WO2002070899A1 - Füllstücklose innenzahnradpumpe - Google Patents

Füllstücklose innenzahnradpumpe Download PDF

Info

Publication number
WO2002070899A1
WO2002070899A1 PCT/DE2002/000710 DE0200710W WO02070899A1 WO 2002070899 A1 WO2002070899 A1 WO 2002070899A1 DE 0200710 W DE0200710 W DE 0200710W WO 02070899 A1 WO02070899 A1 WO 02070899A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing ring
ring
housing
bore
internal gear
Prior art date
Application number
PCT/DE2002/000710
Other languages
English (en)
French (fr)
Inventor
Reinhard Pippes
Original Assignee
Eckerle Industrie-Elektronik Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eckerle Industrie-Elektronik Gmbh filed Critical Eckerle Industrie-Elektronik Gmbh
Priority to EP02714073A priority Critical patent/EP1364127B1/de
Priority to DE50210701T priority patent/DE50210701D1/de
Publication of WO2002070899A1 publication Critical patent/WO2002070899A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/10Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member
    • F04C2/102Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member the two members rotating simultaneously around their respective axes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/0003Sealing arrangements in rotary-piston machines or pumps
    • F04C15/0007Radial sealings for working fluid
    • F04C15/0019Radial sealing elements specially adapted for intermeshing-engagement type machines or pumps, e.g. gear machines or pumps

Definitions

  • the invention relates to a solid internal gear pump with the features according to the preamble of patent claim 1.
  • the spring acting on the bearing ring can be a hairpin leaf spring which is received in an axial groove with a rectangular cross-section on the outer circumference of the bearing ring and lies flat against the groove base, or a helical compression spring which extends in a manner starting from the outer circumference of the bearing ring Radial bore is arranged and is supported on the housing wall via a ball foot (EP-A 848 165).
  • Freedom of movement can be impaired by the spring force and the flat contact of the leaf spring or the helical compression spring.
  • the impairment particularly in the case of non-lubricating fluids, can lead to the fact that when the internal gear pump is depressurized, e.g. when starting, the bearing ring and with it the ring gear are kept tilted relative to the pinion, there being no perfect sealing contact between the tooth heads. With frequent start / stop operation, this leads to operating problems because the pressure build-up is then only delayed.
  • the object of the invention is therefore to propose an internal gear pump of the type described, in which a perfect sealing contact, in particular between the tooth heads, is also ensured due to the spring loading of the bearing ring.
  • the freedom of movement of the bearing ring can be further improved if the bore in the bearing ring contains an abutment against which the bar spring rests and otherwise has no contact with the bore wall.
  • the contact projection can be provided anywhere in the longitudinal course of the bore, but is expediently arranged in the longitudinal center thereof; its axial extension is small relative to the bore length and advantageously rounded in the sense of a reduction in the contact area with the bar spring, so that theoretically there is point contact.
  • the rod spring is expediently supported at both ends in housing bores provided on both sides of the bearing ring, the position of which is relative to the pinion axis and to the bore of the bearing ring is determined so that in the assembled and depressurized state of the internal gear pump, the bar spring is bent out to the desired extent under pretension.
  • Figure 1 is an end view of the pinion / ring gear unit as a section along the line C - C in Figure 2.
  • the internal gear pump shown in FIGS. 1 and 2 comprises a housing, designated as a whole by 1, which is constructed from a cup-shaped housing part 11 and a likewise cup-shaped housing cover 12 fastened to its end face.
  • the housing 1 contains suction and pressure channels, not shown, which conduct the conveying liquid to and from the internal gear pump in the usual way.
  • a pinion shaft 14 with an axis of rotation 15 is rotatably mounted via slide bearings, not shown, and has a coupling part 16 on the right-hand end in FIG. 2 for engaging the drive shaft of a not shown
  • a pinion 2 which meshes with a ring gear 3, is formed in one piece on the pinion shaft 14.
  • the ring gear 3 is widened on its outer circumference to form a race 4 and rotatably supported in a bearing ring 5 which is accommodated in the housing 1 with axial and radial play.
  • the axial and radial play which is indicated in FIG. 1 by thick lines and is exaggerated in FIG. 3, is, for example, 0.2 to 0.5 mm.
  • a bearing bush 6 made of a bearing metal is pressed into the bearing ring 5.
  • sealing axial plates 8 On the end faces of the housing part 11 and the cover 12 on the one hand and on the end faces of the pinion 2 and ring gear 3, on the other hand, are sealing axial plates 8, which axially limit the tightly sealed suction and pressure chamber within the toothing of pinion 2 and ring gear 3 and connect them to the suction channel and the pressure channel by a breakthrough, not shown.
  • the pinion 2 and the ring gear 3 are mounted relative to one another with an eccentricity e.
  • This distance between the pinion axis 15 and the ring gear axis 18 corresponds to the theoretical tooth geometry of the pinion and ring gear and presupposes that the toothings roll and slide together without play.
  • the tooth flanks of the toothings are each designed as involute curves, i.e. there is one
  • Involute toothing in front the tooth heads being rounded in order to achieve a bump-free run-up on one another in the non-engagement area and for the purpose of sealing.
  • the number of teeth of the ring gear 3 differs from that of the pinion 2 by 1.
  • the one receiving the bearing ring 5 is
  • Housing part 11 rotated concentrically to the pinion axis 15.
  • the bearing surface of the bearing ring 5 is concentric with the ring gear axis 18, which means that the outer peripheral surface of the bearing ring 5 is in turn eccentric to the bearing surface.
  • the wall of the bore or recess of the housing part 11 receiving the running unit is partially penetrated by a bearing pin 20 which is pressed into the bottom of this recess. With the largely semi-cylindrical partial circumferential surface of the bearing pin 20 protruding beyond the wall, it protrudes into an axial groove 22 of the bearing ring 5, which corresponds to the circular cylindrical cross section of the bearing pin 20 is adapted.
  • this bearing pin forms a pivot axis parallel to the axes of the pinion 2 and the ring gear 3, about which the bearing ring 5 can be pivoted in the recess of the housing part 11 within the scope of the radial play available.
  • this swivel axis is offset by approximately 80 ° in the direction of rotation indicated by the arrow with respect to the apex of the non-engaging region in which two tooth heads lie exactly opposite one another.
  • the bearing ring 5 has a through bore 24 which is parallel to the axes of rotation 15 and 18 and through which a rod spring 25 extends, offset by approximately the same amount in the opposite direction of rotation.
  • the bore 24 is offset from both ends to form a shoulder, so that an annular projection 26 is thereby created in the longitudinal center of the bore.
  • the bore 24 opens at both ends in the region of a recess 28 in the housing or cover wall, which has a conically tapering bottom 30, which in turn merges into a housing bore 32 for supporting the bar spring 25.
  • the two housing bores 32 are aligned with one another and are offset radially with respect to the pinion axis 15 with respect to the bore 24. This results in the bending prestress of the bar spring 25 shown in FIG.
  • the bar spring extends contact-free through the bore 24 and the latter relative to considerably further housing recesses 28.
  • the support ends of the bar spring 25 are each accommodated with play in the housing bores 32.
  • the bar spring 25 has a constant circular cross section over its entire length.
  • Spring force depends on the pump size and is generally 2 - 5% of the pressure forces occurring in the pressure chamber
  • the prestressed bar spring 25 produces in the depressurized state, i.e. outside of the operation of the internal gear pump and in its start-up phase, approximately in the same direction as the pressure forces, a pivoting moment on the bearing ring 5 and thereby ensures that the toothing is correctly mutually connected and arranged, as well as for the required sealing contact, regardless of the occurrence of the hydraulic pressure forces in the non-invasive area. Since the contact of the rod spring 25 with the bearing ring 5 is limited to the short section of the contact projection 26 in the bore 24, the bearing ring 5 and with it the ring gear 3 can follow lateral tilting and sliding movements which are due to the hydraulic and mechanical forces due to tolerances Operation occur.
  • the friction hysteresis between the bar spring 25 and the contact projection 26 is so low that when the operating pressure is lifted, e.g. after switching off, the teeth of pinion 2 and ring gear 3, and in particular their tooth heads, lie tightly against one another and consequently a perfect restart with immediate pressure build-up is ensured.
  • the invention is not limited to the design of the internal gear pump according to the exemplary embodiment.
  • trochoidal or cycloid toothing can also be used be used.
  • the bar spring can have cross sections other than circular and need not be of constant cross section.
  • the bearing ring bore penetrated by the bar spring does not necessarily have to be exactly axially parallel to the pinion axis or cylindrical, but as a whole can have a curved or conical surface of revolution as the inner surface, which results in a minimal contact area with the bar spring.
  • the bar spring itself could also have a preferably central thickening which leads to a locally limited contact with the otherwise smooth bore.
  • the two support bores 32 do not necessarily have to be aligned with one another, but can deviate slightly from the coaxial orientation, provided the required prestress of the bar spring is ensured and there is contact with at least one edge of the bore.

Abstract

Eine füllstücklose Innenzahnradpumpe mit einem Gehäuse (11), einem in einer Bohrung des Gehäuses quer zu seiner Achse bewegbar, jedoch undrehbar aufgenommenen Lagerring (5), einem in dem Lagerring umlaufend gelagerten innenverzahnten Hohlrad (3) und einem in dem Gehäuse drehbar gelagerten, mit dem Hohlrad kämmenden Ritzel (2), dessen Zähne durch einen vollen Eingriff in Zahnlücken des Hohlrads, einerseits, und einen Dichtkontakt mit den Zahnköpfen des Hohlrads in einem dem Zahnlückeneingriff annähernd diametral gegenüberliegenden eingriffsfreien Hohlradbereich, andererseits, einen Saugraum und einen Druckraum in den Verzahnungen definieren. Der Lagerring (5) ist relativ zu der Bohrung um eine zu seiner Achse parallele Schwenkachse (20, 22) durch eine den Lagerring (5) belastende Feder (25) derart schwenkbar, dass der Dichtkontakt zwischen den Zahnköpfen von Ritzel (2) und Hohlrad (3) aufrecht erhalten bleibt. Die den Lagerring (5) belastende Feder (25) ist eine Stabfeder, die eine in dem Lagerring etwa in dessen Achsrichtung verlaufende Bohrung (24, 26) durchsetzt und zumindest einendig in einer Gehäusebohrung (32) abgestützt ist.

Description

Füllstücklose Innenzahnradpumpe
Die Erfindung betrifft eine fuUstucklose Innenzahnradpumpe mit den Merkmalen gemäß dem Oberbegriff des Patentanspruches 1.
Innenzahnradpumpen dieser Art sind bekannt. Darin ist das mit einem Ritzel kämmende Hohlrad umlaufend in einem Lagerring aufgenommen, der in dem Pumpengehäuse undrehbar, jedoch um eine zur Ringachse und zur Ritzelachse parallele Schwenkachse schwenkbar angeordnet ist. Um den notwendigen Dichtkontakt zwischen den Zahnköpfen des Hohlräd und des Ritzeis aufrecht zu erhalten, ist die Schwenkachse des Lagerrings so angeordnet und steht dieser unter einer so gerichteten Federlast, daß er zusammen mit dem Hohlrad stets im Bereich des Dichtkontakts der Zahnköpfe radial zur Ritzelachse hin bewegt wird. Gemeinsam mit der Federlast können auf den Lagerring die im Druckraum zwischen Ritzel- und Hohlrädverzähnung herrschenden Druckkräfte auf den Lagerring wirken (DE 196 51 683 A1 , EP-A 848 165). Bei diesen bekannten Innenzahnradpumpen kann die auf den Lagerring wirkende Feder eine Haarnadel- Blattfeder sein, die in einer Axialnut mit einem Rechteckquerschnitt an dem Außenumfang des Lagerrings aufgenommen ist und flächig an dem Nutgrund anliegt, oder eine Schraubendruckfeder, die in einer vom Außenumfang des Lagerrings ausgehenden Radialbohrung angeordnet ist und sich über einen Kugelfuß an der Gehäusewand abstützt (EP-A 848 165).
Aufgrund unvermeidbarer Fertigungstoleranzen sollte dafür gesorgt sein, daß der Lagerring im Betrieb die Bewegungsfreiheit hat, seine Lage entsprechend den auf ihn wirkenden hydraulischen und durch den Zahneingriff zwischen Ritzel und Hohlrad auf ihn übertragenen mechanischen Kräften einzustellen. Diese
Bewegungsfreiheit kann durch die Federkraft und die flächige Anlage der Blattfeder oder der Schraubendruckfeder beeinträchtigt sein. Die Beeinträchtigung kann insbesondere bei nicht schmierenden Fördermedien dazu führen, daß bei drucklosen Zuständen der Innenzahnradpumpe, z.B. beim Anlaufen, der Lagerring und mit ihm das Hohlrad relativ zu dem Ritzel gekippt gehalten werden, wobei ein einwandfreier Dichtkontakt zwischen den Zahnköpfen nicht besteht. Das führt bei einem häufigen Start/Stop-Betrieb zu Betriebsproblemen, weil der Druckaufbau dann jeweils nur verzögert erfolgt.
Aufgabe der Erfindung ist es daher, eine Innenzahnradpumpe der beschriebenen Art vorzuschlagen, bei welcher ein einwandfreier Dichtkontakt insbesondere zwischen den Zahnköpfen auch aufgrund der Federbelastung des Lagerrings gewährleistet ist.
Erfindungsgemäß wird diese Aufgabe gelöst durch die Gestaltung gemäß dem Patentanspruch 1.
Durch den Einsatz einer stabförmigen Biegefeder, die sich durch eine axial gerichtete Bohrung in dem Lagerring hindurch erstreckt, kommt es im ausgelenkten Zustand der Stabfeder zu einem sehr geringen Flächenkontakt zwischen dieser und der Bohrung, der sich auf die Anlage der Stabfeder an einer oder maximal zwei Bohrungskanten beschränkt. Die Bewegungsfreiheit des Lagerrings kann nach einer vorteilhaften Gestaltung noch weiter verbessert werden, wenn die im Lagerring vorhandene Bohrung einen Anlagevorsprung enthält, an welchem die Stabfeder anliegt und im übrigen keinerlei Kontakt mit der Bohrungswandung hat. Der Anlagevorsprung kann irgendwo im Längsverlauf der Bohrung vorgesehen sein, ist aber zweckmäßigerweise in deren Längsmitte angeordnet; seine axiale Erstreckung ist relativ zur Bohrungslänge gering und im Sinne einer Reduzierung der Kontaktfläche mit der Stabfeder vorteilhafterweise gerundet, sodaß es theoretisch zu einem Punktkontakt kommt.
Zweckmäßigerweise ist die Stabfeder beidendig in beidseits des Lagerrings vorgesehenen Gehäusebohrungen abgestützt, deren Lage relativ zur Ritzelachse und zu der Bohrung des Lagerrings so bestimmt ist, daß im montierten und drucklosen Zustand der Innenzahnradpumpe die Stabfeder im gewünschten Maß unter Vorspannung ausgebogen ist.
Weitere Vorteile und Merkmale der Erfindung ergeben sich aus der nachfolgenden Beschreibung eines Ausführungsbeispiels anhand der beiliegenden Zeichnungen sowie aus den Unteransprüchen. In dem Zeichnungen zeigen:
Fig. 1 eine Stirnansicht der Laufeinheit Ritzel/Hohlrad als Schnitt längs der Linie C - C in Fig.2;
Fig.2 einen Schnitt längs der Linie A - A in Fig.1 , und
Fig.3 als Einzelheit in vergrößertem Maßstab einen Teilschnitt längs der Linie B - B in Fig.1 , wobei die Axialplatten weggelassen sind.
Die in den Fig.1 und 2 dargestellte Innenzahnradpumpe umfaßt ein im Ganzen mit 1 bezeichnetes Gehäuse, das aus einem topfförmigen Gehäuseteil 11 und einem an dessen Stirnseite befestigten, ebenfalls topfförmigen Gehäusedeckel 12 aufgebaut ist. Das Gehäuse 1 eηthält nicht gezeigte Saug- und Druckkanäle, die in üblicher Weise die Förderflüssigkeit zur Innenzahnradpumpe und aus dieser heraus leiten.
In dem Gehäuse 1 ist über nicht näher bezeichnete Gleitlager eine Ritzelwelle 14 mit einer Drehachse 15 drehbar gelagert und weist an dem in Fig.2 rechten Ende einen Kuppelteil 16 zum Eingriff in die Antriebswelle eines nicht gezeigten
Antriebsmotors auf. Auf der Ritzelwelle 14 ist ein Ritzel 2 einstückig ausgebildet, das mit einem Hohlrad 3 kämmt. Das Hohlrad 3 ist an seinem Außenumfang zu einem Laufring 4 verbreitert und in einem Lagerring 5 drehbar gelagert, der in dem Gehäuse 1 mit Axial- und Radialspiel aufgenommen ist. Das Axial- und Radialspiel, das in Fig.1 durch dicke Linienführung angedeutet und in Fig.3 übertrieben dargestellt ist, beträgt beispielsweise 0,2 bis 0,5mm. In den Lagerring 5 ist eine Lagerbüchse 6 aus einem Lagermetall eingepreßt. An den Stirnflächen des Gehäuseteils 11 und des Deckels 12 einerseits und an den Stirnflächen von Ritzel 2 und Hohlrad 3 andererseits liegen abdichtend Axialplatten 8 an, welche innerhalb der Verzahnungen von Ritzel 2 und Hohlrad 3 den dicht abgeschlossenen Saug- und Druckraum axial begrenzen und diese durch jeweils einen nicht gezeigten Durchbruch mit dem Saugkanal bzw. dem Druckkanal verbinden.
Wie aus Fig.1 hervorgeht, sind das Ritzel 2 und das Hohlrad 3 relativ zueinander mit einer Exzentrizität e gelagert. Dieser Abstand zwischen der Ritzelachse 15 und der Hohlradachse 18 entspricht der theoretischen Verzahnungsgeometrie von Ritzel und Hohlrad und setzt spielfreies Abwälzen bzw. Gleiten der Verzahnungen aneinander voraus. In dem gezeigten Ausführungsbeispiel sind die Zahnflanken der Verzahnungen jeweils als Evolventenkurven ausgebildet, d.h. es liegt eine
Evolventenverzahnung vor, wobei die Zahnköpfe zur Erzielung eines stoßfreien Auflaufens aufeinander im eingriffsfreien Bereich und zum Zweck der Abdichtung gerundet sind. Die Zähnezahl des Hohlrads 3 unterscheidet sich von derjenigen des Ritzels 2 um 1.
Die Verzahnungen kämmen in einer Weise miteinander, daß in Fig.1 unten die Zähne des Ritzels 2 voll in die Zahnlücken des Hohlrads 3 eingreifen und an den Zahnflanken dichtend anliegen, während sie auf der gegenüber liegenden, in Fig.1 oberen Seite ganz aus den Zahnlücken des Hohlrads 3 ausgetreten sind. In diesem eingriffsfreien Hohlradbereich stützen sich mehrere der Zahnköpfe (in dem Ausführungsbeispiel jeweils drei Zahnköpfe) nacheinander im Verlauf der Umdrehung aufeinander ab und trennen dadurch den Saugraum von dem Druckraum in den Verzahnungen.
In dem gezeigten Ausführungsbeispiel ist der den Lagerring 5 aufnehmende
Gehäuseteil 11 konzentrisch zur Ritzelachse 15 ausgedreht. Die Lagerfläche des Lagerrings 5 hingegen liegt konzentrisch zur Hohlradachse 18, woraus sich ergibt, daß die äußere Umfangsfläche des Lagerrings 5 ihrerseits exzentrisch zu dessen Lagerfläche ist. Die Wand der die Laufeinheit aufnehmenden Bohrung oder Ausnehmung des Gehäuseteils 11 wird teilweise von einem Lagerstift 20 durchsetzt, der in den Boden dieser Ausnehmung eingepreßt ist. Mit der über die Wand überstehenden weitgehend halbzylindrischen Teil-Umfangsfläche des Lagerstifts 20 ragt dieser in eine Axialnut 22 des Lagerrings 5, die dem kreiszylindrischen Querschnitt des Lagerstifts 20 angepaßt ist. Dieser Lagerstift bildet für den Lagerring 5 eine zu den Achsen von Ritzel 2 und Hohlrad 3 parallele Schwenkachse, um welche der Lagerring 5 im Rahmen des zur Verfügung stehenden Radialspiels in der Ausnehmung des Gehäuseteils 11 schwenkbar ist. Wie aus Fig.1 hervorgeht, liegt diese Schwenkachse etwa um 80° in der durch Pfeil angedeuteten Drehrichtung versetzt gegenüber dem Scheitel des eingriffsfreien Bereichs, in dem zwei Zahnköpfe einander genau gegenüber liegen.
Etwa um den gleichen Betrag entgegen der Drehrichtung versetzt weist der Lagerring 5 eine zu den Drehachsen 15 und 18 parallel gerichtete Durchgangsbohrung 24 auf, durch welche sich eine Stabfeder 25 hindurch erstreckt. Die Bohrung 24 ist von beiden Enden her jeweils zu einer Schulter abgesetzt, sodaß dadurch in Längsmitte der Bohrung ein Ringvorsprung 26 geschaffen ist. Die Bohrung 24 mündet beidendig jeweils im Bereich einer Ausnehmung 28 in der Gehäuse- bzw. Deckelwandung, die einen sich konisch verjüngenden Boden 30 aufweist, der wiederum in eine Gehäusebohrung 32 zur Abstützung der Stabfeder 25 übergeht. Die beiden Gehäusebohrungen 32 fluchten in diesem Ausführungsbeispiel miteinander und liegen bezüglich der Bohrung 24 radial zur Ritzelachse 15 hin versetzt. Daraus ergibt sich die in Fig.3 gezeigte Biegevorspannung der Stabfeder 25, die mit ihrer Längsmitte an dem Anlagevorsprung 26 anliegt und folglich den Lagerring 5 mit einer zur Ritzelachse 15 hin gerichteten Federkraft belastet. Im übrigen verläuft die Stabfeder kontaktfrei durch die Bohrung 24 und die dieser gegenüber erheblich weiteren Gehäuseausnehmungen 28. In den Gehäusebohrungen 32 sind die Abstützenden der Stabfeder 25 jeweils mit Spiel aufgenommen. Die Stabfeder 25 hat über ihre ganze Länge einen gleichbleibenden Kreisquerschnitt. Die von ihr ausgeübte
Federkraft ist jeweils abhängig von der Pumpengröße und beträgt im allgemeinen 2 - 5% der im Druckraum auftretenden Druckkräfte
Die Wirkungsweise der geschilderten Anordnung ist folgende:
Bei Drehung des Ritzels 2 in der gezeigten Drehrichtung wird Fördermedium durch den nicht gezeigten Saugkanal in den Saugraum (in Fig.1 links von der Linie A -A) zwischen den Verzahnungen von Ritzel 2 und Hohlrad 3 eingefördert. Aus dem Druckraum (in Fig.1 rechts von der Linie A - A) wird das Fördermedium mit erhöhtem Druck durch den nicht gezeigten Druckkanal gedrückt. Die diesbezügliche Funktion einer Innenzahnradpumpe sowie Lage und Verlauf von Saug- und Druckkanal in dem Gehäuse 1 sind bekannt und bedürfen daher hier keiner weiteren Erläuterung.
Die im Druckraum herrschenden hydraulischen Druckkräfte wirken so, daß ihre Resultierende in Bezug auf die Schwenkachse 20 ein Schwenkmoment an dem Lagerring 5 erzeugt, durch welches dieser, genauer: sein dem eingriffsfreien Bereich zugeordneter Abschnitt, zusammen mit dem Hohlrad 3 radial zur Ritzelachse 15 hin gedrückt wird. Dadurch werden die Zahnköpfe in dem eingriffsfreien Bereich der Verzahnungen druckproportional in dem gegenseitigen Dichtkontakt gehalten. Da diese Funktion aus der eingangs genannten EP-A 848 165 bekannt ist, bedarf es auch hier keiner näheren Erläuterung dazu.
Die vorgespannte Stabfeder 25 erzeugt im drucklosen Zustand, d.h. außerhalb des Betriebs der Innenzahnradpumpe und in deren Anlaufphase, etwa in gleicher Richtung wie die Druckkräfte ein Schwenkmoment an dem Lagerring 5 und sorgt dadurch unabhängig von dem Auftreten der hydraulischen Druckkräfte sowohl für eine richtige gegenseitige Zu- und Anordnung der Verzahnungen als auch für den erforderlichen Dichtkontakt im eingriffsfreien Bereich. Da der Kontakt der Stabfeder 25 mit dem Lagerring 5 sich auf den kurzen Abschnitt des Anlagevorsprungs 26 in der Bohrung 24 beschränkt, kann der Lagerring 5 und mit ihm das Hohlrad 3 seitlichen Kipp- und Schiebebewegungen folgen, die infolge der hydraulischen und mechanischen Kräfte toleranzbedingt im Betrieb auftreten. Auch ist die Reibungshysterese zwischen der Stabfeder 25 und dem Anlagevorsprung 26 so gering, daß bei einer Aufhebung des Betriebsdrucks, z.B. nach dem Abschalten, die Zähne von Ritzel 2 und Hohlrad 3 und insbesondere deren Zahnköpfe dichtend aneinander anliegen und folglich ein einwandfreier erneuter Start mit sofortigem Druckaufbau gewährleistet ist.
Die Erfindung ist nicht auf die Ausbildung der Innenzahnradpumpe nach dem Ausführungsbeispiel beschränkt. So können anstelle der für Ritzel und Hohlrad gewählten Evolventenverzahnung auch Trochoiden- oder Zykloidenverzahnungen eingesetzt werden. Die Stabfeder kann andere als Kreisquerschnitte aufweisen und braucht nicht von konstantem Querschnitt zu sein. Die von der Stabfeder durchsetzte Lagerringbohrung muß weder zwingend exakt achsparallel zu der Ritzelachse noch zylindrisch sein, sondern kann als ganzes eine gekrümmte oder konische Rotationsfläche als Innenfläche aufweisen, die eine minimale Kontaktfläche mit der Stabfeder ergibt. Auch könnte die Stabfeder selbst eine vorzugsweise zentrale Verdickung haben, die in der ansonsten glatt verlaufenden Bohrung zu einem örtlich beschränkten Kontakt mit dieser führt. Weiterhin ist denkbar, anstelle zweier Abstützbohrungen 32 für die Stabfeder 25 nur eine Gehäusebohrung vorzusehen, in welche die Stabfeder straff eingesetzt, z.B. eingepreßt ist und den Lagerring 5 nicht vollständig durchsetzt. Auch müssen die beiden Abstützbohrungen 32 nicht notwendig miteinander fluchten, sondern können geringfügig von der koaxialen Ausrichtung abweichen, sofern die erforderliche Vorspannung der Stabfeder gewährleistet ist und eine Anlage an mindestens einer Bohrungskante besteht.

Claims

Patentansprüche
1. Füllstücklose Innenzahnradpumpe mit einem Gehäuse (1 ), einem in einer Bohrung des Gehäuses quer zu seiner Achse bewegbar, jedoch undrehbar aufgenommenen Lagerring (5), einem in dem Lagerring umlaufend gelagerten innenverzahnten Hohirad (3) und einem in dem Gehäuse drehbar gelagerten, mit dem Hohlrad kämmenden Ritzel (2), dessen Zähne durch einen vollen Eingriff in Zahnlücken des Hohlrads, einerseits, und einen Dichtkontakt mit den Zahnköpfen des Hohlrads in einem dem Zahnlückeneingriff annähernd diametral gegenüberliegenden eingriffsfreien Hohlradbereich, andererseits, einen Saugraum und einen Druckraum in den Verzahnungen definieren, wobei der Lagerring (5) relativ zu der Bohrung um eine zu seiner Achse parallele Schwenkachse (20, 22) durch eine den Lagerring (5) belastende Feder (25) derart schwenkbar ist, daß der Dichtkontakt zwischen den Zahnköpfen von Ritzel (2) und Hohlrad (3) aufrecht erhalten bleibt,
dadurch gekennzeichnet, daß die den Lagerring (5) belastende Feder (25) eine Stabfeder ist, die eine in dem Lagerring etwa in dessen Achsrichtung verlaufende Bohrung (24, 26) durchsetzt und zumindest einendig in einer Gehäusebohrung (32) abgestützt ist.
2. Innenzahnradpumpe nach Anspruch 1 , dadurch gekennzeichnet, daß die Stabfeder (25) beidendig in miteinander fluchtenden Gehäusebohrungen (32) abgestützt ist.
3. Innenzahnradpumpe nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Stabfeder die Bohrung (24) des Lagerrings (5) mit Spiel durchsetzt.
4. Innenzahnradpumpe nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Bohrung (24) des Lagerrings einen Anlagevorsprung (26) für die Stabfeder bildet, an welchem die Stabfeder im gespannten Zustand anliegt.
5. Innenzahnradpumpe nach Anspruch 4, dadurch gekennzeichnet, daß der Anlagevorsprung (26) in Längsmitte der Bohrung (24) angeordnet ist.
6. Innenzahnradpumpe nach Anspruch 4 oder 5, dadurch gekennzeichnet, daß der Anlagevorsprung (26) durch einen Absatz geringeren Durchmessers der Bohrung (24) gebildet ist.
7. Innenzahnradpumpe nach Anspruch 6, dadurch gekennzeichnet, daß der Absatz gerundet ist.
8. Innenzahnradpumpe nach Anspruch 4 oder 5, dadurch gekennzeichnet, daß der Anlagevorsprung durch eine Krümmung der Wandfläche der Bohrung (24) gebildet ist.
9. Innenzahnradpumpe nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die die Stabfeder abstützende Gehäusebohrung (32) im Boden (30) einer Gehäuseausnehmung (28) vorgesehen ist, der sich zu der Gehäusebohrung (32) hin konisch verjüngt.
10. Innenzahnradpumpe nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß der Lagerring (5) zusätzlich zu der Stabfeder (25) durch im Druckraum auf das Hohlrad wirkende hydraulische Druckkräfte in Schwenkrichtung beaufschlagt ist.
11. Innenzahnradpumpe nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß der Lagerring (5) zusätzlich zu der Stabfeder (25) durch mindestens ein in Schwenkrichtung wirkendes Druckfeld beaufschlagt ist.
12. Innenzahnradpumpe nach einem der Ansprüche 1 bis 11 , dadurch gekennzeichnet, daß der Lagerring (5) mit Axialspiel in dem Gehäuse (1) aufgenommen ist und Saugraum und Druckraum in den Verzahnungen von Ritzel und Hohlrad durch an deren Stirnseiten dichtend anliegende Axialplatten (8) eingegrenzt sind.
PCT/DE2002/000710 2001-03-01 2002-02-28 Füllstücklose innenzahnradpumpe WO2002070899A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP02714073A EP1364127B1 (de) 2001-03-01 2002-02-28 Füllstücklose innenzahnradpumpe
DE50210701T DE50210701D1 (de) 2001-03-01 2002-02-28 Füllstücklose innenzahnradpumpe

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10109770.0 2001-03-01
DE2001109770 DE10109770A1 (de) 2001-03-01 2001-03-01 Füllstücklose Innenzahnradpumpe

Publications (1)

Publication Number Publication Date
WO2002070899A1 true WO2002070899A1 (de) 2002-09-12

Family

ID=7675875

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2002/000710 WO2002070899A1 (de) 2001-03-01 2002-02-28 Füllstücklose innenzahnradpumpe

Country Status (3)

Country Link
EP (1) EP1364127B1 (de)
DE (2) DE10109770A1 (de)
WO (1) WO2002070899A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020127082A1 (de) * 2018-12-18 2020-06-25 Eckerle Technologies GmbH Zahnradfluidmaschine

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012215023A1 (de) 2012-06-29 2014-01-02 Robert Bosch Gmbh Innenzahnradpumpe
DE102012211228A1 (de) 2012-06-29 2014-01-02 Robert Bosch Gmbh Innenzahnradpumpe
DE102012214243A1 (de) 2012-08-10 2014-02-13 Robert Bosch Gmbh Innenzahnradpumpe

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0848165A2 (de) 1996-12-12 1998-06-17 Otto Eckerle Füllstücklose Innenzahnradmaschine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0848165A2 (de) 1996-12-12 1998-06-17 Otto Eckerle Füllstücklose Innenzahnradmaschine
DE19651683A1 (de) 1996-12-12 1998-06-18 Otto Eckerle Füllstücklose Innenzahnradpumpe

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020127082A1 (de) * 2018-12-18 2020-06-25 Eckerle Technologies GmbH Zahnradfluidmaschine

Also Published As

Publication number Publication date
DE50210701D1 (de) 2007-09-27
EP1364127B1 (de) 2007-08-15
EP1364127A1 (de) 2003-11-26
DE10109770A1 (de) 2002-09-05

Similar Documents

Publication Publication Date Title
EP0848165B1 (de) Füllstücklose Innenzahnradmaschine
EP2836416B1 (de) Loslager für ein lenkgetriebe
DE19613833B4 (de) Innenzahnradmaschine, insbesondere Innenzahnradpumpe
DE3114127A1 (de) Rollpumpe fuer medizinische zwecke
WO2018224248A1 (de) Loslager, lenkgetriebe und lenksystem
DE102009047643A1 (de) Innenzahnradpumpen für eine hydraulische Fahrzeugbremsanlage
DE10035900A1 (de) Innenzahnradpumpe
DE19815421A1 (de) Innenzahnradmaschine
EP3426541B1 (de) Lenkgetriebe
DE4031554A1 (de) Schlauchpumpe
DE4112291C2 (de)
DE69631306T2 (de) Spiralverdichter
EP1775467B1 (de) Schaltbarer Exzenterantrieb und Rührwerk mit zuschaltbarer Radialkolbenpumpe
WO2012103923A1 (de) Innenzahnradpumpen für eine hydraulische fahrzeugbremsanlage
EP1364127B1 (de) Füllstücklose innenzahnradpumpe
DE10052779A1 (de) Füllstücklose Innenzahnradpumpe
DE102006025367B4 (de) Zahnradpumpe, insbesondere Zahnradölpumpe für Fahrzeuge
DE19517296C2 (de) Füllstücklose Innenzahnradpumpe
EP0539673A1 (de) Innenzahnradpumpe mit zwei Hohlrädern und einem gemeinsamen Ritzel
EP0469135B1 (de) Zahnradpumpe oder -motor
DE10226492B4 (de) Axialkolbenmaschine mit verstellbarem Kolbenhub
WO2002070898A1 (de) Füllstücklose innenzahnradpumpe
WO2006122515A1 (de) Pumpe mit freilauf-rutschkupplung
DE19520922B4 (de) Drehkolbenpumpe
WO2011072817A2 (de) Antrieb

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2002714073

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2002714073

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP

WWG Wipo information: grant in national office

Ref document number: 2002714073

Country of ref document: EP