WO2002073153A2 - Modul für eine analyseeinrichtung, applikator als austauschteil der analyseeinrichtung und zugehörige analyseeinrichtung - Google Patents

Modul für eine analyseeinrichtung, applikator als austauschteil der analyseeinrichtung und zugehörige analyseeinrichtung Download PDF

Info

Publication number
WO2002073153A2
WO2002073153A2 PCT/DE2002/000836 DE0200836W WO02073153A2 WO 2002073153 A2 WO2002073153 A2 WO 2002073153A2 DE 0200836 W DE0200836 W DE 0200836W WO 02073153 A2 WO02073153 A2 WO 02073153A2
Authority
WO
WIPO (PCT)
Prior art keywords
chip
analysis device
housing
applicator
module
Prior art date
Application number
PCT/DE2002/000836
Other languages
English (en)
French (fr)
Other versions
WO2002073153A3 (de
Inventor
Walter Gumbrecht
Manfred Stanzel
Manfred Wossler
Jörg ZAPF
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to US10/471,167 priority Critical patent/US20050031490A1/en
Priority to CA002440126A priority patent/CA2440126A1/en
Priority to JP2002572367A priority patent/JP2004532396A/ja
Priority to EP02722000A priority patent/EP1366361A2/de
Publication of WO2002073153A2 publication Critical patent/WO2002073153A2/de
Publication of WO2002073153A3 publication Critical patent/WO2002073153A3/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502707Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the manufacture of the container or its components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502715Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by interfacing components, e.g. fluidic, electrical, optical or mechanical interfaces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/128Microapparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/02Adapting objects or devices to another
    • B01L2200/026Fluid interfacing between devices or objects, e.g. connectors, inlet details
    • B01L2200/027Fluid interfacing between devices or objects, e.g. connectors, inlet details for microfluidic devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0645Electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/18Means for temperature control
    • B01L2300/1805Conductive heating, heat from thermostatted solids is conducted to receptacles, e.g. heating plates, blocks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49171Fan-out arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01068Erbium [Er]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • H01L2924/1815Shape

Definitions

  • Module for an analysis device applicator as a replacement part of the analysis device and associated analysis device
  • the invention relates to a module for an analysis device, in particular for decentralized biochemical analysis, with a sensor chip in a first housing.
  • the invention also relates to an applicator as a replacement part of the analysis device and the associated analysis device.
  • Microsensor technology and microsystem technology have undergone a stormy development on the technological platform of microelectronics in the past 20 years. All technical and scientific disciplines have made their respective contributions and created a wide range of sensors and systems between physics and microbiology.
  • microelectronic-compatible housing solutions have been developed until the market launch. B. at i-STAT Corporation, 303A College Road East, Princeton, New Jersey 08540. A device in this regard is described in US Pat. No. 5,096,669:
  • One or more Si chips have sensitive areas with chemical sensors and contact areas for electrical connection with the reader.
  • the chips are mounted in a housing in such a way that large parts of the chip surfaces are used to seal a flow channel, and large contact surfaces for electrical contacting are accessible from outside the housing. This means that a large part of the valuable Si chip area is wasted.
  • the electrical contact in the housing is on the same side as the sensitive areas of the chip, which makes it difficult to reliably separate the electrical contact from the fluidics.
  • the chip carrier is thin and has a thickness of ⁇ 100 ⁇ m. With thicknesses of approx. 50 ⁇ m metal in combination with approx. 100 ⁇ m plastic, there is a considerable volume / material saving. Due to the thin design of the chip carrier and the suitable material, such as gold-plated copper layers, there are only small masses and thus low heat capacities, so that in connection with the good thermal conductivity of silicon and, for example, an approx. 50 ⁇ m thick copper / gold layer very good dynamic temperature behavior results.
  • the processing of the chip carrier is carried out on a tape that is transported from roll to roll ( "reel to reel process f), wherein, advantageously, the electrical contacts on the rear side can be placed.
  • both materials known from microelectronics and materials with special properties, such as, for example, elastic polymers, can be used.
  • the sensitive areas of the chips can be coated with chemical / biochemical substances, advantageously from the liquid phase, using the “reel to reel ⁇ ” technique.
  • the encapsulation of the individual module in combination with the associated applicator results in particularly favorable properties.
  • the module realizes an applicator as a decentralized measuring unit.
  • the applicator can be placed in a second housing with an evaluation unit.
  • the applicator with the first housing and module integrated therein is advantageously designed in the manner of a chip card.
  • a chip card together with the second housing can form a versatile analysis device.
  • an analysis device can be used for the screening of body fluids, for example for decentralized blood gas measurements or saliva examinations. But other applications in biochemical analysis can also be realized.
  • Another advantageous application of the invention is the amplification of DNA / RNA (deoxyribonucleic acid / ribonucleic acid) samples using the exponential replication method in the so-called PCR (polymer chain reaction), ie the so-called polymerase chain reaction method.
  • the sample liquid must be cycled 20 to 40 times between two temperatures, typically between 40 ° C and 95 ° C.
  • the speed of the cycles is decisive.
  • the cooling process determines the speed.
  • FIG. 2 shows the section through a chip module with flip-chip technology
  • FIG. 3 shows the top view of a chip card contacting field with individual contacts
  • FIG. 4 shows the top view of the chip sensor with sensitive area
  • FIG. 4A shows an enlarged top view the exposed sensitive surface of the chip in Figure 4 when using the sensor for biochemical applications
  • Figure 5 shows a detailed, scale representation of a chip card for the installation of a module with wire bonding technology
  • Figure 6 shows a corresponding representation as Figure 5 for the installation of a module with flip-chip technology and reusable flow coupling
  • FIG. 7 shows a section of a combination of a module and an applicator for insertion into a reading device
  • FIG. 8 shows the top view from above or a section of the arrangement from FIG. 7.
  • the smart card technology is a well-known, widespread ⁇ tes and extremely cost-effective housing concept in microelectronics.
  • a micro-silicon chip which was previously thin-ground to approx. 180 ⁇ m at the wafer level, is glued to a carrier tape, which consists of gold-plated, pre-punched copper tape and possibly reinforced with a plastic tape. After standard wire bonding, the chip and wires are encapsulated with a polymer.
  • a commercially available standard plastic card. (Materials: PVC, PET, PC; dimensions: approx. 85 x 54 x 0.8 mm 3 ) is used to hold the chip carrier module at a defined point on module size (approx. CO CO hJ IV) P 1 P 1
  • the encapsulation 5 must have a defined lateral extent.
  • An expansion of the lateral extent of the encapsulation is, among other things. necessary if the inflow and outflow should lie outside the sensitive area of the chip 1, e.g. to avoid disruptive influences of an inhomogeneous flow of the fluids. The inflow and outflow then meet the sensor module in the encapsulation area and can be securely sealed there.
  • the encapsulation 5 has a diameter of 10 mm and a cutout for the sensitive area 2 of the chip of 3 mm. In combination with the above-described ratio of encapsulation height to diameter of the sensitive surface 2, a uniform one becomes
  • the sensitive surface 2 of the chip is preferably round.
  • the delimitation of the sensitive area 2 for encapsulation 5 can e.g. with a phototechnically structured polymer ring as described below in FIG. 6 as PI (polyimide) ring 27.
  • the shape of the chip 1 is preferably approximately or exactly square, the electrical contacts of the chip 1 being so-called bond pads 2 to 2 VI1 in the area of the chip corners are located so that the sensitive area can be extended to the chip edges, which results from FIG. 4.
  • the total thickness of the module is approximately 330 ⁇ m.
  • the chip 1 with its sensitive surface 2 is oriented downward according to FIG.
  • the sensor chip 1 is arranged in so-called flip-chip technology with several bump-like contacts 8, 8 ⁇ , ... on the carrier tape 3 with its contact areas 3 1 , 3 11 , ..., 3 VI11 , the carrier tape in a corresponding design as in Figure 1 made of copper with optionally gold plating.
  • Insulation elements 4 are in turn provided as mechanical connections made of electrically insulating plastic, with a cutout for the sensitive surface 2 of the sensor chip 1.
  • a chip module 15 is formed in FIG.
  • the mode of operation of the chip module 15 and 15 Figuren and in particular the actual chip 1 is illustrated by the views from both sides of the module with reference to FIGS. 3 and 4.
  • contacting fields 3 1 ,... 3 VI11 can be seen as individual connections which correspond to the usual contacts for chips that can be integrated into the card.
  • the wire bonds 6, 6, ... run on the sensitive side 2 of the chip 1 from the bond pads 2 1 to 2 VI1 from the corners of the chip 1 to the contacts of the contacting contacts 3 1 , ... 3 VI11 ,
  • FIG. 4A a large number of microcavities 200 for carrying out biochemical analyzes are arranged on the sensitive surface 2 of the chip 1.
  • Such an arrangement is described by way of example in the older German patent application AZ 100 58 394.6-52, to which express reference is made, and is used to carry out biochemical measurements, for example in DNA analysis.
  • discrete electrical contacts are provided on the chip 1 with a sensitive surface 2 or the individual sensitive elements 200, with 3 1 to 3 VI1 are designated.
  • the contacts form inputs for the electrical measuring circuit.
  • there are two supply voltage inputs Vdd ⁇ V ss an input GND for ground potential, an input for a clock signal, an input V in for a control voltage and an input for a reset signal.
  • a multiplexer 210, a “gray counter & decoder ⁇ 215 and an amplifier 220 are integrated on chip 1 using standard silicon technology.
  • the measurement signal is recorded at the output ⁇ out ⁇ , a multiplex signal being obtained with an array arrangement with the plurality of cavities as mxn individual sensors, which is read out, for example, at a frequency of 10 kHz.
  • the multiplex signal output out x on a single line consists of a pattern of discrete voltage values, from which the individual sensor signals are obtained by means of a de-multiplexer in an evaluation device.
  • the de-multiplexer not shown in FIG. 4A, is arranged, for example, in the housing 80 of FIGS. 7 and 8.
  • discrete sensors can also be present instead of a multiplicity of identical sensors, such as the mxn cavities 200 according to FIG. 4A.
  • Such sensors can be sensors for p0 2 and pC0 2 especially for applications in biomedical engineering.
  • P o P- PP P ⁇ o P- PP p- P- tr ⁇ P H- P 1 PP «P- tr ⁇ ⁇ i cn P. tr l- 1 P- ⁇ P p. 03 ⁇ PP 1 P 03 03 NP
  • the ratio of the height of the gap in microchannel 11 between chip 1 and layer 19, which carries the channels with inlets and outlets 12, 13, to the diameter of the sensitive area 2 of the chip 1 is less than 1: 5 or the gap 11 is typically less than 200 ⁇ m.
  • the specified gap of less than 200 ⁇ m is advantageous in the case of diffusion-controlled reactions, e.g. a DNA hybridization, on the sensitive surface 2 of the chip 1.
  • diffusion-controlled reactions e.g. a DNA hybridization
  • FIG. 6 shows an arrangement as an alternative to FIG. 5, which consists of a card body 20 without internal fluidic components and in this case also without electrical functions.
  • the chip 1 is contacted on the card body 20 with the sensitive surface 2 oriented upwards.
  • FIG. 6 a partially “reusable * flow cell is used in FIG. 6. This enables the electrical interrogation as well as the supply and removal of fluids from the outside.
  • the chip module 15 according to FIG. 1 can of course also be operated with a reusable flow cell, but then with advantageous electrical contacting on the rear side.
  • the card body 20 forms the first housing in FIG. 6, the measurement and analysis function in the upper part being implemented as a second housing.
  • the fluidic and electrical components can be found in the upper part.
  • PPPPP ⁇ P 1 tr P Hi pj P P- tr P. P ⁇ tr rt r P r P- tr 3 rt P. 03 PP £> ⁇ P- OP P- P- iQ 0 ⁇ 13 ⁇ PV 03 ⁇ P rt p 01 ⁇ P-
  • P P- P ⁇ ⁇ ⁇ ⁇ tr p PP INI P ⁇ p: ⁇ ⁇ P- ⁇ tr ⁇ ⁇ ⁇ z 0 PP ⁇ ⁇ P- P P- P- 3 ⁇ rt P 03 PO ⁇ ⁇ 03 rt PP 03 PP ⁇ P- P 03 ⁇ P tr P tr ⁇ P J P- P 1 ⁇
  • n reagent channels and n water inlets are connected in parallel, so that a total of n reagent channels and n water inlets are formed.
  • an outlet 63 is provided, via which the liquid is discharged after flowing past the sensitive surface 2 of the sensor module 15.
  • the liquids used can be in an appropriate volume, e.g. by expanding the channel or extending the channel in the form of a meander, the first housing remains.
  • a water distribution system with valves is provided in the reading device of the second housing 80.
  • a modified encapsulation of the chip and the electrical contacts via bond wires ensures that only the chemically and biologically active surface of the chip remains free from the encapsulation.
  • the modified encapsulation of the sensor chip and the associated bond wires has a defined geometry.
  • the encapsulation has a defined thickness, a defined lateral extent and an at least approximately planar and / or a radially symmetrical surface for the exact insertion of the sensor chip into a chip card.
  • P- ⁇ ⁇ QPP J p- P ⁇ iQ 01 ⁇ p P- P- P • ⁇ ⁇ o P- ⁇ P P- P. P- - • PB ⁇ ⁇ P- P tr 1 ⁇ PPP P- ⁇ 01 P 1 PP rt o tr P- P J ⁇ P rt P P- 3 $ rt iQ rt P, PPP P- P- ⁇ PP ⁇ ⁇ N tr ⁇ ⁇ ⁇ i P ⁇ P 03 o HN

Abstract

Bei einem Analysegerät, insbesondere zur dezentralen biochemischen Analytik, mit einem Sensor-Chip in einem ersten Gehäuse, ist der Sensor-Chip Teil eines Moduls, bestehend aus Chipträger, Chip und elektrischen Kontakten zwischen Chip und Chipträger. Eine Verkapselung (5) des Chips (1) ist derart gestaltet, dass die elektrischen Kontakte (3, 3', ..., 3VIII) isoliert sind, die sensitive Fläche (2) des Sensor-Chips (1) aber für ein Fluid zugänglich bleibt. Modul (15) und ein erstes Gehäuse bilden einen austauschbaren Applikator (10, 20, 60), der zur Analyse und zum Auslesen der Messdaten in ein zweites Gehäuse (80) mit Auswerteeinheit einschiebbar ist. Der Applikator ist vorteilhafterweise nach Art einer Chipkarte (10), in die mikrofluidische Komponenten und/oder Funktionen integriert sind, ausgebildet.

Description

Beschreibung
Modul für eine Analyseeinrichtung, Applikator als Austauschteil der Analyseeinrichtung und zugehörige Analyseeinrichtung
Die Erfindung bezieht sich auf ein Modul für eine Analyseeinrichtung, insbesondere zur dezentralen biochemischen Analytik, mit einem Sensor-Chip in einem ersten Gehäuse. Daneben bezieht sich die Erfindung auch auf einen Applikator als Aus- tauschteil der Analyseeinrichtung und die zugehörige Analyseeinrichtung.
Die Mikrosensorik und die Mikrosystemtechnik haben in den letzten 20 Jahren auf der technologischen Plattform der Mik- roelektronik eine stürmische Entwicklung durchlaufen. Dabei haben alle technisch-naturwissenschaftlichen Disziplinen ihre jeweiligen Beiträge eingebracht und ein breites Spektrum von Sensoren und Systemen zwischen Physik und Mikrobiologie geschaffen.
Während jedoch physikalische Konzepte, wie z.B. Druck- und Beschleunigungs-Sensoren/-Systeme, die produktionstechnische Umsetzung und erfolgreiche Markteinführung durchlaufen haben, sind die meisten chemisch-biologischen Entwicklungen nicht über das Labormuster-Stadium hinausgekommen. Einen wesentlichen Einfluss hat dabei die Tatsache, dass chemisch-biologische Systeme mikrofluidische Komponenten benötigen, die per Definition zunächst einmal nicht kompatibel mit der Mikroelektronik sind, da die klassischen mikroelektronischen Ko - ponenten hermetisch in ein Gehäuse eingeschlossen werden, um einen „stofflichen* Kontakt mit der Umwelt zu vermeiden. So sind praktisch alle chemisch-biologischen Sensoren/Sensor- Systeme von der Entwicklung einer speziellen Gehäusetechnik abhängig.
In wenigen Fällen sind ikroelektronik-kompatible Gehäuse- Lösungen bis zur Markteinführung entwickelt worden, z . B . bei i-STAT Corporation, 303A College Road East, Princeton, New Jersey 08540. Eine diesbezügliche Vorrichtung ist in der US 5 096 669 A beschrieben: Ein oder mehrere Si-Chips besitzen sensitiven Flächen mit chemischen Sensoren sowie Kontakt- Flächen zur elektrischen Verbindung mit dem Auslesegerät. Die Chips sind derart in einem Gehäuse montiert, dass große Teile der Chip-Flächen zum Abdichten eines Durchflusskanales verwendet werden, sowie große Kontaktflächen zur elektrischen Kontaktierung von außerhalb des Gehäuses zugänglich sind. So- mit wird ein Großteil der kostbaren Si-Chipflache verschwendet. Außerdem befindet sich die elektrische Kontaktierung im Gehäuse auf der selben Seite wie die sensitiven Flächen des Chips, was eine sichere Trennung der elektrischen Kontaktierung von der Fluidik erschwert.
Weiterhin wird in Dirks, G. et al . „Development of a dispo- sable biosensor chipcard systemλ, Sens. Technol. Neth., Proc. Dutch Sens. Conf, 3rd (1988), S. 207 bis 212, ein Messsystem für biomedizinische Anwendungen beschrieben, bei dem eine so- genannte Chipkarte aus einem' Flachbehälter mit mehreren Kavi- täten und einem System von Flüssigkeitskanälen realisiert wird, wobei in das Kanalsystem ein ISFET eingebracht ist, der als Sensor dient. Bei diesem System geht es insbesondere darum, aus separaten Behältern eine Messflüssigkeit einerseits und eine Kalibrier- bzw. Reagenzflüssigkeit zum Sensor separat zuzuführen. Des Weiteren werden in der Monographie Langereis, G.R. „An integrated sensor system for monitoring wa- shing process, ISBN 90, Systeme mit Sensoren beschrieben, bei denen es um die Integration von Sensoren, deren Signale elek- trisch abgegriffen werden, in Fluidikeinrichtungen geht. Aufgrund der hohen Entwicklungs- und Fertigungskosten bei vergleichsweise niedrigen Stückzahlen von chemisch-biologischen Systemen ist die Marktdurchdringung dieser Produkte problematisch. Aufgabe der Erfindung ist es daher, Verbesserungen vorzuschlagen, durch die bei obigen Geräten eine erfolgreiche Markteinführung möglich erscheint.
Die Aufgabe ist bezüglich des Moduls erfindungsgemäß durch die Merkmale des Patentanspruches 1 gelöst. Ein Applikator als Austauschten der Analyseeinrichtung, der eine solches Modul enthält, ist Gegenstand des Patentanspruches 11. Eine mit einem erfindungsgemäßen Modul und dem angegebenen Appli- kator arbeitende Analyseeinrichtung ist Gegenstand des Patentanspruches 21. Vorteilhafte Weiterbildungen des Moduls, des Applikators bzw. der zugehörigen Analyseeinrichtung und insbesondere deren Verwendung sind in den jeweils abhängigen Ansprüchen angegeben.
Beim erfindungsgemäßen Modul ist besonders vorteilhaft, dass der Chipträger dünn und eine Stärke von < 100 μm hat. Bei Dicken von ca. 50 μm Metall in Verbindung mit ca. 100 μm Kunststoff ergibt sich eine beachtliche Volumen-/Material-Einspa- rung. Aufgrund der dünnen Ausbildung des Chipträgers und des geeigneten Materials, wie z.B. vergoldeten Kupferschichten, ergeben sich nur geringe Massen und somit geringe Wärmekapazitäten, so dass in Verbindung mit der guten Wärmeleitfähigkeit von Silizium und beispielsweise einer ca. 50 μm dicken Kupfer/Gold-Schicht ein sehr gutes dynamisches Temperatur- Verhalten resultiert. Die Verarbeitung des Chipträgers erfolgt auf einem Band, das von Rolle zu Rolle transportiert wird („reel to reelw-Prozess) , wobei vorteilhafterweise die elektrischen Kontaktierungen auf der Rückseite angeordnet werden können.
Bei der Verkapselung des Chipträgers im Modul können sowohl aus der Mikroelektronik bekannte Materialien als auch Materialien mit besonderen Eigenschaften, wie z.B. elastische Poly- mere, verwendet werden. Es sind Bonddrähte vorhanden, die einen flachen Loop bilden, wobei die Kontakte für die Bonddrähte im Bereich der Ecken der Chips angeordnet werden können. Nach erfolgter Montage, Drahtbondung und Verkapselung der Chips auf dem Band können mittels „reel to reelλ -Technik die sensitiven Flächen der Chips mit chemisch/biochemischen Substanzen, vorteilhaft aus flüssiger Phase, beschichtet werden. Die Verkapselung des einzelnen Moduls ergibt in Kombination mit dem zugehörigen Applikator besonders günstige Eigenschaften.
Mit dem erfindungsgemäßen Modul lässt sich ein System schaf- fen, das insbesondere für dezentrale Anwendungen geeignet ist. Das Modul realisiert mit dem kompakten ersten Gehäuse einen Applikator als dezentral verwendbare Messeinheit. Zur Durchführung der Analyse und zum Auslesen der Messwerte kann der Applikator in ein zweites Gehäuse mit Auswerteeinheit eingebracht werden.
Bei der Erfindung ist der Applikator mit erstem Gehäuse und darin integriertem Modul vorteilhafterweise nach Art einer Chipkarte ausgebildet. Eine solche Chipkarte kann zusammen mit dem zweiten Gehäuse eine vielseitig einsetzbare Analyseeinrichtung bilden. Insbesondere kann eine derartige Analyseeinrichtung für das Screening von Körperflüssigkeiten, beispielsweise für dezentrale Blutgas-Messungen oder Speicheluntersuchungen, verwendet werden. Aber auch andere Anwendungen in der biochemischen Analytik sind realisierbar.
Eine weitere vorteilhafte Anwendungsmöglichkeit der Erfindung ist die Amplifikation von DNA/RNA (Desoxyribonukleinsäure/Ribonukleinsäure) -Proben mittels der exponentiellen Vervielfäl- tigungs-Methode bei der sog. PCR (Polymer Chain Reaction) , d.h. der sog. Polymerase-Kettenreaktion-Methode . Dazu muss die Probenflüssigkeit 20 bis 40 mal zwischen zwei Temperaturen, typischerweise zwischen 40°C und 95°C, zyklisiert werden. Bei dieser Methode ist die Geschwindigkeit der Zyklisie- rungen entscheidend. Nach dem Stand der Technik ist der Ab- kühlungsprozess geschwindigkeitsbestimmend. Cϋ Ü0 Esj M P1 P1
Cπ o Cπ O Cπ o Cπ
t-3
CD
O f
P
O
O t
P-
Φ
"*
Figure imgf000007_0001
Figur 2 den Schnitt durch ein Chip-Modul mit Flip-Chip- Technologie, Figur 3 die Draufsicht auf ein Chipkarten-Kontaktierungs- feldes mit einzelnen Kontaktierungen, Figur 4 die Draufsicht auf den Chip-Sensor mit sensitiver Fläche, Figur 4A eine vergrößerte Draufsicht auf die frei liegende sensitive Fläche des Chips in Figur 4 bei Verwendung des Sensors für biochemische Anwendungen, Figur 5 eine detaillierte, maßstäbliche Darstellung einer Chip-Karte für den Einbau eines Moduls mit Draht- Bond-Technologie, Figur 6 eine entsprechende Darstellung wie Figur 5 für den Einbau eines Moduls mit Flip-Chip-Technologie und wiederverwendbarer Durchfluss-Ankopplung,
Figur 7 einen Schnitt einer Kombination eines Moduls und einem Applikator zum Einschieben in ein Auslesegerät und Figur 8 die Draufsicht von oben bzw. ein Schnitt der Anord- nung von Figur 7.
In den Figuren haben gleiche bzw. gleichwirkende Teile gleiche bzw. sich entsprechende Bezugszeichen. Die Figuren, insbesondere Figur 1 und Figur 2, werden teilweise gemeinsam be- schrieben.
Die Chipkarten-Technologie ist ein bekanntes, weitverbreite¬ tes sowie äußerst kostengünstiges Gehäusekonzept in der Mikroelektronik. Dabei wird ein Mikro-Silizium-Chip, der zuvor auf Waferebene auf ca. 180 μm dünngeschliffen wurde, auf ein Trägerband, das aus vergoldetem, vorgestanztem Kupferband besteht und eventuell mit einem Kunststoff-Band verstärkt ist, geklebt. Nach einer Standard-Drahtbondung wird der Chip samt Drähte mit einem Polymer verkapselt. Eine kommerziell erhält- liehe Standard-Plastikkarte . (Materialien: PVC, PET, PC; Maße: ca. 85 x 54 x 0,8 mm3) wird zur Aufnahme des Chip-Träger- Moduls an einer definierten Stelle auf Modulgröße (ca. CO CO hJ IV) P1 P1
Cπ o Cπ o Cπ o Cπ
-J
Figure imgf000009_0001
die Abflusskanäle 12, 13 in Figur 5, zuverlässig zum ersten Gehäuse abzudichten, muss die Verkapselung 5 eine definierte laterale Ausdehnung aufweisen. Eine Erweiterung der lateralen Ausdehnung der Verkapselung ist u.a. notwendig, wenn Zufluss und Abfluss außerhalb der sensitiven Fläche des Chips 1 liegen sollen, um z.B. störende Einflüsse einer inhomogenen Strömung der Fluide zu vermeiden. Zufluss und Abfluss treffen dann im Bereich der Verkapselung auf das Sensor-Modul und können dort sicher abgedichtet werden.
In einer besonderen Ausführungsform weist die Verkapselung 5 einen Durchmesser von 10 mm sowie eine Aussparung für die sensitive Fläche 2 des Chips von 3 mm auf. In Kombination mit dem oben beschriebenen Verhältnis von Verkapselungshöhe zu Durchmesser der sensitiven Fläche 2 wird ein gleichmäßiges
Anströmen der sensitiven Fläche 2, d.h. parallel zur sensitiven Fläche des Chips, mit den Fluiden ermöglicht.
Die sensitive Fläche 2 des Chips ist vorzugsweise rund ausge- bildet. Die Begrenzung der sensitiven Fläche 2 zur Verkapselung 5 kann z.B. mit einem phototechnisch strukturierten Polymerring, wie er weiter unten in Figur 6 als PI (Polyimid) - Ring 27 beschrieben wird, realisiert werden.
Um das Verhältnis von sensitiver Fläche 2 zur Gesamtfläche des Chips 1 zu maximieren, ist die Form des Chips 1 vorzugsweise annähernd bzw. exakt quadratisch, wobei sich die elektrischen Kontakte des Chips 1 als sog. Bond-Pads 2 bis 2VI1 im Bereich der Chipecken befinden, so dass die sensitive Flä- ehe bis an die Chipkanten ausgedehnt werden kann, was sich aus Figur 4 ergibt. Bei einer Stärke der Metallisierung des Trägerbandes von 50 μm, einer Chipdicke von 180 μm und Verkapselungshöhe über dem Chip 1 von 100 μm ergibt sich eine Gesamtdicke des Moduls von etwa 330 μm. Damit werden die be- kannten Chipmodul-Strukturen und -Dimensionierungen aus der
Mikroelektronik auf die biochemische Analytik übertragen, was aufgrund der notwendigen Fluidikankopplung nicht trivial ist. Bei einer Alternative zu Figur 1 ist gemäß Figur 2 der Chip 1 mit seiner sensitiven Fläche 2 nach unten hin orientiert. Der Sensor-Chip 1 ist in sog. Flip-Chip-Technologie mit mehreren höckerartigen Kontakten 8, 8Λ,... auf dem Trägerband 3 mit seinen Kontaktbereichen 31, 311, ..., 3VI11 angeordnet, wobei das Trägerband in entsprechender Ausbildung wie in Figur 1 aus Kupfer mit gegebenenfalls einer Vergoldung besteht. Isolierungselemente 4 sind wiederum als mechanische Verbindungen aus elektrisch isolierendem Kunststoff vorhanden, wobei eine Aussparung für die sensitive Fläche 2 des Sensor-Chips 1 vorhanden ist. Insgesamt wird in Figur 2 ein Chip-Modul 15 gebildet .
Durch die Ansichten von beiden Seiten des Moduls anhand der Figuren 3 und 4 wird die Funktionsweise des Chip-Moduls 15 bzw. 15 Λ und insbesondere des eigentlichen Chips 1 verdeutlicht. Auf der elektrischen Kontaktseite 3, d.h. der Rückseite des Moduls 15 mit Sensor-Chip 1, sind Kontaktierungsfeider 31, ..., 3VI11 als einzelne Anschlüsse ersichtlich, die den üblichen Kontaktierungen für kartenintegrierbare Chips entsprechen. Auf der sensitiven Seite 2 des Chips 1 verlaufen gemäß Figur 4 die Drahtbondungen 6, 6 , ... von den Bond-Pads 21 bis 2VI1 aus den Ecken des Chips 1 zu den Kontakten der Kontaktierungsfeider 31, ... 3VI11. Ersichtlich sind hier speziell sieben Kontakte 21, ... 2VI1 auf der Chipfläche 2, was für viele Anwendungen hinreichend ist und nachfolgend für ein Beispiel beschrieben wird.
In Figur 4A sind auf der sensitiven Fläche 2 des Chips 1 eine Vielzahl von Mikrokavitäten 200 für die Durchführung von biochemischen Analysen angeordnet. Eine solche Anordnung wird beispielhaft in der älteren deutschen Patentanmeldung AZ 100 58 394.6-52 beschrieben, auf die ausdrücklich verwie- sen wird, und dient zur Durchführung von biochemischen Messungen, beispielsweise bei der DNA-Analyse. Es sind mxn Elemente in Arrayform als Vielzahl von Kavitäten 200 zeilen- und spaltenförmig angeordnet. Wesentlich ist dabei, dass biochemische Reaktionen bzw. Messungen gleichzeitig in den einzelnen Kavitäten 200 an der sensitiven Oberfläche des einzigen Chips 1 erfolgen können, ohne dass bei Zugabe von Substanzen ein Übersprechen der Reaktionen aus einer ersten Kavität 200 in eine zweite Kavität 200 Λ erfolgen kann.
Da die elektrochemischen Reaktionen bei einer Anordnung gemäß Figur 4 und 4A elektrisch beeinflusst bzw. unter Abfrage von elektrischen Signalen erfolgt, sind auf dem Chip 1 mit sensitiver Oberfläche 2 bzw. den einzelnen sensitiven Elementen 200 diskrete elektrische Kontaktierungen angebracht, die mit 31 bis 3VI1 bezeichnet sind. Die Kontaktierungen bilden Eingänge für den elektrischen Messkreis. Beispielsweise sind zwei Versorgungs-Spannungseingänge Vdd^ Vss, ein Eingang GND für Massepotential, ein Eingang für ein Clock-Signal, ein Eingang Vin für eine Steuerspannung und ein Eingang für ein Reset-Signal vorhanden. Weiterhin sind auf dem Chip 1 ein Multiplexer 210, ein „Gray counter & decoderΛ 215 und ein Verstärker 220 mittels Standard-Siliziumtechnik integriert.
Das Messsignal wird am Ausgang ΛoutΛ erfasst, wobei bei einer Arrayanordnung mit der Vielzahl von Kavitäten als mxn Einzelsensoren ein Multiplexsignal erhalten wird, das beispielsweise mit einer Frequenz von 10 kHz ausgelesen wird.
Das auf einer einzigen Leitung , out x ausgegebene Multiplexsignal besteht aus einem Muster von diskreten Spannungswerten, aus dem mittels eines De-Multiplexers in einem Auswertegerät die Einzelsensor-Signale gewonnen werden. Der in Figur 4A nicht dargestellte De-Multiplexer ist beispielsweise im Gehäuse 80 der Figur 7 bzw. 8 angeordnet.
In anderer Anordnung können statt einer Vielzahl von identischen Sensoren, wie die mxn Kavitäten 200 entsprechend Figur 4A, auch diskrete Sensoren vorhanden sein. Speziell für Anwendungen in der biomedizinischen Technik können solche Sensoren beispielsweise Sensoren für p02 und pC02 sein. Auch CO CO IV) M P1 cπ o Cπ o Cπ O Cπ g Φ
3 P- z P
Φ Φ
PJ rt x
Φ
P- Φ
P tr
Hl Φ
Hi p: o
03
03 P-
Φ Φ
P O tr P. Q • φ
P.
P- LQ
Ω tr • rt •
Φ rt 3
P-
Z rt
P-
P φ
. P
P-
Φ i
Φ
01
P
3 rt
Φ
H
P-
P tr
Φ
P- rt ιQ
Φ
^Q
Φ
P
Figure imgf000013_0001
co O IV) IV) P> P1
Cπ o cπ o Cπ o Cn
P- öd 01 tr P- 13 3 03 P- Z tr X K Φ P. cn cd 13 P tr P1 P- tr *
B rt α P P ϊö P H φ φ rt P- N P P- P r tr P P- Ω φ φ P P- t ) P- φ P V P p: φ CO P
P- P P φ z 0 03 3 < 01 O iQ Φ V P' rt P Pi Φ P P P tr P- P rt P- P P P
01 φ P P tr P- φ P Φ 01 P φ rt tr N P Φ p: P p- 3 iQ 03 iQ < rt rt rt N P φ rt P Ώ P. 01 o Z Φ P P 3 o P P1 V P Φ Φ Φ o Φ
Φ N Φ IV Cd P 03 φ P- H- rt Hi < P- P P tr P P. tr 03 P' φ P 03 Φ P P P P
P φ P rt P- P o 03 i 01 3 Ω P-" φ P p: P S Φ P φ P P 03 P- J-> N tr
P P- P P P Φ φ P tr P P > P tr > P P oi P ιQ O P- P Φ x
P- < rt ^ P 3 3 N rt 03 P- IV P- P P 3 P rt Hi S •^ P P Φ P P- P
P- P P Φ P φ 03 p: rt z Φ O P. P P 03 03 Φ P1 o N P Φ P P. P P φ P P P P- So φ φ rt P- 13 H Hi P -> P pi: o P P pj: P- rt P- φ rt tr P f* iQ P rt P- P- 03 01 3 p: <! P P- Ω rt P Ω P P. Φ P P. P ' S Φ
• Ω P- ^d o rt Z P Ω Φ 3 tr I-1 O 03 P tr 3 P tr φ P- P P- P-
01 Ω p: <l tr x <i P- tr Φ Φ 01 tr öd P -J P 03 P1 Φ P υ3 P Φ φ p. φ IV I—1
P tr Ω o P Φ iQ P- P P o P φ P ^ 03 Φ V P T P- P Q. P o
3 P 01 tr P P P P P 13 P P rt p- P φ M I—1 P. 01 rt P <! o φ φ P- o
01 φ φ P rt P 1 cn P. i P P iQ P P- co P. Φ P- P- φ P. φ 03 P φ IV iQ
P. P- I-1 N So Φ ^d £ P Φ C P- 03 P P P Φ Φ <! 03 P- P P- P. • P Φ
P rt Z P- P φ P I-1 o tr • P P" Cπ φ φ Hi φ Hi rt 03 P- oi Φ P V rt P P P p: 3
03 P- P- φ P IV : P- φ tr PJ O P- 01 p < P P n P1 P P- 03 s • P p:
<! ii 03 P O: Ω o P P 3 P P P Ω 3 p: 3 Φ φ £ tr φ 13 O φ P PJ S> t?d φ V P tr P tr P. 01 P P φ P P. 03 3 tr P- t P- P o P- 03 P n 03 . p- P P π P P- 13 φ φ oi P P φ rt rt rt rt V V Hi H" 13 cn φ P- tr φ l-1 ^
P P tr P Φ P P1 P rt - P P- V rt P P P p: 03 ^ PJ Φ p- P INI μ-1 P-
03 o vQ P- ^ P IV) Cπ Φ £ P-" Φ P 01 P Z Φ o 13 ^ Ω g P P 13 rt P ιQ
Ω p- 13 03 tr ^ P 0i s Ω P Φ iQ H, 03 01 01 tr P1 3 P P 1 H1 3 03 P tr P- V 03 P- P- P1 P- P- tr Hl 3 P1 tr P P 01 Φ P-1 φ 01 Φ φ i P £ P- o P
13 o Φ P o 03 ιQ N O P I-1 Φ S P P. z P P" P- P1 P rt iQ o Ω Pl Z
P- Hi 3 P1 P P rt P z P1 Φ 03 P 03 P φ s: p: P- P ^ Cπ P P Cπ P- tr P P- Cπ
Φ P1 φ φ P- P . v oi 3 rt • P P P- tr P V P- Φ P P φ p: IV)
D3 φ 3 P P- P P Φ oi P- φ Φ 01 <: Hi • φ P P- iQ φ P- 03 \ Φ P. P- P- P 03 φ Ω P P- P- Ω P1 IV) I-1 P Φ rt P P φ P1 03 P- P o Φ P 03 oi CsJ P-
P tr rt φ tr 1 01 Cπ • P 03 P- φ P H X φ Ω Cπ rt o 3 03 Q P> rt 13 P P
IV P P- o φ Dd rt P P- V P- P P- tr oi P. tr P- Φ cπ O Pi P-
<! P P- P tQ P- V P- Φ P- P P φ Φ 01 P C P- p- P rt O tr Φ P -1
O IV) P Φ cn P- P α P φ P P P P 13 φ tr rt P P P- φ 13 tr P iQ P- rt P P
P P P P P φ 01 P P P- 03 w P- 03 Φ Ω 03 φ Φ P- P Φ P 03 PJ tr • tr α P Ω rt P P O Ω Φ P- P rt rt tr > P- P- 13 Ω 3 Φ < 03 01 tr1 N 01 P- cπ P tr 01 03 Φ P tr Φ O o Φ rt P P P 03 tr pi: O ~\
P P- P rt Ω *• P H" 13 N 03 tr rt P Hl P Hi 03 3 P- Φ oi φ Φ rt £ > P s 3
Hi 3 3 P tr rt P- P • p: cn P P 03 Hi Φ 13 P oi <! P P P- rt P P rt Φ φ Φ Öd P1 P Ω P i 3 tr Φ P- O Φ < 13 O 13 P- ^ 03 cn Hi ? tr öd φ P N P- P- E Ω • IV) 03 tr <Q 03 P- P P P Φ P P > P 03 P- 03 P J-1 P h-> P- P Φ P- P P p φ P- 3 rt 01 O • φ P P rt P Ω P rt iQ 13 tr P o
P rt P H P 01 iQ P- φ P- P 03 Ω z P rt o P cn tr P Φ P tr iQ • P P 03 03 Hi
01 P •<; rt Φ P- Ω P P P ' p- rt Φ P ö rt Ω P- P P- P 01 Φ P P rt 03 -1 φ P- 03 φ Hi φ tr α P I-1 rt P Φ -> P P- Φ tr P v P1 P φ 13 α P P 1 P
P o P- P P: P Ω o P- P P p- P- tr φ P H- P1 P P « P- tr φ Φ i cn P. tr l-1 P- < P p. 03 Ω P P1 P 03 03 N P
P^ P P P- rt cn P- Φ P rt «3 P Φ 01 o tr P J-» Hi Φ 03 o Φ P P- tr N 03 P P ~» P P 01 P P- P1 P ü ΪV Z rt <Q rt φ P rt P- P p: 01
P rt P tr φ P P- P- p: N < Ό P P- P. P f P Ω
01 p: P rt P P N > P P U3 Cπ P- o P φ P1 N Φ 03 V P 03 03 P P Φ tr o i P P P- 01 rt P Ω P P ID s; 03 φ P Φ 03 P- P φ
P φ P. P P N 03 V P rt P oi « 01 P1 tr rt 03 M P- P- 13 Ω P- 13 ^d 3 I—1 α Z P- P P 01 O: 3 Φ P Φ rt Φ Φ P. P- P oi φ P 01 tr P P P- IV) X p: <Q 01 P Hi P 1 P P-1 i P o P Φ P- P- P P P Ω P • Φ rt • P ιQ Ω o o
P tr Φ P - α 13 π P CO Φ P- rt Z rt rt P P1 01 tr oi P P Φ P- P
03 P 03 tr P P P- φ tr P rt 1 P- φ I P- Ω P rt P N ö P P 1 P 13
1 1 P 01 φ P P- I P 1 P i P1 03 P Φ P P P iQ P P- O
P 01 -"" Ό 1 1 φ 03 P iQ P 1 IV) 1
im Kanal 11, zu vermeiden, ist es wichtig, dass das Verhältnis von Höhe des Spaltes im Mikrokanal 11 zwischen Chip 1 und der Schicht 19, welche die Kanäle mit Ein- und Auslässen 12, 13 trägt, zum Durchmesser der sensitiven Fläche 2 des Chips 1 kleiner 1:5 ist bzw. der Spalt 11 typischerweise kleiner 200 μm ist.
Der angegebene Spalt von kleiner 200 μm ist von Vorteil bei diffusionskontrollierten Reaktionen, z.B. einer DNA-Hybridi- sierung, auf der sensitiven Fläche 2 des Chips 1. Durch Anströmen der Reaktionspartner, die z. B. in der Probenflüssigkeit gelöst sind, in dünner Schicht über der reaktiven, sensitiven Chipfläche 2 können diese verglichen mit reiner Diffusion in höherer Konzentration an der Oberfläche des Chips 1 angeboten werden, was zu einer Beschleunigung der Reaktion führt.
In Figur 6 ist eine Anordnung als Alternative zu Figur 5 dargestellt, die aus einem Kartenkörper 20 ohne interne fluidi- sehe Komponenten und in diesem Fall auch ohne elektrische Funktionen besteht. Auf den Kartenkörper 20 ist der Chip 1 mit nach oben orientierter sensitiver Fläche 2 kontaktiert.
In Abweichung zu Figur 5 wird in Fig. 6 eine partiell „wie- derverwendbare* Durchflusszelle verwendet. Damit erfolgt die elektrische Abfrage sowie die Probenzufuhr und -abfuhr von Fluiden von außen. In gleicher Weise kann natürlich auch das Chip-Modul 15 gemäß Fig. 1 mit einer wiederverwendbaren Durchflusszelle, aber dann jedoch mit vorteilhaften elektri- scher Rückseiten-Kontaktierung betrieben werden.
Der Kartenkörper 20 bildet in Figur 6 das erste Gehäuse, wobei die Mess- und Analysefunktion im oberen Teil als zweites Gehäuse realisiert wird. Die fluidischen und elektrischen Komponenten sind im oberen Teil zu finden. co CO rv> IV) I—1 I-1
Cπ o Cπ o Cπ o Cπ
P Φ t IV) -3 P- X z 03 rt P PI ^ W N tr ^ <Q Pt CV) P tr ö P IV)
P o P φ p. o p: Ω P- P φ p: P Φ P- Φ φ π Φ P- Φ φ P P cπ s PI
3 c O P
P Φ Φ 03 03 p- P tr tr tQ Ω P P P- Φ P- vQ 3 tr P- φ p- V 01 Hi Q ιv P- P φ iv Hi P φ V tr rt i P u Φ p: N Φ Ω P 03 rt iQ P i^l
Φ rt Ω P 03 P Φ rt P Φ Φ P Φ rt 1 P Do 13 P P- tr r 13 P O Φ P. P-
P P tr H, Φ rt P V P- P- o Φ P • P o 01 13 P P- P- tr 01 P i
P- Φ iQ 13 PJ P rt P t rt P rt- V P tr P ^ P. M N Φ ω Φ Φ 03 P
P 03 P Φ P p- P- P P- o N O: α LQ P- rt P- p- φ φ P1 P PJ Ω ü rt P- li
P Ω 3 03 li Ω P. o P 03 (Q rt P Φ Φ 13 N <Q V P P 03 tr rt N Pl Φ
P. tr P Φ P tr φ P Hi Φ O P- Φ 13 P Z 1 P P Φ N Z Φ Φ rt P cn
Φ Φ So rt rt P P- U3 03 ü tQ φ P Φ P m N P rt V Pi Z o φ P- p: n
P φ N Φ tr φ φ 3 • Φ P cn P Φ P O rt Φ P- Φ P- ^ P1 iQ tr P- φ X P rt Φ cn P z P- o P φ P- Ω M P Ü P. 01 z 03 0 Φ P- 03
P o O P- φ P p: rt tr öd z IV) P rt PJ i^d P- φ Ω p: Φ P M P P 13 rt
01 P Z tr P P tr rt P- P P- INI o 01 Φ P P- 3 IV> 01 P tr tr rt Cπ 03 V φ rt P- P- Φ r] 03 iQ P Φ 13 M φ z o P o uQ P- o Ω P Φ P Φ P 03 <1 P P
P- P Φ P P P- O P° 1 13 φ φ P P1 P rt tr P p- V P O P P rt V P rt i P α Φ nd N Ω P- 1 ^d o P P- Φ φ P rt Φ P rt Hi
03 rt Pi Φ P Hi Φ P- tr o IV) • V P o v P- φ P P o P- Φ 01 P- Φ
P- P P- P P 01 P 03 co öd iQ tr P- P- ho φ P P tr 03 ö P INI Q φ P P p: rt tr p- • • V φ P- 13 Φ 3 σ Pi Φ rt p- M X P P Φ
Φ P P- P. cn Ω cn Φ φ rt O: 13 13 1 N Pi P ^Q P P O cn O ω 1 3 z P P IV) tr Φ P P P- isi Φ P P o 1 s: cn p- P φ rt P tr P o 03 pj: P P- & I-1 p- Φ P o P P- P 01 P1 tr φ P- tQ Ω 03 Φ iQ rt P rt iQ P cn tr iQ 03 P 03 03 01 P 3 P φ 01 P- P- Ω P tr φ P- P P P φ P o P- P- ^ P rt P- 13 P- V P- P rt P1 H- P. IV P J 13? P
P Ω P φ rt tr 3 P
P tr P P Φ P φ Ω d • 03 1 φ 03 N o N φ P rt P H P φ P Φ 01 p- tr 1 tr < & PJ z rt P3 P- cn P rt P P i Φ IV P α
P- P- rt 3 Φ o φ o P. 1 φ Φ 03 < P rt Φ P w O P & P- v ,_Λ
03 P- P P tr P P- P P- V P- P, Ω Φ Φ 3 p- P P α tv> 13 rt Hi Λ' rt Φ Φ N <l P P- Hl P tr Ω P- rt P tr P P 1 03 V P- .&. 01 Hi Φ PJ P
Φ P P P o 03 13 O P tr P Φ tr P 01 P. o rt rt ^ 01 Ω -< P- P P rt 13 rt tr P- Ü P Ω 01 P P P rt v P Φ o P- φ tr P- O φ tr P tr 03 O Φ
• <! P- Φ tr ^ φ Φ Φ P- P1 rt P P- P Φ P P rt P ^ 01 P P
O P 03 £ P- rt Φ P Φ P IV) o P- rt 13 P H rt 01 P- O rt O V
P P. Φ Φ φ Z P P ^J φ iQ <! P P P P- "3 P s: P P P IV) tr P 3 01 3 Z φ w P P- P- P- Φ P- P V rt V PJ φ Hi rt P Φ o
P P 03 Φ φ P P- P 03 P P φ Ω O U5 rt P- Φ P P- Φ P p: P
P iQ P P P P P Ω Φ φ Hi 03 O tr Φ iQ Φ <! P- P rt u P_ V
P P. P. tr tr P- P- 03 Ω z tr P P- P. P φ rt Φ Φ rt Φ P- α
Φ Φ 13 i φ φ P- Φ P Cd P 3 tr P- P- P P N Φ P φ P P V P 01 φ
P P- P P P Φ • P- P- -~ Φ 13 iQ u3 P 01 M P- P tr P O P- P
Φ P P- P 01 O P- P 03 rt P- Hi Φ P cn ^ 3 • P- P. 15 IV) Φ
P φ N P ISI 03 tr P rt α tr o rt Φ Φ 13 cn P Hl IV) P N
P P- Hi P o Φ P Φ P- P tQ Φ So P p: φ P ^ tr p: Hi σ P rt P ü 03 Φ 03 oi P Φ • P Ω 03 oi P- P- φ Ω I-1 Φ ö P i P ^ 03
P φ P p. P o P- rt 03 rt H- 3 tr oi iQ 13 03 tr P P P- Hl Φ P P
P P- rt φ g • P rt Φ φ Φ α Ω Φ πd rt P 01 Φ P- Ω 01 tr 3
Ω rt Φ P 3 p: Ω P P φ tr P P P σ tr Φ P- P 3 tr 03 P Φ Φ rt - rt α P P IV) P- I-1 o IV) P- P- rt rt IV) oi φ
IV cn P P P Φ P- φ m Ω P Z Cπ . P 03 Ω 3 N P- CO P o P INI P tr Φ tr O Ω Φ P ^ P tr P N o rt o tr P- tr φ o
P P P P P Φ P1 tr P Hi pj: P P- tr P. P Φ tr rt r P r P- tr 3 rt P. 03 P P £>■ P- O P P- P- iQ 0 Ω 13 Φ P V 03 Φ P rt p 01 Φ P-
P rt iQ P- iQ o £ 13 φ tr tr 01 p- 01 rt P p- Φ Φ P- rt P rt
V PL. P V Φ P. P- P [ H Φ V n P 03 *« rt rt P- P O: Φ Φ O So n P tr P. i S O tr öd iQ Φ rt φ
P- Φ P P- ^ P <Q tr IV) tr P- Φ φ O Ό P- φ 1 . 03 P- Φ
Φ 13 P tr P- P i£> P- 3 P- P P- HI 13 I IV) Z O PJ 3
1 φ 03 P 1 13 3 P Φ 03 P- p ω 1 1 1 1 P^ 01 Φ
CO CO IV) IV) P1 P1 cπ O Cn o Cπ 0 Cπ
^ Z ^ 13 N Z iQ m P H P P tr1 tr v Hi Cd Z p: 01 P1 N 03 H rt P Ω P. P- 13 tr ö
P P- P Φ Φ φ Φ tr p: P P INI P Φ p: Φ Φ P- Φ tr Φ φ Φ z 0 P P φ Φ P- P P- P- 3 Φ rt P 03 P O Φ Ω 03 rt P P 03 P P Φ P- P 03 φ P tr P tr Φ PJ P- P1 φ
Pi P 03 P. P P V ^d N 03 N rt vQ P. P P Φ P- 1 α p: 01 φ ? P.
Φ P. Z rt Φ φ P. 3 03 P- P O φ rt φ P1 φ P φ Φ ^d P rt £ Φ Φ P φ . P φ t
P φ p: P P P P o Φ ιQ p: P> Φ O: P P P Φ P P- Φ 0 P 01 s φ 01 rt P P
\ P P P Φ 01 P- P Ω Φ P 00 03 ^ • P- U3 P- 01 P. 01 Φ INI 0 P cn 3 Φ < V rt rt rt P V P> P Φ o P tϋ P ^ P Φ P ^1 Ω 01 13 P P P rt
O iQ φ P O P P P- P> P Φ l-1 σ Φ P P P Ω H" p- Φ 1 Φ 13 P P1 Φ
Φ P" ^ P P rt ι -J P- N
S i P IV) P- P P Φ Φ ^Q P P- P1 3 03
P; P φ P 01 P- Ω tC- P z Φ ^Q Φ V P £ tr P1 P p: P P P- P- 0 P1
P- P- N tr o 03 P- P- tr Cπ 3 o φ P Φ INI w rt Φ p: Cπ P rt P i IV % rt 0
P rt • o tr P- 3 03 -O φ P Ω P P v P P- P1 03 P φ P. Φ P P LJ.
P- iQ Ph öd tr N P. Φ rt <! • P1 P. V iQ N iQ Φ P O 03 03 P P Hi 01 rt PJ φ φ P
03 Φ p: • Φ z P P N φ Cπ P. P 03 Φ P- Φ P P P 2: φ P p: t? Ω O ^ P- Z P rt P tr P . 01 P z P 1 P P Φ Hl iQ P1 01 ji. Φ P. -J P p tr P 01 P φ Ω
P- CO 01 P φ Φ Z Cπ P P Cd P P p: Φ 1 P 00 P 0 Φ φ φ P- tr φ cn ιQ o Pl φ iQ p- 3 p- IV) iQ u3 P P tr P P1 ^ rt 0 Φ P tr P 3
P- Ω Φ o Φ P- tr * rt Φ rt ^Q P1 P N μt» Φ P P O ^ Φ P 03 ^
P tr P o 3 P φ Φ cn 03 3 P- 03 Φ cn rt o pj: > N 03 p. V 03 P 3 P φ P-
P- 13 φ P- P- P φ Φ o P- 01 O P ^ Φ O: Ω Φ P rt P Φ P- P Φ ιQ
P Ω S φ P P P 3 rt rt P P 03 s tr tr P- P Φ CO Φ rt 03 P- P
P tr P i P 03 P, 03 Ω 01 iQ P-- P φ Φ φ P 3 P- P- N rt P P
03 rt rt Φ P Ω φ tr Φ o z o ιQ P- P tr cn tr1 P 03 01 iQ σ P- p: P P Φ P Φ Φ
<Q P Φ z rt tr Hl Φ tr P p- ^ P-1 3 P Φ ^ O: iQ 03 Φ Ω Φ P Ω 01 P 01 P 3 P Cπ
Φ P- P pj: P P P- 03 p: 1 P • Φ i P ^ 03 I P- tr 03 P Φ rt P- 01 Ω
N Ω P- tr P Φ P o P g o P- ≤ • P z P P Ω Ω tr Φ Ω tr rt > Φ 03 tr
Φ V P P Φ P- P 03 o O Ω Φ Φ I-1 P P- P φ P- tr tr p: Φ P tr Φ Φ P tr Φ N
P- Φ H" P PJ φ P- Φ P • tr oi P- cn iQ P P 3 Φ 0 Hi P P- tr rt P- 3 03 p: 13 z ^
Ω P P- φ ^ Φ P Φ P IV) φ Φ P ^. 03 & tr tr p: 03 P P P 03 P P Cπ tr φ P- rt P CO P1 o 3 P Φ ^ 3 ^d Φ Φ tr Φ P P 13 Ω φ 03 P
P . — . P 01 N s φ Φ o o rt P P- P- tϋ P P P Φ iQ P- Φ 03 φ P CL.
Φ Ω rt * p: P ι-> l-i T φ rt P Φ P Φ P cn 13 φ tr φ P rt Φ rt P cn φ öd P ^ Φ cπ P P- > P rt P p- p- P 0 13 S P- ^ p: P P
Φ . P- rt . 3 P3 p: P- ^. H- Ω P N Φ 03 "3 cn 03 iQ Φ 01 03 P Hi P
P φ φ tr P 3 o tr 03 Φ P- Φ V φ rt p- oi rt Z 03 p: P K l-> P- P- <£> P 3 P- P P Φ (Q P rt P P P • P, P. ^ 01 φ φ φ P 01 O:
21 CO N 01 o tr 13 P T) rt P P- P P i P P N P oi φ P P Φ O P- P rt P p: o P- rt o Pi φ P Φ Hi rt P rt P ^ P o ü P P rt P- 03 P- P. P 13
P P • n P P iQ P1 N p: Ω iQ • 03 O: P P iQ O P Φ Φ P £ P- P Φ
3 τd 3 tr P rt P α rt Φ 3 01 1 03 s Φ P 01 P φ Φ 03 P
Φ 3 P rt P- iQ φ 03 i ö < P- P P1 S φ 03 ^ p: H l_l. 03 Ω p: P P P P P. Φ Φ P Φ CO P- O rt P P1 o P- 03 rt rt P Φ φ 03 LJ. tr IV) tr cn P Hl P tr P φ P tr φ P P φ P tQ P- 3 03 Φ tr N tr P- z 03 Φ tr 0 φ p- P- tQ H) Φ Φ p Φ O: P rt 03 P- 13 Φ Φ N P P PJ Φ Φ Φ φ P- z P
P j P P- P -1 P P rt P S O P- P P PJ Cd P 01 w P- iQ φ P P iQ P- « P P o Φ P- o 3 P Φ P P iQ P- iQ rt rt 01 Φ [_■ P P- Φ P
P N P P P- S iQ tr 3 iQ Hi P 03 rt Φ φ Φ I-1 P -« Φ φ P P- 03 P P Ω
P P- 13 P φ Φ P- Φ Φ Hi ^~. P 03 P- 3 P- s: Cπ N P tr P- P P PJ P- tr tQ P Pi P. V P 13 P P Φ σ 03 1 O P P Φ P P- φ P Ω Φ φ φ iQ
3 φ p. P p: P Hi rt P Cd Φ P p: iQ P P- H1 P. Φ P tr P P- Φ Pi ^ iQ P Φ P- tr tr « tr 1 P- N P P- tr Φ Q. 03 P P p. V P z P P-
Φ ^^ P ( Φ p: O o P P z P Φ φ tr rt rt Φ N P Φ 03 φ P iQ
≤ cπ Ω Φ P P- Ω o P P Φ φ P P P P P P- P P P- rt N P S Ω P p: o O 01 P P rt tr rt P P P- rt P 3 3 P P P P P z P- Φ tr P tr Φ Φ iQ Φ Φ INI P P rt v Φ φ Ω P- P- P 03 • r φ φ 03 Φ
P "P P tr 03 rt P V ^Q 13 Φ Φ P P- tr P rt P > Φ 13 P- P- P 03 P cn
1 3 P PI 13 N P rt P P P rt tr P P- cn O O rt 3 oi φ P P Φ 1 Ω 1 φ p. P 03 P Φ P P φ 0
O 3 o 1 P Φ P Φ P 1 P 1 p: 01 I 1 I 1 1 P I 1 1
co co rv> iv) P1 1—1
Cn 0 Cπ 0 Cn 0 Cπ
3 P. ^ P N pι cn
P- Φ s tr <J N iQ PJ
P- P P φ Ω 0 Φ Φ Φ P Φ Φ rt φ rt V P rt tr P- ω P 03 3 03 P- tr ISl P- P Ω tr Φ 03
53 ö 0 φ t? rt Ω PJ p Φ πd > tr rt
P a P- 3 Φ tr 01 P 03 Φ P Φ Φ
01 > P 13 P rt p- 01 PJ 01 P rt
01 03 Φ I-1 Φ Φ rt . φ V p: P- P1 cπ tr H P- Φ P
P a P. P Pi 1^ I ) Φ P φ 01 P ^
Φ > Φ P P- p P P P P φ p:
P- 1 P Φ V 0 Φ P Φ iQ φ P P
P πd — P P Φ t-> P 03 rt P- Hl P. Φ 03 p: O O 3 P- P 0 P T Φ 3 Φ P
01 tr iQ P- 0 P l-1 03 P- 03 φ P 01 03
03 Φ rt P P iQ p- P P-
Φ rt <Q Φ P. Ω si rt 0 P d
P 03 πd Φ < P P- tr p: Φ tr φ
0 O O v Φ rt P 01 P- P-1 cn z V 03 P P Φ 3 13 z rt tV) P- P £ P φ co p- Φ P-
*. φ fiϋ Φ α P P- P: 0 P P- Φ
O P- 2 V Φ tr Hi rt P . tr P • i P P- φ P O Φ Φ
Φ ) ; Φ O 0 P P P P P PJ
• P P ?ö p Hi Φ iQ 3 tr Φ
• o.- Φ a rt P P P P- 3
• rt P Φ Φ P P P rt P
P- P- P- φ i 01 p- P ^
<S i I O 13 Ö P1 P" 03 0 φ p- ^
O rt tr O Φ tr P- P cn P PJ
P Φ P P 03 P V ω P φ φ co t P- Φ 0 Hl V rt P P < V 0
Φ W P P rt P P- Ω 01 O <-t
03 Φ rr *< Φ P oi p- 0 P P P-
Φ P I SO p- P p pj: Ω P iQ P- 01 tr iQ Φ Φ P- z tr P. 1 Φ 03 rt
Φ Φ P tr φ Φ Φ P £ 01 Ω
P P Ω P1 0 P- P 03 0 φ tr Φ
N rt Φ P 03 rt P- tr Φ P-
03 P- P- P P Φ P < 0 P φ P
Φ Φ O V P φ tr P
P- P P <J P-1 Φ iQ P Φ
P — φ Φ P- Φ V P P ' Φ p z • P P- P P P Cπ ö s tr
P- < P iQ P- 13 P- P 3 PJ
P Φ σ P- 03 Φ Φ 01 3 I P V tr
P- P φ p: Oi Φ P Ω 0 φ N N P1 P Φ s PJ Cd P tr P Φ
• P Hi P rt P P P- P rt Ω
LJ. Dd : φ I l r P P P tr φ • s; \ rt Φ iQ INI P & V z Φ rt 50 P φ Φ 13 rt co φ a Ü p- P- Z P- Cπ tr P Φ P1
P- P iQ tr Φ P P Φ Φ
1— SV Φ P 0 P φ P 03 co
03 P1 P P 1 α φ P 03 co 0
Φ iQ Φ 03 φ P
0 03 Ö Φ Φ P 1
Figure imgf000018_0001
1 1 P P
parallelgeschaltet sind, so dass insgesamt n Reagenzkanäle und n Wassereinlässe gebildet sind. Weiterhin ist ein Eingabeport 68 für die zu untersuchende Flüssigkeit vorhanden, von dem die Messprobe über einen Kanal 69 zum Sensor-Modul 15 transportiert wird, ohne vorher mit der Reagenzflüssigkeit in Kontakt kommen zu müssen. Schließlich ist ein Auslass 63 vorgesehen, über den nach dem Vorbeiströmen an der sensitiven Fläche 2 des Sensor-Moduls 15 die Flüssigkeit ausgebracht wird.
Alternativ können die verbrauchten Flüssigkeiten in einem entsprechenden Volumen, z.B. durch Erweiterung des Kanals oder Verlängerung des Kanals in Form eines Mäanders, des ersten Gehäuses verbleiben. Im Auslesegerät des zweiten Gehäuses 80 ist ein Wasserverteilungssystem mit Ventilen vorgesehen.
Das beschriebene Beispiel einer Analyseeinrichtung mit in ein Auslesegerät einschiebbaren Chipkarten als Messapplikatoren macht sich also die wesentlichen Komponenten und Verfahrens- schritte der hinlänglich bekannten Chipkarten-Technologie zunutze. Zur Funktionsweise einer Chipkarte mit kombinierten elektrischen und fluidischen Komponenten sind folgende, wesentliche nichttriviale Veränderungen bzw. zusätzliche Merkmale vorgesehen:
- Eine modifizierte Verkapselung des Chips und der elektrischen Kontakte über Bonddrähte sorgt dafür, dass nur die chemisch-biologisch aktive Fläche des Chips von der Verkapselung frei bleibt. - Die modifizierte Verkapselung des Sensor-Chips und der zugehörigen Bonddrähte weist eine definierte Geometrie auf. Die Verkapselung hat eine definierte Dicke, eine definierte laterale Ausdehnung sowie eine zumindest annähernd pla- nare und/oder eine radialsymmetrische Oberfläche zum exak- ten Einfügen des Sensor-Chips in eine Chipkarte. co co IV) IV) P1
Cπ o Cπ o Cπ o Cπ rt O P α cn 3 ö Z P. O P V P < p. 53 Q 03 P. 03 ^i N P- P V P o ^ Φ P Ω INI
Φ α P φ rt P- P- φ φ P, Φ ≥ o" φ V φ φ φ Φ rt P- Ω P 3 φ φ φ tr P P O tr P
P φ P P P rt φ P P Φ P tr P- rt P 03 oi P P φ tr p: P P P- P Φ P Hi Ω Φ oi
P- P iQ P P- P rt pj: P P- tr Φ et P 1 oi öd Φ rt P V o tr 3 P
P Φ N P « φ z Φ P φ P- o P N n P- 01 < Φ P Φ P- Hl rt p- 3
P- P 13 Φ P o P P- cn P vQ Φ P tr rt Z Φ tr φ P- Φ p P P P" P- iQ Pi 03 3
P- φ 13 P rt 3 φ Ω P- p: P P- φ P P- So Ώ P φ o rt pj: O rt o Ω φ
Φ P tr M "> Φ 13 tr V iQ P ^ P 13 P- P U φ V Hi P- O Φ Ω P -> tr P
P Φ P- P O Ά p- P So P [ Ω P- SV P φ p: Ω Φ P iQ tr 03 P. iQ 1 Hi
H N V π 01 P P1 Ω P <l Φ P iQ s tr Φ 3 P P- iQ tr P φ P Φ <3 P- φ tr P tr Φ P: P Ü Ω Φ φ tr P O P • O P P rt P P P- o Φ P P- 01
Φ , LQ rt p: tr P tr rt P Φ tr N P- rt <1 Φ P & P φ P" o 03
03 13 H O i P- rt Φ φ P • z P 03 tr P Φ o P iQ φ P Ω P Φ P > φ PJ Φ rt Φ P- P φ Φ Φ P P P- P- rt N P P 03 P rt P 3 P oi o P
Φ P Ω P P » φ Φ Cd oi 01 03 z φ O 01 P, 03 φ 03 iQ tr P tr 03 ^ PJ tr P P- Φ Ω P Φ α rt cn Φ Φ 03 : : P tQ tr P-
Φ rt Φ P- Hl cn Φ n P P tr P- φ P Φ Φ Φ P- ü P- P φ Φ 03 P-
P P tr Cn Ω p: Ω 03 tr tr Hi oi Φ φ Φ P P P tr P- P P 03 P Ω 03
P Φ tr 13 tr P tr rt P- Φ P- P P o P Φ P- o P P- r Φ rt P tr rt
P 1 P- 03 P oi z Φ 13 P p: rt P > P o 03 P Ω P N tr Φ P P P Φ
P öd 03 rt P- rt φ tr V O: 03 P- i^l P P rt & 03 SV P • P- Φ α P P1 01 P P-
Φ 13 rt Φ P- P- Φ P rt oi < rt 03 φ Φ rt oi P P P- σ 3 P rt ISI P
H1 P- SV N P φ So P P P- φ Φ P ^ 03 P P P P- Φ K 3 Pi Φ P P- r P P g
03 P Φ P |Q Φ rt iQ P P- 13 P < P- 1 V » P 01 Φ Cd o 01 P1 P P- < 3 P Φ rt P- P P P Ω P V φ P- φ o p: Ω P P iQ rt oi P rt 03 P Φ Φ p- ^ P- Φ P- ^1 P- P P tr P O: P 3 P tr Ω tr P o Φ oi i
P tr s: So P V P- P P φ P1 V 03 P P P- tr P- Ω Hi P Φ pi:
P P φ P Φ Pi P tr1 φ P p: V 03 P öd P. P ^d öd φ 13 Φ 15 tr 03 φ l-1 P- P
P P- P P P o P 03 t"1 s Ω P iQ φ φ Φ φ P 03 V P 03 P Φ P
PL, V 03 Pi " tr Hi 3 P φ tr P φ P P P p: P Hl P. P z P- P oi P ^
P- Φ φ Q P PJ p- P Φ iQ 01 Φ p: P- P- P • Ω φ o P- φ P P- P. P- -• P B ∞ φ P- P tr1 Φ P P P P- Φ 01 P1 P P rt o tr P- PJ φ P rt P P- 3 $ rt iQ rt P, P P P P- P- Ω P P Φ φ N tr Ω φ Ω i P Φ P 03 o H N
P φ P 03 P- φ tr Φ P Φ P P. P Φ Φ tr rt n Ω H P P N
V P P P- Φ Φ P- P P φ tQ 01 03 Φ P P iQ P- P tr Φ φ tr P P- P rt P P P 03 φ tr P P P- P iQ Pi Φ φ P- V P- P- P Φ P P P Φ
P 03 Ω P N Ω P Φ O 01 n φ Ω tr 03 Φ P- rt 13 P 3 φ P P. o φ tr o tr Φ tr V 3 rt tr P tr n < p: Φ 03 Φ P- V rt O: ϊ P P P1 tr
H" P Φ P rt P Φ O P φ P- O: P- Φ tr Φ Ω P o < P P U5 o φ LQ Φ o P-
P 3 P |Q P P. P P V P 13 T) P P- P tr Φ tr cn S Φ P Φ 3 P P tr |Q
Φ rt P- tr P rt • P P Φ oi Φ 13 tr φ P P- P- Φ P rt rt P- 13 P P- Φ
P Φ 03 φ i ^d rt 3 o P P SV P1 Hl 13 03 Φ Φ Ω o P P > 13 P ii Ω 03 z P Φ φ Hi Φ 01 3 P Φ P 03 P- 03 fd P tr P P 01 P V
!ϊd 01 tr rt o φ P iQ tr V P rt P- P P- φ P1 N P P- rt rt φ P. 03 P Öd p Ω Φ P- P V P1 < P P O: 3 P- V rt tr P Z P- P p: P V » P Ω Hl P φ
Hl tr P 3 • P- rt • Φ Φ P- P O: V P Φ Φ 03 Φ P iQ Ω P O: rt o tr p: rt P-
O P- 3 Φ P- P P P iQ 1 o P n |Q 3 " tr P P Φ P- tr Φ 03
P φ öd rt PL. P O N tr Φ P- φ P1 « Hl N tr SV |Q 1 Φ 03 P P P Φ 13 P P 13
P- α φ Φ i P P P- P 03 P P- P P P- O: Φ o z 13 Φ 03 P V P I P-
Φ t-> 03 P \-> Φ 03 P Ω . Ω P P P 13 P Pi tr o P. O P 01 P P P Pl φ
P P- rt • z P P P t tr tr rt P- V P p: P- P Φ P P P P iQ φ PJ
P Ω p: ^ • P- jj3 P O φ rt Φ P φ tr 13 P 03 rt P *^d P- P <-t 01 Ω Φ
P tr P p Φ V p P 3 P P- P P P li 03 Ω P- P P1 φ Hi tr P Q 03 P Pi O: Φ iQ 13 s: P 01 Hl rt rt tr n Φ P p: ^d P- O P
Φ rt P- o p| P P 03 O P- P Ω P Φ cn P tr H 01 P Φ 3 li o N
P φ i P P P i 3 P o P tr P P P P P- rt P- 03 P P P- 3 P
P SV P- pj: φ Φ φ φ 3 P. Φ tr |Q tr P 1 P- 13 3 P- V rt φ o 3
P Φ Φ 01 P Hi rt P 13 P. 3 Φ 1 P Φ 03 P ^Q rt P |
P g P- 1 Φ p: tr rt o P φ Φ P I 1 P- P-
1 P rt P iQ O Φ 1 P P P P. P O φ l rt 1 P P 1 1 1
co IV) IV) P1 o cπ o Cπ O Cπ φ
Φ
V rt
P
O
P
P- sv
P
P
Φ
P-
P
Ö
P-
03
13
P-"
P
•<
< o
P tr
P
P
P- φ
P p- oi rt
Figure imgf000021_0001

Claims

Patentansprüche
1. Modul für eine Analyseeinrichtung, insbesondere zur dezentralen biochemischen Analytik, mit einem Sensor-Chip (1), der eine sensitive Fläche (2) hat , wobei der Chip (1) einschließlich seiner elektrischen Kontakte (21, ...2VI1), auf einem Träger (3) mit zugehörigen Kontaktfeldern (31, ... 3 ) eine Verkapselung (5) mit Kontaktverbindung zwischen den Kontakten (21, ... 2VI1) , und den Kontaktfeldern (31, ..., 3VI11) aufweist derart, dass von außen elektrische Zugänge und/oder Abgriffe vorhanden sind, dass aber die sensitive Fläche (2) des Chips (1) für ein Fluid zugänglich bleibt.
2. Modul nach Anspruch 1, d a d u r c h g e k e n n - z e i c h n e t , dass das Verhältnis von Höhe der Verkapselung (5) über der Oberkante des Chips (1) zum größten Durchmesser der sensitiven Fläche des Chips kleiner 1:5 ist.
3. Modul nach Anspruch 1, d a d u r c h g e k e n n - z e i c h n e t , dass die Verkapselung (5) des Chips (1) eine definierte laterale Ausdehnung aufweist um den Fluidik- zu- und -abfluss abzudichten.
4. Modul nach Anspruch 1, d a d u r c h g e k e n n - z e i c h n e t , dass das Material der Verkapselung (5) elastisch ist, wodurch der Fluidikzufluss und Fluidabfluss ohne Zuhilfenahme von weiteren Mitteln abdichtbar ist.
5. Modul nach Anspruch 1, d a d u r c h g e k e n n - z e i c h n e t , dass die elektrischen Kontakte (21, ...
2VI1) , als sog. Bond-Pads des Chips (1) im Bereich der Ecken des Chips (1) liegen.
6. Modul nach Anspruch 1 oder Anspruch 2, d a d u r c h g e k e n n z e i c h n e t , dass die Verkapselung (5) eine zumindest annähernd planare und/oder radialsymmetrische Oberfläche (100, 101) aufweist.
7. Modul nach einem der vorhergehenden Ansprüche, g e k e n n z e i c h n e t durch eine Ausbildung in Chipkarten-Technologie .
8. Modul nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , dass der Träger ein metallisches Trägerband (3) der Stärke <100μm, insbesondere 50μm, ist und dass die Kontaktfelder kunststoffverstärkte Metallkontakte (31, ..., 3VI11 ) sind.
9. Modul nach Anspruch 8, d a d u r c h g e k e n n z e i c h n e t , dass der Chip (1) auf dem Trägerband (3) in Draht-Bond-Technologie montiert ist.
10. Modul nach Anspruch 8, d a d u r c h g e k e n n z e i c h n e t , dass der Chip (1) auf dem Trägerband (3) in Flip-Chip-Technologie montiert ist.
11. Applikator als Austauschteil einer Analyseeinrichtung, mit einem Modul nach Anspruch 1 oder einem der Ansprüche 2 bis 10, d a d u r c h g e k e n n z e i c h n e t , dass das Modul (15) Teil eines ersten Gehäuses (10, 20) ist mit Mitteln zum Zufluss (12, 22) und Abfluss (13, 23) für Fluide zur sensitiven Fläche (2) des Chips (1) .
12. Applikator nach Anspruch 11, d a d u r c h g e k e n n z e i c h n e t , dass das Verhältnis von Höhe des im Betrieb mit Fluiden gefüllten Spaltes über der sensitiven Fläche (2) des Chips (1) zum größten Durchmesser der sensitiven Fläche des Chips kleiner 1 zu 5 ist.
13. Applikator nach Anspruch 11, d a d u r c h g e k e n n z e i c h n e t , dass der im Funktionsbetrieb mit Fluiden gefüllte Spalt (11,21) über der sensitiven Fläche (2) des Chips (1) kleiner als 200μm ist.
14. Applikator nach Anspruch 11, d a d u r c h g e k e n n z e i c h n e t , dass Modul (15) und erstes Gehäuse (10, 20) in flacher Bauform nach Art einer Chipkarte ausgebildet sind derart, dass in der Karte (10, 20) mikrofluidi- sehe Komponenten (11, 12, 13, 21) und Funktionen integriert sind.
15. Applikator nach Anspruch 11, d a d u r c h g e k e n n z e i c h n e t , dass die Chipkarte (10, 20) der- art mit mikrofluidischen Komponenten (11, 12, 13, 21) versehen ist, dass Flüssigkeiten und/oder Gase zu bzw. von der aktiven Fläche (2) des Chips (1) zu- und wegführbar sind.
16. Applikator nach Anspruch 11, d a d u r c h g e - k e n n z e i c h n e t , dass in der Chipkarte (10, 20)
Feststoffe und/oder Flüssigkeiten und/oder Gase lagerbar sind.
17. Applikator nach einem der Ansprüche 11 bis 16, d a - d u r c h g e k e n n z e i c h n e t , dass eine mikrofluidische Verbindung (11, 12, 13, 21) zwischen den Kanälen der Karte (10, 20) und der aktiven Fläche des Chips (1) besteht.
18. Applikator nach einem der Ansprüche 11 bis 17, d a d u r c h g e k e n n z e i c h n e t , dass das als Karte ausgebildete erste Gehäuse (10, 20) aus einer oder mehreren Schicht (en) besteht.
19. Applikator nach einem der Ansprüche 11 bis 18, d a d u r c h g e k e n n z e i c h n e t , dass das als Karte ausgebildete erste Gehäuse (10, 20) lokal aus unterschiedlichen Materialien besteht.
20. Applikator nach einem der Ansprüche 11 bis 18, d a d u r c h g e k e n n z e i c h n e t , dass im ersten Gehäuse (10, 20) eine Spannungsquelle, eine Auswerteelektronik und/Oder ein Display integriert sind.
21. Analyseeinrichtung mit einem Applikator, insbesondere für dezentrale Messungen, nach einem der Ansprüche 11 bis 18, wobei der Applikator ein Modul nach Anspruch 1 oder einem der weiteren vorhergehenden Ansprüche 2 bis 10 und ein erstes Gehäuse (10, 20, 60) enthält und wobei Flüssigkeiten und/oder Gase in das erste Gehäuse (10, 20, 60) eintreten, in dessen Inneren oder an dessen Oberfläche transportiert und im Bereich des Sensor-Chips (1) der aktiven Fläche (2) des Chips (1) zugeführt werden, d a d u r c h g e k e n n z e i c h n e t , dass ein zweites Gehäuse (80) mit einer Auswerteeinheit vorhanden ist, in das der Applikator mit erstem Gehäuse (10, 20, 60) zur Durchführung des Analysevorgangs und zum Auslesen von Messdaten einbringbar ist.
22. Analyseeinrichtung nach Anspruch 21, wobei der Applikator eine Chipkarte ist, d a d u r c h g e k e n n - z e i c h n e t , dass in das zweite Gehäuse (80) die Chipkarte (10, 20) zur Durchführung der Analyse und zum Auslesen von Messdaten einschiebbar ist.
23. Analyseeinrichtung nach Anspruch 21 oder 22, d a - d u r c h g e k e n n z e i c h n e t , dass bei der
Durchführung der Analyse und beim Auslesen der Messdaten über das zweite Gehäuse (80, 90) die Flüssigkeiten und/oder Gase zwischen Applikator mit ersten Gehäuse ( 10, 20) , und dem zweiten Gehäuse (80) transferierbar sind.
24. Analyseeinrichtung nach Anspruch 21, d a d u r c h g e k e n n z e i c h n e t , dass Mittel vorhanden sind, um die elastische Verkapselung (5) des Moduls (15) an Aussparungen (14) im ersten Gehäuse (10) anzupressen.
25. Analyseeinrichtung nach einem der Ansprüche 21 bis 24, d a d u r c h g e k e n n z e i c h n e t , dass Mittel zur Einstellung einer definierten Temperatur an der Sensorfläche (2) des Sensor-Chips (1), insbesondere zur Kühlung, vorhanden sind.
26. Analyseeinrichtung nach Anspruch 25, d a d u r c h g e k e n n z e i c h n e t , dass zur Thermostatisierung, insbesondere Kühlung, des Sensor-Chips (1) ein Peltierelement (30) im zweiten Gehäuse (70, 80) vorhanden ist.
27. Analyseeinrichtung nach Anspruch 21, g e k e n n z e i c h n e t durch einen Einsatz in der biochemischen Analytik.
28. Analyseeinrichtung nach Anspruch 27, g e k e n n - z e i c h n e t durch einen Einsatz in der DNA-Analyse.
29. Analyseeinrichtung nach Anspruch 27, g e k e n n z e i c h n e t in der Anwendung zur Beschleunigung der Abkühlphase in der PCR-Technik.
30. Analyseeinrichtung nach Anspruch 21, g e k e n n z e i c h n e t durch einen Einsatz in der Lebensmittelüberwachung.
31. Analyseeinrichtung nach Anspruch 21, g e k e n n z e i c h n e t durch einen Einsatz in der Umweltmesstech- nik.
32. Analyseeinrichtung nach Anspruch 21, g e k e n n - z e i c h n e t durch einen Einsatz, in der Forensik.
33. Analyseeinrichtung nach Anspruch 21, g e k e n n z e i c h n e t durch einen Einsatz in der medizinischen Diagnostik.
34. Analyseeinrichtung nach Anspruch 31, g e k e n n z e i c h n e t durch einen Einsatz bei der Blutgas-/Blut- elektrolyt-Analyse .
PCT/DE2002/000836 2001-03-09 2002-03-08 Modul für eine analyseeinrichtung, applikator als austauschteil der analyseeinrichtung und zugehörige analyseeinrichtung WO2002073153A2 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US10/471,167 US20050031490A1 (en) 2001-03-09 2002-03-08 Module for an analysis device, applicator as an exchange part of the analysis device and analysis device associated therewith
CA002440126A CA2440126A1 (en) 2001-03-09 2002-03-08 Module for an analysis device, applicator as an exchangeable part of theanalysis device and associated analysis device
JP2002572367A JP2004532396A (ja) 2001-03-09 2002-03-08 分析装置のためのモジュール、分析装置の交換部分としてのアプリケータおよび分析装置
EP02722000A EP1366361A2 (de) 2001-03-09 2002-03-08 Modul fur eine analyseeinrichtung, applikator als austauschteil der analyseeinrichtung und zugehörige analyseeinrichtung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10111458A DE10111458B4 (de) 2001-03-09 2001-03-09 Analyseeinrichtung
DE10111458.3 2001-03-09

Publications (2)

Publication Number Publication Date
WO2002073153A2 true WO2002073153A2 (de) 2002-09-19
WO2002073153A3 WO2002073153A3 (de) 2003-04-03

Family

ID=7676919

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2002/000836 WO2002073153A2 (de) 2001-03-09 2002-03-08 Modul für eine analyseeinrichtung, applikator als austauschteil der analyseeinrichtung und zugehörige analyseeinrichtung

Country Status (6)

Country Link
US (1) US20050031490A1 (de)
EP (1) EP1366361A2 (de)
JP (1) JP2004532396A (de)
CA (1) CA2440126A1 (de)
DE (1) DE10111458B4 (de)
WO (1) WO2002073153A2 (de)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004017074A1 (de) * 2002-07-22 2004-02-26 Siemens Aktiengesellschaft Verfahren für hochdurchsatzanalysen und vorrichtung zur durchführung des verfahrens
EP1533037A1 (de) * 2003-11-24 2005-05-25 Hewlett-Packard Development Company, L.P. Verfahren und Vorrichtung zur Unbedenklichmachung von Einwegbiochips
WO2006003548A2 (en) * 2004-06-30 2006-01-12 Koninklijke Philips Electronics N.V. Chip card for insertion into a holder
WO2006077210A1 (de) * 2005-01-20 2006-07-27 Siemens Aktiengesellschaft Halbleitersensorbauteil mit geschützten zuleitungen und verfahren zur herstellung desselben
JP2008511825A (ja) * 2004-09-03 2008-04-17 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ マイクロ流体システム
US20090130658A1 (en) * 2004-10-15 2009-05-21 Heike Barlag Arrangement for integrated and automated dna or protein analysis in a single-use cartridge, method for producing such a cartridge and operating method for dna or protein analysis using such a cartridge
DE102007057902A1 (de) * 2007-11-29 2009-06-04 Continental Automotive Gmbh Sensormodul und Verfahren zu seiner Herstellung
WO2009101048A1 (de) * 2008-02-15 2009-08-20 Siemens Aktiengesellschaft Einrichtung und verfahren zum nachweis von flüssigkeiten oder substanzen aus flüssigkeiten sowie verwendung der einrichtung
US8862885B2 (en) 2009-10-09 2014-10-14 Bundesdruckerei Gmbh Article of manufacture having biometric data evaluation capability
US9110044B2 (en) 2005-05-25 2015-08-18 Boehringer Ingelheim Vetmedica Gmbh System for the integrated and automated analysis of DNA or protein and method for operating said type of system
DE102006024149B4 (de) * 2005-05-25 2020-04-02 Boehringer Ingelheim Vetmedica Gmbh System zur integrierten und automatisierten DNA- oder Protein-Analyse
US10816563B2 (en) 2005-05-25 2020-10-27 Boehringer Ingelheim Vetmedica Gmbh System for operating a system for the integrated and automated analysis of DNA or protein

Families Citing this family (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10304775B3 (de) * 2003-02-05 2004-10-07 Infineon Technologies Ag Messgerät für einen Biosensor in Chipkartenform und Messverfahren
DE102004011667B4 (de) * 2004-03-10 2006-03-23 Technische Fachhochschule Berlin Vorrichtung mit einem Halbleiterchip und einem mikrofluidischen System und Verfahren zur Herstellung
DE102004020829B4 (de) * 2004-04-28 2006-05-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Sensor für die Detektion von Inhaltsstoffen von Flüssigkeiten, insbesondere biologischer Materialien, und diesen Sensor enthaltende Detektionsvorrichtung
US7692219B1 (en) 2004-06-25 2010-04-06 University Of Hawaii Ultrasensitive biosensors
US7785785B2 (en) 2004-11-12 2010-08-31 The Board Of Trustees Of The Leland Stanford Junior University Charge perturbation detection system for DNA and other molecules
EP1893336A2 (de) * 2005-05-19 2008-03-05 Koninklijke Philips Electronics N.V. Funktionelle anordnung und verfahren zu ihrer gewinnung
DE102005053682A1 (de) * 2005-11-10 2007-05-16 Bosch Gmbh Robert Sensor, Sensorbauelement und Verfahren zur Herstellung eines Sensors
CN101416048B (zh) * 2006-01-12 2013-10-02 迈克罗拉布诊断有限公司 新仪器系统和方法
WO2007079530A1 (en) 2006-01-12 2007-07-19 Mycrolab Pty Ltd New instrumentation systems and methods
JP2008051803A (ja) * 2006-07-28 2008-03-06 Sharp Corp 分析用マイクロ流路デバイス
JP2008151772A (ja) * 2006-11-22 2008-07-03 Fujifilm Corp マイクロ流体チップの温調方法及び検体分析システム並びにマイクロ流体チップ
US8262900B2 (en) * 2006-12-14 2012-09-11 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US8349167B2 (en) 2006-12-14 2013-01-08 Life Technologies Corporation Methods and apparatus for detecting molecular interactions using FET arrays
US11339430B2 (en) 2007-07-10 2022-05-24 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
CA2672315A1 (en) 2006-12-14 2008-06-26 Ion Torrent Systems Incorporated Methods and apparatus for measuring analytes using large scale fet arrays
JP2009175108A (ja) * 2008-01-28 2009-08-06 Sharp Corp 分析用マイクロ流路デバイス
WO2010008480A2 (en) 2008-06-25 2010-01-21 Ion Torrent Systems Incorporated Methods and apparatus for measuring analytes using large scale fet arrays
US20100089135A1 (en) * 2008-10-10 2010-04-15 Nxp B.V. Device and method for measuring sensor chips
US20100301398A1 (en) 2009-05-29 2010-12-02 Ion Torrent Systems Incorporated Methods and apparatus for measuring analytes
US20100137143A1 (en) 2008-10-22 2010-06-03 Ion Torrent Systems Incorporated Methods and apparatus for measuring analytes
US8776573B2 (en) 2009-05-29 2014-07-15 Life Technologies Corporation Methods and apparatus for measuring analytes
US8673627B2 (en) 2009-05-29 2014-03-18 Life Technologies Corporation Apparatus and methods for performing electrochemical reactions
US20120261274A1 (en) 2009-05-29 2012-10-18 Life Technologies Corporation Methods and apparatus for measuring analytes
EP2287596B1 (de) * 2009-08-11 2014-03-19 Sensirion AG Sensor mit Glob-Top und Herstellungsverfahren dafür
DE102009043226B4 (de) 2009-09-28 2012-09-27 Siemens Aktiengesellschaft Flachkörper nach Art einer Chip-Karte zur biochemischen Analyse und Verfahren zu dessen Verwendung
US9146377B2 (en) * 2010-01-13 2015-09-29 The Aerospace Corporation Photostructured optical devices and methods for making same
US8940241B2 (en) 2010-01-13 2015-01-27 The Aerospace Corporation Photostructured chemical devices and methods for making same
US8479375B2 (en) 2010-01-13 2013-07-09 The Aerospace Corporation Method of making an embedded electromagnetic device
US8369070B2 (en) * 2010-01-13 2013-02-05 The Aerospace Corporation Photostructured electronic devices and methods for making same
US8410660B2 (en) * 2010-01-13 2013-04-02 The Aerospace Corporation Acoustic devices embedded in photostructurable ceramics
JP2011163993A (ja) * 2010-02-12 2011-08-25 Hitachi Ltd 試料分析チップ及び試料分析システム
EP2366993A1 (de) * 2010-03-08 2011-09-21 Nxp B.V. Sensor und Verfahren zur Montage eines Sensors
WO2011158246A1 (en) * 2010-06-18 2011-12-22 Saharan Pawan An apparatus and method for detecting biological state in a sample using biomarkers
AU2011226767B1 (en) 2010-06-30 2011-11-10 Life Technologies Corporation Ion-sensing charge-accumulation circuits and methods
CN106932456B (zh) 2010-06-30 2020-02-21 生命科技公司 用于测试isfet阵列的方法和装置
CN114019006A (zh) 2010-06-30 2022-02-08 生命科技公司 阵列列积分器
US11307166B2 (en) 2010-07-01 2022-04-19 Life Technologies Corporation Column ADC
JP5876044B2 (ja) 2010-07-03 2016-03-02 ライフ テクノロジーズ コーポレーション 低濃度ドープドレインを有する化学的感応性センサ
US9618475B2 (en) 2010-09-15 2017-04-11 Life Technologies Corporation Methods and apparatus for measuring analytes
CN105911126B (zh) 2010-09-24 2018-12-18 生命科技公司 匹配的晶体管对电路
US9970984B2 (en) 2011-12-01 2018-05-15 Life Technologies Corporation Method and apparatus for identifying defects in a chemical sensor array
US8821798B2 (en) 2012-01-19 2014-09-02 Life Technologies Corporation Titanium nitride as sensing layer for microwell structure
US8747748B2 (en) 2012-01-19 2014-06-10 Life Technologies Corporation Chemical sensor with conductive cup-shaped sensor surface
US8786331B2 (en) 2012-05-29 2014-07-22 Life Technologies Corporation System for reducing noise in a chemical sensor array
DE102012216497A1 (de) * 2012-09-17 2014-03-20 Robert Bosch Gmbh Elektronische Sensorvorrichtung zum Detektieren von chemischen oder biologischen Spezies, mikrofluidische Vorrichtung mit einer derartigen Sensorvorrichtung sowie Verfahren zum Herstellen der Sensorvorrichtung und Verfahren zum Herstellen der mikrofluidischen Vorrichtung
US9080968B2 (en) 2013-01-04 2015-07-14 Life Technologies Corporation Methods and systems for point of use removal of sacrificial material
US9841398B2 (en) 2013-01-08 2017-12-12 Life Technologies Corporation Methods for manufacturing well structures for low-noise chemical sensors
US8962366B2 (en) 2013-01-28 2015-02-24 Life Technologies Corporation Self-aligned well structures for low-noise chemical sensors
US8963216B2 (en) 2013-03-13 2015-02-24 Life Technologies Corporation Chemical sensor with sidewall spacer sensor surface
US8841217B1 (en) 2013-03-13 2014-09-23 Life Technologies Corporation Chemical sensor with protruded sensor surface
EP2972279B1 (de) 2013-03-15 2021-10-06 Life Technologies Corporation Chemischer sensor mit stetigen sensoroberflächen
US20140264472A1 (en) 2013-03-15 2014-09-18 Life Technologies Corporation Chemical sensor with consistent sensor surface areas
US20140264471A1 (en) 2013-03-15 2014-09-18 Life Technologies Corporation Chemical device with thin conductive element
US9835585B2 (en) 2013-03-15 2017-12-05 Life Technologies Corporation Chemical sensor with protruded sensor surface
US9116117B2 (en) 2013-03-15 2015-08-25 Life Technologies Corporation Chemical sensor with sidewall sensor surface
RU2532087C1 (ru) * 2013-03-21 2014-10-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Поволжский государственный технологический университет" Способ активации топливной батареи
US20140336063A1 (en) 2013-05-09 2014-11-13 Life Technologies Corporation Windowed Sequencing
US10458942B2 (en) 2013-06-10 2019-10-29 Life Technologies Corporation Chemical sensor array having multiple sensors per well
US10077472B2 (en) 2014-12-18 2018-09-18 Life Technologies Corporation High data rate integrated circuit with power management
EP4354131A2 (de) 2014-12-18 2024-04-17 Life Technologies Corporation Integrierte schaltung mit hoher datenrate und mit transmitterkonfiguration
WO2016100521A1 (en) 2014-12-18 2016-06-23 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale fet arrays
CN109789409A (zh) 2016-10-07 2019-05-21 勃林格殷格翰维特梅迪卡有限公司 用于测试样品的方法和分析系统
CN109803761B (zh) 2016-10-07 2022-09-13 勃林格殷格翰维特梅迪卡有限公司 用于检测样品的分析装置及方法
US11154859B2 (en) 2018-06-29 2021-10-26 Siemens Healthcare Diagnostics Inc. Sensor assembly for a sample fluid analysis system
IT201800010263A1 (it) * 2018-11-12 2020-05-12 Univ Degli Studi Magna Graecia Di Catanzaro Metodo di diagnosi del cancro e relativo kit.
EP3734492B1 (de) * 2019-04-29 2021-06-30 ddm hopt + schuler GmbH & Co. KG. Kartenleser mit shim-attacken-detektierung
CN113786870B (zh) * 2021-09-13 2022-05-27 大连理工大学 一种用于薄膜芯片键合的具有微结构凸起的柔性底座制作方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4514276A (en) * 1981-10-31 1985-04-30 Corning Glass Works Microelectronic sensor assembly
EP0367432A1 (de) * 1988-10-31 1990-05-09 Gec-Marconi Limited Biosensorapparat
WO1998027411A1 (de) * 1996-12-17 1998-06-25 Laboratorium Für Physikalische Elektronik Institut Für Quantenelektronik Verfahren zum aufbringen eines mikrosystems oder wandlers auf ein substrat und nach diesem verfahren herstellbare vorrichtung
EP1003035A2 (de) * 1998-11-17 2000-05-24 Micronas Intermetall GmbH Messeinrichtung
WO2000052457A1 (en) * 1999-03-02 2000-09-08 Helix Biopharma Corporation Card-based biosensor device
US6140144A (en) * 1996-08-08 2000-10-31 Integrated Sensing Systems, Inc. Method for packaging microsensors

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4301414A (en) * 1979-10-29 1981-11-17 United States Surgical Corporation Disposable sample card and method of making same
US4654127A (en) * 1984-04-11 1987-03-31 Sentech Medical Corporation Self-calibrating single-use sensing device for clinical chemistry and method of use
US5096669A (en) * 1988-09-15 1992-03-17 I-Stat Corporation Disposable sensing device for real time fluid analysis
JPH03223674A (ja) * 1989-11-30 1991-10-02 Mochida Pharmaceut Co Ltd 反応容器
JP3064468B2 (ja) * 1991-04-18 2000-07-12 株式会社東芝 成分分析装置
JP2509509B2 (ja) * 1992-01-20 1996-06-19 三井金属鉱業株式会社 テ―プキャリアおよびこれを用いたテ―プキャリアデバイス
DE69322774T2 (de) * 1992-05-01 1999-06-17 Univ Pennsylvania Polynukleotide amplifikationsanalyse mit einer mikrofabrizierten vorrichtung
JP2988286B2 (ja) * 1994-07-21 1999-12-13 日立電線株式会社 Bga型半導体装置及びその製造方法
JP3343642B2 (ja) * 1996-04-26 2002-11-11 シャープ株式会社 テープキャリアパッケージ及び液晶表示装置
JP2000025709A (ja) * 1998-07-13 2000-01-25 Hitachi Ltd 半導体装置の製造方法,その方法で使用されるキャリヤテープおよび半導体製造装置
US6392296B1 (en) * 1998-08-31 2002-05-21 Micron Technology, Inc. Silicon interposer with optical connections
AU2001261145B2 (en) * 2000-05-03 2005-08-11 The United States Government, As Represented By The Department Of The Navy Biological identification system with integrated sensor chip

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4514276A (en) * 1981-10-31 1985-04-30 Corning Glass Works Microelectronic sensor assembly
EP0367432A1 (de) * 1988-10-31 1990-05-09 Gec-Marconi Limited Biosensorapparat
US6140144A (en) * 1996-08-08 2000-10-31 Integrated Sensing Systems, Inc. Method for packaging microsensors
WO1998027411A1 (de) * 1996-12-17 1998-06-25 Laboratorium Für Physikalische Elektronik Institut Für Quantenelektronik Verfahren zum aufbringen eines mikrosystems oder wandlers auf ein substrat und nach diesem verfahren herstellbare vorrichtung
EP1003035A2 (de) * 1998-11-17 2000-05-24 Micronas Intermetall GmbH Messeinrichtung
WO2000052457A1 (en) * 1999-03-02 2000-09-08 Helix Biopharma Corporation Card-based biosensor device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LAU J H: "Flip Chip Technologies" , FLIP CHIP TECHNOLOGIES, XX, XX, PAGE(S) 260-261 XP002148418 das ganze Dokument *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004017074A1 (de) * 2002-07-22 2004-02-26 Siemens Aktiengesellschaft Verfahren für hochdurchsatzanalysen und vorrichtung zur durchführung des verfahrens
EP1533037A1 (de) * 2003-11-24 2005-05-25 Hewlett-Packard Development Company, L.P. Verfahren und Vorrichtung zur Unbedenklichmachung von Einwegbiochips
WO2006003548A2 (en) * 2004-06-30 2006-01-12 Koninklijke Philips Electronics N.V. Chip card for insertion into a holder
US8695881B2 (en) 2004-06-30 2014-04-15 Nxp B.V. Chip card for insertion into a holder
JP2008511825A (ja) * 2004-09-03 2008-04-17 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ マイクロ流体システム
US7851227B2 (en) 2004-10-15 2010-12-14 Siemens Aktiengesellschaft Method for carrying out an electrochemical measurement on a liquid measuring sample in a measuring chamber that can be accessed by lines, and corresponding arrangement
US20090130658A1 (en) * 2004-10-15 2009-05-21 Heike Barlag Arrangement for integrated and automated dna or protein analysis in a single-use cartridge, method for producing such a cartridge and operating method for dna or protein analysis using such a cartridge
WO2006077210A1 (de) * 2005-01-20 2006-07-27 Siemens Aktiengesellschaft Halbleitersensorbauteil mit geschützten zuleitungen und verfahren zur herstellung desselben
US9110044B2 (en) 2005-05-25 2015-08-18 Boehringer Ingelheim Vetmedica Gmbh System for the integrated and automated analysis of DNA or protein and method for operating said type of system
US10073107B2 (en) 2005-05-25 2018-09-11 Boehringer Ingelheim Vetmedica Gmbh System for operating a system for the integrated and automated analysis of DNA or protein
US10184946B2 (en) 2005-05-25 2019-01-22 Boehringer Ingelheim Vetmedica Gmbh Method for operating a system for the integrated and automated analysis of DNA or protein
DE102006024149B4 (de) * 2005-05-25 2020-04-02 Boehringer Ingelheim Vetmedica Gmbh System zur integrierten und automatisierten DNA- oder Protein-Analyse
US10816563B2 (en) 2005-05-25 2020-10-27 Boehringer Ingelheim Vetmedica Gmbh System for operating a system for the integrated and automated analysis of DNA or protein
DE102007057902A1 (de) * 2007-11-29 2009-06-04 Continental Automotive Gmbh Sensormodul und Verfahren zu seiner Herstellung
WO2009101048A1 (de) * 2008-02-15 2009-08-20 Siemens Aktiengesellschaft Einrichtung und verfahren zum nachweis von flüssigkeiten oder substanzen aus flüssigkeiten sowie verwendung der einrichtung
US9091645B2 (en) 2008-02-15 2015-07-28 Boehringer Ingelheim Vetmedica Gmbh Apparatus and method for the detection of liquids or substances from liquids, and use of said apparatus
US9766196B2 (en) 2008-02-15 2017-09-19 Boehringer Ingelheim Vetmedica Gmbh Apparatus for the detection of liquids or substances from liquids
US8862885B2 (en) 2009-10-09 2014-10-14 Bundesdruckerei Gmbh Article of manufacture having biometric data evaluation capability

Also Published As

Publication number Publication date
WO2002073153A3 (de) 2003-04-03
DE10111458A1 (de) 2002-09-19
CA2440126A1 (en) 2002-09-19
DE10111458B4 (de) 2008-09-11
EP1366361A2 (de) 2003-12-03
US20050031490A1 (en) 2005-02-10
JP2004532396A (ja) 2004-10-21

Similar Documents

Publication Publication Date Title
WO2002073153A2 (de) Modul für eine analyseeinrichtung, applikator als austauschteil der analyseeinrichtung und zugehörige analyseeinrichtung
DE10122133B4 (de) Integriertes Mikrosystem
EP1682882B1 (de) Sensoranordnung mit mehreren potentiometrischen sensoren
EP1003035B1 (de) Messeinrichtung
EP2708876B1 (de) Verfahren zum Herstellen einer Sensorvorrichtung zum Detektieren von chemischen oder biologischen Spezies und Verfahren zum Herstellen einer mikrofluidischen Vorrichtung mit einer derartigen Sensorvorrichtung.
EP1740932B1 (de) Messzelle sowie Verfahren zur Herstellung einer solchen Messzelle
DE112006000374B4 (de) Verfahren zum Bilden eines biologischen Sensors
WO2002072262A1 (de) Analyseeinrichtung
WO1992021020A1 (de) Verfahren zur herstellung von miniaturisierten chemo- und biosensorelementen mit ionenselektiver membran sowie von trägern für diese elemente
EP1591780B1 (de) Sensor für die Detektion von Flüssigkeiten, und diesen Sensor enthaltende Detektionsvorrichtung
WO2001027025A1 (de) Elektromechanisches bauelement und verfahren zur herstellung desselben
DE10049901C2 (de) Vorrichtung und Verfahren zur elektrisch beschleunigten Immobilisierung und zur Detektion von Molekülen
EP1738172B1 (de) Verfahren zur funktionalisierung von biosensor-chips
CN101558295A (zh) 电化学传感器装置及其制造方法
US11351548B2 (en) Analyte sensor package with dispense chemistry and microfluidic cap
US11850586B2 (en) Analyte sensor package and method for analyzing fluid samples
US20210055255A1 (en) Devices incorporating multilane flow cell
EP2243023B1 (de) Vorrichtung und verfahren mit einem sensor-array und mit einem porösen stempel sowie deren verwendung
TWI742469B (zh) 生物晶片封裝結構
DE102014219633A1 (de) Vorrichtung zur Detektion von Substanzen in einer Probe
DE102020214233A1 (de) Vorrichtung zum Erfassen einer Temperatur und eines Drucks eines Fluids
CN114054104A (zh) 生物芯片结构及其制备方法
BR102020017310A2 (pt) Dispositivo sensor eletroquímico do tipo micromódulo
WO2001086290A1 (de) Durchflusssystem
DE102009010639A1 (de) Verfahren und Anordnung zur Inhibierung einer chemischen Reaktion von Substanzen in einer Flüssigkeit vor einer Messung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): CA JP US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2002722000

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2440126

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2002572367

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 10471167

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2002722000

Country of ref document: EP