WO2002072679A1 - Geschäumte formkörper aus silikon sowie verwendung der hestellungsprodukte - Google Patents

Geschäumte formkörper aus silikon sowie verwendung der hestellungsprodukte Download PDF

Info

Publication number
WO2002072679A1
WO2002072679A1 PCT/EP2002/001985 EP0201985W WO02072679A1 WO 2002072679 A1 WO2002072679 A1 WO 2002072679A1 EP 0201985 W EP0201985 W EP 0201985W WO 02072679 A1 WO02072679 A1 WO 02072679A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicone
ammonium
component
liquid
liquid silicone
Prior art date
Application number
PCT/EP2002/001985
Other languages
English (en)
French (fr)
Inventor
Rolf Siegel
Original Assignee
Stuemed Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stuemed Gmbh filed Critical Stuemed Gmbh
Priority to EP02716810A priority Critical patent/EP1379579A1/de
Priority to US10/469,045 priority patent/US6855740B2/en
Publication of WO2002072679A1 publication Critical patent/WO2002072679A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/06Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
    • C08J9/08Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent developing carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives
    • C08J9/0028Use of organic additives containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2383/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2383/04Polysiloxanes

Definitions

  • the invention relates to a method for producing foamed molded articles made of silicone, in particular silicone rubber, and the use of the manufactured products.
  • Silicones can be divided into oils, resins and rubbers according to their areas of application. Silicone oils that are processed into emulsions, anti-show agents, pastes, fats and the like are linear polydimethylsiloxanes. Silicone resins are more or less cross-linked polymethyl- or polymethylphenylsiloxanes, whose elasticity and heat resistance increase with the content of phenyl groups. Silicone resins are used, for example, to manufacture paints, to coat household appliances and laminates. Silicone rubbers are masses which can be converted into the rubber-elastic state and which, as base polymers, contain polydiorganosiloxanes which have groups accessible to crosslinking reactions.
  • Silicone rubbers differ from the other types of rubber in that they are not purely organic compounds. Their structure gives the silicone rubbers their unique properties. A general distinction is made between hot-vulcanizing (HTV) silicone rubbers and cold-curing (RTV) silicone rubbers. One can differentiate between one and two component systems for the cold-curing RTV silicone rubber compounds.
  • HTV hot-vulcanizing
  • RTV cold-curing
  • RTV-1 one-component silicone rubber
  • RTV-1 the mass polymerizes slowly at room temperature under the influence of atmospheric humidity, the crosslinking taking place through condensation of SiOH groups with formation of Si-O bonds.
  • the SiOH groups are formed by hydrolysis of SiX groups of an intermediate species formed from a polymer with terminal OH groups and a crosslinker.
  • RTV-2 two-component rubbers
  • mixtures of silicic acid esters and organotin compound, for example are used as crosslinking agents.
  • HTV silicone rubbers are usually plastically deformable materials that contain highly disperse silica and organic peroxides as cross-linking catalysts and, after vulcanization at temperatures of more than 100 ° C, result in heat-resistant elastic silicone elastomers (silicone rubber).
  • Another crosslinking mechanism consists in the addition of Si-H groups to Si-bonded vinyl groups, both of which are built into the polymer chains or at the end thereof.
  • Radiation crosslinking is also known for HTV silicone rubbers. Since 1980, a liquid rubber technology (LSR Liquid Silicone Rubber) has been established, are vulcanized in which two liquid silicone rubber components via 'addition crosslinking in injection molding machines. ⁇
  • Liquid silicones open up new applications due to their • special ' material properties. rich in elastomer processing. In this way, new types of elastomer-thermoplastic composites can expand the range of previous silicone rubbers.
  • LIM liquid injection molding
  • Japanese patent application Sho 44-461 (461/1969) describes moldable sponge-like silicone rubber compositions which contain a thermally degradable blowing agent, in particular azobisisobutyronitrile. By breaking down the blowing agent, however, substances are produced which are harmful to humans and are therefore problematic from the point of view of environmental pollution.
  • Japanese patent application Hei 10-36544 (36,544 / 1998) describes a moldable sponge-like silicone rubber composition which comprises hollow thermoplastic silicone resin particles which are mixed into the liquid silicone composition, during which gases develop during the polymerization and in this way produce pores in the molded body ,
  • the silicone rubber sponge produced in this way has only a low mechanical strength, so the uses of this sponge are limited.
  • US 6,299,952 describes a moldable silicone rubber sponge composition which also comprises a gas-containing thermoplastic resin bead.
  • These liquids are, for example, methylene chloride, HALON® (polytetrafluoroethylene), heptane and trichlorethylene.
  • HALON® polytetrafluoroethylene
  • heptane heptane
  • trichlorethylene trichlorethylene
  • the of the present invention underlying technical problem of providing means and methods for producing foamed articles made of silicone, in particular silicone rubber to provide, with the mold body using known methods, in particular the Liquid Injec- tion molding process, in ⁇ simple and inexpensive Way ' can be produced and have sufficient mechanical stability, and ' where the disadvantages known in the prior art are avoided during manufacture.
  • the present invention solves its underlying problem by providing a method for producing a foamed molded body of silicone rubber, whereby a two-component liquid silicone composition in the injection molding apparatus is thermally heated and vulcanized in a shaping cavity of the injection molding apparatus', wherein before the thermal treatment at least one liquid silicone component is mixed with an ammonium compound.
  • a mixture of an ammonium compound is produced in at least one of the two liquid-pasty components of liquid silicone, preferably an addition-crosslinking two-component silicone, and then processed with the aid of injection molding machines for liquid silicone.
  • the thermal treatment of the liquid silicone sublimates the ammonium compound, which means that it changes from the solid state to the gaseous one.
  • the resulting gas or the resulting gaseous reaction products act as blowing agents, so that • open and / or • closed cells are formed in the polymerizing silicone composition over the entire mass.
  • ammonium compounds ammonium carbonate, ammonium carbaminate and ammonium hydrogen carbonate which are preferably used according to the invention are known and toxic see crystalline chemicals that are used in food technology as a blowing agent, for example baking powder.
  • the preferably used solid ammonium hydrogen carbonate passes into the gas phase at about 108 ° C., for example, without becoming liquid.
  • the resulting reaction products are carbon dioxide, ammonia and water vapor, which are reaction products that are often found in the environment.
  • Ammonia which occurs in higher concentrations and is characterized by the pungent smell, can easily be neutralized by suction and contact with hydrochloric acid.
  • ammonium carbonate, ammonium carbamate and ammonium hydrogen carbonate or the reaction products formed at higher temperatures do not poison the (platinum) catalyst of the addition-crosslinking 2-component silicone.
  • a mixture of the above-mentioned ammonium compounds is produced in at least one of the two liquid-pasty components of the liquid silicone, for example the addition-crosslinking two-component silicone, in that a powder of these compounds, the particle size in the lower micrometer range, preferably less than 50 ⁇ m, is homogeneously stirred into at least one component of the two-component silicone.
  • these powdery ammonium compounds are to be stirred homogeneously into a silicone component with a higher viscosity, e.g. over 150,000 mPa * s len, in a preferred embodiment of the invention they are predispersed in silicone oil, the viscosity of which is advantageously between 100 and 3000 mPa * s.
  • the dispersion obtained in this way can then easily be admixed with the silicone components; it serves as an inert distribution aid for the ammonium compounds and can be easily removed later by annealing the foamed molding.
  • foamed moldings can be produced using injection molding machines which are equipped with a metering device for adding colors or other additives to the two silicone components. Dispersing the ammonium compounds in silicone oil 'and feeds the dosing device with this dispersion so that rather than coloring pigments, the ammonium compounds to the two liquid-pasty silicon konkomponenten of the addition-crosslinking 2-component silicone are admixed.
  • the concentration of the ammonium compounds in the liquid-pasty silicone components or in the silicone oil can be varied within a wide range and is between 0.1 and 50% by weight (based on the total mass of the silicone to be processed), particularly preferably between 2 and 8% by weight .-% and very particularly preferably at 10 wt .-%.
  • a "saturated" dispersion of the ammonium compounds in silicone oil is used, ie the ammonium compounds are dispersed in a certain volume for as long as lumen silicone oil until the ammonium compound and silicone oil form a homogeneous paste and no clear silicone oil can be seen.
  • the production of the foamed molded body from silicone essentially corresponds to that of the injection molding of solid silicone molded bodies by means of injection molding machines, with the difference, however, that according to the invention the mold or the mold cavity is not completely filled with silicone in which the ammonium compounds are dispersed.
  • the extent to which the mold is filled can be varied within a wide range using the metering technology available on the injection molding machines and adapted to the desired properties of the foamed molded article: low filling of the mold corresponds to foamed molded articles with lower hardness, fuller filling of the mold corresponds to molded articles with greater hardness ,
  • the process according to the invention for producing foamed moldings is preferably carried out using addition-crosslinking silicone rubber starting materials, in particular addition-crosslinking two-component liquid silicone compositions.
  • addition-crosslinking silicone rubber starting materials in particular addition-crosslinking two-component liquid silicone compositions.
  • the process according to the invention can also be carried out using peroxide-crosslinking silicone rubber starting materials.
  • Another preferred embodiment of the invention relates to the foamed molded articles made of silicone rubber produced using the method according to the invention.
  • “foamed moldings” are understood to mean moldings with open and / or closed cells or pores distributed over their entire mass. Foamed moldings have a bulk density which is lower than that of the silicone rubber framework substance Moldings are characterized by excellent mechanical stability.
  • moldings produced in this way can be used as insulation material against thermal or acoustic influences, as packaging material, as absorber material against shock and shock, as absorber material for absorbing liquids, in particular non-polar liquids, such as e.g. (Mineral) oil, as an absorber material for gases and / or solvent vapors, as a cushioning material, e.g. as a mattress, • mattress topper or pillow, as a medical device, e.g. can be used as a non-sticky nose, ear, anal, fistula, wound tamponade, as a stopper for bacterial culture bottles.
  • non-polar liquids such as e.g. (Mineral) oil
  • an absorber material for gases and / or solvent vapors e.g. (Mineral) oil
  • a cushioning material e.g. as a mattress, • mattress topper or pillow
  • a medical device e.g. can be used as a non-sticky nose,
  • Ammonium hydrogen carbonate (from Fluka) with a particle size of ⁇ 50 ⁇ m, which is obtained by grinding on a steel screen. appropriate mesh size is produced, is by admixing and stirring ' dispersed in silicone oil with a viscosity of approx.1,000 mm 2 * s _1 (Dow Corning® Dimeticone Fluid) until a homogeneous paste is formed.
  • the paste is poured into the metering device of a multi-component metering system (2-component mechanical engineering, Marienheide-Rodt) intended for color mixing.
  • the multi-component dosing system is an integral part of an injection molding machine for liquid silicone (Aarburg, Lossburg) on which liquid silicone from GE BAYER, Leverkusen, SILOPREN® LSR 4030 is processed to form solid moldings.
  • Foamed moldings are produced by mixing the dispersion of ammonium hydrogen carbonate in silicone oil into the liquid silicone by means of a metering system and at the same time reducing the filling volume of the mold to approx. 35%.
  • the other process parameters are essentially identical to the process parameters that are used for the production of solid moldings.
  • the properties of the foamed molded body - hardness, porosity, pore size - can be selected by suitable selection of the liquid silicone, the amount of dispersion added and the filling volume of the mold. adjust in wide ranges.
  • the foamed moldings have a skin, the structure of the pores is mostly closed-celled.

Abstract

Geschäumte Formkörper aus Silikon lassen sich in Grossserie mittels bekannter Spritzgiessmaschinen für Flüssigsilikon dadurch herstellen, das Gemische von pulverförmigem Ammoniumcarbonat und/oder Ammoniumcarbaminat und/oder Ammoniumhydrogencarbonat und mindestens einer der beiden flüssig-pastösen Komponenten von Flüssigsilikon hergestellt und die beiden Flüssigsilikon-Komponenten anschliessend in bekannter Art und Weise verarbeitet werden, mit der Massgabe, dass die Gussform nicht vollständig mit der Dispersion befüllt wird.

Description

Geschäumte Formkörper aus Silikon sowie Verwendung der Herstellungsprodukte
Beschreibung
Die Erfindung betrifft ein Verfahren zur Herstellung von geschäumten Formkörpern aus Silikon, insbesondere Silikonkautschuk, sowie die Verwendung der Herstellungsprodukte.
Silikone lassen sich nach ihrem Anwendungsgebieten in Öle, Harze und Kautschuke einteilen. Silikonöle, die zu Emulsionen, Antischau mitteln, Pasten, Fetten und dergleichen verarbeitet werden, sind lineare Polydimethylsiloxane . Silikonharze sind mehr o- der minder .vernetzte Polymethyl- oder Poly- methylphenylsiloxane, deren Elastizität und Wärmebeständigkeit mit dem Gehalt an Phenyl-Gruppen steigt. Silikonharze werden beispielsweise zur Herstellung von Lacken, zur Beschichtung von Haushaltsgeräten und Laminaten verarbeitet. Silikonkau- tschuke sind in den gummielastischen Zustand überführbare Massen, welche als Grundpolymere Polydior- ganosiloxane enthalten, die Vernetzungs-Reaktionen zugängliche Gruppen aufweisen. Silikonkautschuke unterscheiden sich von den anderen Kautschuktypen dadurch, dass sie keine rein organischen Verbindungen sind. Ihr Aufbau verleiht den Silikonkautschuken ihre einzigartigen Eigenschaften. Generell wird zwischen heißvulkanisierenden (HTV) Silikonkautschuken und kaltvulkanisierenden (RTV) Silikonkau- tschuken unterschieden. Bei den kalthärtenden RTV-Silikonkautschukmassen lassen sich Ein- und Zweikσmponenten-Systeme unterscheiden. Bei Einkomponenten-Silikonkautschuk (RTV- 1) polymerisiert die Masse langsam bei Raumtempera- tur unter dem Einfluss von Luftfeuchtigkeit, wobei die Vernetzung durch Kondensation von SiOH-Gruppen unter Bildung Si-O-Bindungen erfolgt. Die SiOH- Gruppen werden durch Hydrolyse von SiX-Gruppen einer intermediär aus einem Polymer mit endständigen OH-Gruppen und einem Vernetzer entstehenden Spezies gebildet. Bei Zweikomponenten-Kautschuken (RTV-2) werden als Vernetzer beispielsweise Gemische aus Kieselsäureestern und zinn-organischen Verbindung eingesetzt .
Die HTV-Silikonkautschuke stellen meist plastisch verformbare Materialien dar, welche hochdisperse Kieselsäure sowie als Vernetzungskatalysatoren organische Peroxide enthalten und nach Vulkanisation bei Temperaturen von mehr als 100°C wärmebeständige elastische Silikonelastomere (Silikongummi) ergeben. Ein anderer Vernetzungsmechanismus besteht in einer Addition von Si-H-Gruppen an Si-gebundende Vinyl-Gruppen, die beide in die Polymerketten beziehungsweise an deren Ende eingebaut sind. Bei HTV-Silikonkautschuken ist außerdem eine Strahlenvernetzung bekannt. Seit 1980 hat sich eine Flüssigkautschuk-Technologie (LSR, Liquid Silicone Rubber) etabliert, bei der zwei flüssige Silikonkautschuk-Komponenten über' Additionsvernetzung in Spritzgießautomaten vulkanisiert werden. ■
Flüssigsilikone (LSR) eröffnen aufgrund ihrer be- sonderen' Materialeigenschaften neue Anwendungsbe- reiche in der Elastomerverarbeitung. So können neu- ' artige Elastomer-Thermoplast-Verbunde das Spektrum der bisherigen Silikonkautschuke erweitern.
Die Technologie zur Großserienproduktion von soli- den Formkörpern aus Silikonkautschuk unter Verwendung von Flüssigsilikon ist als Spritzgießen (Liquid injection moulding, LIM) bekannt. Das Liquid injection moulding-Verfahren bietet den Vorteil, dass komplexe Teile flexibel gestaltet werden kön- nen, dass eine Vorerhitzung nicht erforderlich ist, dass nach dem Erstarren kein Schrumpfen der Formkörper auftritt und weniger Material erforderlich ist .
Auf (vollautomatisch arbeitenden) Spritzgießmaschi- nen werden zunächst zwei flüssig-pastöse ' Silikonpräpolymere mittels eines statischen Mischers bei Raumtemperatur innig miteinander vermischt und dann unter hohem Druck in eine Form gepresst. Durch Aufheizen der Form kommt es, aufgrund einer Additi- onsreaktion zwischen den beiden Komponenten, zu einer 3-dimensionalen Vernetzung der Silikonpräpolymere zum soliden, ausgeformten Silikonpolymer, zum Formkörper aus Silikon (vgl. Firmenprospekte der Firma Wacker Burghausen bezüglich ELASTOSIL® LR bzw. von GE BAYER Silikone Leverkusen bezüglich. SILOPREN® LSR bzw. von Battenfeld Meinerzhagen bezüglich Spritzgießautomaten für Flüssigsilikon) . Häufig weisen diese Spritzgießmaschinen noch Dosiervorrichtungen zum homogenen Zumischen von Far- ben oder anderen Zuschlagstoffen zu den beiden flüssig-pastösen Siliko präpόlymeren auf, so genannte Mehrkomponenten-Dosieranlagen. Geschäumte Formkörper aus Silikon, beispielsweise Silikonkautschuk, wie Profile oder Verschlussstopfen für Bakterienkulturflaschen und Verfahren für deren Herstellung sind bekannt.
Die japanische Patentanmeldung Sho 44-461 (461/1969) beschreibt formbare schwammartige Silikonkautschuk-Zusammensetzungen, die ein thermisch abbaubares Blähmittel, insbesondere Azobisisobuty- ronitril enthalten. Durch den Abbau des Blähmittels werden allerdings Substanzen erzeugt, die für den Menschen schädlich sind und daher unter dem Gesichtspunkt der Umweltverschmutzung als problematisch anzusehen sind.
Die japanische Patentanmeldung Hei 10-36544 (36,544/1998) beschreibt eine formbare schwammartige Silikonkautschuk-Zusammensetzung, die hohle thermoplastische Silikonharzpartikel umfasst, die in die Flüssigsilikon-Zusammensetzung eingemischt sind, wobei sich während der Polymerisation Gase entwickeln und auf diese Weise Poren im Formkörper erzeugen. Der so hergestellte Silikonkautschuk- Schwamm besitzt allerdings nur eine geringe mechanische Stärke, dementsprechend sind die Verwendungen dieses Schwammes begrenzt.
Die US 6,299,952 beschreibt eine formbare Silikon- kautschukschwamm-Zusammensetzung, die' ebenfalls ein Gas enthaltende thermoplastische Harzkügelchen umfasst.
Ebenfalls ist - ein ' Verfahren bekannt, bei dem zu- nächst niedrig siedende Flüssigkeiten zu unvernetz- ten Silikonpräpolymere hinzugemischt werden. Bei diesen Flüssigkeiten handelt es sich beispielsweise um Methylenchlorid, HALON® (Polytetrafluorethylen) , Heptan und Trichlorethylen. Das erhaltene Gemisch wird dann in eine Form gefüllt und zwar so, dass die Füllmenge nur einen Prozentsatz des Formvolumens ausmacht. Die Form wird dann erhöhten Temperaturen ausgesetzt. Hierbei verdampft die Flüssigkeit, wodurch das Silikonpräpolymer aufquillt und die Form vollständig ausfüllt. Aufgrund der Temperaturzunahme vernetzt das Silikonpräpolymer zunehmend zum Silikonpolymeren, so dass ein geschäumter Formkörper, der die Konturen der Form hat, entsteht. Bislang hat sich diese Technologie nicht für die Großserienproduktion von geschäumten Formkörpern durchgesetzt, da das Zumischen von Flüssigkeiten mit niedrigem Siedepunkt zu Silikonpräpolymeren nächteilig ist. Entweder sind die Flüssigkeiten, die sich mit Silikonpräpolymeren vermischen lassen, leicht brennbar, so dass unter Explosionsschutzbe- ■ dingungen gearbeitet werden muss, oder sie sind umweltschädlich, wie die chlorierten oder fluorierten Kettenkohlenwasserstoffe, FCKW.
Das der vorliegenden Erfindung zugrunde liegende technische Problem besteht darin, Mittel und Verfahren zur Herstellung von geschäumten Formkörpern aus Silikon, insbesondere Silikonkautschuk, bereitzustellen, wobei die Formkörper unter Verwendung bekannter Verfahren, insbesondere des Liquid Injec- tion Moulding-Verfahrens, in einfacher und preiswerter Weise' hergestellt werden können und ausreichende mechanische Stabilität, aufweisen und 'wobei bei der Herstellung die im Stand der Technik bekannten Nachteile vermieden werden.
Die vorliegende Erfindung löst das ihr zugrunde liegende Problem durch die Bereitstellung eines Verfahrens zur Herstellung eines geschäumten Formkörpers aus Silikonkautschuk, wobei eine Zweikomponenten-Flüssigsilikon-Zusammensetzung in' der Spritzgussvorrichtung thermisch erhitzt und in einer formgebenden Höhlung der Spritzgussvorrichtung vulkanisiert wird, wobei vor der thermischen Behandlung mindestens eine Flüssigsilikon-Komponente mit einer Ammoniumverbindung gemischt wird.
Das Problem wird also erfindungsgemäß dadurch gelöst, dass ein Gemisch einer Ammoniumverbindung in mindestens einer der beiden flüssig-pastösen Komponenten' von Flüssigsilikon, vorzugsweise eines addi- tions-vernetzenden Zweikomponenten-Silikons, hergestellt und dann mit Hilfe von Spritzgussmaschinen für Flüssigsilikon verarbeitet wird. Durch die thermische Behandlung des Flüssigsilikons erfolgt eine Sublimation der Ammoniumverbindung, dass heißt, diese geht vom festen Zustand in den gasförmigen über. Das dabei entstehende Gas beziehungsweise die dabei entstehenden gasförmigen Reaktions- produkte wirken als Blähmittel, so dass in der po- lymerisierenden Silikon-Zusammensetzung über die ganze Masse hinweg offene und/oder geschlossene Zellen entstehen.
Die erfindungsgemäß bevorzugt eingesetzten Ammoni- umverbindungen A moniumcarbonat , Ammoniumcarbaminat und Ammoniu hydrogencarbonat sind bekannte, u toxi- sehe kristalline Chemikalien, die u.a. in der Lebensmitteltechnologie als Treibmittel, beispielsweise Backpulver, eingesetzt werden. Der vorzugsweise eingesetzte Feststoff Ammoniumhydrogencarbo- nat geht beispielsweise bei ca. 108°C, ohne flüssig zu werden, in die Gasphase über. Die hierbei entstehenden Reaktionsprodukte sind Kohlendioxid, Ammoniak und Wasserdampf, also in der Umwelt häufig vorzufindende Reaktionsprodukte. Ammoniak, welches in höheren Konzentrationen anfällt und durch den stechenden Geruch charakterisiert ist, kann dabei leicht durch Absaugen und Kontaktierung mit Salzsäure neutralisiert werden. Überraschenderweise hat sich auch gezeigt, dass Ammoniumcarbonat, Ammoniu - carbaminat und Ammoniumhydrogencarbonat beziehungsweise die bei höheren Temperaturen entstehenden Reaktionsprodukte den (Platin-) Katalysator des addi- tions-vernetzenden 2-Komponenten-Silikons nicht vergiften.
Das Herstellen eines Gemisches der vorstehend genannten Ammoniumverbindungen in mindestens einer der beiden flüssig-pastösen Komponenten des Flüssigsilikons, beispielsweise des additions- vernetzenden 2-Komponenten-Silikons, erfolgt erfin- dungsgemäß dadurch, dass ein Pulver dieser Verbindungen, wobei die Partikelgröße im unteren Mikrometerbereich, bevorzugt unter 50 μm, liegt, homogen in mindestens eine Komponente des Zweikomponenten- Silikon eingerührt werden.
Wenn diese pulverförmigen Ammoniumverbindungen in eine Silikonkomponente mit höherer Viskosität, z.B. über 150.000 mPa*s, homogen eingerührt werden sol- len, so werden sie in bevorzugter Ausführungsform der Erfindung in Silikonöl, dessen Viskosität vorteilhafterweise zwischen 100 und 3000 mPa*s liegt, vordispergiert. Die dabei erhaltene Dispersion kann dann leicht den Silikonkomponenten zugemischt werden, es dient hierbei als inertes Verteilungshilfsmittel für die Ammoniumverbindungen und kann später durch Tempern des geschäumten Formkörpers leicht wieder entfernt werden.
In besonders vorteilhafter und besonders bevorzugter Ausführungsform der Erfindung lassen sich geschäumte Formkörper mit Spritzgießmaschinen, die mit einer Dosiervorrichtung zum Zumischen von Farben oder anderen Zuschlagstoffen zu den beiden Si- likonkomponenten ausgestattet sind, herstellen. Man dispergiert die Ammoniumverbindungen in Silikonöl' und beschickt die Dosiervorrichtung mit dieser Dispersion, so dass, anstatt Farbpigmente, die Ammoniumverbindungen zu den beiden flüssig-pastösen Sili- konkomponenten des additions-vernetzenden 2- Komponenten-Silikons zugemischt werden.
Die Konzentration der Ammoniumverbindungen in den flüssig-pastösen Silikonkomponenten bzw. im Silikonöl kann in weiten Bereichen variiert werden und liegt zwischen 0,1 und 50 Gew.-% (bezogen auf die Gesamtmasse des zu verarbeitenden Silikons), besonders bevorzugt zwischen 2 und 8 Gew.-% und ganz besonders bevorzugt bei 10 Gew.-%. Beim besonders bevorzugten Einsatz einer Dosiervorrichtung setzt man eine „gesättigte" Dispersion der Ammoniumverbindungen in Silikonöl ein, d.h. man dispergiert die Ammoniumverbindungen solange in einem bestimmten Vo- lumen Silikonöl, bis Ammoniumverbindung und Silikonöl eine homogene Paste bilden und kein klares Silikonöl mehr erkennbar ist.
Die Herstellung der geschäumten Formkörper aus Si- likon entspricht im Wesentlichen der des Spritzgießens von soliden Silikonformkörpern mittels Spritzgussmaschinen, mit dem Unterschied aber, dass erfindungsgemäß die Gussform oder formgebende Höhlung nicht vollständig mit Silikon, in dem die Ammonium- Verbindungen dispergiert sind, befüllt wird. Das Ausmaß der Befüllung der Form kann durch die bei den Spritzgussmaschinen vorhandene Dosiertechnik in weiten Bereichen variiert und den gewünschten Eigenschaften des geschäumten Formkörpers angepasst werden: eine geringe Befüllung der Form entspricht geschäumten Formkörpern mit geringerer Härte, eine vollere Befüllung der Form entspricht Formkörpern mit größerer Härte.
Das erfindungsgemäße Verfahren zur Herstellung ge- schäumter Formkörper erfolgt vorzugsweise unter Verwendung additionsvernetzendenr Silikonkautschuk- Ausgangsmaterialien, insbesondere additionsvernet- zender Zweikomponenten-Flüssigsilikon-Zusammensetzungen. In einer besonders bevorzugten Ausfüh- rungsform der. Erfindung werden im Handel erhältliche Zusammensetzungen wie SILOPREN® LSR verwendet. Das erfindungsgemäße Verfahren kann in einer weiteren Ausführungsform der Erfindung auch unter Verwendung Peroxid-vernetzender Silikonkautschuk- Ausgangsmaterialien durchgeführt werden. • Eine weitere bevorzugte Ausführungsform der Erfindung betrifft die unter Verwendung des erfindungsgemäßen Verfahrens hergestellten geschäumten Formkörper aus Silikonkautschuk. Im Zusammenhang mit der vorliegenden Erfindung werden unter „geschäumten Formkörpern" Formkörper mit über deren gesamte Masse hinweg verteilten offenen und/oder geschlossenen Zellen oder Poren verstanden. Geschäumte Formkörper weisen eine Rohdichte auf, die geringer als die der Silikonkautschuk-Gerüstsubstanz ist. Die erfindungsgemäß hergestellten Formkörper zeichnen sich durch eine ausgezeichnete mechanische Stabilität aus.
Erfindungsgemäß können derart hergestellten Form- korper als Isolationsmaterial gegen thermische oder akustische Einwirkungen, als Verpackungsmaterial, als Absorbermaterial gegen Schock und Stoß, als Absorbermaterial zum Aufsaugen von Flüssigkeiten, insbesondere unpolaren Flüssigkeiten, wie z.B. (Mi- neral-)Öl, als Absorbermaterial für Gase und/oder Lösemitteldämpfe, als Polstermaterial, z.B. als Matratze, • Matratzenaufläge oder Kopfkissen, als Medizinprodukt, z.B. als nicht-verklebende Nasen-, Ohren-, Anal-, Fistel-, Wundtamponade, als Ver- schlussstopfen für Bakterienkulturflaschen verwendet werden.
Beispiel
Ammoniumhydrogencarbonat (Fa. Fluka) mit einer Partikelgröße von <50 μm, welches durch Zerreiben auf einem Stahlsieb mit . entsprechender Maschenweite hergestellt wird,, wird durch Zumischen und Einrüh-' ren in Silikonöl mit einer Viskosität von ca. 1.000 mm2*s_1 (Dow Corning® Dimeticone Fluid) solange dispergiert bis eine homogene Paste entsteht. Die Paste wird in die für Farbzumischungen vorgesehene Dosiervorrichtung einer Mehrkomponenten- Dosieranlage (Fa. 2-Komponenten Maschinenbau, Ma- rienheide-Rodt) eingefüllt. Die Mehrkomponenten- Dosieranlage ist integraler Bestandteil einer Spritzgießmaschine für Flüssigsilikon (Fa. Aarburg, Loßburg) auf der Flüssigsilikon von GE BAYER, Leverkusen SILOPREN® LSR 4030 zu soliden Formkörpern verarbeitet wird.
Die Herstellung von geschäumten Formkörpern erfolgt dadurch, dass man die Dispersion von Ammoniumhydro- gencarbonat in Silikonöl zum Flüssigsilikon mittels Dosieranlage hinzumischt und gleichzeitig das Be- füllungsvolumen der Form auf ca. 35% reduziert. Die weiteren Prozessparameter sind im Wesentlichen i- dentisch mit den Prozessparametern, die für die Herstellung von soliden Formkörpern verwendet werden. Die Eigenschaften des geschäumten Formkörpers - Härte, Porosität, Porengröße - lassen sich durch geeignete Auswahl der Flüssigsilikone, der Menge an zugemischter Dispersion und dem Befüllungsvolumen der Form . in weiten Bereichen einstellen. Die geschäumten Formkörper weisen eine Haut auf, die Struktur der Poren ist überwiegend geschlossen- zellig.

Claims

Ansprüche
1. Verfahren zur Herstellung von geschäumten Formkörpern aus Silikonkautschuk, wobei eine Zweikomponenten-Flüssigsilikon-Zusammensetzung in einer Spritzgussvorrichtung thermisch erhitzt und in einer formgebenden Höhlung vulkanisiert wird, dadurch gekennzeichnet, dass vor der thermischen Behandlung mindestens eine Flüssigsilikon-Komponente mit einer Ammonium- Verbindung gemischt wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Ammoniumverbindung vor dem Mischen zu einem Pulver zermahlen wird.
3. Verfahren nach Anspruch 1 oder, 2, dadurch ge- kennzeichnet, dass die Ammoniumverbindung vor dem Mischen in Silikonöl dispergiert wird.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass die in Silikonöl dispergierte Ammoniumverbindung unter Verwendung einer Do- siervorrichtung mit der Flüssigsilikon- Komponente gemischt wird.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Ammoniumverbindung ausgewählt ist aus der Gruppe beste- • hend aus Ammoniumcarbaminat , Ammoniumcarbonat und Ammoniumhydrogencarbonat .
6. Verfahren nach einem der Ansprüche 1 bis 5, wobei das Zweikomponenten-Flüssigsilikon ein additionsvernetzendes Silikon ist.
7. Verfahren nach einem der Ansprüche 1 bis 5, wobei das Zweikomponenten-Flüssigsilikon ein
Peroxid-vernetzendes Silikon ist.
8. Verfahren nach einem der Ansprüche 1 bis 7, wobei die formgebende Höhlung der Spritzgussvorrichtung nicht vollständig mit den ther- misch behandelten Komponenten des Flüssigsilikons gefüllt wird.
9. Geschäumter Formkörper aus Silikonkautschuk, herstellbar nach einem Verfahren gemäß einem der Ansprüche 1 bis 8.
10. Verwendung eines geschäumten Formkörpers gemäß Anspruch 9 oder hergestellt gemäß einem der Ansprüche 1 bis 8 als Isolationsmaterial gegen thermische oder akustische Einwirkungen, als Verpackungsmaterial als Absorberma- terial gegen Schock und Stoß, als Absorbermaterial zum Aufsaugen von Flüssigkeiten, insbesondere unpolaren Flüssigkeiten, wie z.B. (Mineral-) Öl, als Absorbermaterial für Gase und/oder Lösemitteldämpfe, als Polstermateri- al, z.B. als Matratze, Matratzenauflage oder Kopfkissen, als Medizinprodukt,' z.B. als nicht-verklebende Nasen-, Ohren-, Anal-, Fistel-, Wundtamponade, und als Verschlussstopfen für Bakterienkulturflasche .
PCT/EP2002/001985 2001-02-27 2002-02-26 Geschäumte formkörper aus silikon sowie verwendung der hestellungsprodukte WO2002072679A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP02716810A EP1379579A1 (de) 2001-02-27 2002-02-26 Geschäumte formkörper aus silikon sowie verwendung der hestellungsprodukte
US10/469,045 US6855740B2 (en) 2001-02-27 2002-02-26 Foamed molded bodies made from silicon and use of said produced products

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10109215 2001-02-27
DE10109215.6 2001-02-27

Publications (1)

Publication Number Publication Date
WO2002072679A1 true WO2002072679A1 (de) 2002-09-19

Family

ID=7675531

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2002/001985 WO2002072679A1 (de) 2001-02-27 2002-02-26 Geschäumte formkörper aus silikon sowie verwendung der hestellungsprodukte

Country Status (3)

Country Link
US (1) US6855740B2 (de)
EP (1) EP1379579A1 (de)
WO (1) WO2002072679A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014004925B4 (de) 2014-04-07 2018-04-05 Carl Freudenberg Kg Schwimmkörper, Verfahren zu seiner Herstellung und dessen Verwendung
CZ307253B6 (cs) * 2012-05-30 2018-05-02 PRAKAB PRAŽSKÁ KABELOVNA, s.r.o. Způsob výroby napěněného silikonu
CN110452542A (zh) * 2019-08-24 2019-11-15 黄凤林 一种硅胶发泡产品的配方

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9625065B2 (en) * 2004-09-03 2017-04-18 Loewenstein Medical Technology S.A. Plastics for medical technical devices
JP5854223B2 (ja) * 2012-03-09 2016-02-09 カシオ計算機株式会社 入力ペン
US11547491B2 (en) 2019-05-02 2023-01-10 Medtronic Navigation, Inc. Oral patient tracking device and method of using the same
US11446094B2 (en) 2019-05-02 2022-09-20 Medtronic Navigation, Inc. Nasal patient tracking device and method of using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5721300A (en) * 1996-04-11 1998-02-24 Wacker-Chemie Gmbh Silicone rubbers of improved green strength and low compression set
DE19750697A1 (de) * 1997-11-15 1999-05-20 Ge Bayer Silicones Gmbh & Co Geschlossenporige Siliconschäume, Verfahren zu ihrer Herstellung und ihre Verwendung
US5985947A (en) * 1998-12-23 1999-11-16 Hagen; Peter Extruded foamed silicone rubber composition and method for making same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5721300A (en) * 1996-04-11 1998-02-24 Wacker-Chemie Gmbh Silicone rubbers of improved green strength and low compression set
DE19750697A1 (de) * 1997-11-15 1999-05-20 Ge Bayer Silicones Gmbh & Co Geschlossenporige Siliconschäume, Verfahren zu ihrer Herstellung und ihre Verwendung
US5985947A (en) * 1998-12-23 1999-11-16 Hagen; Peter Extruded foamed silicone rubber composition and method for making same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ307253B6 (cs) * 2012-05-30 2018-05-02 PRAKAB PRAŽSKÁ KABELOVNA, s.r.o. Způsob výroby napěněného silikonu
DE102014004925B4 (de) 2014-04-07 2018-04-05 Carl Freudenberg Kg Schwimmkörper, Verfahren zu seiner Herstellung und dessen Verwendung
CN110452542A (zh) * 2019-08-24 2019-11-15 黄凤林 一种硅胶发泡产品的配方

Also Published As

Publication number Publication date
EP1379579A1 (de) 2004-01-14
US20040157943A1 (en) 2004-08-12
US6855740B2 (en) 2005-02-15

Similar Documents

Publication Publication Date Title
EP1714767B1 (de) Verfahren zum Herstellen von geschäumten Polymerformteilen aus Flüssigsilikon-Kautschuk
EP0008034B1 (de) Verfahren zur Herstellung von gummielastische, feinporige Formschaumkörper oder Schaumüberzüge ergebenden Organopolysiloxan-Formmassen sowie daraus hergestellte Formkörper
DE3638379C2 (de) Verfahren zur Herstellung eines medizinischen Wundverbandes oder Wundverschlusses
US4101499A (en) Polyorganosiloxanes containing homogeneously distributed fillers
DE69627509T2 (de) Extrudierte profile aus silikongel
DE2166963B2 (de) Bildung von Ohrpfropfen auf Basis von Organopolysiloxanen
DE102006042687A1 (de) Mikrowellenschaum
DE2017317B2 (de) Verfahren zur Überführung von feinteiligen Füllstoffen, Pigmenten und ähnlichen Materialien in einen hydrophoben und bei der Verwendung in organopolysiloxanelastomerbildenden Massen eine Struktur bzw. ein Gefüge nicht induzierenden Zustand
DE2702046A1 (de) Zu einem elastomer haertbare siliconmasse und verfahren zu ihrer herstellung
EP0416229B1 (de) Verfahren zum Herstellen eines feinporigen, weich-elastischen Dichtungsschaumes für Deckel- und Gehäusedichtungen
WO2002072679A1 (de) Geschäumte formkörper aus silikon sowie verwendung der hestellungsprodukte
DE3638381A1 (de) Organopolysiloxanzusammensetzung
DE60112153T2 (de) Siliconschaumgummi-Zusammensetzung und expandierbarer Schwamm
DE2125338C3 (de)
DE4419354A1 (de) Zusatz aus einer terpolymeren Flüssigkeit
DE2702056A1 (de) Zu einem elastomer haertbare siloxanmasse
DE3412865A1 (de) Zu einem elastomeren schaum umwandelbare siliconmasse
EP0854893B1 (de) Verfahren zur schäumung acyloxysilanhaltiger silikonmassen
EP1064322B1 (de) Verfahren zur herstellung von siliconschäumen
DE2546698C3 (de) Hitzehärtende, schwammbildende Organopolysiloxanformmasse und ihre Verwendung zur Herstellung eines Silikonkautschukschwamms
DE2125339A1 (de) Pelletisierter Siliconkautschuk
DE19653993A1 (de) Verfahren zur Herstellung von hochgefüllten Siliconpolymer-Feststoff-Vormischungen
EP0593863A1 (de) Verfahren zum Herstellen von Siliconschaumformteilen im Spritzgiessverfahren
DE2909443A1 (de) Verfahren zum herstellen eines raumtemperaturhaertenden siliconschaumes
EP0012825B1 (de) Bei Raumtemperatur aushärtende Silikonkautschukmasse

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002716810

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2002716810

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10469045

Country of ref document: US

WWW Wipo information: withdrawn in national office

Ref document number: 2002716810

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP