投入す ると、携帯情報端末 1 00の動作モードは、最軽負荷モードから軽負荷モード(通 信待ち受け状態) へ移行し、 第 1制御部 1 1 0及び軽負荷群 1 50に対する電力 供給が開始される。 その後、 ユーザが所定の操作キーを押下してデータ通信を要 求するコマンドが携帯情報端末 1 0 0に入力されると、 第 1制御部 1 1 0は、 重 負荷群 140に対する電力供給を開始すべく、 ハイレベルの切り換え信号 SW 1 を第 1スィッチ S 1に出力する。 重負荷群 140に対する電力供給が行われ、 デ 一夕通信が開始すると、 携帯端末 1 00の動作モードは軽負荷モードから重負荷 モード (通信状態) に移行する。
第 1制御部 1 1 0は、 重負荷モードに移行すると 2次電池 1 05の出力電圧 V Cの検出を開始し、 RAM等に設定されている第 1閾値電圧 VHと比較すること により出力電圧 VCの監視を行う。 第 1制御部 1 1 0は、 出力電圧 VCが第 1閾 値電圧 VHよりも大きい間 (図 5に示す、 C参照)、 切り換え信号 SW1をハイ レベルに維持して重負荷群 1 40に対する電力供給を継続する。 そして、 第 1制 御部 1 1 0は、 デ一夕通信中に出力電圧 VCが第 1閾値電圧 VHに到達したこと を検出すると (図 5に示す、 B 1参照)、 切り換え信号 SW1をローレベルにし て第 1スィッチ S 1をオフし、 重負荷群 140に対する電力供給を停止する。 こ れにより、 携帯情報端末 1 00の動作モードは重負荷モードから軽負荷モードに 移行する。 この軽負荷モードに移行した後は、 第 1制御部 1 1 0は、 2次電池 1 05の出力電圧 VCの増減に拘わらず、 切り換え信号 SW 1を口一レベルに維持 する。
ところで、 2次電池 1 05の出力電圧 VCは、 負荷電流に電池内部抵抗を乗じ た分だけ電圧降下する。 ここで、 電池内部抵抗を一定 (= 8 Ω) と考えれば、 消 費電流 (= 50 Α) の小さな軽負荷モードにおける電圧降下 Vd 2 (=0. 4 X 1 0'3V ;図 5参照) は、 消費電流 (= 50 mA) の大きな重負荷モードにお ける電圧降下 Vd l (二 0. 4V ;図 5参照) と比較して小さくなる。 従って、 軽負荷モードへの移行後は、 2次電池 1 0 5の出力電圧 VCは、 第 1閾値電圧 V Hから回復し (図 5に示す、 B 1→B 2 )、 軽負荷群 1 50を駆動することが可 能となる。
第 1制御部 1 1 0は、 2次電池 1 0 5の出力電圧 VCが回復すると、 駆動信号 ALM、 ALTを生成し、 表示装置 1 5 1及び警報装置 1 5 2にそれぞれ出力す ると共にコントロール信号 C Cをハイレベルからローレベルに切り換える。
コントロール信号 CCがローレベルになると、 第 2制御部 1 2 0は、 第 1制御 部 1 1 0に代わって、 2次電池 1 0 5の出力電圧 VCの検出を開始し、 電圧源 1 2 0 bにおいて発生する第 2閾値電圧 VLと比較することにより出力電圧 VCの 監視を行う。 第 2制御部 1 2 0は、 出力電圧 VCが第 2閾値電圧 VLよりも大き い間 (図 5に示す、 D参照)、 切り換え信号 SW2をハイレベルに維持して軽負 荷群 1 50に対する電力供給を継続する。 これにより、 表示装置 1 5 1は、 第 1 制御部 1 1 0から供給される駆動信号 A LMに基づき 2次電池 1 0 5の充電時期 の到来をユーザに報知するためのメッセージ 「充電が必要です。 充電してくださ . レ^」 を液晶ディスプレイに表示し、 警報装置 1 5 2は、 同様に駆動信号 AL T に基づき充電時期の到来をユーザに報知するためのアラーム音、 振動等を発生す る。
そして、 第 2制御部 1 2 0は、 出力電圧 VCが第 2閾値電圧 VLに到達したこ とを検出すると (図 5に示す、 B 3参照)、 ローレベルの切り換え信号 SW2を 第 2スィッチ S 2に出力し、 軽負荷群 1 50及び第 1制御邵 1 1 0に対する電力 供給を停止する。 第 2スィッチ S 2をオフすることにより、 携帯情報端末 1 0 0 の動作モードは軽負荷モードから最軽負荷モードに移行する。 前述したように、 最軽負荷モードでは第 2制御部 1 2 0が動作し続け、 2次電池 1 0 5の出力電圧 VCの検出を継続する (図 5に示す、 E参照)。 携帯情報端末 1 0 0の動作モー ドが軽負荷モードから最軽負荷モードに移行すると、 2次電池 1 0 5の内部抵抗 による電圧降下はさらに小さくなり、 2次電池 1 0 5の出力電圧 VCは回復する。 ここで、 軽負荷モードにおける電圧降下 Vd 2と、 最軽負荷モードにおける電 圧降下 Vd 3との差が大きければ、 第 2制御部 1 2 0が 2次電池 1 0 5の出力電 圧 VCの回復を検出し、 再び第 2スィッチ S 2をオンにすることも考えられる。
しかしながら、 2次電池 1 0 5の出力電圧 VCの回復は、 極めて微少であり、 第 2制御部 1 2 0によって出力電圧 VCの回復が検出されることはない。 具体的 に説明すれば、 一般的に第 2制御部 1 2 0が検出できる出力電圧 VCの変動 (す なわち、 第 2制御部 1 2 0における電圧の検出分解能) は ± 0. 0 5 V程度であ るのに対し、 消費電流 (= 5 0 ^A) の小さな軽負荷モードにおける電圧降下 V d 2 (= 0. 4 X 1 0 3V ; 図 5参照) と消費電流 (= 0. 1 β Α) の微少な最 軽負荷モードにおける電圧降下 V d 3 (= 0. 1 X 1 0 '6V ; 図 5参照) との差 は、 0. 4 X 1 (T3V以下である。 従って、 携帯情報端末 1 0 0の動作モードが 軽負荷モードから最軽負荷モードに移行した場合に、 第 2制御部 1 2 0によって 2次電池 1 0 5の出力電圧 VCの回復が検出されることはない。
その後、 アラーム音等により、 充電時期が到来したことを認識したユーザは、 2次電池 1 0 5の充電を行う。 この 2次電池 1 0 5の充電方法には、 予め充電電 圧、 充電電流を制御する回路を備えた充電器と 2次電池 1 0 5とを端子、 ケ一ブ ル等により直接接続して充電を行う方法や、 コイルを介して電磁誘導を利用して 行う方法等がある。 いずれの充電方法を採用する場合においても、 2次電池 1 0 5の初期電圧、 充電電流の監視等を行い、 充電に支障がないことを確認した上で 充電が行われる。 この制御回路を本実施形態に係る第 2制御部 1 2 0と組み合わ せて構成すること、 あるいは充電器がそのような制御回路を併せ持った構成とす ること等が可能であるが、 携帯情報端末 1 0 0のサイズ制限、 使い勝手等を考慮 して適宜判断するのが望ましい。
以上のような充電方法により 2次電池 1 0 5の充電が行われると、 出力電圧 V Cが回復する。 第 2制御部 1 2 0は、 2次電池 1 0 5の充電により出力電圧 VC が回復したことを検出すると、 切り換え信号 SW 2をローレベルからハイレベル に切り換える。 この結果、 第 2スィッチ S 2はオンして最軽負荷モードから軽負 荷モードへ移行し、 軽負荷群 1 5 0及び第 1制御部 1 1 0への電力供給が開始さ れる。 なお、 この後の動作については、 上述した場合と同様に説明することがで きるため、 説明を省略する。
以上説明したように、 本実施形態によれば、 2次電池の充電時期の到来をユー ザに報知する処理が終了すると、 携帯情報端末の動作モードは消費電流の小さな 軽'負荷モードから消費電流が微少な最軽負荷モードへ移行する。 最軽負荷モード へ移行する際にも、 2次電池の出力電圧は回復するが、 この場合に回復する出力 電圧は極めて小さく、 出力電圧の回復が検出されることはない。 すなわち、 第 2 制御部は 2次電池が放電終止電圧に到達したことを検出した後、 該 2次電池が充 電されるまでの間に上記 2次電池の出力電圧の回復等による誤検出動作を行うこ とはない。
また、 携帯情報端末が重負荷モードで動作しているときに 2次電池の出力電圧 が閾値電圧に到達すると、 動作モードが重負荷モードから軽負荷モードに切り換 えられ、 このモード切り換えによる 2次電池の出力電圧の回復を利用して、 軽負 荷群が駆動され、 2次電池の充電時期の到来がユーザに報知される。 従って、 確 実、 かつ、 2次電池の潜在能力を十分に引き出して 2次電池の充電時期の到来を ユーザに報知することができる。
( 3 ) 変形例
以上この発明の一実施形態について説明したが、 上記実施形態はあくまで例示 であり、 上記実施形態に対しては、 本発明の趣旨から逸脱しない範囲で様々な変 形を加えることができる。 変形例としては、 例えば以下のようなものが考えられ る。
ぐ変形例 1 >
上述した本実施形態では、 第 1閾値電圧 V Hと、 第 2閾値電圧 V Lとを同じ値 に設定した場合を例に説明を行ったが、 例えば、 第 1の閾値電圧 V Hを 3 . 0 V に設定し、 第 2の閾値電圧を 2 . 5 Vに設定する等、 携帯情報端末 1 0 0の設計 等に応じて適宜変更可能である。 また、 これら閾値電圧の値は、 上述した消費電 流に伴う 2次電池の電圧降下を計算あるいは実験等により求め、 これを用いて最 適な値に設定することが可能である。
<変形例 2 >
上記実施形態における重負荷モードにおいて、 重負荷群 1 4 0における一部の 回路、 例えば無線回路 R Fおよびデー夕処理部 B Bを間欠的に駆動してもよい。 この場合、 第 1制御部 1 1 0は、 無線回路 R Fおよびデータ処理部 B Bが動作し ている期間に、 2次電池 1 0 5の出力電圧 V Cを検出し、 第 1閾値電圧 V Hとの 比較を行えばよい。
<変形例 3 >
上記実施形態では、 近距離無線通信機能を搭載した腕時計型の携帯情報端末 1 0 0を例に説明を行ったが、 本発明は無線通信機能が搭載されていない腕時計型 の携帯情報端末にも適用可能である。 また、 電子手帳、 P H S (Personal Handyphone System), 携帯電話、 ノート型パソコン、 ぺ一ジャ、 Bluetooth機 器のほか、 IEEE802.11b、 White Cap, IEEE802.11a、 Wireless 1394等を搭載 した機器、 IrDA を搭載した機器等、 消費電流の異なる様々な負荷が設けられた あらゆる電子機器に適用可能である。
<変形例 4〉
上記実施形態では、 充電可能な 2次電池を例に説明を行ったが、 本発明は使い 捨て型の 1次電池を電源とする携帯情報端末にも適用可能である。 1次電池に適 用した場合には、 電池の潜在能力を十分に引き出し、 電池寿命を長期にわたって 確保することができる。
B. 第 2実施形態
図 6は、 この発明の第 2実施形態に係る携帯情報端末 1 0 OAの構成を示す図 である。
本実施形態に係る携帯情報端末 1 0 0 Aは、 リセッ トスィツチ S 3を有してい る。 これは、 図示せぬリセッ トポタンが押下された場合にのみオンするスィッチ である。 また、 第 1制御部 1 1 0 Aは、 上記第 1実施形態における第 1制御部 1 1 0と第 2制御部 1 20の機能を併せ持つている。 これらの点を除けば、 携帯情 報端末 1 0 OAの構成は、前掲図 2に示す携帯情報端末 1 00とほぼ同様である。 従って、 対応する部分には、 同一符号を付し、 説明を省略する。
第 1制御部 1 1 0Aは、 2次電池 1 05の出力電圧 VCが降下して第 1閾値電 圧 VHに到達したことを検出すると、 第 1スィッチ S 1をオフにする。 この第 1 スィッチ S 1をオフすることにより、 2次電池 1 0 5の出力電圧 VCが回復する と、 第 1制御部 1 1 0Aは、 駆動信号 ALM、 ALTを生成し、 表示装置 1 5 1 及び警報装置 1 52にそれぞれ出力すると共に、 第 2閾値電圧 VLを RAM等か ら読み出し、 出力電圧 VCの監視を継続する。 表示装置 1 5 1及び警報装置 1 5 2は、 上述した第 1実施形態と同様、 駆動信号 ALM、 ALTに基づき 2次電池 1 0 5の充電時期の到来をユーザに報知する。
その後、 第 1制御部 1 1 0Aは、 2次電池 1 0 5の出力電圧 VCが更に降下し て第 2閾値電圧 V Lに到達したことを検出すると、 ローレベルの切り換え信号 S W2を第 2スィッチ S 2に出力し、 スィッチ S 2をオフにして第 1制御部 1 1 0 Aを含む全ての負荷に対する電力供給を停止する。
一方、 ユーザはアラーム音等により、 充電時期が到来したことを認識すると、 2次電池 1 0 5の充電を行い、 図示せぬリセッ トボタンを押下する。 ユーザによ つてリセットボタンが押下されると、 リセッ トスィッチ S 3がオンして第 1制御 部 1 1 0 Aに対する電力供給が開始される。 かかる電力供給により第 1制御部 1 1 OAが起動すると、 第 1制御部 1 1 OAは、 2次電池 1 0 5の出力電圧 VCの 監視を再開すべく、 ハイレベルの切り換え信号 SW2を第 2スィツチ S 2に出力 する。 これにより第 2スィッチ S 2がオンすると、 第 1制御部 1 1 O Aは 2次電 池 1 0 5の出力電圧 VCの監視を再開する。 なお、 この後の動作については、 上 述した本実施形態と同様であるため、 説明を割愛する。
以上説明したように、 第 1制御部 1 1 OAが第 1スィッチ S 1及び第 2スイツ チ 2の切り換えを制御するように構成することも可能である。 この構成によれ ば、 第 2制御部 1 2 0を新たに設ける必要がないため、 部品点数を減らし、 製造 コストを削減することが可能となる。
なお、 上記実施形態における第 1制御部 1 1 OAに係る諸機能をソフトウエア を用いて実現することも可能である。 具体的には該ソフトウエアを記録した記録 媒体 (例えば、 CD— ROM等) からパーソナルコンピュータを介して携帯情報 端末 1 0 0 Aに該ソフトウエアをインストールする、 あるいは該ソフトウエアを 備えたサーバからネッ トワーク (例えば、 インタ一ネッ ト網等) を介してダウン ロードし、 パーソナルコンピュータ等を介して携帯情報端末 1 0 O Aに該ソフト ウェアをインストールする。 このように、 上述した諸機能をソフトウェアによつ て実現することも可能である。
C. 第 3実施形態
図 7はこの発明の第 3実施形態である携帯情報端末 1 0 0 Bの構成を示すプロ ック図である。 この携帯情報端末 1 0 0 Bは、 図 2に示す構成に対して ORゲー 卜 G 1が追加されている。 この ORゲート G 1は、 第 1制御部 1 1 0 Bから出力 されるコントロール信号 CCと第 2制御部 1 2 0 Bから出力される切り換え信号 SW2との論理和を出力する。 そして、 スィッチ S 2は、 ORゲート G 1の出力 信号がハイレベルのときにはオン、 ローレベルのときにはオフとなる。
第 1制御部 1 1 0 Bは、 スィッチ S 2がオン状態であるとき、 スィッチ S 1の オンノオフ切り換えを行い、重負荷群 140を間欠駆動する。 さらに詳述すると、 第 1制御部 1 1 0 Bは、 無線回路 RFおよびデータ 理部 BBにより通信を行う 期間、 切り換え信号 SW1をハイレベルにすることによりスィッチ S 1をオン状 態とし、 2次電池 1 05からの電力を重負荷群 1 40に供給する。 また、 他の期 間は切り換え信号 SW1をローレベルにすることによりスィッチ S 1をオフ状態 とし、 重負荷群 140に対する電力供給を断つ。 また、 第 1制御部 1 1 0 Bは、 スィツチ S 1がオン状態である期間における 2次電池 1 0 5の出力電圧 V Cを第 1閾値電圧 VHと比較し、 前者が後者よりも高いことを条件に、 重負荷群 1 40 の間欠駆動を繰り返す。 さらに、 第 1制御部 1 1 0 Bは、 スィツチ S 1をオン状 態とする期間は、 コントロール信号 CCをハイレベル、 そうでない期間はコント ロール信号 C Cをローレベルとする。
第 2制御部 1 20 Bは、 図 3に示されるような Pチャネル MO S トランジスタ 1 20 dや抵抗 R 1を有していない。 本実施形態における第 2制御部 1 2 0 Bに おいては、 コンパレータ 120 cの負電源端子が 2次電池 1 05の負極に直接接 続されている。 そして、 コンパレータ 1 20 cは、 2次電池 1 05の出力電圧 V Cを常時監視し、 これが第 2閾値電圧 VLよりも高ければ切り換え信号 SW2を ハイレベルとし、 低ければ切り換え信号 SW 2をローレベルとする。
本実施形態の動作は上記第 1実施形態とほぼ同様であるが、 本実施形態におい て第 1制御部 1 1 0 Bが動作を停止する契機は 2通りある。 第 1の契機は、 重負 荷群 1 40の間欠駆動中、 重負荷モードにおける 2次電池 1 05の出力電圧 VC が第 1閾値電圧 VHに到達した場合であり、 第 2の契機は重負荷群 140の間欠 駆動中、 軽負荷モードにおける 2次電池 1 0 5の出力電圧 VCが第 2閾値電圧 V Lに到達した場合である。
まず、 第 1の契機に基づく動作について説明する。 既に述べたように、 第 1制 御部 1 1 0 Bは、 スィッチ S 1をオン状態とする期間、 2次電池 1 0 5の出力電 圧 VCを第 1閾値電圧 VHと比較する。 そして、 2次電池 1 05の出力電圧 VC が第 1閾値電圧 VHよりも高い場合には、重負荷群 140の間欠駆動を継続する。 一方、 2次電池 1 0 5の出力電圧 VCが低下して第 1閾値電圧 VHに達すると、 第 1制御部 1 1 0 Bは、 重負荷群 1 40の間欠駆動を停止するとともにコント口 ール信号 CCをローレベルに固定し、 上記第 1実施形態と同様、 充電時期が近づ いたことをユーザに知らせるための動作を行う。 その後、 2次電池 1 0 5の充電 が行われることなく携帯情報端末 1 0 0 Bが動作を続けると、 2次電池 1 0 5の 出力電圧 VCがさらに低下し、 軽負荷モード時の出力電圧 VCが第 2閾値電圧 V L以下になる。 このとき第 2制御部 1 2 0 Bによって切り換え信号 SW2がロー レベルとされ、 スィッチ S 2がオフ状態とされ、 第 1制御部 1 1 0 Bへの電力供 給が断たれる。
次に第 2の契機に基づく動作について説明する。 重負荷群 1 40の間欠駆動が 行われている期間内において、 スィッチ S 1がオフ状態 (軽負荷モード時) であ るときの 2次電池 1 0 5の出力電圧 VCが第 2閾値電圧 VL以下になると、 第 2 制御部 1 20 Bによって切り換え信号 SW2がローレベルとされる。 この結果、 スィッチ S 2がオフとなり、 第 1制御部 1 1 0 Bに対する電力供給が断たれ、 第 1制御部 1 1 0 Bは、 重負荷群 1 40の間欠動作を含む一切の動作を停止する。 さて、 2次電池 1 0 5の消耗により内部抵抗が増加すると、 2次電池 1 0 5の 出力電圧 VCが急激に低下することがある。 ここで、 第 1制御部 1 1 0Bは、 C PUなどによって構成されているため、 2次電池 1 0 5の出力電圧 VCの急激な 低下に応答するのが困難である。
従って、 何ら策を講じないとすると、 重負荷群 1 40の間欠駆動が行われてい るときに、 2次電池 1 0 5の出力電圧 VCが急激に低下して、 第 1制御部 1 1 0 Bが正常に動作することが可能な下限電圧以下となり、 第 1制御部 1 1 0Bの暴 走を招くおそれがある。
しかしながら、 本実施形態によれば、 重負荷群 1 40の間欠駆動中、 高速応答 が可能な第 2制御部 1 2 0 Bによって軽負荷モードでの 2次電池 1 0 5の出力電 圧 V Cが監視され、 これが第 2閾値電圧 V L以下になったときには直ちにスイツ チ S 2がオフ状態とされる。 従って、 急激な電源電圧の低下によって第 1制御部 1 1 0 Bが暴走する前に、第 1制御部 1 1 0 Bの動作を停止させることができる。 図 8は本実施形態の変形例である携帯情報端末 1 0 0 Cの構成を示すブロック 図である。 上記第 3実施形態におけるスィツチ S 1および S 2の位置を変えたも のである。 すなわち、 この変形例において、 スィッチ S 1は、 重負荷群 1 40の 負電源端子と第 1制御部 1 1 0 Bの負電源端子との間の区間に挿入されており、 スィッチ S 2は、 第 1制御部 1 1 0 Bの負電源端子と 2次電池 1 0 5の負極との 間に挿入されている。 他の点は上記第 3実施形態と同様である。 本変形例におい ても上記第 3実施形態と同様な動作が得られる。
D. 第 4実施形態
図 9はこの発明の第 4実施形態である携帯情報端末 1 00 Dの構成を示すプロ ック図である。 この携帯情報端末 1 0 0Dは、 第 3実施形態に係る携帯情報端末 B (図 7参照) に対し、 第 3制御部 1 3 0と ANDゲート G 2とが追加されてい る。 ここで、 図 1 0を参照し、 この新たに追加された要素の技術的意義について 説明する。
図 1 0において、 曲線 C VLは 2次電池 1 0 5の軽負荷モード時 (スィッチ S 1 =オフ、 スィッチ S 2=オン) における出力電圧 VCの動作時間に対する変化 を示している。 この曲線 CVLによって示すように、 2次電池 1 0 5の軽負荷モ 一ドにおける出力電圧 VCは、 携帯情報端末の動作時間の増加に伴って次第に低 下してゆき、 ある時期になると、 それまでよりも急な時間勾配で低下してゆく。 また、 使用開始後間もない時期において、 2次電池 1 05の内部抵抗は、 曲錄 C R 1に示すように、 動作時間の増加に伴って次第に増加し、 丁度、 出力電圧 VC の時間勾配が急になる頃、 内部抵抗の増加の時間勾配も急になる。 ここで、 重負 荷モード (スィッチ S l =オン、 スィッチ S 2 =オン) においては、 重負荷群 1 40の消費電流分だけ 2次電池 1 0 5の内部抵抗による電圧降下が増加する。 こ のため、 重負荷モードにおける 2次電池 1 05の出力電圧 VCは、 この電圧降下 の増加分だけ軽負荷モードにおける出力電圧 VCよりも低い電圧となる。そして、 使用後間もない時期においては、 曲線 C VH 1によって示すように、 軽負荷モー ドにおける出力電圧 VCの急激な低下が始まる頃に、 重負荷モードにおける出力 電圧 VCの急激な低下も始まる。 従って、 使用後間もない時期においては、 上記 第 3実施形態において行われたように、 軽負荷モードにおける 2次電池 1 0 5の 出力電圧 VCが第 2閾値電圧 VL以下になったのを第 2制御部 1 20 Bが迅速に 検知してスィッチ S 2を遮断すれば、 電源電圧低下に伴う第 1制御部 1 1 0 Bの 暴走を未然に防ぐことができる。
ところが、 2次電池 1 0 5の使用期間が長期に及ぶと、 曲線 CR 2によって示 すように、 2次電池 1 0 5の内部抵抗が増加し、 しかも、 軽負荷モードにおける 出力電圧 VCの急激な低下が始まるよりも早期に、 内部抵抗の急激な増加が始ま る。 このため、 曲線 CVH 2によって示すように、 軽負荷モードにおける出力電 圧 VCの急激な低下が始まるよりも早期に、 重負荷モードにおける出力電圧 VC の急激な低下が始まる。 このようにして起こる重負荷モードにおける出力電圧 V Cの急激な低下は、 軽負荷モードにおける 2次電池 1 0 5の出力電圧を検知して も分からない。 従って、 何ら策を講じないとすると、 電源電圧低下による第 1制 御部 1 1 0 Bの暴走を招くおそれがある。
そこで、 本実施形態においては、 図 9に示すように、 第 3制御部 1 3 0と A NDゲー卜 G 2とが追加されているのである。
ここで、 第 3制御部 1 3 0は、 例えばコンパレータを主要な構成要素とす 簡単な回路であり、 2次電池 1 0 5の出力電圧 VCを第 1閾値電圧 VHよりも僅 かに低い第 3閾値電圧 VMと比較し、 出力電圧 VCが第 3閾値電圧 VMよりも高 いときには第 3切り換え信号 SW 3をハイレベルとし、 低いときには第 3切り換 え信号 SW3を口一レベルとする。 ANDゲート G 2は、 この第 3切り換え信号 SW3と第 1制御部 1 1 0 Bによって出力される第 1切り換え信号 SW 1との論 理積を出力する。 スィッチ S 1は、 ANDゲート G 2の出力信号がハイレベルの ときにはオン、 ローレベルのときにはオフとなる。
このような構成において、 第 1制御部 1 1 0 Bを構成する C PUが動作可能な 電源電圧の下限を例えば 2 Vとすると、 これに若干の余裕を持たせて、 第 1閾値 電圧 VHを 2. 5 V、 第 2閾値電圧 VLを 3 V、 第 3閾値電圧 VMを 2. 4Vと すればよい。
この場合を例に本実施形態の動作を説明すると次のようになる。
まず、 2次電池 1 0 5の使用開始後間もない時期においては、 上記第 3実施形 態と同様、 重負荷モードにおける 2次電池 1 0 5の出力電圧 VCが第 1閾値電圧 VH (= 2. 5 V) になったことが第 1制御部 1 1 0 Bによって検知されたとき (第 1の契機)、 または間欠駆動中の軽負荷モード時の 2次電池 1 0 5の出力電 圧 VCが第 2閾値電圧 VL (= 3 V) になったことが第 2制御部 1 2 0 Bによつ て検知されたとき (第 2の契機)、 重負荷群 1 40の間欠駆動および第 1制御部 1 1 0 Bの動作が強制的に停止される。
そして、 2次電池 1 05の使用期間が長期に及ぶと、 重負荷モードにおける 2 次電池 105の出力電圧 VCは、 図 1 0における曲線 CVH 2のような時間的変 化を呈するようになる。 このような状況において、 重負荷群 1 40の間欠駆動中 に 2次電池 1 0 5の出力電圧 VCが急激に低下し、 第 3閾値電圧 VM (= 2. 4 V) に至ったとする。
ここで、 第 1制御部 1 1 0 Bは、 C PUによって構成されているため、 出力電 圧 VCが第 1閾値電圧 VH (=2. 5 V) 以下になつてから、 これに応答して第 1切り換え信号 SW 1をローレベルにするのに 2m s程度の時間を要する。 これ に対し、 第 3制御部 1 30は、 コンパレータを主要な構成要素とする簡単な回路 であるため、 出力電圧 VCが第 3閾値電圧 VM (= 2. 4 V) になってから 0. 1 m s程度の所要時間で第 3切り換え信号 VMをローレベルとし、 スィッチ S 1 を強制的にオフ状態にすることができる。 従って、 電源電圧低下による第 1制御 部 1 1 0 Bの暴走を未然に防ぐことができる。
以上説明した第 1〜第 4実施形態には、 次のような変形例が考えられる。 すな わち、 電池 1 05の内部抵抗を測定し、 この内部抵抗値に基づいて、 電池 1 0 5 による負荷駆動の条件を切り換える変形例である。 例えば第 1実施形態にこの変 形例を適用すると次のようになる。
第 1制御部 1 1 0は、 無線回路 R Fの間欠駆動が行われているとき、 無線回路
RFの駆動時における電池 1 05の出力電圧と非駆動時における出力電圧との差 を求め、 この差から電池 1 05の内部抵抗を算出する。 そして、 この内部抵抗が 上昇して所定の閾値に達したときに、 スィッチ S 1をオフし、 警報装置 1 5 2に よりアラームを出力し、 第 2制御部 1 2 0を駆動する。
本変形例によれば、 内部抵抗を測定し、 これに基づいて電池の状態を判定する ので、より正確に負荷駆動条件を切り換える夕イミングを判定することができる。
E. 第 5実施形態 携帯電話やノートパソコン、 腕時計型の小型情報機器 (以下、 腕時計と記述) といった情報端末同士をワイヤレス接続させる技術の 1つとして Bluetooth (登 録商標) の規格を用いた無線通信技術が提供されている。
この技術を用いれば、 一定の近距離に位置する情報端末の間において無線デー 夕の送受信を行うことができるため、 たとえば腕時計の操作をユーザが行うこと により、 ノートパソコン内の情報を腕時計の表示部に表示させたり、 携帯電話に 電話がかかってきたような場合は、 かかる旨を携帯端末から報知してもらうこと もできる。
ところで、 腕時計は、 電池を電源とするものが一般的である。 一方、 腕時計に は、 アラーム用のブザーやバイブレータ用のモー夕を有しているものもある。 こ のような腕時計において、 アラーム用のブザーやバイブレー夕用のモー夕の駆動 により電池から過大な電流が消費されると、 電池の出力電圧が著しく低下するこ とがある。 ここで、 腕時計が無線通信機能部により無線データ通信を実行してい るときに、 このような電池の出力電圧の急激な低下が起こると、 これによつて通 信が瞬断する、 という不具合が発生するおそれがある。 この不具合は、 特に電池 が消耗し、 電池の出力電圧が低下しているときに、 過大な電流が電池から消費さ れたような場合に起こりやすい。
また、 アラーム用のブザーやバイブレータ用のモ一夕の駆動により電磁ノイズ が発生するが、 これも無線通信品質に悪影響を及ぼす一因となる。
本実施形態は、 以上の点を考慮し成されたものであり、 無線通信機能部を含む 多くの機能部を併有する携帯型無線装置において、 無線通信機能の正常な実行を 担保することを目的とするものである。
( 1 ) 実施形態の構成
図 1 3は、 この発明を携帯型情報機器としての腕時計 (以下、 単に腕時計と記 述する) 5 0に適用させて構成した無線通信システムの構成図である。
図 1 3に示すように、 本システムは、 腕時計 5 0と、 腕時計 5 0のユーザが所 持する携帯端末 4 5および他の携帯端末 4 5 A、 4 5 B、 4 5 C、 …を備えてい る。
各携帯端末 4 5、 4 5 A、 4 5 B、 4 5 Cは基地局 3 1を介して回線網 3 0と 接続可能となっており、 回線網 3 0を介して各携帯端末同士、 若しくは、 インタ ーネッ ト等の他のネッ 卜ワークおよび回線網 3 0に接続される図示しないサーバ 装置に接続可能となっている。
ここで、 腕時計 5 0は、 携帯端末 4 5との間で、 Bluetooth (登録商標) によ るローカル無線通信機能を備えている。 また、 携帯端末 4 5は Bluetooth よる 通信機能の他、 回線網 3 0の間で無線通信を行う機能を有している。
図 1 4は、 携帯端末 4 5の主要構成を示す図である。
図 1 4に示すように、 携帯端末 4 5は、 携帯端末 4 5全体を制御する制御回路 4 5 aと、 アンテナ 4 5 eを介して腕時計 5 0との間で信号の授受を実行するた めの高周波回路 4 5 dと、 制御回路 4 5 aの制御下で送信信号を生成し高周波回 路 4 5 dへ出力する送信回路 4 5 bと、 高周波回路 4 5 dから入力される受信信 号を復調して受信データとして制御回路 4 5 aに出力する受信回路 4 5 cとを備 えている。 さらに、 携帯端末 4 5は、 回線網 3 0を介して他の携帯端末 4 5 A、 B、 C、 …との間で電話通信を行うための電話通信回路 4 5 f を備えている。 携帯端末 4 5は、 腕時計 5 0と無線通信する場合、 上述したように無線通信プ 口トコルとして Bluetooth を使用する。 このため、 送信回路 4 5 aから出力さ れる信号の周波数は 2 . 4 [ G H z ] が使用される。 また、 携帯端末 4 5の出力 信号の無線通信距離は 1 0 m程度 (Bluetooth 規格で定めるクラス 3 ) となって おり、 この無線通信距離の範囲内に腕時計 5 0が存在する場合に腕時計 5 0との 間で無線通信を実行する。
次に腕時計 5 0の構成を説明する。
図 1 5は、 腕時計 5 0の外観図である。 腕時計 5 0は、 腕時計本体 5 0 Aと腕 時計 5 0をユーザの腕に装着させるためのベルト 5 0 Bおよびベルト金具 5 0 C から構成される。
図 1 6は、 図 1 5における A ' — A線に沿って腕時計本体 5 0 Aを切断した状 態を示す断面図である。
図 1 6に示すように、 腕時計 5 0は、 カバーガラス 7 1と、 ケ一シング 7 2と、 裏蓋 7 6とを有するとともに、 これらにより形成される筐体内にアナログ時計モ ジュール 7 3と回路基板 7 4を備えている。 回路基板 7 4には、 基準周波数を有する源発信信号を生成するための水晶振動 子 5 0 8と、 腕時計 5 0の各部に電力を供給するための電池 5 1 0とが設けられ ている。
また、 回路基板 7 4には、 無線通信を実行するための回路やブザー 5 1 1ゃバ イブレ一タ 5 1 2のモー夕 5 2 1 Mを駆動させるための回路といった各種回路お よびアンテナ 5 0 1が形成されている。
図 1 Ίは、回路基板 7 4に形成される各種回路の構成を示すブロック図である。 図 1 7に示すように、 腕時計 5 0の回路基板 7 4には、 C P U (Central Processing Unit) 等からなる中央制御回路 5 0 5と、 アンテナ 5 0 1 と、 受信 回路 5 0 3と、 送信回路 5 0 4と、 切替回路 5 0 2と、 P L L回路 5 3 1 と、 ベ ースバンド回路 5 2 3とが搭載されている。
切替回路 5 0 2は、 受信回路 5 0 3と送信回路 5 0 4との間でアンテナ 5 0 1の 接続先を交互に切り換える回路である。 受信回路 5 0 3と、 送信回路 5 0 4と、 切替回路 5 0 2と、 ?し 回路5 3 1は、 ブルートゥースにおける R F層の処理 を行う無線通信機能部を構成している。 ベースバンド回路 5 2 3は、 受信回路 5 0 3の出力データ DRXにブル一トウースにおけるベースバンド層の処理を施し、 受信データとして中央制御回路 5 0 5に出力するとともに、 中央制御回路 5 0 5 から与えられる送信デ一夕にベースバンド層の処理を施し、 この結果得られるデ 一夕 DTXを送信回路 5 0 4に送る回路である。
ここで、 受信回路 5 0 3、 送信回路 5 0 4の動作状態は、 中央制御回路 5 0 5 により制御される。 具体的には、 受信回路 5 0 3は、 中央制御回路 5 0 5からべ ースバンド回路 5 2 3を介し、 ハイレベルの RX— EN信号が供給されると、 所 定の駆動電圧が供給され動作状態となる。 また、 受信回路 5 0 3は、 ローレベル の RX— EN信号が供給される場合は、 駆動電圧が供給されず動作しない状態と なる。
また、 送信回路 5 0 4は、 中央制御回路 5 0 5からべ一スバンド回路 5 2 3を 介しハイレベルの TX— EN信号が供給される場合に、 駆動電圧が供給されて動 作状態となる。 また、 送信回路 5 0 4は、 口一レベルの TX— EN信号が供給さ れる場合に、 所定の駆動電圧が供給されず動作しない状態となる。 さらに、 腕時計 5 0は、 駆動回路 5 1 1 dにより駆動され、 ブザー音により各 種情報をユーザに報知するためのブザー 5. 1 1と、 駆動回路 5 1 2 dにより駆動 され、 振動により各種状態をユーザに通知するためのバイブレー夕 5 1 2と、 駆 動回路 5 1 3 dにより駆動され、 L E D ( Light Emitting Diode ) や E L (Electronic Luminescent) バックライ トなどの発光素子を備え、 光により各種 状態をユーザに通知するための発光部 5 1 3と、 駆動回路 5 1 4 dにより駆動さ れ、 液晶ディスプレイパネル等で構成される各種情報を表示する表示部 5 1 4を 有している。
駆動回路 5 1 1 dとブザー 5 1 1、 駆動回路 5 1 2 dとバイブレー夕 5 1 2、 駆動回路 5 1 3 dと発光部 5 1 3、 駆動回路 5 1 4 dと表示部 5 1 4はそれぞれ の機能部として機能する。
ここで例えば、 発光部 5 1 3として E L素子を用いたバックライ トを用いた場 合、 E Lバックライ トを駆動するためには 2 0 V程度の交流電源電圧が必要とな る。 このために、 発光部 5 I- 3の駆動回路 5 1 3 dには昇圧回路を設けることと なるが、 かかる昇圧回路も電磁ノイズを発生させる要因の一つとなる。
また、 腕時計 5 0は、 ポタンや夕ツチパネルなどにより構成され、 ユーザが各 種操作を行うための外部操作入力部 5 0 7と、 基準周波数を有する源発振信号を 生成する発振子 5 0 8、 5 2 1と、 源発振信号に基づいて各種基準信号を作成し 出力する基準信号生成回路 5 0 9、 5 2 2と、 各種データを記憶する不揮発性の メモリ 5 0 6と、 腕時計 5 0の各部に必要な電源を供給する電池 5 1 0を備えて いる。
本実施形態においては、 腕時計 5 0の各回路には、 電池 5 1 0から直接電源を 供給させることとしているが、 別途定電圧回路 (図示せず) を設け、 電池 5 1 0 から定電圧回路を介して各回路に電源を供給させてもよい。
また、 中央制御回路 5 0 5は、 携帯端末 4 5 dと送受信するデータについて喑 号化するための暗号化回路を内蔵しており、 デ一夕のセキュリティも図られてい る。
メモリ 5 0 6は、 E E P R O Mやフラッシュメモリなどで構成されている。 図 1 8には、 アンテナ 5 0 1 、 P L L回路 5 3 1、 受信回路 5 0 3および送信 回路 504の詳細な構成が示されている。
アンテナ 50 1は、 アンテナフィル夕 50 1 Aを介して、 半 2重双方向通信を 行うための送受信切換を行うスィツチ回路 502に接続されている。 スィツチ回 路 502は、 腕時計 50が送信を行うときにはアンテナフィルタ 50 1 Aをパヮ 一アンプ 533 5の出力端子に接続し、 受信を行うときにはアンテナフィルタ 5 0 1 Aを RFアンプ 532 1の入力端子に接続する。
? 1^制御部53 1 1、 ローパスフィルタ 5 3 1 2および電圧制御発振器 (V CO) 53 1 3は、 発振信号 SVCO を生成する PL L (Phase Locked Loop) 回路 53 1を構成している。 P L L制御回路 5 3 1 1には、 ベースバンド処理部 523からシンセサイザ制御信号 S S Yが供給される。 発振信号 SV COの周波 数は、 このシンセサイザ制御信号 S S Yにより決定される。 ベースバンド処理部 523は、 所定の FHパターンに従って発振信号 S VCOの周波数を時間的に変 化させるために、 シンセサイザ制御信号 S S Yを順次変化させる。 バッファアン プ 53 14は、 発振信号 S V COを増幅してミキサ 5322に供給する。
R Fアンプ 532 1、 ミキサ 5322、 パンドパスフィルタ 532 3、 I Fァ ンプ 5324および復調回路 532 5は、 アンテナフィルタ 50 1 Aおよび切替 回路 502を介してアンテナ 50 1の受信信号を受け取り、 この受信信号から受 信データ DRXを復調する受信回路を構成している。 さらに詳述すると、 受信時 において、 上述したアンテナフィルタ 50 1 Aは、 アンテナ 50 1の受信信号か ら不要な成分を除去して、 必要な成分のみを切替回路 502を介して R Fアンプ 532 1に出力する。 RFアンプ 532 1は受信信号を増幅してミキサ 53 2 2 に送る。 このミキサ 53 22には、 FHパターンに従って周波数が時間的に変化 する発振信号 S VC〇が供給される。 ミキサ 5322は、 この発振信号 SVCO を RFアンプ 53 2 1からの受信信号に混合することにより、 受信信号に対して スペク トル逆拡散を施す。 バンドパスフィルタ 5323は、 ミキサ 53 2 2の出 力信号の中から中間周波数帯の I F (Intermediate Frequency) 信号を選択し、 I Fアンプ 53 24に出力する。 I Fアンプ 5324は、 I F信号の増幅を行つ て復調回路 532 5に出力する。 復調回路 532 5は、 I F信号からベースバン ド信号である受信デ一夕 DRXを復調し、ベースバンド処理部 523に出力する。 変調回路 5 3 3 1、 I Fアンプ 5 3 2 2、 ローパスフィル夕 5 3 2 3、 ミキサ 5 3 3 4およびパワーアンプ 5 3 3 5は、 切替回路 5 0 2に供給する送信信号を 生成する送信回路を構成している。 さらに詳述すると、 送信時において変調回路 5 3 3 1は、 ベースバンド処理部 5 2 3から供給される送信データ D T Xによつ てキャリアの変調を行い、 I F信号を出力する。 この I F信号は I Fアンプ 5 3 2 2および口一パスフィル夕 5 3 3 3を介してミキサ 5 3 3 4に供給される。 こ のミキサ 5 3 3 4には、 F Hパターンに従って周波数が時間的に変化する発振信 号 S V C Oが供給される。 ミキサ 5 3 3 4は、 この発振信号 S V C Oを I F信号 と混合して、 F H方式のスペクトル拡散を I F信号に施し、 高周波信号である送 信信号を出力する。 パワーアンプ 5 3 3 5は、 この高周波信号を増幅し、 切替回 路 5 0 2に出力する。 アンテナフィルタ 5 0 1 Aは、 パワーアンプ 5 3 3 5の出 力信号を切替回路 5 0 2を介して受け取り、 これから不要な成分を除去して必要 な成分のみをアンテナ 5 0 1へ出力する。
図 1 9は、 駆動回路 5 1 1 dおよびブザー 5 1 1の構成を示すものである。 本 実施形態においては、 ブザ一 5 1 1として圧電素子を使用する。 中央制御回路 5 0 5により駆動回路 5 1 1 dの入力端子 5 1 1 Nの電圧レベルが電源電圧 (V C C ) レベルにされると、 プザ一 5 1 1に電流が流れることとなり、 コイル 5 1 1 Lと圧電素子 5 1 1により決まる所定周波数を有するブザー音がブザー 5 1 1か ら発生する。
また、 図 1 9では、 ブザー 5 1 1を駆動するための駆動回路 5 1 1 dを示した が、 他の駆動回路 5 1 2 d、 5 1 3 d、 5 1 4 dについても同様であり、 中央制 御回路 5 0 5の制御下において、 各駆動回路 5 1 2 d、 5 1 3 d、 5 1 4 dが駆 動/非駆動状態にされ、 実際にバイブレータ 5 1 2、 発光部 5 1 3および表示部 5 1 4の動作が制御されることとなる。
( 2 ) 実施形態の動作
本実施形態に係る腕時計 5 0においては、 無線通信時において一の機能部であ るブザー 5 1 1を駆動させた場合に、 ブザー 5 1 1から発生する電磁ノイズまた はブザー 5 1 1の駆動に伴う電源電圧の低下が、 アンテナ 5 0 1を介して送受信 されるデータに悪影響を与え、 正常な無線通信ができなくなることを想定する。 また、 無線通信時において、 他の機能部であるバイブレータ 5 1 2等を駆動した 場合に発生する電磁ノイズまたは電源電圧の低下は、 アンテナ 5 0 1を介して送 受信されるデータに悪影響を与えず、 正常な無線通信が保証されることを想定す る。
ここで、 各機能部から発生する電磁ノイズまたは各機能部の駆動による電源電 圧の低下が無線通信の動作に悪影響を与えるか否かの判断は、 例えば電磁 を発生する各機能部のデバイス (ブザー 5 1 1用の圧電素子等) の位置 ナ 5 0 1との位置関係、 各機能部の駆動時において駆動回路に流れる電流の量と いった各要素により総合的に判断することができる。
本実施形態においては、 このような要素を測定実験により求めた結果、 ブザー 5 1 1を駆動させた場合に、 正常な無線通信ができなくなると判断した場合を想 定する。
図 2 0のタイミングチャートを参照して本実施形態の動作を説明する。
携帯端末 4 5および腕時計 5 0には、 携帯端末 4 5と腕時計 5 0 との間で Bluetoothの規格に対応したネットワーク接続 (以下、 単に Bluetooth接続と記 述する) を確立させる処理を行うためのソフ卜ウェアプログラムが予めィンスト ールされている。
また、 本発明に係る機能部の駆動禁止制御を行うだめのソフトウエアプロダラ ムは、 腕時計 5 0内の記録媒体として機能するメモリ 5 0 6に予めィンストール されている。
そして、ユーザが、腕時計 5 0の外部操作入力部 5 0 7に所定の操作を行うと、 腕時計 5 0は、 携帯端末 4 5との間で Bluetooth 接続を確立させる処理を実行 し、 腕時計 5 0と携帯端末 4 5との間において、 ピコネッ トと呼ばれるネットヮ ークが形成される。
Bluetooth接続を確立させた携帯端末 4 5と腕時計 5 0は、 その後、 Bluetooth における低消費電力モードに移行する。 本実施形態においては低消費電力モード としてパークモードを想定する。
低消費電力モードとは、 携帯端末 4 5と腕時計 5 0との間において形成したピ コネッ トを維持するために同期信号 (ビーコン信号) のやりとりのみを携帯端末 4 5と腕時計 5 0との間において行い、 その他実際のデータ授受は行わない状態 をいう。
具体的には、 携帯端末 4 5は腕時計 5 0に対し、 同期信号 (ビーコン信号) を 送信する。 一方、 腕時計 5 0は、 受信したビーコン信号の応答信号を携帯端末 4 5に送信する。 携帯端末 4 5と腕時計 5 0は、 このようなビーコン信号の授受を 一定周期 (ビーコン周期;例えば 1 . 2 8秒) ごとに行い、 ビーコン信号のやり 取りを行っていない期間は、 ピコネッ 卜の同期を維持するための最低限の内部処 理を行っている。
その後、 他の携帯端末 4 5 Aから、 携帯端末 4 5に対する発呼処理が行われた 場合を想定する (ステップ S A 3 )。 この場合、 携帯端末 4 5は、 発呼処理を受 けた旨を腕時計 5 0に対して通知する必要がある。 このため、 携帯端末 4 5は、 腕時計 5 0との間で実際のデータの授受を行うべく、 携帯端末 4 5と腕時計 5 0 との間の Bluetooth 接続をアクティブモードに移行するための信号を送信する (ステップ S A 4 )。 かかる信号を受けた腕時計 5 0の中央制御回路 5 0 5は、 低消費電力モードからアクティブモードに移行し、 データを受信するための準備 を行う (ステップ S A 5 )。
ァクティブモ一ドとは、 携帯端末 4 5と腕時計 5 0との間においてデータ授受 を行う状態をいう。ァクティブモードにある携帯端末 4 5と腕時計 5 0の間では、 6 2 5 sec 毎にデータの送受信が行われる。 本実施形態において、 携帯端末 4 5は、 携帯端末 4 5 Aからの発呼処理が行われた旨を腕時計 5 0に通知し、 かか る通知を受信した腕時計 5 0は、受信した旨を携帯端末 4 5に対して送信する(ス テツプ S A 6 )。
このようなデータ通信が終了すると (ステップ S A 7 )、 携帯端末 4 5と腕時 計 5 0は、 上述した低消費電力モードに再移行する (ステップ S A 1 1 )。
そして、 腕時計 5 0は、 携帯端末 4 5との間のピコネッ ト同期を維持するため ビーコン信号のやり取りに係る処理を行い、 次にァクティブモードに移行する場 合に備える。
腕時計 5 0と携帯端末 4 5とが無線通信距離に位置しなくなつたような場合、 ピコネッ ト同期を維持するためのビーコン信号のやり取りができなくなる。 かか る場合は、 腕時計 5 0と携帯端末 4 5との間で確立していた Bluetooth 接続が 切断される (ステップ S A 1 2 )。
次に、 腕時計 5 0を主体とした具体的な動作内容を詳細に説明する。
本実施形態においては、 腕時計 5 0は携帯端末 4 5との間で Bluetooth 接続 を確立させると、 低消費電力モードに移行するが、 その後、 腕時計 5 0は、 携帯 端末 4 5側からァクティブモードに移行すべき信号を受信するまでは、 低消費電 力モードを維持するための処理を行う。 腕時計 5 0は、 自発的に低消費電力モー ドからァクティブモ一ドに移行する処理を行わない。
すなわち、 本実施形態に係る携帯端末 4 5と腕時計 5 0との関係においては、 携帯端末 4 5は常にマス夕一装置として、 腕時計 5 0は常にスレーブ装置として 機能することを前提とする。
低消費電力モードにある腕時計 5 0は、 所定夕イミング毎に携帯端末 4 5のァ ンテナ 4 5 eから出力される同期信号 (ビーコン信号) を受信できたか否かを判 別している。
そして、 同期信号を受信する所定タイミングに先立って、 ブザー 5 1 1の駆動 を禁止する。 次いで、 所定の同期信号受信期間が経過した後にブザー 5 1 1の駆 動禁止を解除する。 同様に、 同期信号に対応する応答信号を送信する期間を含む 所定期間中はブザーの駆動を禁止する。
より具体的に説明すると、 携帯端末 4 5の制御装置 4 5 aは、 送信回路 4 5 b に対して所定タイミングごとにビーコン信号を生成させるように制御しており、 かかるビーコン信号が高周波回路 4 5 dおよびアンテナ 4 5 eを介して外部の所 定通信圏内に出力され続けている。
一方、 腕時計 5 0が携帯端末 4 5の通信圏内に位置する場合、 携帯端末 4 5か ら出力されたビーコン信号は、 アンテナ 5 0 1のアンテナ本体 5 0 1 A、 アンテ ナフィル夕 5 0 1 Bおよび切換回路 5 0 2を介して受信回路 5 0 3に入力される ことになる。
ここで、 中央制御回路 5 0 5は、 ビーコン信号が受信回路 5 0 3に供給される タイミングに合わせ、受信回路 5 0 3にハイレベルの R X— E N信号を供給させ、 受信回路 5 0 3を動作状態にさせる。 また、 切替回路 5 0 2を制御し、 5 0 1からの信号が受信回路 5 0 3に出力されるようにする。
この結果、 受信回路 5 0 3によってアンテナ 5 0 1の受信信号から受信データ D R Xが復調され、 ベースバンド回路 5 2 3を介して中央制御回路 5 0 5に供給 される。
中央制御回路 5 0 5は、 このようにして携帯端末 4 5からのビーコン信号に相 当する受信データを得ると、 携帯端末 4 5との間における Bluetooth 接続が維 持されていると判断する。
また、 中央制御回路 5 0 5は、 受信回路 5 0 3からベースバンド回路 5 2 3に 受信データ D RX が供給されると、 受信回路 5 0 3にローレベルの R X— E N信 号を送り、 受信回路 5 0 3を非動作状態にさせる。 このように、 中央制御回路 5 0 5は、 受信回路 5 0 3において必要以上に電力が消費されることのないように 制御する。
その後、 中央制御回路 5 0 5は、 受信したビーコン信号に応答する送信データ D TXをベースバンド回路 5 2 3を介して送信回路 5 0 4に出力する。
また、 中央制御回路 5 0 5は、 ビーコン信号に応答する送信データ D TX につ いての処理を送信回路 5 0 4に行わせるべく、 送信データ D TX が送信回路 5 0 4に供給させるタイミングに合わせて、 送信回路 5 0 4にハイレベルの T X— E N信号を送り、 送信回路 5 0 4を動作状態にする。 また、 スィッチ 5 0 2を制御 し、 送信回路 5 0 4から出力される信号をアンテナ 5 0 1に供給させるようにす る。
この結果、 送信回路 5 0 4において、 送信データ D TX によってキャリアの変 調が行われ、 この変調波に F H方式のスペクトル拡散が施され、 これにより得ら れる送信信号がアンテナ 5 0 1から出力される。
また、 中央制御回路 5 0 5は、 送信回路 5 0 4から切替回路 5 0 2に送信信号 が出力された後、 送信回路 5 0 4にローレベルの T X— E N信号を送り、 送信回 路 5 0 4を非動作状態にする。 このように、 中央制御回路 5 0 5は、 送信回路 5 0 4においても必要以上に電力が消費されることのないように制御している。 以上のようにして、 腕時計 5 0から出力される応答信号 R E Sが携帯端末 4 5 によって受信されると、 携帯端末 4 5側においても腕時計 5 0 との間で Bluetooth 接続の確立が維持されていることを認識し、 所定の周期期間経過後、 次のビーコン信号を腕時計 5 0に送信する制御を実行する。
図 2 1は低消費電力モードにある腕時計 5 0において、 携帯端末 4 5との間で 無線通信に係る動作の内容を示すタイミングチヤ一トである。
図 2 1において、 携帯端末 4 5からのビーコン信号を受信する期間を含む所定 期間が期間 R 1であり、 期間 R 1において受信したビーコン信号に対応する応答 信号を携帯端末 4 5に送信する期間を含む所定の期間が期間 T 1である。ここで、 期間 R 1は、 中央制御回路 5 0 5の制御下において受信回路 5 0 3にハイレベル の R X— E N信号が供給されている期間に相当する。 また、 期間 T 1は、 中央制 御回路 5 0 5の制御下において送信回路 5 0 4にハイレベルの T X— E N信号が 供給されている期間に相当する。
そして、 次のビーコン信号を受信する期間を含む所定期間が期間 R 2であり、 期間 R 2において受信したビーコン信号に対応する応答信号を送信する期間を含 む所定期間が期間 T 2に対応する。 期間 R 3、 T 3、 R 4、 T 4、 …についても 同様である。
図 2 1において、 腕時計 5 0の中央制御回路 5 0 5は、 各期間 R 1、 R 2、 ···、 T l、 Τ 2、 …において、 ブザー 5 1 1の駆動を行わないように制御する。 すな わち、 受信回路 5 0 3にハイレベルの R X—E N信号を供給している期間、 また は、 送信回路 5 0 4にハイレベルの Τ Χ— Ε Ν信号を供給している期間はブザー 5 1 1の駆動を行わないように制御する。
図 2 1に示したブザー禁止信号 S Xが、 かかる中央制御回路 5 0 5の制御内容 を示しており、 中央制御回路 5 0 5は、 ブザー禁止信号 S Xがローレベルにある 期間、 ブザー駆動回路 5 1 1 dの入力端子 5 1 1 Nを強制的に口一レベルとし、 ブザー駆動回路 5 1 1 dの駆動を禁止させる。
このように、 低消費電力モードにある腕時計 5 0においては、 ビーコン信号の 受信時およびビーコン信号に対応する応答信号の送信時においては、 ブザー 5 1 1が駆動することはないため、 無線通信を正常に実行できる。 また、 低消費電力 モードにおいては、 無線通信期間を含む所定の期間のみブザー 5 1 1の駆動を禁 止するので、 ブザー 5 1 1の機能が必要以上に制限されることにもならない。 アクティブモードにある腕時計 5 0は、 携帯端末 4 5との間で頻繁に (6 2 5 sec単位で) データ授受を実行する。
ァクティブモードにある腕時計 5 0においても、 携帯端末 4 5との間における データ授受の動作内容は、 上述した低消費電力モードにおける動作内容と同じで ある。
すなわち、 携帯端末 4 5のアンテナ 4 5 eから出力される信号をアンテナ 5 0 1から受信し、 受信した信号の内容を中央制御回路 5 0 5が判断し、 受信信号に 対する応答信号をアンテナ 5 0 1から携帯端末 4 5に送信する。
アクティブモードにある場合にも、 中央制御回路 5 0 5は、 受信回路 5 0 3に 供給する R X— E N信号のレベル切換制御を行い、 携帯端末 4 5から出力される 信号がアンテナ 5 0 1を介して受信回路 5 0 3に供給される期間は受信回路 5 0 3を動作状態にする。
また、 中央制御回路 5 0 5は、 送信回路 5 0 4に供給する T X— E N信号につ いてのレベル切換制御も同様に行い、 ベースバンド回路 5 2 3から携帯端末 4 5 に送信すべき信号が送信回路 5 0 4に供給される期間については、 送信回路 5 0 4を動作状態にさせる。
図 2 2は腕時計 5 0が低消費電力モード、 アクティブモード、 低消費電力モー ドと移行する場合において、 携帯端末 4 5との間で無線通信に係る動作について の内容を示すものである。
低消費電力モードにある期間 T A 1においては、 腕時計 5 0の中央制御回路 5 0 5は、 携帯端末 4 5から送信されるビーコン信号を受信する期間に対応する期 間 R 2 1、 受信したビーコン信号に対応する応答信号を携帯端末 4 5に送信する 期間に対応する期間 T 2 1において、 ブザー 5 1 1の駆動回路 5 1 1 dの入力端 子 5 1 1 Nを強制的にローレベルにし、ブザー 5 1 1が駆動しないよう制御する。 すなわち、 中央制御回路 5 0 5は、 受信回路 5 0 3にハイレベルの R X— E N 信号を供給している期間、 または、 送信回路 5 0 4にハイレベルの T X— E N信 号を供給している期間はブザー 5 1 1の駆動を行わないよう制御する。
次に、 アクティブモードに移行した期間 T A 2においては、 腕時計 5 0は携帯 端末 4 5と具体的なバケツ トデ一夕の授受を頻繁に行うこととなる。 図 2 2にお いて、 腕時計 5 0は、期間 R 2 2においては携帯端末 4 5からのデータを受信し、 期間 T 2 2において受信データに対する応答データを携帯端末 4 5に送信する。 期間 R 2 3においては携帯端末 4 5からの次のデータを受信し、 期間 T 2 3にお いては受信デ一夕に対する応答データを携帯端末 4 5に送信する。
このようなアクティブモードにある期間 T A 2において、 腕時計 5 0の中央制 御回路 5 0 5は、 全ての期間 T A 2について、 ブザー 5 1 1の駆動回路 5 1 1 d の入力端子 5 1 1 Nを強制的にローレベルにし、 ブザー 5 1 1が駆動を禁止する ように制御する。
次いで、 低消費電力モードに移行した期間 T A 3においては、 腕時計 5 0の中 央制御回路 5 0 5は、 携帯端末 4 5から送信されるビーコン信号を受信する期間 R 2 5、 受信したビーコン信号に対応する応答信号を携帯端末 4 5に送信する期 間に対応する期間 T 2 5において、 ブザー 5 1 1の駆動回路 5 1 1 dの入力端子 5 1 1 Nを強制的にローレベルにし、 ブザー 5 1 1の駆動を禁止するように制御 する。
図 2 2に示したブザー禁止信号 S Xが、 以上示した中央制御回路 5 0 5の制御 内容を示している。 中央制御回路 5 0 5は、 ブザー禁止信号 S Xがローレベルに ある期間、 ブザー駆動回路 5 1 1 dの入力端子 5 1 1 Nを強制的にローレベルと し、 ブザー駆動回路 5 1 1 dの駆動を禁止させる。
アクティブモードにおいて (期間 T A 2 ) は、 すべての期間において、 ブザー 5 1 1は駆動することはないため、無線通信の動作は常に担保されることとなる。 図 2 3は、 腕時計 5 0の中央制御回路 5 0 5がブザー 5 1 1を駆動する際に実 行するプログラムの内容を示すフローチヤ一トである。
中央制御回路 5 0 5は、 アラーム設定時刻が現在時刻と一致する場合 (ステツ プ S B 1 )、 まず、 腕時計 5 0が携帯端末 4 5との関係において Bluetooth の低 消費電力モードにあるか否かを判別する (ステップ S B 2 )。 そして、 低消費電 カモ一ドにない場合は、ァクティブモードにあるものと判別し(ステツプ S B 2 : N O )、 ブザー 5 1 1の駆動を禁止する制御を行う (ステップ S B 6 )。
また、 低消費電力モードにある場合においても (ステップ S B 2 : Y E S )、 中央制御回路 5 0 5は、腕時計 5 0が携帯端末 4 5から同期信号(ビーコン信号) の受信期間を含む所定の期間であるか (ステップ S B 3 )、 または、 受信した同 期信号に対する応答信号を送信する期間を含む所定の期間であるか (ステップ S B 4 ) を判断する。 具体的には、 中央制御回路 5 0 5は、 受信回路 5 0 3にハイ レベルの R X— E N信号を供給している期間あるいは送信回路 5 0 4にハイレべ ルの T X— E N信を供給している期間のいずれかであるか否かを判断する。
そして、 受信回路 5 0 3または送信回路 5 0 4にハイレベル信号を供給してい る場合は (ステツプ S B 3 Y E Sまたはステツプ S B 4 : Y E S )、 ブザー 5 1 1の駆動を禁止する制御を行う (ステップ S B 6 )。
一方、 受信回路 5 0 3および送信回路 5 0 4のいずれにもにハイレベルの R X _ E N信号または T X— E N信号を供給していない場合は (ステップ S B 3 : N 〇かつステップ S B 4 : N〇)、 中央制御回路 5 0 5は、 ブザー 5 1 1の駆動を 実行させる (ステップ S B 6 )。
図 2 4は、 以上の動作内容をタイムチヤ一トにより示したものである。
また、 アラーム設定時刻として、 時刻 T 6 0から時刻 T 6 9に至る期間が設定 された場合を想定する。
中央制御回路 5 0 5は、 時刻 T 6 0において、 現在時刻がアラーム設定時刻に 該当することを判別すると、 前掲図 2 3のフローチャートに対応する処理を実行 するが、 時刻 T 6 0においては低消費電力モードにあり、 無線データ送受信を行 つていないために、 ブザー 5 1 1の駆動を開始させる。
その後も、 中央制御回路 5 0 5は、 前掲図 2 3のフローチャートに対応する処 理を実行し続ける。 そして、 時刻 T 6 1から時刻 T 6 2においては、 携帯端末 4 5からのビーコン信号を受信を行う期間に相当するために、 中央制御回路 5 0 5 は受信回路 5 0 3にハイレベルの R X— E N信号を供給している。 このため、 中 央制御回路 5 0 5は、 ブザー 5 1 1の駆動を禁止する。 同じく、 時刻 T 6 3から 時刻 T 6 4においては、 時刻 T 6 1から時刻 T 6 2の期間においては、 ブザー 5 1 1の駆動を禁止させる。
このように、 中央制御回路 5 0 5は、 腕時計 5 0が低消費電力モードにある場 合は、 腕時計 5 0が無線データ通信を行っている期間のみ、 ブザー 5 1 1の駆動 を禁止する制御を行う。 よって、 低消費電力モードにある腕時計 5 0が、 携帯端 末 4 5との間で同期信号 (ビーコン信号) の無線通信を行う場合であっても、 か かる無線通信がブザー 5 1 1の駆動により阻害されることにはならない。
そして、 携帯端末 4 5からの要請により、 時刻 T 6 5において、 腕時計 5 0が アクティブモードに移行すると、 中央制御回路 5 0 5は、 ブザー 5 1 1の駆動を 禁止する。 そして、 中央制御回路 5 0 5は、 腕時計 5 0がアクティブモードにあ る時刻 T 6 5から時刻 T 6 6までの期間において、 ブザー 5 1 1の駆動を禁止さ せる。
このように、 中央制御回路 5 0 5は、 腕時計 5 0がアクティブモードにある場 合は、すべての期間においてブザー 5 1 1の駆動を禁止する制御を行う。 よって、 アクティブモードにある腕時計 5 0が、 携帯端末 4 5との間で頻繁に無線通信を 行った場合であっても、 かかる無線通信がブザー 5 1 1の駆動により阻害される ことにならない。
時刻 T 6 6において、 腕時計 5 0が携帯端末 4 5との間でのデータ通信が終了 すると、 腕時計 5 0は低消費電力モードに再移行する。
低消費電力モードに移行した場合の、 中央制御回路 5 0 5の制御内容は上述し た場合と同様であり、 腕時計 5 0が無線データ通信を行っている期間を含む所定 期間 (時刻 T 6 7から時刻 T 6 8までの期間) のみ、 ブザー 5 1 1の駆動を禁止 する制御を行う。
その後、 時刻 T 6 9になると、 中央制御回路 5 0 5は、 ブザー 5 1 1の設定時 刻を終了したことを判別し、 前掲図 2 3のフローを終了する。
以上説明したように、 本実施形態に係る腕時計 5 0によれば、 腕時計 5 0が携 帯端末 4 5との間で少なくともデータ無線通信を実行している際は、 ブザー 5 1 1の駆動は禁止される。
このため、無線通信時においてブザー 5 1 1が動作することにはならないため、 ブザー 5 1 1が駆動することによる急激な電源電圧の低下が防止され、 無線通信 を確実に実行することができる。
F :第 6実施形態
本実施形態におけるシステム構成、 動作内容の概要は上記第 5実施形態と同じ であるため、 図面の符号等は同じものを使用する。 以下に相違点のみを述べる。 上述した第 5実施形態においては、 中央制御回路 5 0 5は、 無線通信時に駆動 させた場合に、 急激な電源電圧の低下をもたらすブザー 5 1 1の駆動を禁止する 制御を行っていた。
本実施形態においても、 中央制御回路 5 0 5は、 無線通信時に駆動させた場合 に、 電池 5 1 0の出力電圧値が所定値以下となり、 無線通信を実行させるための 回路に必要な電力が供給されなくなるのを防止する制御を行う。
本実施形態においては、 バイブレータ 5 1 2を駆動した場合に、 回路基板 7 4 において 1 0 m A以上の電流が流れることとなり、 無線通信時に、 バイブレータ 5 1 2を駆動させた場合、 無線通信を実行させる回路に十分な電源を供給するこ とができず、 正常な無線通信ができなくなるおそれがある。
この問題を解決するために、 本実施形態に係る腕時計 5 0は、 無線通信時にお いては、 電池 5 1 0の出力電圧値が所定値よりも大きい場合に限ってバイブレー 夕 5 1 2を駆動するように制御する。 このために、 電池 5 1 0の出力電圧の値を 判別する電池電圧判別回路 9 0が設けられている。
図 2 5は、 電池電圧判別回路 9 0の構成を例示する図である。
電池電圧判別回路 9 0は、 中央制御回路 5 0 5から、 ハイレベルの制御信号 S 9 1が供給された場合に動作する。 この制御信号 S 9 1は、 電池電圧判別回路 9 0のトランジスタ 9 6、 9 7に供給される。
トランジスタ 9 6、 9 7は、 いずれも Nチャネル M〇 S トランジスタであり、 ゲート端子にハイレベル信号が供給されると、 オン状態となり、 それ以外の場合 ではオフ状態となる。
抵抗 9 1、 9 2は、 分圧回路を構成しており、 この分圧回路は、 トランジスタ 9 6がオン状態にある場合において、 電池 5 1 0の出力電圧値を分圧した電圧値 V 1を出力する。
また、 基準電圧発生回路 9 5は、 所定の電圧レベルを有する信号 V 2を発生す る回路である。 本実施形態において、 基準電圧発生回路 9 5は、 電池 5 1 0の出 力電圧を分圧した値 V 1の許容下限値 V 2を出力する。 ここで、 電池 5 1 0の出 力電圧の分圧値 V 1が許容下限値 V 2よりも大きい場合は、 バイブレータ 5 1 2 の駆動に係らず、 無線通信を実行するための回路に十分な電源が供給されること が保証される。
この許容下限値は、 予め実験等により求められている。
コンパレータ 9 4は、 負極入力端子の電圧値 V 1と正極入力端子の電圧値 V 2 とを比較し、 電圧値 V 1のほうが電圧値 V 2よりも高い場合はローレベルの比較 結果信号 S 9 2を出力し、 電圧値 V 1のほうが電圧値 V 2よりも低い場合はハイ レベルの比較結果信号 S 9 2を出力する。
駆動回路 5 1 2 dは、 中央制御回路 5 0 5の制御下において、 バイブレータ 5 1 2を駆動するための駆動信号 S 9 4を出力する。
駆動回路 5 1 2 dは、 中央制御回路 5 0 5からローレベルの制御信号 S 9 3が 供給されると、 バイブレータ 5 1 2を駆動させるための駆動信号 S 9 4を出力す る。 また、 駆動回路 5 1 2 dは、 ハイレベルの制御信号 S 9 3が供給された場合 は、 バイブレータ 5 1 2に駆動信号 S 9 4を出力せず、 この場合はバイブレータ 5 1 2の駆動は停止される。
以下に駆動回路 5 1 2 dの具体的な動作内容を説明する。
図 2 6は、 バイブレータ 5 1 2を駆動する際に、 腕時計 5 0の中央制御回路 5 0 5が実行するプログラムの内容を示すフローチヤ一トである。
中央制御回路 5 0 5は、 バイブレータ 5 1 2を駆動すべき場合において (ステ ップ S C 1 )、 はじめに、 バイブレータ 5 1 2を無線通信動作と同時に駆動する ことができる 「同時駆動可能状態」 にあるか否かの判断を行う (ステップ S C 2 )。 ここで、 腕時計 5 0が 「同時駆動可能状態」 にあるとは、 電池 5 1 0の出力電 圧値が所定値よりも大きく、 無線通信時においてバイブレータ 5 1 2を駆動させ たときであっても、 無線通信を実行するための回路に十分な電源を供給すること ができる状態をいう。 また、 腕時計 5 0が 「同時駆動可能状態」 にないとは、 電 池 5 1 0の出力電圧値 (または残容量) が所定値よりも小さく、 無線通信時にお いてバイブレータ 5 1 2を駆動させたときに、 無線通信を実行するための回路に 十分な電源を供給することができず、 無線通信を正常に行うことができなくなる 状態をいう。
以下、 中央制御回路 5 0 5において、 「同時駆動可能状態」 にあるか否かの判 断を行う際の動作内容を説明する。 本実施形態に係る中央制御回路 50 5は、 基準電圧発生回路 9 5に対して所定 間隔 (例えば 1 s e c) ごとに、 ハイレベルの制御信号 S 9 1を間欠的に供給す る。 そして、 電池 5 1 0の出力電圧値が所定値よりも大きいか否かを監視してい る。
中央制御回路 505から基準電圧発生回路 95に対し、 ハイレベルの制御信号 S 9 1が供給されると、 基準電圧発生回路 9 5のトランジスタ 96、 9 7はオン 状態となる。 そして、 抵抗 R 1、 R 2により、 電池 5 1 0の出力電圧の分圧値 V 1がコンパレータ 94の負極入力端子に供給される。
また、 トランジスタ 97がオン状態となると、 コンパレータ 94が動作状態と なり、 コンパレー夕 94は、 電池 5 1 0の出力電圧の分圧値 V 1と、 基準電圧値 V 2とを比較した結果を比較結果信号 S 92として中央制御回路 50 5に出力す る。
ここで、 中央制御回路 505は、 コンパレータ 94から出力される比較結果信 号 S 92の値から、 電池 5 1 0の出力電圧の分圧値 V 1が許容下限値 V 2よりも 大きいと判断した場合、 腕時計 50が 「同時駆動可能状態」 にある旨を判断する。 一方、 比較結果信号 S 92の値から、 電池 5 1 0の出力電圧の分圧値 V 1が許容 下限値 V 2よりも小さいと判断した場合、 腕時計 50が 「同時駆動可能状態」 に ない旨を判断する。
図 1 4のフローチヤ一卜に戻り、 動作説明を続ける。
中央制御回路 505は、 腕時計 50が 「同時駆動可能状態」 にある場合 (ステ ップ S C 2 : YE S:)、 バイブレータ 5 1 2を駆動する制御を行う (ステップ S C 6)。 具体的には、 中央制御回路 50 5は、 駆動回路 5 1 2 dに制御信号 S 9 3としてローレベル信号を供給し、 バイブレー夕 5 1 2を駆動させる。
一方、 中央制御回路 505は、 腕時計 50が 「同時駆動可能状態」 にない場合 は (ステップ S C 2 : NO), 上記第 5実施形態 (図 2 3) で説明したのと同様 の制御を行う。
すなわち、 中央制御回路 50 5は、 腕時計 50のモード判別を行い (ステップ S C 3)、 低消費電力モードにない場合、 すなわち、 頻繁に無線通信を実行して いるアクティブモードにある場合は (ステップ S C 3 : NO), バイブレー夕 5 1 2の駆動を禁止する制御を行う (ステップ S C 7)。 具体的には、 中央制御回 路 505は、 駆動回路 5 1 2 dにハイレベルの制御信号 S 9 3を供給し、 バイブ レ一夕 5 1 2が駆動されないようにする。
また、腕時計 50が低消費電力モードにある場合においては(ステップ S C 3 : YE S), 中央制御回路 50 5は、 腕時計 50が、 現在無線通信を実行している か否かについて、 受信回路 503の RX— EN信号、 送信回路 504の TX— E N信号の値により判断する (ステップ S C4、 S C 5)。
そして、 受信回路 503または送信回路 504が動作中であり、 無線通信が実 行されている場合 (ステップ S C 4 : YE Sまたはステップ S C 5 : YE S), 中央制御回路 505は、 バイブレータ 5 1 2の駆動を禁止する制御を行う (ステ ップ S C 7)。 具体的には、 中央制御回路 50 5は、 駆動回路 5 1 2 dにハイレ ベルの制御信号 S 93を供給し イブレー夕 5 1 2が駆動されないようにする。 一方、 受信回路 503および送信回路 504が動作しておらず、 無線通信が実 行されていない場合 (ステップ S C 4 : N〇かつステップ S C 5 : NO), 中央 制御回路 505は、 バイブレー夕 5 1 2の駆動を行う制御を行う (ステップ S C 7)。 具体的には、 中央制御回路 505は、 駆動回路 5 1 2 dにローレベルの制 御信号 S 93を供給し、 バイブレータ 5 1 2を駆動させる。
このように、 本実施形態に係る中央制御回路 505は、 電池 5 1 0の出力電圧 値が十分大きい値ではない場合は、 無線通信時においてバイブレー夕 5 1 2を駆 動させない制御を行う。
よって、 無線通信時においては、 常に無線通信を行うための回路に十分な電力 が供給され、 正常な無線通信が常に担保される。
G :第 7実施形態
本実施形態におけるシステム構成は上記第 5実施形態とほぼ同じである。また、 本実施形態において腕時計 50は、 上記第 6実施形態と同様な電池電圧判別回路 を有している。 ただし、 本実施形態における電池電圧判別回路は、 上記第 6実施 形態のものと異なり、 電池 5 1 0の出力電圧 Vが、 V Iより高い区分、 V I以下 であり、 かつ、 V2より大きい区分、 V 2以下の区分のいずれに属するかを示す 信号を出力する。 ただし、 この場合において V 1 >V 2である。 図 2 7は、 電池 5 1 0の放電特性を例示したものであり、 横軸は電池 5 1 0の 使用時間、 縦軸は電池 5 1 0の出力電圧 Vである。 電池 5 1 0の出力電圧 Vが閾 値 V I以上である場合、 電池 5 1 0の内部抵抗は十分に低く、 過大な消費電流が 流れたとしても、無線通信に悪影響を及ぼすような出力電圧の低下は起こらない。 電池 5 1 0の出力電圧 Vが V 1〜V 2の範囲内にあるとき、 電池 5 1 0の内部抵 抗はやや大きく、 無線通信に悪影響を与えないためには、 あまりに過大な電流が 電池 5 1 0から流出しないように注意する必要がある。 電池 5 1 0の出力電圧 V が V 2以下であるとき、 電池 5 1 0の内部抵抗は極めて大きく、 無線通信に悪影 響を与えないためには、 電池 5 1 0から流出する電流を極力抑える必要がある。 これが本実施形態の前提としているところである。
本実施形態に係る腕時計は、 アラーム設定された時間帯に、 鳴動報知または振 動報知によりアラームを出力する機能を備えている。 どのような態様によりァラ ーム出力を行うあるいはアラーム出力を行わないかは、 その時点において無線通 信が行われるか否かと、 その時点において電池 5 1 0の出力電圧が上記 3つの区 分のいずれに属するかに依存する。 この制御は中央制御回路 5 0 5によって行わ れる。
以下、 その動作について説明する。
本実施形態において中央制御回路 5 0 5は、 現在時刻がアラーム設定された時 間帯に入ると、 図 2 8にフローを示すル一チンの実行を開始する。
まず、 中央制御回路 5 0 5は、 電池電圧判別回路の出力信号に基づいて、 電池 5 1 0の出力電圧 Vが V 1より高いか否かを判断する (ステップ S D 1 )。 この 判断結果が 「Y E S」 である場合、 中央制御回路 5 0 5は、 アラーム報知期間が 終了するまでブザー 5 1 1およびバイブレータ 5 1 2 (図 1 7参照) の両方によ るアラーム報知を行い、 このアラーム報知の継続時間を測定する (ステップ S D 2 )。 そして、 アラーム報知期間の終了、 すなわち、 アラーム報知の継続時間が 予め定められたアラーム報知期間に達するまでステツプ S D 1および S D 2を繰 り返し、 アラーム報知期間の終了を以て図 2 8のルーチンを終了する (ステップ S D 3 )。
電池 5 1 0の出力電圧 Vが V 1以下である場合、 ステップ S D 1の判断結果は 「NO」 となる。 この場合、 中央制御回路 50 5は、 電池 5 1 0の出力電圧 Vが V 2より大きいか否かを判断する (ステップ S D 4)。
電池 5 1 0の出力電圧 Vが V 1以下であり、 かつ、 V 2よりも高い場合、 ステ ップ SD 4の判断結果は 「YE S」 となる。 この場合、 中央制御回路 5 0 5は、 受信回路 503に供給されている RX— EN信号がハイレベルであるか否かを判 断する (ステップ SD 5)。 この判断結果が 「YE S」 である場合には、 ブザー 5 1 1によるアラーム報知は行わず、 バイブレータ 5 1 2によるアラーム報知の みを行い、 アラーム報知の継続時間を測定する (ステップ SD 6)。 そして、 ァ ラーム報知期間の終了までステップ S D 1、 SD4、 SD 5、 SD 6を繰り返し、 アラーム報知期間の終了を以て図 2 8のルーチンを終了する (ステップ SD 7)。 ステップ SD4からステップ SD 5に進んだ場合において、 ステップ SD 5の 判断結果が 「NO」 となる場合がある。 この場合、 中央制御回路 50 5は、 送信 回路 504に供給されている TX— EN信号がハイレベルであるか否かを判断す る (ステップ SD 8)。 この判断結果が 「YE S」 である場合には、 中央制御回 路 50 5は、 RX— EN信号がハイレベルであった場合と同様、 ブザー 5 1 1に よるアラーム報知は行わず イブレー夕 5 1 2によるアラーム報知のみを行い、 アラーム報知の継続時間を測定する (ステップ SD 6)。 そして、 アラーム報知 期間の終了までステップ S D 1、 SD 4、 SD 5, SD 6を繰り返し、 アラーム 報知期間の終了を以て図 28のルーチンを終了する (ステップ SD 7)。
RX— EN信号および TX— EN信号の両方がローレベルで、 無線通信が行わ れない場合には、 ステップ SD 5および SD 8の両方の判断結果が 「NO」 とな る。 この場合、 中央制御回路 505は、 ブザー 5 1 1およびバイブレータ 5 1 2 の両方によるアラーム報知を行い、 アラーム報知の継続時間を測定する (ステツ プ S D 9)。 そして、 アラーム報知期間の終了までステップ S D 1、 S D 4、 S D 5、 SD 8、 SD 9を繰り返し、 アラーム報知期間の終了を以て図 2 8のル一 チンを終了する (ステップ SD 7)。
電池 5 1 0の出力電圧 Vが V 2以下である場合、 ステップ S D 4の判断結果は 「NO」 となる。 この場合、 中央制御回路 50 5は、 受信回路 503に供給され ている RX— EN信号がハイレベルであるか否かを判断する (ステップ S D 1 5)。 この判断結果が 「YE S」 である場合には、 ブザー 5 1 1によるアラーム 報知、 バイブレータ 5 1 2によるアラーム報知のいずれも行わない (ステップ S D 1 6)„ そして、 アラーム報知期間が終了したか否かを判断する (ステップ S D 1 7 )o このステップ S D 1 7の判断結果が 「NO」 である場合には、 ステツ プ SD 1 5に戻る。 また、 ステップ S D 1 5の判断結果が 「NO」 である場合、 中央制御回路 505は、 送信回路 504に供給されている TX— EN信号がハイ レベルであるか否かを判断する (ステップ SD 1 8)。 この判断結果が 「YE S」 である場合、 ブザー 5 1 1によるアラーム報知、 バイブレータ 5 1 2によるァラ ーム報知のいずれも行わない (ステップ SD 1 6)。 そして、 アラーム報知期間 が終了したか否かを判断する (ステップ SD 1 7)。 このステップ SD 1 7の判 断結果が 「NO」 である場合には、 ステップ SD 1 5に戻る。 以上のように、 R X— EN信号または TX— EN信号のいずれかがハィレベルである限り、 ブザー 5 1 1によるアラーム報知、 バイブレー夕 5 1 2によるアラーム報知のいずれも 行われず、 ステップ SD 1 5、 S D 1 6 , S D 1 7というループまたはステップ SD 1 5、 SD 18、 SD 1 6, SD 1 7というループが繰り返される。 この間、 全くアラーム報知は行われないので、アラーム報知の継続時間は 0のままである。 そして、 RX— EN信号および TX— EN信号の両方が口一レベルになると、 ステップ SD 1 5および SD 1 8の判断結果がいずれも 「NO」 となる。 この場 合、 中央制御回路 505は、 ブザー 5 1 1およびバイブレータ 5 1 2の両方によ るアラーム報知を行い、 アラーム報知の継続時間を測定する (ステップ SD 1 9)。 そして、 アラーム報知期間の終了までステップ SD 1 5、 SD 1 8、 SD 1 9、 S D 1 7を繰り返し、 アラーム報知期間の終了を以て図 28のルーチンを終了す る (ステップ SD 1 7)。
図 2 9は、 以上の動作が行われているときの各部の波形を例示したタイミング チャートである。 この例では、 TX— EN信号がハイレベルになっているときに、 アラーム設定された時間帯が始まり、 ブザー 5 1 1およびバイブレー夕 5 1 2に よるアラーム報知を指令する駆動源信号はハイレベルになっている。 この例に示 すように TX— EN信号がハイレベルである期間、 中央制御回路 50 5は、 ァラ ーム報知を見合わせ、 TX— EN信号がローレベルになったときに、 所定のァラ ーム報知期間に亙るアラーム報知を行う。 図示はされていないが、 R X— E N信 号がハイレベルになっているときに、 アラーム設定された時間帯が始まる場合も 同様である。 これらのことは、 図 2 8を参照して行った本実施形態の動作説明か ら容易に理解されよう。
以説明した第 5〜第 7実施形態には次のような変形例が考えられる。
(変形例 1 )
上述しだ各実施形態においては、 腕時計 5 0と携帯端末 4 5との間で無線通信 をするにあたり、 ブザー 5 1 1やバイブレータ 5 1 2を駆動する場合に無線通信 動作を阻害することとなることを想定して説明した。
しかし、 これはあくまで例示であり、 その他の機能である発光部 5 1 3等を駆 動させると無線通信を阻害することとなる場合は、 ブザー 5 1 1だけでなく発光 部 5 1 3等の駆動も禁止するように制御すればよい。
この場合において、 腕時計 5 0におけるいかなる機能を駆動させた場合に、 無 線通信を阻害することとなるかを予め測定しておくのが望ましい。
例えば、 ブザー 5 1 1のみを駆動させた場合は、 無線通信を阻害する程のレべ ルの電磁ノイズは発生しないが、 ブザー 5 1 1の駆動に加えてバイブレータ 5 1
2も駆動させた場合は無線通信を阻害する程のレベルの電磁ノイズが発生するこ とも想定される。
このような、 測定結果を腕時計 5 0のメモリ .5 0 6内に予め格納しておき、 中 央制御回路 5 0 5は、 かかるメモリ 5 0 6内の内容を判別しながら、 前掲した図 2 3に示すフローを実行するようにしてもよい。
また、 電磁ノイズの.発生許容上限量は、 実際に無線通信の動作が阻害される量 よりも小さい値にし、 電磁ノイズが発生するバラツキ等にも備えることとしたほ うが望ましい。
(変形例 2 )
また、 上述した実施形態の説明においては、 無線通信を行うにあたり、 携帯端 末 4 5がマスター側の装置、 腕時計 5 0がスレーブ側の装置となることを前提と しているが、 これに限らず、 携帯端末 4 5がスレーブ側の装置、 腕時計 5 0がマ スター側の装置であってもよい。 かかる場合においても、 中央制御回路 5 0 5が現在のモードを判別することに より、 上述した実施形態の内容と同様の実施を行うことができ、 同様の効果を得 ることができる。
(変形例 3 )
上述した実施形態においては、 中央制御回路 5 0 5は、 ブザー 5 1 1を駆動す る場合、 ブザー駆動回路 5 1 1 Dの入力信号 S Bを一律にハイレベル (V C Cレ ベル) にすることを想定しているが、 この駆動信号 S Bの内容も任意に変形が可 能である。
例えば、 腕時計 5 0のユーザに効果的にアラーム報知を行うための一手法とし て、 一定周期ごとにブザー 5 1 1を駆動させる方法がある。
図 3 0は、このような方法を使用した場合の動作夕イミングチヤ一卜図である。 図 3 0においては、 ブザー禁止信号 S X、 アラーム設定時刻およびブザー駆動 信号 S Bを示している。
図 3 0に示すように、 アラーム設定時刻にあり、 ブザー禁止信号 S Xによりブ ザ一の駆動が禁止されていない期間 (時刻 T 9 2から時刻 T 9 3までの期間と、 時刻 T 9 5から時刻 T 9 6までの期間) において、 中央制御回路 5 0 5は、 ブザ 一 5 1 1を間欠的に駆動するよう制御する。
このような構成によれば、 上述した実施形態と同様の作用、 効果を得ることが できる。
(変形例 4 )
上記第 6実施形態および第 7実施形態では、 電池 5 1 0の出力電圧に応じて、 無線通信時におけるアラーム報知の制限の態様を変化させた。 本変形例では、 電 . 池 5 1 0の出力電圧の代わりに、 電池 5 1 0の残容量を測定し、 この残容量がい ずれの区分に属するかにより、 無線通信時におけるアラーム報知の制限の仕方を 変える。 具体的にどのように変化させるかは、 例えば第 7実施形態において図 2 8を参照して説明した通りである。
残容量の測定回路としては、 例えば図 3 1に示すような回路があり得る。 この 回路は、 電池 5 1 0と負荷 (腕時計 5 0内の各回路) との間の電流路に介挿され た電流検出抵抗 R S E N S Eと、 この電流検出抵抗 R S E N S Eの両端の電圧に 比例したアナログ信号を出力するオペアンプ 6 0 1と、 所定周波数のクロックが 与えられる毎に、 オペアンプ 6 0 1の出力信号をサンプリングし、 デジタルデー 夕に変換する A /D変換器 6 0 2と、 同クロックが与えられる度に、 A Z D変換 器 6 0 2の出力データの累算を行う放電カウン夕 6 0 3とにより構成されている。 ここで、 放電カウンタ 6 0 3は、 電池 5 1 0が新しいものに交換されたときにリ セッ トされる。
このような構成によれば、 電流検出抵抗 R S E N S Eを流れる電流の積分値、 すなわち、 電池 5 1 0から放電した総電荷量に相当する累算値が放電カウン夕 6 0 3から得られる。 従って、 中央制御回路 5 0 5は、 この累算値に基づいて、 電 池 5 1 0.の残容量を判定することができる。
電池 5 1 0を装着したままの状態で電池 5 1 0への充電を行い得るように腕時 計 5 0を構成することも可能である。 このような場合、 電池 5 1 0から負荷に至 る電流路と電池 5 1 0の充電経路の両方に電流検出抵抗を挿入し、 前者の電流検 出抵抗には、 図 3 1に示すような電池 5 1 0の放電量を測定する回路を接続し、 後者の電流検出抵抗には、 同様な構成の電池 5 1 0の充電量を測定する回路を接 続する。 このような構成を採った場合、 中央制御回路 5 0 5は、 両測定回路から 得られた放電量と充電量との差分から電池 5 1 0の残存容量を求め、 これに基づ いて、 アラーム報知の制限を行うことができる。
電池 5 1 0の残容量の代わりに内部抵抗を測定し、 この内部抵抗が上昇して閾 値に達した場合にアラーム報知の制限を行うようにしてもよい。 電池 5 1 0の内 部抵抗を測定する方法としては、 無線通信機能部の駆動時における電池 5 1 0の 出力電圧と非駆動時における出力電圧との差分から求める方法が挙げられる。
(変形例 5 )
上述した実施形態においては、 無線通信方式として Bluetooth を使用するこ とを想定してはいる力 他の方式を用いることとしてもよい。 たとえば、 マイク 口波を使った方式、 電磁誘導を使った方式、 赤外線を使った方式であってもよく、 無線通信を行う際の変調方式としても、 例えば直接拡散 (Direct Sequence) 方 式等の各種変調方式を用いることができる。
要するに、 局地的な無線通信を行うことに対応した通信方式であれば、 本発明 の適用を行うことができる。
(変形例 5 )
上述実施形態は Bluetooth による無線通信の機能を腕時計 5 0に係るもので あつたが、 本発明はこれに限るものではなく、 無線通信機能を有する携帯型の機 器、 例えば、 電卓、 P D A (Personal Digital Assistants) , 翻訳機、 万歩計、 携帯型血圧計等に係るもの であってもよい。
態様も腕時計の型に限らず、 カード型、 ネックレス型、 ペンダント型など様々 な型で構成することが可能である。
(変形例 6 )
本変形例は、 第 5〜第 7実施形態における中央制御回路 5 0 5 (図 1 7参照) に対し、 上記第 1実施形態における第 1制御部 1 1 0および第 2制御部 1 2 0の 機能を追加したものである。
本変形例において、 中央制御回路 5 0 5は、 電池 5 1 0の出力電圧を監視して いる。 中央制御部 5 0 5は、 受信回路 5 0 3、 送信回路 5 0 4および P L L回路 5 3 1を含んだ無線通信機能部を間欠的に駆動して無線通信を行うが, その際の 電池 5 1 0の出力電圧を監視する。 そして、 この出力電圧が第 1の閾値電圧に降 下した場合には、 電池 5 1 0による無線通信機能部の駆動を禁止する。 このよう に無線通信機能部の駆動が禁止された後において電池 5 1 0の出力電圧が第 2の 閾値電圧に降下した場合に、 中央制御回路 5 0 5は、 同回路内に含まれている無 線通信機能部の制御のための回路の電池 5 1 0による駆動を禁止する。
また、 中央制御回路 5 0 5は、 無線通信機能部の間欠駆動が禁止されていない 状態において、 電池 5 1 0の出力電圧が上記第 1の閾値電圧よりも若干大きな所 定の閾値電圧以下になった場合、 上記第 5〜第 7実施形態に開示された制御を行 う。 すなわち、 無線通信機能部による通信が行われているときに、 ブザー 5 1 1 , バイブレータ 5 1 2といった消費電流の大きな負荷の駆動指令が発生した場合に は、 その駆動を行わない。
以上と同様に、 上記第 2〜第 4実施形態の各制御部の機能を中央制御回路 5 0 5に持たせることも可能である。
(変形例 7 ) 本発明に係るプログラムを記録する記録媒体も任意であり、 例えば、 半導体メ モリ、 C D— R O M (Compact Disc- Read Only Memory) , C D— R (Compact Disc-Recordable) 等の光ディスク、 M O (Magneto Optic)、 M D (Mini Disc) 等の光磁気ディスク、 フロッピ一ディスク、 ハードディスク等の磁気ディスク等 があげられる。 そして、 これらを介して腕時計 5 0のメモリ 5 0 6にプログラム を供給し、 C P U等によって構成される中央制御回路 5 0 5により制御する形態 をとつてもよい。
また、 かかるプログラムのインストール方法も任意であり、 上述した記録媒体 を使って腕時計等の携帯型情報機器にインストールすることとしてもよく、 本発 明に係るプログラムが格納されるサーバからィン夕一ネッ ト等のネッ 卜ワークを 介して腕時計等の携帯型情報機器のメモリにプログラムを供給し、 C P Uを有す る M P U (Micro Processing Unit) により制御する形態、 いわゆるネッ ト配信 の形態によることとしてもよい。

Claims

請求の範囲
1 . 電池と、
前記電池によって駆動される複数の負荷部と、
前記複数の負荷部の駆動時における前記電池の出力電圧が第 1の閾値電圧に降 下した場合に前記複数の負荷部の一部の前記電池による駆動を制限する第 1制御 部と、
前記複数の負荷部の一部の駆動が制限された後において前記電池の出力電圧が 第 2の閾値電圧に降下した場合に前記電池による前記複数の負荷部の少なくとも 一部及び前記第 1の制御部の駆動を停止する第 2制御部と
を具備することを特徴とする電子機器。
2 . 前記複数の負荷部は、 重負荷部と、 前記重負荷部よりも消費電力の小さな軽 負荷部とを有し、
前記第 1制御部は、 前記複数の負荷部の駆動時における前記電池の出力電圧が 第 1の閾値電圧に降下した場合に前記重負荷部の前記電池による駆動を停止する ことを特徴とする請求項 1記載の電子機器。
3 - 前記第 1制御部は、 前記複数の負荷部の駆動時における前記電池の出力電圧 が前記第 1の閾値電圧に降下した場合に、 前記第 2制御部を起動するための起動 信号を出力することを特徴とする請求項 1または 2記載の電子機器。
4 . 前記軽負荷部、 前記第 1制御部及び前記第 2制御部の駆動時における前記電 池の内部抵抗による電圧降下と、 前記第 2制御部のみを駆動した場合における前 記電池の内部抵抗による電圧降下との差分は、 前記第 2.制御部における電圧の検 出分解能よりも小さいことを特徴とする請求項 2記載の電子機器。
5 . 前記重負荷部は、 無線通信部を有し、
前記第 1制御部は、 前記電池によって前記重負荷部が間欠的に駆動されるように制御する手段と、 前記電池によつて前記重負荷部が駆動されているときの前記電池の出力電圧が 前記第 1の閾値電圧に降下したときに前記電池による前記重負荷部の間欠駆動を 終了させる手段とを有し、
前記第 2制御部は、 前記電池の出力電圧の変化に対して前記第 1制御部よりも 高速に応答する手段であって、 前記電池による前記重負荷部の間欠駆動が行われ ており、 かつ、 前記電池による前記重負荷部の駆動が行われていない期間におけ る前記電池の出力電圧が第 3の閾値電圧以下に降下したときに、 前記第 1制御部 に対する前記電池からの電力供給を断ち、 前記重負荷部の間欠駆動を終了させる 手段を具備することを特徴とする請求項 2記載の電子機器。
6 . 前記電池の出力電圧の変化に対して前記第 1制御部よりも高速に応答する手 段であって、 前記電池によって前記重負荷部が駆動されているときの前記電池の 出力電圧が前記第 1の閾値電圧よりも低い第 4の閾値電圧に降下したときに前記 電池による前記重負荷部の駆動を禁止する第 3制御部を具備することを特徴とす る請求項 5記載の電子機器。
7 . 前記軽負荷部は、 充電時期若しくは電池交換時期の到来を報知する軽負荷を 含み、
前記第 1制御部は、 前記複数の負荷部の駆動時における前記電池の出力電圧が 前記第 1の閾値電圧に降下した場合に、 前記充電時期若しくは電池交換時期の到 来を報知する軽負荷を駆動することを特徴とする請求項 2に記載の電子機器。
8 . 前記充電時期の到来を報知する軽負荷は、 文字メッセージ、 若しくは画像を 表示して充電時期の到来を報知する表示装置であることを特徴とする請求項 7記 載の電子機器。
9 . 前記充電時期の到来を報知する軽負荷は、 警告音、 若しくは振動を発生して 充電時期の到来を報知する警報装置であることを特徴とする請求項 7記載の電子 機器。
1 0 . 前記負荷部は、 前記電池によって駆動され、 外部装置との間で間欠的な双 方向の無線通信を行う無線通信機能部を含み、
前記電子機器は、
前記電池の状態を検出する検出手段と、
前記電池の状態が所定の状態に至っていることが前記検出手段によって検出さ れているときに無線通信が実行される場合に、 前記複数の負荷部における前記無 線通信機能部以外の所定の負荷部の駆動を禁止する第 4制御部と
を具備することを特徴とする請求項 1記載の電子機器。
1 1 . 前記検出手段は、 前記電池の出力電圧を検出する回路であることを特徴と する請求項 1 0記載の電子機器。
1 2 . 前記検出手段は、 前記電池の残量を検出する回路であることを特徴とする 請求項 1 0記載の電子機器。
1 3 . 前記第 4制御部は、 無線通信の実行時に駆動を禁止すべき負荷部または複 数の負荷部の組み合わせを、 前記検出手段によって検出された前記電池の状態に 応じて決定することを特徴とする請求項 1 0記載の電子機器。
1 4 . 外部装置との間において形成した無線通信ネッ トワークの同期を維持する ために所定周期毎に同期信号の無線通信を行う低消費電力モードまたは前記外部 装置との間で実際の無線データ通信を行うァクティブモ一ドをとることが可能で あり、
前記第 4制御部は、 前記低消費電力モードにおいて前記同期信号の無線通信を 行っている場合および前記ァクティブモードにある場合に、 無線通信部以外の一 または複数の負荷部の駆動を禁止することを特徴とする請求項 1 0記載の電子機 q
1 5 . 前記無線通信は Bluetooth (登録商標) を利用するものであることを特徴 とする請求項 1 0記載の電子機器。
1 6 . 前記無線通信の実行時に駆動が禁止される負荷部は、
ブザーを駆動することによる鳴音報知機能部、 バイブレータ用モー夕を駆動す ることによる振動報知機能部、 L E Dを駆動することによる発光報知機能部、 液 晶表示部を駆動することによる表示機能部のうちのいずれか一の機能部を含むこ とを特徴とする請求項 1 0記載の電子機器。
1 7 . 消費電力の大きな重負荷部と消費電力の小さな軽負荷部とを有する電子機 器に電源として設けられた電池の出力電圧を検出する検出過程と、
前記電池の出力電圧が第 1の閾値電圧に降下した場合に前記電池による前記重 負荷部の駆動を制限する第 1制御過程と、
前記重負荷部の駆動が制限された後において前記電池の出力電圧が第 2の閾値 電圧に降下した場合に前記電池による前記重負荷部および軽負荷部の駆動を停止 する第 2制御過程と
を具備することを特徴とする電子機器の制御方法。
1 8 . 消費電力の大きな重負荷部と消費電力の小さな軽負荷部とを有する電子機 器に電源として設けられた電池の出力電圧を検出する検出過程と、
前記電池の出力電圧が第 1の閾値電圧に降下した場合に前記電池による前記重 負荷部の駆動を制限する第 1制御過程と、
前記重負荷部の駆動が制限された後において前記電池の出力電圧が第 2の閾値 電圧に降下した場合に前記電池による前記重負荷部および軽負荷部の駆動を停止 する第 2制御過程と
を電子機器を制御するコンピュータに実行させるプログラム。
1 9 . 消費電力の大きな重負荷部と消費電力の小さな軽負荷部とを有する電子機 器に電源として設けられた電池の出力電圧を検出する検出過程と、 前記電池の出力電圧が第 1の閾値電圧に降下した場合に前記電池による前記重 負荷部の駆動を制限する第 1制御過程と、
前記重負荷部の駆動が制限された後において前記電池の出力電圧が第 2の閾値 電圧に降下した場合に前記電池による前記重負荷部および軽負荷部の駆動を停止 する第 2制御過程と
を電子機器を制御するコンピュータに実行させるプログラムを記憶したコンビ ユー夕読み取り可能な記憶媒体。
PCT/JP2002/002192 2001-03-08 2002-03-08 Dispositif electronique alimente par batterie et procede de commande de ce dispositif WO2002073770A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002572701A JP3945404B2 (ja) 2001-03-08 2002-03-08 電池駆動型電子機器
CNB028015797A CN100361365C (zh) 2001-03-08 2002-03-08 电池驱动型电子机器及其控制方法
EP02702838A EP1367687A4 (en) 2001-03-08 2002-03-08 BATTERY-POWERED ELECTRONIC DEVICE AND METHOD OF CONTROLLING THE SAME

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2001-065523 2001-03-08
JP2001065523 2001-03-08
JP2001-086142 2001-03-23
JP2001086142 2001-03-23

Publications (1)

Publication Number Publication Date
WO2002073770A1 true WO2002073770A1 (fr) 2002-09-19

Family

ID=26610904

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/002192 WO2002073770A1 (fr) 2001-03-08 2002-03-08 Dispositif electronique alimente par batterie et procede de commande de ce dispositif

Country Status (5)

Country Link
US (1) US6744698B2 (ja)
EP (1) EP1367687A4 (ja)
JP (1) JP3945404B2 (ja)
CN (1) CN100361365C (ja)
WO (1) WO2002073770A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006014922A3 (en) * 2004-07-30 2006-05-26 Motorola Inc Portable electronic device and method of operation therefore
JP2009165308A (ja) * 2008-01-09 2009-07-23 Hioki Ee Corp 電源回路および電子機器
JP2009240051A (ja) * 2008-03-26 2009-10-15 Panasonic Electric Works Co Ltd 電池パック
WO2012026573A1 (ja) * 2010-08-27 2012-03-01 三洋電機株式会社 電力管理装置
JP2012173131A (ja) * 2011-02-22 2012-09-10 Casio Comput Co Ltd 電子時計
JP2018019998A (ja) * 2016-08-05 2018-02-08 東芝ライフスタイル株式会社 電気掃除機
WO2018066499A1 (ja) * 2016-10-07 2018-04-12 株式会社オートネットワーク技術研究所 車載機器

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4214721B2 (ja) * 2002-06-12 2009-01-28 セイコーエプソン株式会社 時計システムおよび時計システムの制御方法
TWI293825B (ja) * 2002-07-03 2008-02-21 Benq Corp
JP2004096714A (ja) * 2002-07-10 2004-03-25 Matsushita Electric Ind Co Ltd 電池駆動型電子機器
JP2004045170A (ja) * 2002-07-11 2004-02-12 Fuji Photo Film Co Ltd 電池残量警告回路
US9274576B2 (en) * 2003-03-17 2016-03-01 Callahan Cellular L.L.C. System and method for activation of portable and mobile media player devices for wireless LAN services
US7768234B2 (en) * 2004-02-28 2010-08-03 Janik Craig M System and method for automatically synchronizing and acquiring content for battery powered devices
US20050235091A1 (en) * 2004-04-20 2005-10-20 Caph Chen USB hub with built-in storage device
US7151357B2 (en) * 2004-07-30 2006-12-19 Kye Systems Corporation Pulse frequency modulation for induction charge device
NL1027162C2 (nl) * 2004-10-01 2006-04-04 In Lite Design B V Oplaadbare objectverlichting.
FR2880507A1 (fr) * 2004-12-30 2006-07-07 Cit Alcatel Dispositif de telecommunication mobile avec ihm deportee
JP2006208595A (ja) * 2005-01-26 2006-08-10 Brother Ind Ltd 液晶表示装置、及び電子装置
ATE432557T1 (de) * 2005-02-09 2009-06-15 Nxp Bv Verfahren zur sicherstellung einer sicheren nfc- funktionalität einer drahtlosen mobilen kommunikationsvorrichtung und drahtlose mobile kommunikationsvorrichtung mit sicherer nfc- funktionalität
DE102005019751A1 (de) * 2005-04-28 2006-11-02 Braun Gmbh Blutdruckmessgerät
US7737655B1 (en) * 2006-07-26 2010-06-15 Koehler-Bright Star, Inc. Electronic control module for a lithium-ion battery powered lantern
KR101410175B1 (ko) * 2007-09-27 2014-06-19 삼성전자주식회사 터치 키를 구비한 휴대용 통신 장치
CN101843080B (zh) * 2007-10-30 2013-07-24 日本电气株式会社 便携式终端设备和控制便携式终端设备的方法
CN101424725B (zh) * 2007-10-31 2011-06-29 深圳富泰宏精密工业有限公司 手机电池电容量估算方法及系统
KR101493798B1 (ko) * 2007-12-10 2015-03-02 바이엘 헬쓰케어, 엘엘씨 배터리로 전원공급되는 체액 분석물질 측정기의 고속 충전 및 전원 관리 방법
EP3654535A1 (en) 2008-02-01 2020-05-20 Guangdong Oppo Mobile Telecommunications Corp., Ltd. System and method for uplink timing synchronization in conjunction with discontinuous reception
JP5406470B2 (ja) * 2008-06-20 2014-02-05 キヤノン株式会社 バッファ駆動装置
JP4576462B2 (ja) * 2009-01-30 2010-11-10 株式会社バッファロー ルータ装置
US10097013B2 (en) 2010-11-25 2018-10-09 Cheevc Ltd Battery management system and method for managing isolation and bypass of battery cells
JP5255086B2 (ja) * 2011-04-08 2013-08-07 本田技研工業株式会社 電源装置及びその制御方法
KR101790046B1 (ko) * 2011-07-15 2017-10-26 삼성전자주식회사 보조배터리를 이용한 마스터장치의 충전장치 및 방법
JP2014011917A (ja) * 2012-07-02 2014-01-20 Mitsubishi Heavy Ind Ltd 充電率均等化装置及び電池システム
US8756739B1 (en) 2012-10-01 2014-06-24 Taft Instruments, Inc. Automatic solar power surface-cleaner
JP5990117B2 (ja) * 2013-03-04 2016-09-07 富士通株式会社 制御方法、制御サーバ及び制御プログラム
JP6211302B2 (ja) * 2013-05-09 2017-10-11 矢崎総業株式会社 電池状態検出装置
JP6181211B2 (ja) * 2014-01-20 2017-08-16 日立オートモティブシステムズ株式会社 電源制御システム及び電源制御装置
CN105244928A (zh) * 2014-07-09 2016-01-13 中兴通讯股份有限公司 大负载终端的电源控制方法及电源控制装置
CN104320163B (zh) * 2014-10-10 2017-01-25 安徽华米信息科技有限公司 一种通讯方法及装置
CN104466885B (zh) * 2014-12-19 2018-05-18 常熟开关制造有限公司(原常熟开关厂) 一种断路器控制器
CN104578324A (zh) * 2015-02-04 2015-04-29 环旭电子股份有限公司 电池驱动装置
JP6459647B2 (ja) 2015-03-06 2019-01-30 セイコーエプソン株式会社 電子時計および電子時計の制御方法
AU2015414468B2 (en) 2015-11-12 2021-06-17 Razer (Asia-Pacific) Pte. Ltd. Watches
JP6645358B2 (ja) * 2016-05-27 2020-02-14 カシオ計算機株式会社 通信装置、電子時計、時刻補正方法、及びプログラム
CN110546847B (zh) * 2017-03-07 2024-08-13 伏特技术有限公司 具有电压调节装置的电池
CN110637236B (zh) * 2017-05-16 2021-05-14 株式会社辰巳菱机 负载系统、负载试验装置和通信终端
JP6835676B2 (ja) * 2017-07-05 2021-02-24 株式会社ダイヘン 電源システム、電源装置、制御方法及び制御プログラム
CN108233470A (zh) * 2017-12-28 2018-06-29 广州邦讯信息系统有限公司 电池供电电路
KR102715869B1 (ko) * 2019-09-11 2024-10-14 주식회사 엘지에너지솔루션 배터리 진단 장치 및 방법
EP3798745B1 (fr) * 2019-09-30 2022-07-13 ETA SA Manufacture Horlogère Suisse Fond de boîte de montre comprenant un dispositif électronique de charge sans fil d'une source d'énergie
CN111525655A (zh) * 2020-06-02 2020-08-11 美登思电气(上海)有限公司 用于通信基站的精准供电控制器及精准供电系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09172741A (ja) * 1995-12-18 1997-06-30 Matsushita Electric Ind Co Ltd 選択呼出受信機
JPH09261315A (ja) * 1996-03-26 1997-10-03 Aiwa Co Ltd 携帯用端末装置
EP0818719A1 (en) 1995-11-07 1998-01-14 Citizen Watch Co., Ltd. Heavy load driving device for electronic timepiece
JP3064314U (ja) * 1999-04-20 2000-01-14 株式会社ハドソン バッテリ搭載装置
JP2000253587A (ja) * 1999-03-01 2000-09-14 Sony Corp 電子機器
JP2000295164A (ja) * 1999-04-05 2000-10-20 Goyo Denshi Kogyo Kk 低電圧警報機能付き無線呼出受信機
JP2001339867A (ja) * 2000-05-30 2001-12-07 Sanyo Electric Co Ltd 電池とモーターを内蔵する電気機器

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4058969A (en) * 1973-12-26 1977-11-22 Citizen Watch Co., Ltd. Electric timepiece for displaying the operating condition thereof
GB2077004B (en) * 1980-05-22 1983-10-26 Suwa Seikosha Kk Improvements in or relating to electronic timepieces
KR930001812B1 (ko) * 1990-07-19 1993-03-13 삼성전자주식회사 휴대용 이동체 통신시스템의 밧데리 과방전 및 과전압 보호회로
CH684143B5 (fr) * 1992-10-08 1995-01-31 Ebauchesfabrik Eta Ag Pièce d'horlogerie apte à recevoir des messages radiodiffusés affichés par ses aiguilles.
JPH07131402A (ja) * 1993-11-09 1995-05-19 Hitachi Ltd 携帯電話用電源監視装置
WO1997021153A1 (fr) * 1995-12-06 1997-06-12 Citizen Watch Co., Ltd. Horloge radiocalibree
JPH1164314A (ja) 1997-08-27 1999-03-05 Kyoto Jushi Seiko Kk クロマトグラフィーカラム
JP2973303B2 (ja) * 1998-02-05 1999-11-08 セイコーインスツルメンツ株式会社 電波修正時計
JP3449357B2 (ja) * 1999-01-06 2003-09-22 セイコーエプソン株式会社 電子機器及び電子機器の制御方法
JP3449410B2 (ja) * 1999-07-22 2003-09-22 日本電気株式会社 携帯電話機の電気供給方法及びその電気供給装置
JP3702729B2 (ja) * 1999-11-24 2005-10-05 セイコーエプソン株式会社 電子時計および電子時計の駆動制御方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0818719A1 (en) 1995-11-07 1998-01-14 Citizen Watch Co., Ltd. Heavy load driving device for electronic timepiece
JPH09172741A (ja) * 1995-12-18 1997-06-30 Matsushita Electric Ind Co Ltd 選択呼出受信機
JPH09261315A (ja) * 1996-03-26 1997-10-03 Aiwa Co Ltd 携帯用端末装置
JP2000253587A (ja) * 1999-03-01 2000-09-14 Sony Corp 電子機器
JP2000295164A (ja) * 1999-04-05 2000-10-20 Goyo Denshi Kogyo Kk 低電圧警報機能付き無線呼出受信機
JP3064314U (ja) * 1999-04-20 2000-01-14 株式会社ハドソン バッテリ搭載装置
JP2001339867A (ja) * 2000-05-30 2001-12-07 Sanyo Electric Co Ltd 電池とモーターを内蔵する電気機器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1367687A4

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006014922A3 (en) * 2004-07-30 2006-05-26 Motorola Inc Portable electronic device and method of operation therefore
JP2009165308A (ja) * 2008-01-09 2009-07-23 Hioki Ee Corp 電源回路および電子機器
JP2009240051A (ja) * 2008-03-26 2009-10-15 Panasonic Electric Works Co Ltd 電池パック
US8643339B2 (en) 2008-03-26 2014-02-04 Panasonic Corporation Battery pack including a status detection unit to detect an abnormal status and a notification unit to notify a user of an availability to restart a discharging operation
WO2012026573A1 (ja) * 2010-08-27 2012-03-01 三洋電機株式会社 電力管理装置
JP2012173131A (ja) * 2011-02-22 2012-09-10 Casio Comput Co Ltd 電子時計
US8934320B2 (en) 2011-02-22 2015-01-13 Casio Computer Co., Ltd. Electronic timepiece
JP2018019998A (ja) * 2016-08-05 2018-02-08 東芝ライフスタイル株式会社 電気掃除機
US11141033B2 (en) 2016-08-05 2021-10-12 Toshiba Lifestyle Products & Services Corporation Electric vacuum cleaner
WO2018066499A1 (ja) * 2016-10-07 2018-04-12 株式会社オートネットワーク技術研究所 車載機器
JP2018058543A (ja) * 2016-10-07 2018-04-12 株式会社オートネットワーク技術研究所 車載機器

Also Published As

Publication number Publication date
EP1367687A4 (en) 2008-11-05
US6744698B2 (en) 2004-06-01
JPWO2002073770A1 (ja) 2004-07-08
CN100361365C (zh) 2008-01-09
US20020171400A1 (en) 2002-11-21
EP1367687A1 (en) 2003-12-03
CN1462497A (zh) 2003-12-17
JP3945404B2 (ja) 2007-07-18

Similar Documents

Publication Publication Date Title
WO2002073770A1 (fr) Dispositif electronique alimente par batterie et procede de commande de ce dispositif
EP0956690B1 (en) Emergency telephone with automatic low-battery signaling
US7496060B2 (en) Extending battery life in communication devices having a plurality of receivers
US6717520B1 (en) Method and apparatus for selectively providing an audible low power alert to a user of an electronic device
JP2001035541A (ja) 充電装置、および充電手段を有するデバイスの使用方法
CN101965676A (zh) 具有低电流模式的切换模式电压转换器及以低电流模式进行电压转换的方法
JP2005253255A (ja) 携帯型通信装置用バッテリー切り換え回路
KR20130131873A (ko) 손목 시계형 무선단말 충전장치
US6246890B1 (en) Portable telephone with built-in charger
US20090124298A1 (en) Mobile phone terminal and communication system
GB2451616A (en) Location or motion dependent automatic control in a cellular phone
JP2006195794A (ja) Rf−idタグ及びrf−idタグ内蔵携帯通信端末
US20110028117A1 (en) Mobile Computing and Communication Device for Use as a Mobile Phone in Normal Operation and as a Survivability Detection Device in a Disaster Situation
CN110996383B (zh) 无线通信装置、电子表、传输功率控制方法、存储介质
US11523451B2 (en) Wireless communication device, terminal, wireless communication system, connection control method and recording medium
US6351100B1 (en) Method of, and circuit for, controlling the discharge of a battery
JP2000270486A (ja) 電子機器、当該電子機器を具備する通信システム、および当該通信システムの制御方法
JPH09283186A (ja) 電子機器及び二次電池の放電方法
JP2001251783A (ja) 瞬断制御装置、携帯端末装置及び瞬断制御方法
KR20040049900A (ko) 이동통신 단말기의 전원 절약 장치 및 방법
JPH06112878A (ja) 無線機のリセット回路
KR100440911B1 (ko) 무선통신기기의 배터리 잔량 표시방법
JPH04321323A (ja) 移動無線機
JP2021032585A (ja) 電子時計
KR20080056414A (ko) 이동통신단말기의 비상모드 운영방법 및 그 이동통신단말기

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2002 572701

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 028015797

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2002702838

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2002702838

Country of ref document: EP