WO2002056119A1 - Dispositif de formation d'image - Google Patents

Dispositif de formation d'image Download PDF

Info

Publication number
WO2002056119A1
WO2002056119A1 PCT/JP2001/000165 JP0100165W WO02056119A1 WO 2002056119 A1 WO2002056119 A1 WO 2002056119A1 JP 0100165 W JP0100165 W JP 0100165W WO 02056119 A1 WO02056119 A1 WO 02056119A1
Authority
WO
WIPO (PCT)
Prior art keywords
transfer
belt
voltage
image forming
color
Prior art date
Application number
PCT/JP2001/000165
Other languages
English (en)
French (fr)
Inventor
Tsuneo Mizuno
Hiroki Ohta
Atsushi Tano
Hiroki Ushiroda
Original Assignee
Fuji Xerox Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co., Ltd. filed Critical Fuji Xerox Co., Ltd.
Priority to PCT/JP2001/000165 priority Critical patent/WO2002056119A1/ja
Priority to EP01900736A priority patent/EP1351101B1/en
Priority to JP2002556313A priority patent/JPWO2002056119A1/ja
Publication of WO2002056119A1 publication Critical patent/WO2002056119A1/ja
Priority to US10/611,809 priority patent/US6922542B2/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/01Apparatus for electrographic processes using a charge pattern for producing multicoloured copies
    • G03G15/0105Details of unit
    • G03G15/0131Details of unit for transferring a pattern to a second base
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/14Apparatus for electrographic processes using a charge pattern for transferring a pattern to a second base
    • G03G15/16Apparatus for electrographic processes using a charge pattern for transferring a pattern to a second base of a toner pattern, e.g. a powder pattern, e.g. magnetic transfer
    • G03G15/1605Apparatus for electrographic processes using a charge pattern for transferring a pattern to a second base of a toner pattern, e.g. a powder pattern, e.g. magnetic transfer using at least one intermediate support
    • G03G15/162Apparatus for electrographic processes using a charge pattern for transferring a pattern to a second base of a toner pattern, e.g. a powder pattern, e.g. magnetic transfer using at least one intermediate support details of the the intermediate support, e.g. chemical composition
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G2215/00Apparatus for electrophotographic processes
    • G03G2215/01Apparatus for electrophotographic processes for producing multicoloured copies
    • G03G2215/0103Plural electrographic recording members
    • G03G2215/0119Linear arrangement adjacent plural transfer points

Definitions

  • the present invention relates to an image forming apparatus and method such as a printer Copier which forms a color image by an electrophotographic process, and more particularly to a method of transferring toner images of different colors formed on a plurality of photosensitive drums to an intermediate transfer belt.
  • the present invention relates to an image forming apparatus provided with an intermediate transfer process for finally transferring onto a sheet after overlapping.
  • image forming apparatuses such as printers that form a single image using an electrophotographic process are roughly classified into two types: a four-pass type and a single-pass type (tandem type).
  • FIG. 1 shows a conventional 4-pass process.
  • the 4-pass type is a single photoconductor drum 100 and a developing unit 106 for forming images of four colors of yellow (Y), magenta (M), cyan (C) and black (K). Having. After the surface of the photosensitive drum 100 is uniformly charged by a charger 102 provided following the cleaning blade 101, an electrostatic latent image is formed by a laser scan of the exposure unit 104. Is done. Next, an image is formed by developing with the yellow toner of the developing unit 106, and the image is formed on the transfer belt 108, which is an intermediate transfer member, in contact with the photosensitive drum 100 by the transfer roller 1.10. to electrostatically transfer the toner images in the application of the transfer voltage V T 1.
  • the same processing is repeated in the order of magenta, cyan, and black to overlap the colors on the transfer belt 108, and finally, the four-color development is performed by the transfer roller 1 1 2 to which the secondary transfer voltage V T2 is applied.
  • the potential on the transfer belt 108 after the transfer exhibits a gradual attenuation characteristic because the charging force is accumulated on the transfer belt 108 and the sheet.
  • the next transfer is performed after the time corresponding to one rotation of the transfer belt, and there is sufficient time before the transfer at time t1 in FIG. 2 and the transfer at time t2. During that time, the toner potential 1 14 and the transfer belt potential 1 16 due to the transfer voltage V ⁇ are sufficiently attenuated, and the same transfer voltage V T1 What is necessary is just to repeat application of 4 times.
  • the four-pass type is advantageous in terms of cost because only one set of the photosensitive drum 100, the cleaning blade 101, the charger 102, the exposure unit 104, and the transfer port cradle 110 is required.
  • the intermediate transfer belt 108 needs to be rotated four times, and the speed of blank printing is as low as 1Z4 for monochrome printing.
  • Figure 3 shows a conventional single-pass (tandem) process.
  • each of the image forming units 118-1 to 118-4 is arranged in a line for each color of yellow (Y), magenta (M), cyan (C), and black (K). That is, each of the image forming units 118-1 to 118-4 includes a photosensitive drum 120-1 to 120-4, and a cleaning blade, a charger, an LED exposure unit, and a developing unit are arranged around the photosensitive drums 120-1 to 120-4.
  • the image of each color formed on the photosensitive drums 120-1 to 120-4 is transferred onto the intermediate transfer belt 116 which moves in contact with the photosensitive drums 120-1 to 120-4 of each color.
  • the transfer voltage is applied by 122-4, it is sequentially transferred and electrostatically transferred, and finally the backup roller 1
  • a transfer voltage is applied by a paper transfer roller 134 provided on the opposite side of the transfer roller 32, and the image is collectively transferred onto the paper and fixed on the paper by a fixing device 122 to obtain an image.
  • the transfer belt 116 that functions as an intermediate transfer member when used, the transfer from the photosensitive drum to the intermediate transfer belt is primary transfer, and the four-color transfer from the intermediate transfer belt onto paper is commonly called secondary transfer.
  • the transfer rollers 122-1 to 122-4 for transferring the photosensitive drums 120-1 to L20-3 to the intermediate transfer belt 1116, and the paper transfer rollers 134 for transferring the transfer from the intermediate transfer belt 116 to the paper are generally A sponge roller provided with conductivity is used.
  • FIG. 4 shows a potential attenuation carp of the intermediate transfer belt in the single pass type shown in FIG.
  • the single-pass type develops four color toners in the order of yellow, magenta, cyan, and black on each of the photoconductor drums 120-1 to 120-4, and forms an intermediate transfer bell. G are transferred sequentially to 116.
  • the cyan transfer voltage V TC at time t3 and the black transfer voltage V KT at time t4 must be increased by the residual potentials ⁇ V 3 and V 4, respectively. For this reason, in the single-pass image forming process using an intermediate transfer belt, it is necessary to set the transfer voltage of each color to an appropriate value, and as a result, the high-voltage power supply for Therefore, when the secondary transfer power supply is combined, five high-voltage power supplies are required, and the transfer power supply becomes complicated and the cost becomes high.
  • the transfer of secondary colors after the primary color excluding the primary color is To transfer the toner on top of the previous color toner, a higher transfer voltage is required compared to the primary color. The reason for this is that the toner of the previous color has a charge
  • the transfer efficiency voltage margin (voltage margin) is designed to have some margin, and if the transfer efficiency voltage margins from the primary to tertiary colors are overlapped, The transfer from the primary color to the tertiary color can be performed favorably.
  • the present invention provides an image forming apparatus that reduces costs by using a common power supply for supplying a primary transfer voltage for sequentially transferring images of different colors formed on a plurality of photosensitive drums onto an intermediate transfer belt.
  • the purpose is to provide.
  • the present invention also provides a common power supply for primary transfer, which sequentially transfers images of different colors from the photosensitive drum onto the intermediate transfer belt, and for transferring the image of the intermediate transfer belt collectively to paper, and secondary transfer.
  • aims to provide an image forming apparatus that reduces costs
  • Still another object of the present invention is to provide an image forming apparatus which does not affect the developing section and the power supply, and which enhances the stability of color overlay transfer at low cost. Disclosure of the invention
  • An image forming apparatus includes a plurality of image forming units that form a visible image of each color by electrostatically attaching a developer of a different color to an image carrier such as a photosensitive drum, and each of the image forming units includes: For transferring and superimposing the developer adhered on the image carrier in order A belt-shaped transfer member such as an intermediate transfer belt that is in contact with the color image carrier; and an image forming unit that is disposed on the opposite side of each image carrier provided in the image forming unit with the belt-shaped transfer member interposed therebetween.
  • An intermediate transfer electrode member such as an intermediate transfer port for applying a primary transfer voltage for electrostatically transferring an image to a belt-like transfer member from the belt-like transfer member, and a belt-like transfer member on the opposite side of the backup member.
  • a paper transfer electrode member such as a paper transfer port for applying a secondary transfer voltage for batch-transferring the visible image superimposedly transferred to the belt-shaped transfer member onto the paper.
  • the present invention for such an electrophotographic recording apparatus is characterized in that the same primary transfer voltage is commonly applied to a plurality of intermediate transfer electrode members from the same power supply.
  • the belt-shaped transfer member has a relative permittivity ⁇ and a surface resistance S so that the potential charged in the first transfer is attenuated to 1/3 or less of the transfer voltage before reaching the next transfer position. And volume resistance ⁇ are adjusted.
  • the intermediate transfer belt used in the present invention is usually made of a high molecular film, and uses carbon for adjusting the resistance value. Raw materials include polyimide, PV DF, ETFE, and polycarbonate.If carbon is added for resistance adjustment, the relative dielectric constant ⁇ will increase, especially in single-pass transfer. Since the process is repeated, a charge accumulating force is generated on the intermediate transfer belt.
  • the present invention attenuates the accumulated charge to a predetermined level within the time when the transfer belt passes between the photosensitive drums so that the primary transfer voltage can be applied at the same voltage from the same power supply, Furthermore, in order to avoid mutual influence, we focused on the volume resistance ⁇ , surface resistance S, and relative permittivity e of the intermediate transfer belt, and found the optimum area.
  • the volume resistance p of the intermediate transfer belt in the thickness direction is high, charge accumulation occurs without causing the damping force of the belt potential. If it is too low, the charge leaks when a transfer voltage is applied, and the transfer efficiency is reduced. Also, the surface resistance S of the intermediate transfer belt may be high, and if it is too low, the photosensitive drum may be affected, resulting in image defects such as transfer blur and dust. Further, the decay of the belt potential is expressed by a time constant obtained by multiplying the volume resistance p and the relative permittivity ⁇ .
  • the intermediate transfer belt is based on a polymer film, and the volume resistance ⁇ has a voltage dependency that changes depending on the voltage V.
  • the surface resistance S of the intermediate transfer belt must increase the electrical independence (isolation) between the photosensitive drums so that they do not affect each other.
  • the present invention as an intermediate transfer belt having such characteristics, a belt-like transfer member in the relative dielectric constant ⁇ is 8 or more, the surface resistance S 1 0 0 0 the measurement of V 1 X 1 0 9 ⁇ , mouth or body product resistance ⁇ is 1 0 10 ⁇ ⁇ cm or more in the measurement of 1 0 0 V, the measurement of 5 0 0 V was found optimum value of less 1 0 10 ⁇ • cm from experimental considerations.
  • the intermediate transfer electrode member is a transfer roller forming a sponge layer on the outer periphery, i ⁇ of the transfer roller has been found optimum value or less 1 X 1 0 7 ⁇ from experimental considerations.
  • the present invention by optimizing the volume resistance p, the surface resistance S, and the relative dielectric constant ⁇ of the intermediate transfer belt from the voltage dependence, there is no influence between the photosensitive drums, and the potential decay is sufficient. Therefore, the same voltage can be supplied from the same power supply to the plurality of intermediate transfer rollers as intermediate transfer electrode members, and the transfer power supply can be reduced to two for primary transfer and for secondary transfer.
  • the image formed by attaching the developers of different colors formed on a plurality of image carriers arranged in the belt moving direction is electrostatically primary-transferred sequentially to a belt-shaped transfer member and superimposed.
  • the intermediate transfer belt itself which is used for secondary transfer on the recording medium later, is provided.
  • the intermediate transfer belt of the present invention has a relative dielectric constant of £, such that the potential charged in the first primary transfer is attenuated to 1 Z 3 or less of the transfer voltage before reaching the next primary transfer position. Adjust the surface resistance S and volume resistance.
  • the intermediate transfer belt of the present onset Ming the dielectric constant ⁇ is 8 or more, the surface resistivity S is 1 I 0 9 or the measurement of 1 0 0 V, the volume resistivity ⁇ is the measurement of 1 0 0 V 1 0 10 ⁇ ⁇ cm or more, and wherein the measurement value of 5 0 0 V is 1 0 10 ⁇ ⁇ cm or less.
  • the present invention provides a method for measuring the volume resistance of an intermediate transfer belt used in an image forming apparatus.
  • This measurement method measures between the electrodes that are in contact with the front and back surfaces of the intermediate transfer belt. Applying an arbitrary transfer voltage to be measured, measuring the belt potential attenuation characteristics with respect to the elapsed time when the application of the transfer voltage is stopped, and based on the measurement results of the belt potential attenuation characteristics, Calculating a volume resistance p depending on a change in belt potential.
  • the measurement step measures the belts potential every predetermined time interval delta t from when turned down the application of the transfer voltage, calculating step, the belt potential of B Terakoku t n V (t n), a constant time Ma ⁇ If the belt potential at time t n i before t is V (t perennial-x),
  • ⁇ 0 is the dielectric constant of the vacuum, 8.85 4 X 10 “ 12 [F / m]
  • the conventional method of measuring volume resistance is a general-purpose measuring instrument, for example, a high resistance meter HP 433A manufactured by HP.
  • HP high resistance meter
  • the inventor of the present application has found that the volume resistance of the intermediate transfer belt has a voltage dependency, and has devised a new measuring method of the volume resistance having the voltage dependency.
  • the volume resistance measuring method of the present invention is a method of measuring a damping characteristic when a voltage is applied, and calculating a volume resistance depending on the voltage from the damping characteristic.
  • the volume resistance accurately corresponds to the actual damping characteristic. Can be measured.
  • This volume resistivity p as Yotsute intermediate transfer belt in the measurement of 1 0 0 V 1 0 10 ⁇ ⁇ cm or more, carbon for the optimum value of less 1 0 10 ⁇ ⁇ cm in the measurement of 5 0 0 V
  • the resistance value of the polymer film can be adjusted accurately by using.
  • the present invention provides an image forming apparatus in which a primary transfer power supply and a secondary transfer power supply are shared.
  • the present invention relates to a plurality of image forming units that form a visible image of each color by electrostatically adhering developers of different colors on an image carrier, and a method of adhering on each image carrier of the image forming unit.
  • the belt-shaped transfer member is in contact with the image carrier of each color so as to sequentially transfer the transferred developer, and the belt-shaped transfer member is located on the opposite side of each image carrier provided in the image forming section.
  • An intermediate transfer electrode member to which a primary transfer voltage for electrostatically transferring an image from the image forming section to the belt-shaped transfer member is applied, and a belt-shaped transfer member on the side opposite to the backup member;
  • the image forming apparatus is provided with a sheet transfer electrode member for applying a secondary transfer voltage for batch-transferring the transferred visible image to a sheet, which is arranged in contact with and sandwiched between the belt-shaped transfer members. Apply to transfer electrode member
  • the primary transfer voltage and the secondary transfer voltage applied to the paper transfer electrode member are supplied from the same power supply.
  • the secondary transfer voltage to the sheet transfer electrode member from the power source configured to provide the primary transfer voltage was low Do via the voltage drop member into a plurality of intermediate transfer electrode members from the power source .
  • the primary transfer voltage and the secondary transfer voltage can be integrated into the same power supply, and the transfer power supply Costs can be reduced and the equipment can be made more compact.
  • the present invention provides an image forming apparatus in which, when a transfer voltage is applied to a plurality of transfer units from the same power supply, optimal transfer conditions can be set for each transfer unit. That is, the present invention is directed to a plurality of image forming units for forming visible images of each color by electrostatically adhering developers of different colors on an image carrier, A belt-shaped transfer member in contact with the image carrier of each color for sequentially transferring and superimposing the attached developer; and a belt-shaped transfer member located on the opposite side of each image carrier provided in the image forming section.
  • An intermediate transfer electrode member for applying a primary transfer voltage for electrostatically transferring an image from the image forming section to the belt-shaped transfer member, and a belt on the opposite side of the knock-up member Paper transfer electrode member that applies a secondary transfer voltage for batch-transferring the visible image superimposed and transferred onto the belt-shaped transfer member onto the paper, and is placed in contact with the belt-shaped transfer member, and a plurality of intermediate transfer electrode members. Apply the same primary transfer voltage in common
  • the transfer portion with a large number of color overlays is difficult to perform overlay transfer due to the resistance of the transfer voltage electrode member itself without intentionally changing the toner characteristics of each color.
  • the transfer voltage is increased, and it is possible to transfer more stably from a primary color of a single color to a higher-order color obtained by superimposing a plurality of colors.
  • a compensation resistance is provided between a primary transfer power supply and each of a plurality of intermediate transfer electrode members. It is characterized in that it is set higher for a smaller transfer area and lower for a transfer area with a larger number of color overlays. Therefore, due to the compensation resistance, the number of color overlays that are difficult to be superimposed is large.
  • the effective transfer voltage is higher in the transfer area, and it is possible to perform the transfer from the primary color to the higher-order color more stably. .
  • the plurality of transfer voltage electrode members are conductive members, and the transfer nip is a contact position between the image carrier of each color and the belt-shaped transfer member.
  • the transfer distance is set to be shorter in a transfer portion having a smaller number of color overlaps, and is set to be longer in a transfer portion having a larger number of color overlaps.
  • the distance from the belt contact position of the transfer voltage electrode member to the transfer nip which is the belt contact position of the image carrier such as the photosensitive drum, differs for each color, and the transfer voltage is applied via the intermediate transfer belt which is a resistor.
  • the voltage drop force increases according to this distance. Therefore, the effective transfer voltage becomes higher in a transfer portion having a short distance and a large number of superimposed colors in which transfer is difficult, and it is possible to more stably transfer from primary colors to higher colors.
  • Figure 1 is an illustration of the conventional 4-pass image forming process
  • FIG. 2 is an explanatory diagram of the belt potential decay characteristic of the four-pass process of FIG. 2;
  • FIG. 3 is an illustration of a conventional single-pass image forming process
  • FIG. 4 is an explanatory diagram of a belt potential decay characteristic of the single-pass type process of FIG. 3;
  • FIG. 5 is an explanatory diagram of an embodiment of the present invention.
  • Figure 6 is an illustration showing the image forming unit for yellow shown in Figure 5
  • Fig. 7 is an explanatory drawing of the transfer process mechanism of Fig. 5.
  • FIG. 8 is a characteristic diagram of a volume resistance with respect to a measured voltage of the intermediate transfer belt used in the present invention
  • FIG. 9 is a characteristic diagram of an attenuation characteristic measured for obtaining the volume resistance of FIG.
  • FIG. 10 is a characteristic diagram of the surface resistance with respect to the measured voltage of the intermediate transfer belt
  • Fig. 11 is a characteristic diagram of the relative permittivity of the intermediate transfer belt against the measured voltage
  • Figure 12 is a characteristic diagram of the relative permittivity with respect to the volume resistance of the intermediate transfer belt at a measured voltage of 500 V;
  • Fig. 13 is a characteristic diagram of the relative permittivity with respect to the volume resistance of the intermediate transfer belt at a measured voltage of 100 V;
  • Fig. 14 shows the characteristic of the residual potential with respect to the volume resistance of the intermediate transfer belt.
  • Fig. 15 shows the characteristics of transfer efficiency with respect to the transfer voltage of the intermediate transfer belt.
  • Figure 16 shows the characteristics of transfer efficiency with respect to the volume resistance of the intermediate transfer belt.
  • Fig. 17 shows the transfer efficiency versus transfer roller resistance
  • Fig. 18 is a characteristic diagram of transfer efficiency with respect to surface resistance of the intermediate transfer belt
  • FIG. 19 is an explanatory diagram of another embodiment of the present invention in which the power source of the secondary transfer of the primary transfer is shared.
  • FIG. 20 is a characteristic diagram of the primary transfer efficiency with respect to the primary transfer voltage in FIG. 1 is a characteristic diagram of the secondary transfer efficiency with respect to the secondary transfer voltage in FIG. 19;
  • 'FIG. 22 is a characteristic diagram of the primary transfer voltage with respect to the resistance value of 19;
  • FIG. 23 is an explanatory view of an embodiment in which the optimum effective transfer voltage for the transfer nip of the photosensitive drum is set according to the transfer opening resistance value;
  • Fig. 24 is an explanatory diagram comparing the characteristics of the primary transfer efficiency with respect to the primary transfer voltage according to Fig. 23 and the comparative example.
  • Fig. 25 is a characteristic diagram of the measurement results of the primary transfer efficiency with respect to the primary transfer voltage according to Fig. 23;
  • Fig. 26 is the rise voltage and fall voltage of the transfer efficiency of 90% with respect to the transfer roller resistance of Fig. 23 Characteristic diagram;
  • Fig. 27 is an explanatory diagram comparing the characteristics of transfer efficiency of 90% or more with respect to the primary transfer voltage according to Fig. 23 with the comparative example;
  • Figure 28 shows the effective transfer that is optimal for the transfer nip of the photosensitive drum according to the resistance value of the compensation resistor.
  • Fig. 29 is a characteristic diagram of the rise voltage and fall voltage at a transfer efficiency of 90% with respect to the combined resistance of the transfer roller and the compensation resistor in Fig. 28;
  • FIG. 30 is an explanatory diagram comparing the characteristics of the transfer efficiency of 90% or more with respect to the primary transfer voltage according to FIG. 28 with a comparative example;
  • FIG. 31 is an explanatory diagram of an embodiment in which an optimum effective transfer voltage for a transfer nip of a photosensitive drum is set according to a separation distance of a transfer roller;
  • Figure 32 is a characteristic diagram of the rise voltage and fall voltage of 90% transfer efficiency with respect to the roller separation distance in Figure 31;
  • FIG. 33 is an explanatory view showing the characteristics of the transfer efficiency of 90% or more with respect to the primary transfer voltage according to FIG. 31 in comparison with a comparative example;
  • FIG. 5 shows an embodiment of an image forming apparatus provided with an intermediate transfer process according to the present invention, taking a color printer as an example.
  • the color printer 10 includes an intermediate transfer belt 24 wrapped around a driving roller 26, tension rollers 28 and 30, and a backup roller 32, and is directed from an upper portion of the intermediate transfer belt 24 to a downstream portion.
  • image forming units 12-1, 12-2, 12-3, and 12-4 are arranged for four colors of yellow (Y), magenta (M), cyan (C), and black (K).
  • the image forming unit 12-1 of yellow (Y) in FIG. 6 the image forming units 12-1 to 12-4 are charged brushes 16 around the photosensitive drum 14-1 as an image carrier. — 1, LED array 18-1, developing roller 21-1 of the developing unit, and cleaning blade 15-1 in front of charging brush 16-1.
  • the toner cartridges 20-1 to 20-4 are attached to the image forming units 22-1 to 22-4 provided in the image forming units 12-1 to 12-4. Have been.
  • an intermediate transfer roller 38 as an intermediate transfer electrode member is provided on the opposite side of the intermediate transfer belt 24 with the intermediate transfer belt 24 interposed therebetween.
  • — 1, 38-2, 38-3, 38— 4 I have.
  • the printing process in the color printer 10 is such that the toner images of the respective colors formed on the photosensitive drums 14-1 to 14-4 of the image forming units 12-1 to 12-4 are transferred to the intermediate transfer roller 3.
  • the image is transferred onto the intermediate transfer belt 24 in order and passed through the drive roller 26, the tension rollers 28, 30 and the opposite of the knock-up roller 32.
  • the paper is transferred to a secondary transfer position by a paper transfer roller 45 provided on the side.
  • the paper 50 pulled out of the tray 48 by the pickup roller 58 is conveyed by the paper transfer port 45, and is applied between the paper transfer roller 45 and the backup roller 32.
  • the toner image on the intermediate transfer belt 24 is transferred to the paper 50 by the secondary transfer voltage, and is heated and fused by the fixing device 54 having the heat roller 56 and the backup roller 58, and the stat force 60 It is exhausted.
  • Fig. 7 shows the process unit built in the color printer 10 of Fig. 5.
  • the intermediate transfer disposed on the opposite side of the intermediate transfer belt 24 with respect to the photosensitive drums 14 _ 1 to 14-4 of the image forming units 12-1 to 12-4.
  • the rollers 38_1 to 38-4 use a sponge roller in which a sponge layer is formed around a metal shaft, and a specified primary transfer voltage from a common power supply 40, for example, 100,000 V is commonly received.
  • the paper transfer roller 45 provided opposite to the backup roller 32 also forms a sponge roller, and receives a specified secondary transfer voltage, for example, 2000 V, from the power supply 46 at the timing of paper transfer. .
  • each unit in FIG. 7 is specifically described as follows.
  • the photoreceptor drums 14-1 to 14-4 provided in the image forming unit 12-1 to 12-4 are formed, for example, from a charge generation layer and a charge transport layer on an aluminum coarse tube having an outer diameter of 3 O mm.
  • a photosensitive layer having a layer pressure of about 25 m is applied.
  • the photosensitive drums 14-1 to 14-14 are uniformly charged by the charging brush 16-1, as shown in the yellow Y image forming unit 12-1 in FIG.
  • the charging brush 16-1 contacts the surface of the photoconductor drum 14-1, and the charging bias is, for example, frequency 800Hz, P-P voltage 1100V, and offset voltage 1-650V.
  • LED array 1 8— 1 is It has a wavelength of 740 nm and a resolution of 600 dpi, and forms an electrostatic latent image on the surface of the photosensitive drum 1411 by performing exposure according to the image.
  • a laser scanning exposure unit or the like can be used.
  • a developing device having negatively charged toner of each color. In the case of FIG. 6, a developing drum 2 using yellow toner.
  • the intermediate transfer rollers 38-1 to 38-4 are connected to the photosensitive drums 14-1 to 14 by the image forming units 12-1 to 12-4.
  • the timing of superimposition of each color on the intermediate transfer belt 24 is adjusted by the write timing of the LED array, and accurate alignment is performed.
  • the order of color superposition and the number of colors are not limited to this embodiment.
  • the transfer from the photoconductor drums 14-1 to 14-14 to the intermediate transfer belt 24 is carried out from the power supply 40 to the intermediate transfer rollers 38-1 to 38-4 to +500 V to 100 V. It is performed electrostatically by applying a predetermined voltage in the range of V.
  • the intermediate transfer belt 24 is made of, for example, a polycarbonate resin member having a thickness of 150 ⁇ m, the resistance of which is adjusted with a force.
  • the image is charged.
  • Intermediate transfer so that the potential of the intermediate transfer belt attenuates to less than one-third of the transfer voltage before it reaches the transfer position by the next photosensitive drum 14-12 and intermediate transfer roller 38-2.
  • the relative permittivity ⁇ , surface resistance S, and volume resistance ⁇ of the belt 24 are adjusted.
  • the optimum values of the relative permittivity ⁇ , the surface resistance S, and the volume resistance ⁇ ⁇ ⁇ ⁇ for the intermediate transfer belt 24 are as follows according to experimental studies by the present inventor.
  • the relative dielectric constant ⁇ of the intermediate transfer belt 24 is 8 or more
  • the surface resistance S of the intermediate transfer belt 24 is 1 XI 09 from the measurement of 100 V;
  • the relative permittivity ⁇ , the surface resistance S, and the volume for providing a performance capable of attenuating the potential of the belt to one third or less of the transfer voltage during the movement from the first transfer position to the next transfer position is provided.
  • the intermediate transfer belt 24 of the present invention is not limited to polycarbonate resin, but may be a resin material such as polyimide, nylon, or fluorine. It is not necessary to provide the intermediate transfer rollers 38-1 to 38-4 at the positions opposing the photosensitive drums 14-1 to 14-14, and the intermediate transfer rollers are located upstream with respect to the rotation direction of the transfer belt 24. L, may be provided at a downstream separated position.
  • the color image transferred by being superimposed on the intermediate transfer belt 24 by the primary transfer is collectively transferred onto a recording medium such as a sheet at a secondary transfer unit.
  • Paper transfer roller 4 5 for this secondary transfer, between the shaft and the surface is using sponge roller which is adjusted to the resistance value of the order of 1 0 5 ⁇ 1 0 8 ⁇ , the intermediate transfer belt 2 4 It is arranged so that it is pressed with a pressure of about 1 to 2 kg by the back-up projector 32.
  • the hardness of the sponge roller used as the paper transfer roller 45 is set to 40 to 60 degrees at a force of 1C.
  • the power supply 46 connected to the paper transfer roller 45 is a constant current source, and a bias is applied to the image position on the intermediate transfer belt 24 by the power supply 46 on the paper conveyed at the same time. Then, the toner is electrostatically transferred. The color image transferred onto the paper by the secondary transfer is thermally fixed on the paper by a fixing device 56 to obtain a fixed image.
  • the speed of the intermediate transfer belt by the drive roller 26 is, for example, 91 mm / s. Of course, the printing speed determined by the speed of the intermediate transfer belt is not limited to this, and may be lower or higher.
  • the intermediate transfer belt used in the present invention should attenuate the accumulated charge by applying a transfer voltage to a predetermined level during the time when the belt passes between photoreceptor drums, and have no mutual influence.
  • the inventor of the present application has found the optimum area by paying attention to its volume resistance o, surface resistance S and relative permittivity ⁇ . (Volume resistance of the intermediate transfer belt) When the resistance value is high, the electric charge accumulates without the potential damping force when the resistance value is high. Drop it. A higher surface resistance S of the intermediate transfer belt is better. If the surface resistance S is too low, each photosensitive drum is affected, and image defects such as transfer blur and dust are generated.
  • the intermediate transfer belt is based on a polymer film, and its volume resistance changes depending on the voltage V. When the voltage is high, the volume resistance ⁇ ⁇ is low, and when the voltage is low, the volume resistance ⁇ is high. Have dependencies. Therefore, in order to attenuate the potential of the intermediate transfer belt, it is necessary to lower the volume resistance ⁇ at a high voltage. It can be strengthened to effectively prevent dust.
  • the surface resistance S of the intermediate transfer belt must increase the electrical independence between the photosensitive drums so that they do not affect each other. .
  • the relative dielectric constant ⁇ is 8 or more
  • the surface resistivity S is 1 0 0 0 V measured at 1 X 1 0 9 ⁇ of 1 X 1 0 1 1 ⁇ / mouth
  • FIG. 8 is a characteristic diagram showing the voltage dependence of the volume resistance of the intermediate transfer belt according to the present invention.
  • a characteristic curve 62 is a characteristic of the volume resistance ⁇ of the intermediate transfer belt of the present invention with respect to the measured voltage, and largely depends on the applied voltage. That is, the measurement voltage The force is low, and the volume resistance) 0 is high, and the volume resistance P decreases as the measured voltage increases.
  • the measurement voltage The force is low, and the volume resistance) 0 is high, and the volume resistance P decreases as the measured voltage increases.
  • the measurement of 500 V is 1 XI 0 8 ⁇ 1 ⁇ 10 10 ⁇ ⁇ cm
  • the characteristic curve 62 of the volume resistance in FIG. 8 satisfies the condition of this volume region.
  • FIG. 9 shows a potential decay characteristic when 1000 V is applied to the intermediate transfer belt of the volume resistance having the voltage dependence of the characteristic curve 62 of FIG.
  • the potential decay characteristic when 1000 V is applied is obtained as a measurement result shown by a characteristic curve 66.
  • the attenuation characteristics of the characteristic curve 66 show that when the voltage is high, the attenuation is large, and when the voltage is low, the attenuation is moderate.
  • the volume resistivity has a force-voltage dependency
  • the time constant is expressed by a value obtained by multiplying the relative permittivity ⁇ by the volume resistance ⁇ .
  • the volume resistance ⁇ has a voltage dependency
  • the volume resistance ⁇ Is a function of voltage, and is ⁇ (V). Therefore, the time constant of the damping characteristic is
  • the voltage resistance P of the volume resistance P of the intermediate transfer belt has not been considered, and the specification power as a parameter for optimizing the potential decay polarity required for the intermediate transfer belt has been unclear.
  • the measurement of volume resistance is performed using a measuring instrument such as HP 4339A, a no-resistance meter manufactured by HP.
  • the volume resistance measured by this commercially available measuring instrument is far away from the characteristic curve 62 measured by the present invention, as shown by the characteristic curve 64 in FIG.
  • the potential decay characteristic was obtained from the volume resistance according to the characteristic curve 64 in FIG. 8 measured by this commercially available measuring instrument, the potential did not decay as shown by the characteristic curve 68 in FIG. Value.
  • the value of the volume resistance measured with a commercially available measuring instrument cannot be used to specify the optimum range of the intermediate transfer belt of the present invention.
  • the characteristic curve 70 in Fig. 9 is obtained.
  • this is also a value far from the actual attenuation characteristic 66.
  • the volume resistance p of the intermediate transfer belt in the present invention is required to have a voltage dependency, and the attenuation characteristic due to a constant volume resistance must be excluded. From this, the characteristic curve 62 of the volume resistance p depending on the measured voltage shown in FIG. 8 is a characteristic obtained by calculation from the actual damping characteristic 66 in FIG.
  • the method of obtaining the volume resistance having the voltage dependency in FIG. 8 from the attenuation characteristic in FIG. 9 according to the present invention will be described as follows.
  • the damping characteristic is basically represented by a CR equivalent circuit. Therefore, the potential for time delay is given by the following equation.
  • V (t) V 0 -exp (- ⁇ ) (3)
  • Equation (6) Equation (6)
  • FIG. 10 is a characteristic diagram showing the voltage dependence of the surface resistance s of the intermediate transfer belt according to the present invention.
  • the surface resistance S of the intermediate transfer belt in the present invention maintains, for example, 1E + 11, that is, a value in the vicinity of 1 ⁇ 10 11 ⁇ / port, in a measurement voltage range of 100 V to 1000 V, and the voltage dependency is almost ignored. What you can do ⁇ I understand.
  • the measurement of the surface resistance in FIG. 10 is performed using HP's high resistance meter 4339A.
  • the relative dielectric constant ⁇ of the intermediate transfer belt is necessary for holding the charge of the belt, strengthening the adhesive force during the conveyance of the toner, and preventing dust and fuzz.
  • the range of relative permittivity ⁇ is related to the time constant of the damping characteristic Influences the decay of the discharge curve. The charge applied to the intermediate transfer belt is accumulated during transfer, but if it is too high, part of the transfer voltage at the next transfer position is canceled and acts as a residual potential, so the charge must be held within a certain range .
  • the intermediate transfer belt is required to rapidly release electric charge when the electric potential is high and to retain the electric charge when the electric potential is low.
  • the voltage dependence of the volume resistance P of the intermediate transfer belt is as shown in the characteristic curve 62 in FIG. Is a very important factor in the low resistance region.
  • the charge holding characteristic of this transfer belt needs to be 300 V or less, and preferably around 100 V. Therefore, it is better that the relative dielectric constant ⁇ is high even in a region of 300 or less.
  • the volume resistance ⁇ of the intermediate transfer belt is adjusted by adding a force to a resin material such as a poly-carbon resin, but the relative permittivity ⁇ force is determined by the amount of the force to be applied to the resin.
  • FIGS. 12 and 13 show the measurement results of the relative permittivity ⁇ with respect to the change in the volume resistivity ⁇ measured at a measurement voltage of 500 V.
  • the relative permittivity ⁇ is 8 or more when the volume resistivity is less than 10 1 ⁇ -cm. From the measurement results, the range of the relative dielectric constant ⁇ was set to 8 or more in the present invention.
  • The relative dielectric constant ⁇ is 8 or more in the range of L 0 14 ⁇ ⁇ cm.
  • the residual voltage required for the intermediate transfer belt is less than 300 V, preferably 1 00 V since it is before and after contact Keru 1 0 10 ⁇ ⁇ cm or less in the 500V volume resistivity of the intermediate transfer belt of the present invention It can be seen that the optimal range for satisfying the condition that the residual voltage is 300 V or less is satisfied.
  • the next transfer will be performed. In this way, the charge accumulated on the intermediate transfer belt during the time t1 until the next transfer must be sufficiently attenuated, for example, to 300 V or less.
  • FIG. 15 shows the measurement results of the relationship between the transfer voltage and the transfer efficiency in the primary transfer. From this measurement result, if the good transfer efficiency is set to 90% or more, the transfer voltage at which good transfer efficiency can be obtained is in the range of 700 to 1300V. If the transfer voltage set here is: L 00 0 V, the effective voltage only needs to be at least 700 V when the transfer voltage of 1000 V is applied, even if there is a residual voltage in the second and subsequent transfers. Good transfer is performed when the residual potential of the transfer belt is in the range of ⁇ 300V. However, an actual intermediate transfer belt requires a potential of 300 V or less, preferably around 100 V, to hold the charge at the next transfer position. . Therefore, if the residual voltage is less than 300 V after 1 hour from the attenuation characteristic 66 in Fig. 9, the primary transfer voltage is 90% or more even if all the voltages are supplied from the same power supply. Will be.
  • the volume resistivity ⁇ which is set to the optimum region by the present invention, the transfer to the volume resistivity in the case of using an intermediate transfer belt having a surface resistivity S and Hi ⁇ conductivity ⁇ efficiency This shows the transfer efficiency of yellow and black when the transfer voltage is set to 1000 V. From the characteristics of these measurement results, the transfer efficiency decreases when the volume resistance is increased to accumulate electric charge. I understand.
  • FIG. 17 shows the measurement results of the relationship between the resistance of the intermediate transfer ports 38-1 to 38-4 and the transfer efficiency in the present invention. From the measurement results, the range where the transfer efficiency of 90% or more is good is where the resistance of the transfer roller is 10 4 to 10 7 ⁇ . In other words, the optimum range of the resistance value of the intermediate transfer rollers 38-1 to 38-4 is set to 10 7 ⁇ or less. Note the resistance of the intermediate transfer roller is equal to or less than 10 5 Omega, image quality force poor, since the dust of the transfer has occurred, the optimal value of the resistance of the intermediate transfer roller is in the range of 10 5 to 10 7 Omega Power desirable.
  • FIG. 18 shows the measurement results of the relationship between the transfer efficiency and the surface resistance S of the intermediate transfer belt of the present invention. From the characteristics of the measurement results, a preferable range in which the transfer efficiency is 90% or more may be set to a range of approximately 1 ⁇ 10 9 to 1 ⁇ 10 10 ⁇ , and in the present invention, l xl 09 to; The range of L X10 11 ⁇ port is the optimum area.
  • FIG. 19 is an explanatory diagram of another embodiment of the present invention in which a power supply for supplying the primary transfer voltage and the secondary transfer voltage is shared.
  • the color printer 10 has image forming units 12-1 to 12-4 having photoconductor drums 14-1 to 14-4 arranged sequentially along the running direction of the intermediate transfer belt 24.
  • Intermediate transfer rollers 38-1 to 38-4 using sponge rollers are arranged on the opposite sides of the photosensitive drums 14-1 to 14-13 with the intermediate transfer belt 24 interposed therebetween.
  • a paper transfer roller 45 for secondary transfer is disposed with respect to the backup roller 32 on the left side of the intermediate transfer belt 24 with the intermediate transfer belt 24 interposed therebetween.
  • the supply of the primary transfer voltage to the intermediate transfer rollers 38-1 to 38-4 for performing the primary transfer and the supply of the secondary transfer voltage to the paper transfer roller 45 for performing the secondary transfer are performed from the same power supply 72. Is being done. That is, the plus side of the power supply 72 is directly connected to the paper transfer roller 45, and the power supply 72 is also connected to the intermediate transfer ports 38-1 to 38-4 via the voltage drop resistor 74 at the same time. As a result, the power supply 72 applies the secondary transfer voltage V T2 to the paper transfer roller 45, and the secondary transfer voltage V T2 is reduced by a predetermined voltage by the resistor 74 to the primary transfer voltage V T1 for intermediate transfer. Rollers 38-1 to 38-4 are supplied.
  • the secondary transfer voltage V T2 is, for example, 2000 V
  • the primary transfer voltage V T "i which is the voltage dropped by the resistor 74, is, for example, 1000 V.
  • Figure 20 represents a primary transfer efficiency of the measurement results for the intermediate transfer belt 24 when changing the intermediate transfer port one la 38- 1 38- 4 to the primary transfer voltage V T1 of FIG.
  • the primary transfer efficiency is defined as the ratio of the amount of toner transferred on the intermediate transfer belt to the amount of toner attached to the photosensitive drum before transfer on a solid image. Has defined. In this transfer efficiency, 90% or more is judged to be good transfer.
  • the area where the primary transfer efficiency is 90% or more is in the range of 600 V to 130 V, and one point in this area is set as the primary transfer voltage V T1 , for example, 10 V. Set to 0 V.
  • the primary transfer efficiency of each color has the same voltage characteristics.
  • the intermediate transfer rollers 38-1 to 38-4 are connected to the transfer nips which are the belt contact points of the photosensitive drums 141-1 to 14-14.
  • the transfer voltage can be applied by a single power supply.
  • the variation of the effective transfer voltage at the transfer nip which is the belt contact point of the photosensitive drums 14-1 to 14-4 of each color, is within the voltage margin of the transfer efficiency, and the voltage margin of each color overlaps It should just be.
  • FIG. 21 shows the secondary transfer efficiency with respect to the change of the secondary transfer voltage applied to the paper transfer roller 45 in the embodiment of FIG.
  • the secondary transfer efficiency is defined as the ratio of the amount of toner transferred onto a recording medium such as paper to the amount of toner before transfer on the intermediate transfer belt 24 in a solid image.
  • the secondary transfer efficiency is judged to be good if it is 90% or more.
  • the secondary transfer efficiency is 90% or more in the range of the secondary transfer voltage 1500 V to 2000 V.
  • One of the points is, for example, the secondary transfer voltage.
  • FIG. 22 shows the primary transfer voltage when the resistance value of the resistor 74 of FIG. 19 is changed in a state where 2000 V is supplied as the secondary transfer voltage. From this characteristic curve, the secondary transfer voltage of 2000 V can be reduced to the primary transfer voltage of 1000 V when the resistance value is set to 200 ⁇ .
  • the power supply 72 is controlled by a constant voltage. However, it is only necessary to obtain the optimum execution transfer voltage by installing the resistor 74. Since the voltage drop for obtaining the next transfer voltage is determined by the resistance value of the resistor 74, the power supply 72 may perform constant current control.
  • FIG. 23 is an explanatory diagram of an embodiment in which the optimum effective transfer voltage for the transfer nip of the photosensitive drum is set based on the resistance value of the transfer roller, and takes the case of a color printer as an example.
  • an intermediate transfer belt 24 wound around a drive roller 26, transfer rollers 28, 30 and a backup roller 32 is provided in the color printer 10, and the intermediate transfer belt 24 is provided.
  • the image forming units 12-1 to 12-4 are arranged side by side along the transport direction at the top of the image forming unit.
  • the image forming unit 1 2—1 to 1 2—4 includes a photoreceptor drum 14—1 to 14—14, and an intermediate transfer roller 3 that applies a primary transfer voltage to the opposite side of the intermediate transfer belt 24.
  • a paper transfer roller 45 for performing secondary transfer on the paper 52 sent out by the pick-up roller 52 is disposed on the opposite side of the backup roller 32 from the intermediate transfer belt 24.
  • the paper on which the next transfer is performed is fixed by heating and fusing the developer in a fixing device 54, and then discharged with a stating force 60.
  • the same transfer voltage is applied to the intermediate transfer rollers 38-1 to 38-4 from the common power supply 40, but the resistance value of the intermediate transfer rollers 38-1 to 38-4
  • the effective transfer voltage applied to the transfer nip of the photoconductor drums 14-1 to 1-4-4 is reduced by decreasing the It is set to be higher as the transfer portion on the downstream side increases.
  • the resistance value of the intermediate transfer roller 38-1 to 38-4 is set to the value on the upstream side where the number of color overlays is small. The resistance value is set higher in the transfer portion, and the resistance value is set lower in the transfer portion on the downstream side where the number of color overlaps is large.
  • Fig. 24 shows the transfer efficiency of each color with respect to the change of the primary transfer voltage in the embodiment of the present invention in which the effective transfer voltage applied to the transfer nip becomes higher in the transfer portion having a larger number of color superimpositions. This is shown in comparison with a comparative example in which the effective transfer voltage is the same. That is, Fig. 24 (A) is a comparative example of the transfer efficiency of each color with respect to the primary transfer voltage when the effective transfer voltage of the transfer unit is kept constant without changing the number of color superpositions. B) is the transfer efficiency of each color with respect to the primary transfer voltage when the transfer portion having a larger number of color overlays has a higher effective transfer voltage according to the present invention. First, looking at the Jt comparative example in Fig.
  • the characteristics of yellow, magenta, and cyan as the primary colors 7 8-1, 1, 7 8-2, 7 8-3, and yellow as the secondary color The characteristic of red with magenta overlapped 80-1, the characteristic of green with yellow over cyan 80-2, and the characteristic of pull 80 with cyan overlaid with cyan are also shown.
  • the tertiary color has the characteristic of black 82 in which yellow, magenta, and cyan are sequentially superimposed.
  • the voltage margin of the primary transfer efficiency 75 is the characteristic of cyan as the final primary color.
  • tertiary color tertiary color 8 2 Determined by 3 and black tertiary color tertiary color 8 2. That is, the boundary of the voltage margin 75 on the constant voltage side is determined by the shoulder of the falling edge of the transfer efficiency of the characteristic 82 of the tertiary color black, while the boundary on the high voltage side of the voltage margin 75 is The characteristic of cyan, which is the primary color of the final color, is determined by the voltage at the shoulder on the falling side of the characteristic 7 8-3. In contrast to the voltage margin 75 in such a comparative example, for each of the primary color and secondary color characteristics 7 8 -1 to 80-3, there is room for the voltage margin on the low-voltage side. In the tertiary color characteristics 82, there is little margin in the voltage margin on the voltage side.
  • the margin of the voltage margin on the high-voltage side is small except for the characteristic 82 of the tertiary color black.
  • the characteristics of the primary color of the first color, yellow 7-8-1, and the characteristics of the second color, magenta, 7 8-2, are large for the constant voltage side voltage margin and high for the high voltage side. One gin is getting smaller.
  • the effective transfer voltage when the effective transfer voltage is increased in the transfer portion having a large number of color superpositions according to the present invention shown in FIG. 24 (B), the characteristics of the first primary color, cyan, 8 8-3 and 3 '' It has a concurrence voltage margin 85 determined by the characteristics of black, the next color 92, and the effective voltage in the transfer area is lower in the upstream area with a smaller number of colors than in the downstream area with a larger number of colors.
  • the voltage margin of the transfer efficiency in the characteristic 8 8 ⁇ 1 of the yellow of the primary color and the characteristic 8 8 ⁇ 2 of the magenta in the second color expands to the high voltage side.
  • the intermediate transfer rollers 38-1 to 38-4 that perform primary transfer are made of a metal shaft with a diameter of 8 mm and a sponge coated with a sponge that has been made conductive with a single-boner.
  • a sponge roller is used.
  • the hardness of the sponge is about 40 degrees C by fusing force, and the pressure of the transfer nip where the photoconductor drums 14 11 to 14 14 and the intermediate transfer belt 24 contact is 20 to 3 linear pressure. Make it about 0 gZ cm.
  • the resistance of the sponge roller used for the intermediate transfer rollers 38-1 to 38-4 is a voltage of +100 V at the center of the shaft with a load of 500 g applied to both ends of the shaft. Is measured as the resistance of the sponge line width when is applied.
  • Fig. 25 (A) shows the measurement results of the primary transfer efficiency with respect to the primary transfer voltage for yellow, magenta, cyan, and black.This is because the image forming conditions and the transfer conditions are almost the same for each color. Each color shows the same transfer characteristics.
  • Figure 25 (B) shows the primary transfer efficiency for the primary transfer voltage of the secondary color obtained by superimposing the two colors.In this case as well, the image forming conditions and the transfer conditions for each color are almost the same. The secondary colors also exhibit the same transfer characteristics as each color.
  • Figure 25 (C) shows the measurement results of the primary transfer efficiency for the primary transfer voltage of the tertiary color in which yellow, magenta, and cyan are superimposed. Comparing the transfer characteristics of the primary, secondary, and tertiary colors in Fig. 25 (A), (B), and (C), the transfer efficiency rises and falls to 90%, which is good.
  • Fig. 25 (A) shows that the primary color in Fig. 25 (A) rises at 600 V and falls at 130 V, which is the lowest primary transfer voltage, and the number of superimposed colors increases. ), The rise is 700 V, the fall is 150 V, and the tertiary color in Fig.
  • the transfer characteristic shifts to the high voltage side as the rising edge increases to 800 V and the number of colors increases.
  • the 2 5 a similar primary color, secondary color, performs the sponge roller 1 0 6 Omega and 1 0 8 Omega to investigate the transfer efficiency with respect to a change in transcription voltage for the tertiary color, 2 from the result 1 0 4 Omega as 6 summarizes the 1 0 6 Omega, 1 0 the rising voltage of the three sponge roller 8 Omega and falling voltage.
  • the yellow, magenta, and black intermediate transfer rollers 38-1, 38-2, and 38-8 select the sponge roller 1 0 6 Omega for 4, for the intermediate transfer roller 3 8-3 cyan it is desirable to select a sponge roller of 1.0 4 Omega.
  • FIG 2 7 (A) is a case of a full color 1 0 4 Omega roller, yellow one as the comparative example in FIG. 2 7 (beta), magenta, black 1 0 6 Omega roller, cyan 1 0 4 Omega It summarizes the voltage margin for the primary transfer voltage in the optimal combination of rollers.
  • the common voltage margin 71 in the comparative example of 27 ( ⁇ ) and the optimum example of FIG. 27 ( ⁇ ) has a rising voltage 800 V determined by the final primary color cyan and the tertiary black color.
  • the falling voltage is in the range of 130 OV, and both the comparative example and the optimum example have the same voltage margin.
  • the primary color yellow, magenta and black, as shown by the dotted line in Fig. 27 ( ⁇ )
  • the part where the voltage margin spreads to the higher voltage side compared to the comparative example 7 2 1, 7 2 -2, 7 2-3 is obtained, and the voltage margin of 1? Missing color is higher on the high voltage side than the center voltage of 110 OV, and the margin is further increased.
  • the sponge roller is used as the intermediate transfer roller 38-1 to 38-4, but it can also be used in the form of a resistor brush or a resistor sheet. .
  • the resistance values of these intermediate transfer electrode members are limited to the embodiment of FIG. Not selected, selected according to the resistance value of intermediate transfer belt 24, printing speed, toner charge amount, toner adhesion amount, primary transfer voltage, etc. it can.
  • FIG. 28 is an explanatory diagram of an embodiment of the present invention in which the optimum effective transfer voltage for the transfer nip of the photosensitive drum is set by the resistance value of the compensation resistor connected to the path from the common power supply.
  • An example is a color printer.
  • the single-pass type structure of the color printer 10 is the same as that of the embodiment of FIG. 23, except that a power supply 40 for supplying a primary transfer voltage is applied to the intermediate transfer rollers 38-1 to 38.
  • a power supply 40 for supplying a primary transfer voltage is applied to the intermediate transfer rollers 38-1 to 38.
  • Intermediate transfer by inserting and connecting compensating resistors 74-1, 74-2, 74-2 and 74-4 in the path that supplies voltage to 4 and making these resistance values different Laura 3 8—;!
  • the effective transfer voltage applied to the transfer nip which becomes the belt contact point of the photoconductor drums 1 to 14-4 for each color via 3-8-4, is transferred to the transfer section where the number of color superpositions increases. It is set to be higher. More specifically, all the resistance value as an intermediate transfer roller 3 8 1-3 8-4 uses the sponge roller 1 0 4 Omega.
  • Figure 29 shows the voltage margin of the transfer efficiency from the primary color to the tertiary color when the resistance value of the compensation resistors 74-1 to 74-4 inserted in Figure 28 is changed. It shows the falling voltage and the rising voltage with respect to the change in resistance value when a compensation resistance is added to the pile.
  • 1 M ⁇ is set as the optimum resistance value of the compensation resistors 74-1, 74-2, and 74-4 for yellow, magenta, and black.
  • Cyan resistance 7 4—3 has no resistance.
  • the common voltage margin 75 is the same as 800 V to 300 V, but in the optimal example, In comparison with the comparative example, for the primary colors of yellow, yellow and black, portions 76-1, 76-2 and 76-3 where the voltage margin spreads to the high voltage side were obtained. The secondary color red is also There was obtained a small part 76-4 of the voltage side with a wider voltage margin. As a result, the voltage margin of the primary color is more marginal on the high voltage side than 110 V, which is the center voltage.
  • FIG. 31 shows an embodiment of the present invention in which an optimum effective transfer voltage is set according to the separation distance of the intermediate transfer roller from the transfer nip, and also takes a color printer as an example.
  • stainless steel metal rollers having an outer diameter of 80 mm are used as the intermediate transfer rollers 80-1 to 80-4.
  • the intermediate transfer rollers 80-1 to 80-4 are positioned at a distance from the center line of the photosensitive drums 14-1 to 14-14 extending vertically downward from the center of the photosensitive drums 14-1 to 14-14.
  • the distance from the center line of 0-4, which also extends vertically downward from the center is defined as the separation distance L1, L2, L3, L4, and is located downstream of the transfer nip.
  • the distances L1 to L4 of the intermediate transfer rollers 80-1 to 80-4 are changed in a range of 10 to 45 mm.
  • 45 mm is almost half of the distance between the drum shafts of 90 mm, and corresponds to almost the center between the drums.
  • the distance between the drums is not limited to 90 mm, and can be set within an appropriate range that is allowable depending on the device configuration.
  • Fig. 32 shows the voltage map of the transfer efficiency from the primary color to the tertiary color when the separation distance of the intermediate transfer rollers 80-1 to 80-4 in Fig. 31 to the transfer nip is changed.
  • the rising voltage and the falling voltage with respect to the roller separation distance of the gin, ie, the voltage margin, are summarized.
  • the voltage margin of each color shifts to the higher voltage side as the roller separation distance increases.
  • the black separation distance 30 mm.
  • Fig. 33 (A) shows a comparative example of voltage margins of primary, secondary, and tertiary colors with respect to the primary transfer voltage when the separation distance of all colors is 10 mm.
  • the voltage margin according to the present invention with respect to the primary transfer voltage when the optimum separation distance is selected for B) is shown as an optimal example. In this case, too, the separation distance was adjusted for each color to obtain the optimal example. In such cases, the voltage margins of the primary color yellow, magenta, black, and the secondary color red were expanded to the high voltage side so as to be surrounded by broken lines.
  • the transfer characteristics other than the final transfer color can be further stabilized.
  • a metal roller is used as the intermediate transfer roller 38-1 to 38-4, but other shapes such as conductive brushes and sheets are used. You may.
  • the positions of the intermediate transfer rollers 38-1 to 38-4 are not limited to the downstream side of the transfer nip, but may be the upstream side or a combination of the upstream side and the downstream side.
  • the optimum area of the relative dielectric constant, the surface resistance, and the volume resistance of the intermediate transfer belt used in the processing process of electrophotographic recording is found, so that the belt can be moved during the transfer position.
  • the transfer potential is sufficiently attenuated, and the same transfer voltage can be applied at the next transfer position. This makes it possible to use the same power supply for the transfer units of a plurality of colors, thereby reducing the cost of the transfer power supply and reducing the size of the apparatus.
  • the transfer voltage of the primary transfer unit for multiple colors and the secondary transfer voltage used for the secondary transfer after the primary transfer can be supplied from the same power supply, thereby reducing the cost of the transfer power supply and the equipment It can be compact.
  • the effective transfer voltage applied to the transfer nip of the photosensitive drum is set to be higher as the number of color superimpositions increases. It is possible to stabilize color overlay transfer when a transfer voltage is applied to a plurality of transfer units from a single power supply.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)

Description

技術分野
本発明は、 電子写真プロセスによってカラー画像を形成するプリンタゃコピア などの画像形成装置及び方法に関し、 特に、 複数の感光体ドラム上に形成された 異なる色のトナー画像を中間転写ベルトに転写して重ね合せた後に最終的に用紙 上に転写する中間転写プロセスを備えた画像形成装置に関する。
従来、電子写真プロセスを用いてカラ一画像を形成するプリンタ等の画像形成 装置は、 4パス型とシングルパス型 (タンデム型) の 2つに大別される。
図 1は従来の 4パス型のプロセスである。 4パス型は、単一の感光体ドラム 1 0 0とイェロー (Y) 、 マゼン夕 (M) 、 シアン (C) 及びブラック (K) の 4 色の画像を形成するための現像ュニット 1 0 6を有する。 感光体ドラム 1 0 0は 、 クリーニングプレード 1 0 1に続いて設けられた帯電器 1 0 2により表面を均 一に帯電された後に、 露光ュニット 1 0 4のレーザスキヤンにより静電潜像が形 成される。 次に現像ュニット 1 0 6のイエロ一トナーにより現像して画像を形成 し、 感光体ドラム 1 0 0と接触した中間転写体である転写ベルト 1 0 8上に転写 ローラ 1 .1 0による 1次転写電圧 VT 1の印加で静電的にトナー画像を転写する。 続いてマゼン夕、 シアン、 及びブラックの順に同じ処理を繰り返して転写ベルト 1 0 8上に色を重ね、最終的に 2次転写電圧 VT2が印加された転写ローラ 1 1 2 によって 4色の現像剤を用紙上に一括転写し、 定着器 1 1 2で定着している。 ここで、 転写後の転写ベルト 1 0 8上の電位は、転写ベルト 1 0 8と用紙に電 荷力蓄積されるため緩やかな減衰特性を示す。 4パス型の場合、 次に転写が行わ れるのは転写ベルト 1周分の時間後となり、 図 2の時刻 t 1で転写し次に時刻 t 2 転写するまでには時間的に十分な余裕があり、 その間に転写電圧 V τ による トナー電位 1 1 4及び転写ベルト電位 1 1 6は十分に減衰し、 同じ転写電圧 VT1 の印加を 4回繰り返せばよい。
このように 4パス型では、 感光体ドラム 100、 クリーニングプレード 101 、帯電器 102、 露光ュニット 104及び転写口一トラ 110が 1セットあれば よいので、 コスト的に優位である。 しかし、 1枚のカラ一画像を形成するために は、 中間転写ベルト 108を 4回転させる必要があり、 カラ一印刷のスピードは モノク口印刷の 1Z4と遅くなる。
図 3は従来のシングルパス型 (タンデム型) のプロセスである (特開平 11—
249452号等)。 シングルパス型は、 イェロー (Y)、 マゼンタ (M)、 シ アン (C)及びブラック (K) の各色毎に画像形成ュニット 118— 1〜 118 — 4を一列に並べる。 即ち、 画像形成ュニット 118— 1〜118— 4は感光体 ドラム 120— 1〜120— 4を備え、 その周囲にクリーニングブレード、帯電 器、 L E D露光ュニット、現像器を配置し、 各画像形成ュニット 118— 1〜1 18-4で各色の画像を形成する。 感光体ドラム 120— 1〜 120— 4に形成 された各色の画像は、 各色の感光体ドラム 120— 1〜 120— 4と接触して移 動する中間転ベルト 116上に転写ローラ 122— 1〜122— 4による転写電 圧の印加を受けて順次重ねて静電的に転写され、最終的にバックアップローラ 1
32の反対側に設けた用紙転写ローラ 134による転写電圧の印加で用紙上に一 括して転写し、 定着器 122で用紙に定着して画像を得ている。
ここで中間転写体として機能する転写ベルト 116を用いた場合、感光体ドラ ムから中間転写ベルトへの転写を一次転写、 中間転写ベルトから用紙上への 4色 一括転写を二次転写と一般的に称する。 また感光体ドラム 120— 1〜: L20— 3から中間転写ベルト 1116転写する転写ローラ 122— 1〜 122— 4も、 中間転写ベルト 116から用紙に転写する用紙転写ローラ 134も、一般的には 、導電性を付与したスポンジローラを使用している。
このようなシングルパス型の場合は、 1回のパスでカラ一画像を形成すること ができるので、 4パス型より印刷速度を早くすることができる利点がある。 図 4は、 図 3のシングルパス型における中間転写ベルトの電位減衰カープであ る。 シングルパス型は、 イエロ一、 マゼン夕、 シアン、 ブラックの順に 4色のト ナーをそれぞれの感光体ドラム 120—1〜120— 4に現像して中間転写ベル ト 1 1 6に順次転写している。 最初 t 1で転写電圧 VT をイエロ一転写電圧 Vと して TY印加して感光体ドラム 1 2 0— 1から中間ベルトにイエロ一画像を転写す ると、 その後のベルト上の電位 1 4 4一 1は、 中間転写ベルト 1 1 6に電荷が蓄 積されるため緩かな減衰特性を示し、 次のマゼン夕の感光体ドラム 1 2 0— 2の 転写には残留電位厶 V 2力残っている。 このため時刻 t 2で感光体ドラム 1 2 0 _ 2のマゼンタ画像に対し実効的な転写電圧 VT を得ようとすると、残留電位厶 V 2分だけ転写電圧 VTMを高くしなければならない。 同様に時刻 t 3のシアン転 写電圧 VTC、 時刻 t 4のブラック転写電圧 VKTについても、 それぞれ残留電位 Δ V 3 , 厶 V 4だけ高くしなければならない。 このため、 中間転写ベルトを用いた シングルパス型の画像形成プロセスにあっては、各色の転写電圧をそれぞれ適し た値に設定する必要があり、 その結果、齊用の高圧電源を 4色に対応して 4つ用 意しなければならず、 2次転写電源を合わせると高圧電源が 5つも必要となり、 転写電源が複雑化し、 コスト力高くなる問題があつた。
—方、 4パス型およびシングルパス型によらず、 用紙上や中間転写体上に色重 を転写を行うカラ一画像形成においては、 モノカラーの一次色を除く 2次色以降 の転写では、前色のトナーの上にトナーを重ねて転写するため、 1次色と比較し て高い転写電圧力'必要とされる。 この理由は、前色のトナーは電荷を有しており
、 次色のトナーを転写する際に転写電界を弱めてしまうからである。一般的に、 転写効率の電圧マ一ジン (電圧余裕度) はある程度余裕を持たせて設計されてお り、 1次色から 3次色までの転写効率の電圧マ一ジンが重なっていれば、 1次色 から 3次色までの転写を良好に行うことができる。
しかしながら、 1次色から 3次色までの転写を満足させ、 かつ、 転写特性の信 頼性を上げるための電圧マージンを確保するのは難しく、 次に列挙する様々な方 法が提案または実施されている。
( 1 ) トナー付着量の低減
色重ね転写において、 イエロ一、 マゼン夕、 シアンの三色を重ね合せる 3次色 として黒を作り出す転写力最も難しい。 このためカラ一トナーを 1 0 0 %、 或い は、 ある割合でブラックトナーに置き換える所謂下色除去 (U C R) を行うこと が多い。 この場合、三色で形成するカラー画像の色再現域を狭める弊害がある。 ( 2 ) 各色トナ一帯電量の最適化
各色トナ一の帯電量を色重ねしやすいように最適化する方法がある (特開平 6 — 2 0 2 4 2 9、 特開平 8— 1 0 6 1 9 7、 特開平 1 0— 2 0 7 1 6 4) 。 しか し、 この方法では、 トナー帯電量が異なるので、 現像条件を各色で最適化する必 要があり、 また、 .トナーの製造処方を色毎に変えなければならない。
( 3 ) 転写前トナ一の帯電量調整
重ね合せ転写の前に、 非接触の帯電器でトナーを帯電し、 重ね合せ転写に最適 な帯電量に調整する方法がある (特開平 8— 1 5 9 4 7) o この方法では、 別途 帯電器が必要となり、 帯電器そのものや、 それに用いられる電源等のコスト或い は、 帯電器の設置スペース確保による装置の大型化などの問題点がある。
(4) 転写電圧の最適化
各色毎に転写電圧を最適化し、 安定な転写を行う方法がある (特開平 1 1— 2 0 2 6 5 1 ) 。 こ方法では、 タンデム型の場合、 各色毎に電源が必要となり、 コ スト的な問題がある。
したがって、 本発明は、 複数色の感光体ドラムに形成された異なる色の画像を 中間転写ベルトに順次重ねて転写する 1次転写電圧を供給する電源を共通化して コストを低減する画像形成装置を提供することを目的とする。
また本発明は、 感光体ドラムから異なる色の画像を中間転写ベルトに順次重ね て転写する 1次転写と中間転写ベルトの画像を用紙に一括して転写する 2次転写 の各電源を共通化してコストを低減する画像形成装置を提供することを目的とす る ο
更に、本発明は、 現像部や電源への影響がなく、 かつ、 低コストで色重ね転写 の安定性を高める画像形成装置を提供することを目的とする。 発明の開示
(転写電源の共通化)
本発明の画像形成装置は、 感光体ドラム等の像担持体上に色の異なる現像剤を 静電的に付着させて各色の可視画像を形成する複数の画像形成部と、画像形成部 のそれぞれの像担持体上に付着した現像剤を順次転写して重ね合わせるための各 色の像担持体と接触した中間転写ベルト等のベルト状転写部材と、 画像形成部に 設けた各像担持体の反対側に位置してベルト状転写部材を挟んで接触配置され、 画像形成部からベルト状転写部材に画像を静電的に転写するための 1次転写電圧 を印加する中間転写口一ラ等の中間転写電極部材と、 バックアツプ部材の反対側 にベルト状転写部材を挟んで接触配置され、 ベルト状転写部材に重ね合せ転写さ れた可視画像を用紙に一括転写するための 2次転写電圧を印加する用紙転写口一 ラ等の用紙転写電極部材とを備える。 そして、 このような静電写真記録装置につ き本発明は、 複数の中間転写電極部材に同一の電源から同一の 1次転写電圧を共 通に印加することを特徴とする。
こ;でベルト状転写部材は、 最初の転写で帯電された電位が次の転写位置にく るまでに、転写電圧の 1 / 3以下に減衰しているように比誘電率 ε、表面抵抗 S 及び体積抵抗 Ρを調整している。 本発明で使用する中間転写ベルトは、 通常、高 分子フィルムで作られており、 、 抵抗値の調整にカーボンを使用している。 原材 料は、 ポリイミ ド、 P V D.F , E T F E、 ポリ力一ボネィト等があり、 抵抗調整 用にカーボンをいれると、比誘電率 εが高くなり、 特にシングルパス型の転写で は短時間に転写工程が繰り返されるため、 中間転写ベルトに電荷の蓄積力生じる 。 そこで、 本発明は、 1次転写電圧を同一電源から同電圧で印加できるように するため、 感光体ドラム間を転写ベルトが通過する時間内に、 蓄積された電荷を 所定のレベルまで減衰させ、 しかも相互の影響力無いようにするため、 中間転写 ベルトの体積抵抗 Ρ、表面抵抗 S、 及び比誘電率 eに注目し、 その最適領域を見 いだした。
' 中間転写ベルトの厚さ方向の体積抵抗 pは、 高いとベルト電位の減衰力く起きず に電荷の蓄積が生じ、 低過ぎると転写電圧を印加した時に電荷が漏れ、 転写効率 をおとす。 また中間転写ベルトの表面抵抗 Sは高くても良く、 低すぎると感光体 ドラムに対する影響が出て転写カスレやチリといった画像欠陥となる。 更にベル ト電位の減衰は、 体積抵抗 pと比誘電率 εを掛けた時定数てで表される。 しかし 、 中間転写ベルトは高分子フィルムを母体としたもので、 体積抵抗 ρは電圧 Vに 依存して変化する電圧依存性をもつ。 即ち、電圧 V力高い時は体積抵抗 0が低く 、 電圧が低いと体積抵抗 Ρは高くなる。 従って、 中間転写ベルトの電位を減衰さ せるためには、 高電圧での体積抵抗 pを低くすることが必要であり、低電圧では むしろ体積抵抗 Pを高くしてトナーのベルトへの付着力を強くしてチリの防止を 効果的に行う必要がある。 また、 中間転写ベルトの表面抵抗 Sは、 感光体ドラム 間の電気的な独立性 (アイソレーション) を高くし、 相互に影響を及ぼさないよ うにしなければならない。
このような特性を持つ中間転写ベルトとして本発明は、 ベルト状転写部材の比 誘電率 εは 8以上、 表面抵抗 Sは 1 0 0 0 Vの測定で 1 X 1 0 9 Ω,口以上、 体 積抵抗 Ρは 1 0 0 Vの測定で 1 0 10 Ω · c m以上、 5 0 0 Vの測定では 1 0 10 Ω • c m以下とする最適値を実験的な考察から見い出した。 更に、 中間転写電極部 材は外周にスポンジ層を形成した転写ローラであり、 転写ローラの i氐抗は 1 X 1 07 Ω以下とする最適値を実験的な考察から見い出した。
このように本発明は、 中間転写ベルトの体積抵抗 p、 表面抵抗 S及び比誘電率 εを電圧依存性から最適化したことで、 感光体ドラム間での影響がなく、 しかも 電位減衰が十分にとれるため、 複数の中間転写電極部材としての中間転写ローラ に同一の電圧を同一の電源から供給することができ、 転写電源を 1次転写用と 2 次転写用の 2つに減らすことができる。
(中間転写ベルト)
また本発明は、 ベルト移動方向に並べられた複数の像担持体に形成した異なる 色の現像剤を付着させた画像をベルト状転写部材に静電的に順次 1次転写して重 ね合せた後に記録媒体上に一括して 2次転写させるために使用する中間転写ベル トそのものを提供する。 本発明の中間転写ベルトは、 最初の 1次転写で帯電され た電位が次の 1次転写の位置にくるまでに、転写電圧の 1 Z 3以下に減衰してい るように比誘電率 £、 表面抵抗 S及び体積抵抗 を調整する。 具体的には、 本発 明の中間転写ベルトは、比誘電率 εが 8以上、表面抵抗 Sが 1 0 0 Vの測定で 1 I 09 以上、 体積抵抗 ρが 1 0 0 Vの測定で 1 0 10 Ω · c m以上、 5 0 0 Vの測定値で 1 0 10 Ω · c m以下であることを特徴とする。
(中間転写ベルトの体積抵抗測定方法)
本発明は、 画像形成装置に使用される中間転写ベルトの体積抵抗測定方法を提 供する。 この測定方法は、 中間転写ベルトの表面と裏面に接触させた電極間に測 定対象とする任意の転写電圧を印加し、 この転写電圧の印加を断つた際の経過時 間に対するベルト電位の減衰特性を測定する測定ステツプと、 ベルト電位の減衰 特性の測定結果に基づいて、 ベルト電位の変化に依存した体積抵抗 pを算出する 計算ステップとを備えたことを特徴とする。
例えば測定ステツプは、 転写電圧の印加を断った時から一定時間 Δ t毎のベル ト電位を測定し、 計算ステップは、 B寺刻 t n のベルト電位を V ( t n ) 、 一定時 間厶 t前の時刻 t n i のベルト電位を V ( t„- x ) とした場合、
Figure imgf000009_0001
= Μ / { ε * ε。 (1 n V ( t„- ! ) - 1 η V ( t η ) } 但し、 ε * は比誘電率
ε 0 は真空の誘電率で 8. 8 5 4 X 1 0 "12 [F/m]
によりベルト電位 V ( t n ) に依存した体積抵抗 pを演算する。
本発明により中間転写ベルトにおける体積抵抗の最適値を見い出すためには、 電圧依存性をもったベルト体積抵抗を正確に測定しなければならない。 従来の体 積抵抗の測定方法は、汎用の測定器、 例えば、 H P社製、 ハイレジスタンスメ一 夕 H P 4 3 3 9 Aで測定している。 しカヽし、汎用測定器で測定した体積抵抗 か ら電位減衰特性を求めると、 電位があまり減衰せず、 実際に測定したベルト電位 の減衰特性とは離れた値となる。 そこで本願発明者は、 中間転写ベルトの体積抵 抗は電圧依存性を持つという知見を見い出し、 新たに電圧依存性をもつ体積抵抗 の測定方法を考え出した。 本発明の体積抵抗測定方法は、電圧を加えた時の減衰 特性を測定し、 この減衰特性から電圧に依存した体積抵抗を算出するという手法 であり、 実際の減衰特性に正確に対応した体積抵抗が測定できる。 これによつて 中間転写ベルトとしての体積抵抗 pを 1 0 0 Vの測定で 1 0 10 Ω · c m以上、 5 0 0 Vの測定では 1 0 10 Ω · c m以下の最適値とするためのカーボンを使用した 高分子フィルムの抵抗値の調整が正確にできる。
( 1次転写電源と 2次転写電源の共通化)
本発明は、 1次転写電源と 2次転写電源を共通化した画像形成装置を提供する 。 本発明は、 像担持体上に色の異なる現像剤を静電的に付着させて各色の可視画 像を形成する複数の画像形成部と、 画像形成部のそれぞれの像担持体上に付着し た現像剤を順次重ねて転写するために各色の像担持体と接触したベルト状転写部 材と、 画像形成部に設けた各像担持体の反対側に位置してベルト状転写部材を挟 んで接触配置され、前記画像形成部からベルト状転写部材に画像を静電的に転写 するための 1次転写電圧が印加された中間転写電極部材と、 バックアツプ部材の 反対側にベルト状転写部材を挟んで接触配置され、 ベルト状転写部材に重ね合せ 転写された可視画像を用紙に一括転写するための 2次転写電圧を印加する用紙転 写電極部材とを備えた画像形成装置につき、 複数の中間転写電極部材に印加する
1次転写電圧と用紙転写電極部材に印加する 2次転写電圧を同一の電源から供給 することを特徵とする。 例えば、 電源から用紙転写電極部材に2次転写電圧を直 接供給すると共に、 電源から複数の中間転写電極部材に電圧降下部材を介して低 下させた 1次転写電圧を供給するように構成する。
このように一次転写電圧と二次転写電圧の差を抵抗等の電圧降下部材で調整す ることにより、 1次転写電圧と 2次転写電圧を同一電源にまとめることが可能と なり、 転写電源のコストを抑えることができ、 装置をコンパクトにすることも可 食 となる。
(同一転写電源と転写効率の調整)
本発明は、 複数の転写部に同一電源から転写電圧を印加するようにした場合に 、 各転写部毎に最適な転写条件を設定できるようにした画像形成装置を提供する 。 .即ち、 本発明は、 像担持体上に色の異なる現像剤を静電的に付着させて各色の 可視画像を形成する複数の画像形成部と、 画像形成部のそれぞれの像担持体上に 付着した現像剤を順次転写して重ね合わせるための各色の像担持体と接触したべ ルト状転写部材と、 画像形成部に設けた各像担持体の反対側に位置して前記ベル ト状転写部材を挟んで接触配置され、 画像形成部からベルト状転写部材に画像を 静電的に転写するための 1次転写電圧を印加する中間転写電極部材と、ノ ックァ ップ部材の反対側にベルト状転写部材を挟んで接触配置され、 ベルト状転写部材 に重ね合せ転写された可視画像を用紙に一括転写するための 2次転写電圧を印加 する用紙転写電極部材と、 複数の中間転写電極部材に同一の 1次転写電圧を共通 に印加する 1次転写電源とを備えた画像形成装置であって、 複数の中間転写電極 部材の抵抗は、 色重ね数の少ない転写部ほど高く設定し、色重ね数の多い転写部 ほど低く設定することを特徴とする。
このため各色のトナー特性を意図的に変えることなく、 また、単一の転写電源 を用いても、転写電圧電極部材そのものの抵抗によって、 重ね合せ転写の難しい 色重ね数の多い転写部ほど実効の転写電圧が高くなり、 単色の一次色から複数色 を重ねた高次色までの転写をより安定に行うこと力可能となる。
また本発明は、 同様な構成の画像形成装置について、 1次転写電源と複数の中 間転写電極部材の各々の間に捕償抵抗を有し、 各補償抵抗の抵抗値は、 色重ね数 の少ない転写部ほど高く設定し、 色重ね数の多い転写部ほど低く設定することを 特徴とする。 このため捕償抵抗によって、 重ね合せ転写の難しい色重ね数の多い. 転写部ほど実効の転写電圧が高くなり、一次色から高次色までの転写をより安定 に行うこと力可能となる。 .
更に、本発明は、 同じ構成をもつ画像形成装置について、 複数の転写電圧電極 部材は導電性部材であり、 各色の像担持体とベルト状転写部材との接触位置とな る転写ニップからベルト表面方向の離間した位置に配置され、 この離間距離は、 色重ね数の少ない転写部ほど短く設定し、 色重ね数の多い転写部ほど長く設定す ることを特徴とする。 このため転写電圧電極部材のベルト接触位置から感光体ド ラム等の像担持体のベルト接触位置となる転写二ップまでの距離力各色で異なり 、転写電圧は抵抗体である中間転写ベルトを介して転写ニップに印加されるので 、 この距離に応じて電圧降下力大きくなる。 したがって、 距離の短い重ね合せ転 写の難しい色重ね数の多い転写部ほど実効の転写電圧が高くなり、一次色から高 次色までの転写をより安定に行うこと力可能となる。 図面の簡単な説明
図 1は従来の 4パス型の画像形成プロセスの説明図;
図 2は図 2の 4パス型プロセスのベルト電位減衰特性の説明図;
図 3は従来のシングルパス型の画像形成プロセスの説明図;
図 4は図 3のシングルパス型プロセスのベルト電位減衰特性の説明図; 図' 5は本発明の実施形態の説明図;
図 6は図 5のイエロ一用の画像形成ュニットを取出した説明図 図 7は図 5の転写プロセス機構を取出した説明図
図 8は本発明で使用する中間転写ベルトの測定電圧に対する体積抵抗の特性図; 図 9は図 8の体積抵抗を求めるために測定した減衰特性の特性図;
図 1 0は中間転写ベルトの測定電圧に対する表面抵抗の特性図;
図 1 1は中間転写ベルトの測定電圧に対する比誘電率の特性図;
図 1 2は中間転写ベルトの測定電圧 5 0 0 Vにおける体積抵抗に対する比誘電率 の特性図;
図 1 3は中間転写ベルトの測定電圧 1 0 0 Vにおける体積抵抗に対する比誘電率 の特性図;
図 1 4は中間転写ベルトの体積抵抗に対する残留電位の特性図
図 1 5は中間転写ベルトの転写電圧に対する転写効率の特性図
図 1 6は中間転写ベルトの体積抵抗に対する転写効率の特性図
図 1 7は転写ローラの抵抗に対する転写効率の特性図;
図 1 8は中間転写ベルトの表面抵抗に対する転写効率の特性図;
図 1 9は 1次転写の 2次転写の電源を共通にした本発明の他の実施形態の説明図 図 2 0は図 1 9における 1次転写電圧に対する 1次転写効率の特性図; 図 2 1は図 1 9における 2次転写電圧に対する 2次転写効率の特性図; ' 図 2 2は 1 9の抵抗値に対する 1次転写電圧の特性図;
図 2 3は転写口一ラ抵抗値によつて感光体ドラムの転写二ップに最適な実効転写 電圧を設定する実施形態の説明図;
図 2 4は図 2 3による 1次転写電圧に対する 1次転写効率の特性を比較例と対比 した説明図,'
図 2 5は図 2 3による 1次転 電圧に対する 1次転写効率の測定結果の特性図; 図 2 6は図 2 3の転写ローラの抵抗に対する転写効率 9 0 %の立上り電圧及び立 下り電圧の特性図;
図 2 7は図 2 3による 1次転写電圧に対する 9 0 %以上の転写効率の特性を比較 例と対比した説明図.;
図 2 8は捕償抵抗の抵抗値によって感光体ドラムの転写ニップに最適な実効転写 電圧を設定する実施形態の説明図;
図 29は図 28の転写ローラと補償抵抗の合成抵抗に対する転写効率 90%の立 上り電圧及び立下り電圧の特性図;
図 30は図 28による 1次転写電圧に対する 90%以上の転写効率の特性を比較 例と対比した説明図;
図 31は転写ローラの離間距離により感光体ドラムの転写ニップに対する最適な 実効転写電圧を設定する実施形態の説明図;
図 32は図 31のローラ離間距離に対する転写効率 90%の立上り電圧及び立下 り電圧の特性図;
図 33は図 31による 1次転写電圧に対する 90%以上の転写効率の特性を比較 例と対比した説明図; 発明を実施するための最良の形態
図 5は、本発明による中間転写プロセスを備えた画像形成装置の実施形態であ り、 カラ一プリンタを例にとっている。 図 5において、 カラープリンタ 10は、 駆動ローラ 26、 テンションローラ 28, 30及びバックァヅプローラ 32に掛 け回された中間転写ベルト 24を備え、 中間転写ベルト 24の上部の上流から下 流に向けて、 イェロー (Y)、 マゼン夕 (M)、 シアン (C)及びブラック (K ) の 4色について画像形成ユニット 12— 1, 12— 2, 12-3, 12— 4を 配置している。 画像形成ュニット 12— 1〜12— 4は、 図 6のイェロー (Y) の画像形成ュニット 12— 1に取り出して示すように、 像担持体としての感光体 ドラム 14—1の周囲に帯電ブラシ 16— 1、 LEDアレイ 18— 1、 現像器の 現像ローラ 21— 1を配置し、 更に帯電ブラシ 16— 1の手前にはクリ一ニング プレード 15— 1を配置している。
再び図 5を参照するに、 画像形成ュニット 12— 1〜12— 4に設けている現 像器 22—1〜22— 4に対しては、 トナー力一トリッジ 20— 1〜20— 4が 装着されている。 画像形成ュニット 12— 1〜12— 4に設けている感光体ドラ ム' 14一 1〜; 14一 4に、 中間転写ベルト 24を挟んで反対側に中間転写電極部 材としての中間転写ローラ 38— 1, 38-2, 38-3, 38— 4を配置して いる。 このカラープリンタ 1 0における印刷プロセスは、 画像形成ュニット 1 2 ー1〜1 2— 4の感光体ドラム 1 4— 1〜1 4— 4上に形成された各色のトナー 画像が、 中間転写ローラ 3 8— 1〜 3 8— 4によつて順番に中間転写ベルト 2 4 に重ねて転写され、 駆動ローラ 2 6、 テンションローラ 2 8, 3 0の位置を経由 して、 ノ^ックアップローラ 3 2の反対側に設けている用紙転写ローラ 4 5による 2次転写位置に搬送される。 この 2次転写部では、 ピックアップローラ 5 8によ りトレイ 4 8から引き出された用紙 5 0が用紙転写口一ラ 4 5により搬送され、 用紙転写ローラ 4 5とバックアップローラ 3 2の間に印加される 2次転写電圧に より中間転写ベルト 2 4上のトナー画像は用紙 5 0に転写され、 ヒートローラ 5 6とバックアップローラ 5 8を備えた定着器 5 4で加熱溶着し、 スタツ力 6 0に 排出される。
図 7は、 図 5のカラ一プリン夕 1 0に内蔵しているプロセスュニットを取り出 している。 図 7において、 画像形成ュニッ ト 1 2— 1〜1 2— 4の感光体ドラム 1 4 _ 1〜 1 4— 4に対し、 中間転写ベルト 2 4を挟んで反対側に配置された中 間転写ローラ 3 8 _ 1〜3 8— 4は、金属シャフトの周囲にスポンジ層を形成し たスポンジローラを使用しており、 共通の電源 4 0より規定の 1次転写電圧、 例 えば 1 0 0 0 Vを共通に受けている。 バックアップローラ 3 2に対向して設けた 用紙転写ローラ 4 5は、 同じくスポンジローラを構成され、 電源 4 6より規定の 2次転写電圧、 例えば 2 0 0 0 Vを用紙転写のタイミングで受けている。
更に、 図 7において各部の構成を具体的に説明すると次のようになる。 画像形 成ュニット 1 2— 1〜1 2— 4に設けている感光体ドラム 1 4—1〜1 4— 4は 、 例えば外径 3 O mmのアルミ粗管に電荷発生層及び電荷輸送層からなる層圧約 2 5 mの感光層を塗布している。 この感光体ドラム 1 4— 1〜1 4一 4は、 図 6のイエロ一 Yの画像形成ュニット 1 2— 1に取り出して示すように、帯電ブラ シ 1 6—1によって均一に帯電される。 帯電ブラシ 1 6—1は感光体ドラム 1 4 ー1の表面に接触し、 例えば周波数 8 0 0 H z、 P— P電圧 1 1 0 0 V、 オフセ ット電圧一 6 5 0 Vの帯電バイアスを印加し、 感光体ドラム 1 4一 1の表面を約 — 6 5 0 Vに帯電する。 帯電器としては、 帯電ブラシ 1 6—1以外にコロナ帯電 器、 ソリッドローラ帯電器などを用いることができる。 L E Dアレイ 1 8— 1は 、波長 7 4 0 m n、 解像度 6 0 0 d p iであり、 画像に応じた露光を行って感光 体ドラム 1 4一 1の表面に静電的な潜像を形成する。 L E Dアレイ 1 8— 1以外 にレーザスキャニング露光ュニットなどを用いることもできる。 感光体ドラム 1 4—1の表面に形成された静電的な潜像に対しては、 マイナスに帯電した各色の トナーを有する現像器、 図 6の場合にはイェロートナーを使用した現像ドラム 2 1— 1により現像を行い、 感光体ドラム 1 4— 1上の静電潜像を可視化する。 こ こでは現像方法として非磁性 1成分接触現像を用いているが、 これに限定されな い。 また現像の際のトナーの帯電極性はマイナスに限定されない。
再び図 7を参照するに、 中間転写口ーラ 3 8— 1〜 3 8— 4は、 画像形成ュニ ット 1 2— 1〜1 2— 4で感光体ドラム 1 4— 1〜1 4— 4上に形成されたモノ カラー画像を中間転写ベルト 2 4上にイエロ一、 マゼン夕、 シアンくプラックの 順に順次重ねて転写を行い、 中間転写ベルト 2 4上にカラ一画像を形成する。 中 間転写ベルト 2 4上に対する各色の重ね合わせのタイミングは、 L E Dアレイの 書き出しタイミングで調整し、正確な位置合せを行う。 なお色重ねの順番、 色数 は、 この実施形態に限定されない。
感光体ドラム 1 4— 1〜 1 4一 4から中間転写ベルト 2 4への転写は、 電源 4 0から中間転写ローラ 3 8— 1〜3 8— 4に + 5 0 0 V〜1 0 0 0 Vの範囲の予 め設定した規定電圧を印加することによって静電的に行う。 中間転写ベルト 2 4 は力一ボンで抵抗調整した厚さ 1 5 0〃mの例えばポリカーボネィト樹脂部材で 作られている。
本発明の中間転写ベルト 2 4にあっては、 感光体ドラム 1 4一 1の画像転写の ために中間転写ローラ 3 8— 1により最初の 1次転写電圧が印加されて帯電され た後、 この中間転写ベルトの電位が次の感光体ドラム 1 4一 2と中間転写ローラ 3 8 - 2による転写位置に来るまでの間に転写電圧の 3分の 1以下に減衰してい るように、 中間転写ベルト 2 4の比誘電率 ε、 表面抵抗 S、 及び体積抵抗 ρを調 整している。 この中間転写ベルト 2 4に対する比誘電率 ε、 表面抵抗 S及び体積 抵抗 Ρの最適値は、 本願発明者による実験考察によれば次の値となる。
( 1 ) 中間転写ベルト 2 4の比誘電率 εは 8以上
( 2 ) 中間転写ベルト 2 4の表面抵抗 Sは 1 0 0 0 Vの測定で 1 X I 0 9 〜; l x
Figure imgf000016_0001
( 3 ) 中間転写ベルト 2 4の体積抵抗;0は1 0 0 ¥の測定で1 0 1。 ' c m以上 、 5 0 0 Vの測定では 1 X 1 08 〜1 X 1 0 1 ο Ω · c m。
このような本発明において最初の転写位置から次の転写位置まで移動する間に ベルトの電位が転写電圧の 3分の 1以下に減衰できる性能を与えるための比誘電 率 ε、 表面抵抗 S及び体積抵抗 ρの最適値の詳細については、 後の説明で明らか に る ο
また本発明の中間転写ベルト 2 4としてはポリカ一ボネィト樹脂に限定される ことはなく、 ポリイミ ド系、 ナイロン系、 フッ素系などの樹脂材料を使用するこ とができる。 まだ中間転写ローラ 3 8— 1〜3 8— 4は、 感光体ドラム 1 4— 1 〜 1 4一 4の対向位置に設ける必要はなく、 中蘭転写ベルト 2 4の回転方向に対 し上流ある L、は下流の離間した位置に設けてもよい。
中間転写ベルト 2 4上に 1次転写により重ねて転写されたカラー画像は、 2次 転写部で一括して用紙などの記録媒体上に転写される。 この 2次転写のための用 紙転写ローラ 4 5は、 シャフトと表面間が 1 0 5 〜1 0 8 Ω程度の抵抗値に調整 されたスポンジローラを使用しており、 中間転写ベルト 2 4を挟んでバックアツ プロ一ラ 3 2により 1〜2 k g程度の圧力で押し当てるように配置している。 ま た用紙転写ローラ 4 5として使用するスポンジローラの硬度は、 ァス力一 Cで 4 0〜6 0度としている。 用紙転写ローラ 4 5に対し接続された電源 4 6は定電流 源であり、 中間転写ベルト 2 4上の画像位置に対し、 夕イミングを合わせて搬送 される用紙上に電源 4 6によってバイアスを印加し、 静電的にトナーを転写する o この 2次転写によって用紙上に転写されたカラー画像は、 定着器 5 6で現像剤 を熱的に用紙上に定着して固定画像を得る。 また駆動ローラ 2 6による中間転写 ベルトの速度は例えば 9 1 mm/ sである。 もちろん中間転写ベルトの速度で決 まる印刷速度はこれに限定されず、 これ以下もしくはこれ以上の速度としてもよ い。
次に本発明の中間転写ベルトについて詳細に説明する。 本発明で使用する中間 転写ベルトは、 感光体ドラム間を通過する時間内に転写電圧の印加により蓄積さ れた電荷を所定のレベルまで減衰させ、 しかも相互の影響がないようにすること が必要であり、 本願発明者にあっては、 その体積抵抗) o、表面抵抗 S及び比誘電 率 εに注目して、 その最適領域を見出した。 中間転写ベルトの体積抵抗) 0は抵抗 値力高いと電位の減衰力起きずに電荷の蓄積力く生じ、 一方、 抵抗値が低すぎると 転写電圧を印加した際に電荷が漏れ、 転写効率を落とす。 また中間転写ベルトの 表面抵抗 Sは高い方がよく、 低過ぎるとそれぞれの感光体ドラムに対する影響が 出て転写カスレやチリといった画像欠陥を生ずる。
中間転写ベルトにおける電位の減衰は体積抵抗 ρと比誘電率 εを掛けた時定数 て (= ε ρ ) で表わされる。 しかしながら、 中間転写ベルトは高分子フィルムを 母体としたもので、体積抵抗は電圧 Vに依存して変化し、 電圧が高いときは体積 抵抗 Ρが低く、 電圧が低いと体積抵抗 Ρは高くなる電圧依存性を持っている。 し たがつて中間転写ベルトの電位を減衰させるためには高電圧での体積抵抗 ρを低 くすることが必要であり、 低電圧ではむしろ体積抵抗 ρを高くした方がトナーの ベルト吸着力を強くしてチリの防止を効果的に行うことができる。 また中間転写 ベルトの表面抵抗 Sは感光体ドラム間の電気的独立性を高くし、 相互に影響を及 ぼさないようにしなければならない。 . このような特性を持つ中間転写ベルトについての最適領域として、本願発明者 にあつては、 比誘電率 εは 8以上、表面抵抗 Sは 1 0 0 0 Vの測定で 1 X 1 0 9 〜 1 X 1 0 1 1 Ω /口、 更に体積抵抗 ρは 1 0 0 Vの測定での 1 0 1。 Ω · c m以上 、 5 0 0 Vの測定では 1 X 1 08〜1 X 1 0 1 0 Ω · c mであることが実験的に良 好な転写を行えることを見出した。
このように中間転写ベルトの比誘電率 ε、 表面抵抗 S及び体積抵抗 ρを電圧依 存性から最適化することで、 感光体ドラム間の影響がなく、 しかもドラム間を通 過する間にベルト電位の減衰が十分にとられるため、 次の転写位置での残留電圧 によるオフセットの影響を考慮する必要がなく、 これによつて各色の中間転写口 —ラに印加する 1次転写電圧を同一の電源で供給することができ、 1次転写の電 源を単一で構成することができる。
図 8は、 本発明による中間転写ベルトの体積抵抗の電圧依存性を表わした特性 図である。 図 8において、特性曲線 6 2が測定電圧に対する本発明の中間転写べ ルトの体積抵抗 ρの特性であり、 Ε口加電圧に大きく依存している。 即ち測定電圧 力低 、場合に体積抵抗 )0は高く、 測定電圧が高くなると体積抵抗 Pが低下する電 圧依存性を持っている。 本発明にあっては、 中間転写ベルトの体積抵抗 Pの最適 領域として 100 Vの測定で 1010Ω · cm以上であり、 500 Vの測定では 1 XI 08 〜1Χ1010Ω · cmであり、 図 8の体積抵抗の特性曲線 62はこの体 積領域の条件を満足している。
図 9は、 図 8の特性曲線 62の電圧依存性を持つている体積抵抗の中間転写べ ルトに 1000Vを印加したときの電位減衰特性を表わしている。 この 1000 Vを印加したときの電位減衰特性は、 特性曲線 66に示す測定結果力得られてい る。 特性曲線 66の減衰特性は、 電圧が高いときは減衰が大きく、 電圧が低くな ると減衰が緩やかになって'いることが分かる。 これは体積抵抗 p力電圧依存性を 持つからであり、 時定数ては比誘電率 εと体積抵抗 ρを掛けた値で表わされるが 、体積抵抗 Ρが電圧依存性を持っために体積抵抗 Ρは電圧の関数となり、 ρ (V ) となる。 したがって、減衰特性の時定数ては
τ = ε - Ρ (V) (1) で表わされる。 図 9の減衰特性の特性曲線 66から計算した ρ (V) は、 中間転 写ベルトの比誘電率を ε * = 9. 5、 真空の誘電率 ε 0 = 8. 854X 10一12 [FZm] とすると、
p (V) =4X 1017XV-3.021 (2) となる。
従来、 中間転写ベルトの体積抵抗 Pについては電圧依存性力考慮されておらず 、 中間転写ベルトに要求される電位の減衰極性を最適化する際のパラメータとし ての仕様力不明確であった。 通常、体積抵抗の測定は、 HP社製ノヽィレジスタン スメ一夕 HP 4339 Aなどの測定器を使用して測定する。 この市販の測定器に より測定した体積抵抗は、 図 8の特性曲線 64に示すように、 本発明で測定され た特性曲線 62から大きくかけ離れている。 この市販の測定器により測定した図 8の特性曲線 64による体積抵抗から電位減衰特性を求めると、 図 9の特性曲線 68のように電位が減衰せず、実際に測定した特性曲線 66からかけ離れた値と なってしまう。 したがつて市販の測定器で測定した体積抵抗の値は、本発明の中 間転写ベル卜の最適範囲を特定するために使用することはできない。 また中間転写ベルトの体積抵抗力電圧に依存しないと仮定して体積抵抗 pを p =1. 15X10Χ1Ω - cmとして電位減衰特性を計算してみると、 図 9の特性 曲線 70のようになり、 これも実際の減衰特性 66とはかけ離れた値となってい る。 した力つて、 本発明における中間転写ベルトの体積抵抗 pは電圧依存性を持 つことが条件であり、 一定の体積抵抗による減衰特性は除外して考えなければな らない。 このことから図 8に示す測定電圧に依存した体積抵抗 pの特性曲線 62 は、 図 9の実際の減衰特性 66から計算により求めた特性となる。
本発明により図 9の減衰特性から図 8の電圧依存性を持つた体積抵抗の求め方 を説明すると次のようになる。 減衰特性は基本的に C Rの等価回路によつて表わ される。 したがって時間錢過に対する電位は次式で与えられる。
V(t) = V0-exp (-―) (3)
V (t) t時間後の電位
Vo 初期電位
C
R :抵抗
ここで容量 Cは後の説明で明らかにする比誘電率 εからの電圧依存性は無視で きる。 したがって抵抗 Rのみが電圧依存性があるとして、 (4) 式は次のように なる。
V(t) = V。'exp(-¾^) (4) この (4) 式より (R (V (t) ) は次式のようになる。
R(V ( 。-卿 )) (5) この (5) 式において、 時間 tを離散的にとり、 厶 t時間ごとに V (t) の値 を測定するものとし、 R (V (t) ) は A t時間での V (t) の平均値に依存し た抵抗 Rとすると、 (6) 式は次のように表現できる。
Figure imgf000020_0001
ここで抵抗 R及び容量 Cは次式で与えられる
R = (7)
S ε e0S
C =
d (8) したがって (9) 式は次のようになる (
,V(tnl)-V(tn:)、 Δί
2 S*sQ(£nV(taA)-£nV(tB)) ^J 以上のことから、 図 9の測定結果として得られた減衰特性曲線 66における厶 tごとの電位を求めて順次 (9) 式に代入することによって、 図 8の特性曲線 6 2に示すような電圧依存性を持つた体積抵抗 pの測定結果を得ることができる。 図 10は本発明による中間転写ベルトの表面抵抗 sの電圧依存性を示した特性 図である。 本発明における中間転写ベルトの表面抵抗 Sは、 測定電圧 100 v〜 1000 Vの範囲で例えば 1 E + 11、 即ち 1 X1011 Ω /口付近の値を維持し ており、 電圧依存性はほぼ無視できること力《分かる。 この図 10の表面抵抗の測 定は、 HP社製ハイレジスタンスメータ 4339 Aを使用して測定している。 図 11は本発明による中間転写ベルトの比誘電率 εの電圧依存性の特性図であ る。 この比誘電率 εについても、 測定電圧100 〜2000¥の範囲で£ = 9 . 5付近の値を維持しており、 電圧依存性は無視することができる。
次に本発明の中間転写ベルトにおける電圧依存性を持つた体積抵抗 ρと電圧依 存性がほぼ無視できる比誘電率 εの関係を説明する。 中間転写ベルトの比誘電率 εは、 ベルトの電荷を保持し、 トナーの搬送中に付着力を強くしてチリやカスレ 防止の作用のために必要となる。 比誘電率 εの範囲は減衰特性の時定数てに関係 して放電曲線の減衰に影響する。 この中間転写ベルトに付与される電荷は転写中 に蓄積されるが、 高いと次の転写位置での転写電圧の一部がキヤンセルされ残留 電位として働くため、 ある範囲で電荷を保持しなければならない。 したがって電 位が高いときには急激に電荷を放出し、 電位が低くなると電荷を保持するような 作用を果たすことが、 中間転写ベルトに要求されている。 中間転写ベルトの体積 抵抗 Pの電圧依存性は、 図 8の特性曲線 62のように 3桁となる電圧範囲 1 00 〜: L 000 Vで同じく 3桁程度の変化を生ずる力 電荷を保持するための比誘電 率 εはまに抵抗の低い領域で重要なファクタとなる。 この転写ベルトにおける電 荷の保持特性は 3 00 V以下が必要であり、 望ましくは 100 V前後が要求され る。 このため比誘電率 εは 300 以下の領域でも高い方がよいことになる。 中間転写ベルトの体積抵抗 ρはポリ.力一ボネ一ト樹脂などの樹脂材料に力一ボ ンを入れて調整するが、樹脂に入れる力一ボンの量により比誘電率 ε力決まる。 そこで転写効率の良好な範囲、 具体的には転写効率 90%を越える範囲にある中 間転写ベルトの比誘電率 εを調べると、 図 12及び図 13の結果が得られている 。 図 12は測定電圧 500 Vで測定した体積抵抗 ρの変化に対する比誘電率 εの 測定結果であり、 体積抵抗 = 1 01οΩ - c m以下で比誘電率 εが 8以上となつ ており、 この測定結果から本発明にあっては比誘電率 εの範囲を 8以上とした。 また図 13は測定電圧 1 00Vにおける体積抵抗 ρの変化に対する転写効率 90 %以上の良好な範囲となる比誘電率 εの測定結果であり、 この場合には体積抵抗 ρ = 1 01。〜: L 014Ω · cmの範囲で比誘電率 εが 8以上となっている。
図 14は、 図 12の測定電圧 500Vで求めた体積抵抗 ρに対する転写電圧 1 00 0Vを印加してドラム間距離 84 mmをベルト搬送速度 91mm/ sで移動 したときの時間 t 1 = 0. 923ms後の残留電圧の測定結果である。 この場合 、 中間転写ベルトに必要な残留電圧は 300 V以下であり、 望ましくは 1 00 V 前後であることから、 本発明の中間転写ベルトにおける体積抵抗の 500Vにお ける 1 010Ω · cm以下とする最適範囲は、残留電圧を 300V以下とする条件 を満足していること力分かる。
次に感光体ドラム間の距離を L、 ベルト搬送速度となるプロセス速度を Vとす ると、 イエロ一、 マゼン夕、 シアン、 ブラックの 1次転写は t l = L/v時間で 次の転写が行われることになる。 このように次の転写までの時間 t 1の間に中間 転写ベルトに蓄積された電荷は十分に減衰されて、例えば 300V以下にならな ければならない。
図 15は 1次転写における転写電圧と転写効率の関係の測定結果である。 この 測定結果から良好な転写効率を 90%以上に設定すると、 良好な転写効率力得ら れる転写電圧は 700〜1300Vの範囲となる。 ここで設定転写電圧を: L 00 0 Vとすると、 2回目以降の転写で残留電圧があっても、転写電圧 1000 Vの 印加の際には実効電圧が最低 700 Vあればよいことから、 中間転写ベルトの残 留電位は ±300Vの範囲で良好な転 が行われることになる。 ただし実際の中 間転写ベルトにあっては次の転写位置での電荷保持のため、 300V以下、 望ま しくは 100 V付近の電位が必要であることから、 一 300 Vの範囲は除外して 考える。 したがって図 9の減衰特性 66から t 1時間後に残留電圧が 300 V以 下であれば、 1次転写の電圧は全て同一の電源から供給しても 90%以上となる 良好な転写効率が得られることになる。
.図 5及び図 7に示したカラ一プリンタにあっては、 感光体ドラム 14_1〜1 4— 4の各ドラム間距離を L = 84mm、 プロセス速度 vを 9 ImmZsとして 実験を行った場合 t 1 = 0. 923msとなる。 この t 1 = 0. 923msは、 図 9の減衰特性曲線 66にあっては残留電圧は約 250V付近にあり、 十分な減 衰特性が得られている。 この残留電圧 250Vのとき表面抵抗 Sは、 図 10から 1 X10"ΩΖ口であり、 相互の影響がなく良好な画質が得られた。更に、 この ときの中間転写ローラ 38— 1〜38— 4のローラ抵抗は 106 Ωとしている。 図 16は、 本発明により最適領域に設定した体積抵抗 ρ、 表面抵抗 S及び比誘 電率 εをもつ中間転写ベルトを使用した場合の体積抵抗に対する転写効率の関係 であり、 転写電圧として 1000Vを設定したときのイェローとブラックの転写 効率を示している。 この測定結果の特性から、 電荷を蓄積するために体積抵抗を 大きくすると転写効率が下がっていることが分かる。
図 17は、 本発明における中間転写口一ラ 38— 1〜38— 4の抵抗と転写効 率の関係の測定結果である。 この測定結果から 90%以上の転写効率が良好とな る範囲は転写ローラの抵抗が 104 〜107 Ωであり、 このことから本発明にあ つては中間転写ローラ 38— 1〜38— 4の抵抗値としての最適範囲を 107 Ω 以下としている。 なお中間転写ローラの抵抗が 105 Ω以下になると、 画像品質 力悪く、転写のチリが発生していることから、 中間転写ローラの抵抗の最適値は 105 〜107 Ωの範囲とすること力望ましい。
図 18は、 本発明の中間転写ベルトにおける表面抵抗 Sにおける転写効率の関 係の測定結果である。 この測定結果の特性から、 転写効率が 90%以上となる良 好な範囲はほぼ 1 X 109 〜1 X 10ΗΩΖ口の範囲に設定すればよく、 本発明 にあっては l xl 09 〜; L X1011 ΩΖ口の範囲を最適領域としている。
.図 19は、 1次転写電圧と 2転写電圧を供給する電源を共通にした本発明の他 の実施形態の説明図である。 図 19において、 カラ一プリンタ 10は、 感光体ド 'ラム 14— 1〜14— 4を備えた画像形成ュニット 12— 1〜12— 4を中間転 写ベルト 24の走行方向に沿って順次配置しており、 感光体ドラム 14— 1〜1 4一 3に中間転写ベルト 24を挟んで反対側の位置にスポンジローラを用いた中 間転写口一ラ 38— 1〜38— 4を配置している。 また中間転写ベルト 24の左 側のバックアップローラ 32に対し、 中間転写ベルト 24を挟んで 2次転写のた めの用紙転写ローラ 45が配置されている。 こめ実施形態において、 1次転写を 行う中間転写ローラ 38— 1〜38— 4に対する 1次転写電圧の供給と 2次転写 を行う用紙転写ローラ 45に対する 2次転写電圧の供給は、 同じ電源 72から行 われている。 即ち電源 72のプラス側は直接、 用紙転写ローラ 45に接続され、 電源 72は同時に電圧降下用の抵抗体 74を介して中間転写口ーラ 38— 1〜3 8-4を接続している。 これによつて電源 72は用紙転写ローラ 45に対する 2 次転写電圧 VT2を印加しており、 この 2次転写電圧 VT2を抵抗体 74で所定電圧 低下させた 1次転写電圧 VT1を中間転写ローラ 38— 1〜38— 4に供給してい る。 ここで 2次転写電圧 VT2は例えば 2000 Vであり、 抵抗体 74で電圧降下 させた 1次転写電圧 VT"i例えば 1000 Vである。
図 20は、 図 19の中間転写口一ラ 38— 1〜 38— 4に対する 1次転写電圧 VT1を変化させたときの中間転写ベルト 24に対する 1次転写効率の測定結果を 表している。 ここで 1次転写効率とは、 ベタ画像における感光体ドラム上の転写 前のトナー付着量に対する中間転写ベルト上に転写されたトナー量の割合として 定義している。 この転写効率において、 9 0 %以上を良好な転写と判断している 。 図 2 0の場合、 1次転写効率が 9 0 %以上となる領域は 6 0 0 V〜1 3 0 0 V の範囲であり、 この中の 1点を 1次転写電圧 VT1として例えば 1 0 0 0 Vに設定 する。
ここでカラ一画像を形成するには各色の 1次転写効率は同じ電圧特性を有する ことが望ましい。 その理由は、 複数色の同一の転写を同一の電圧つまり単一の電 源を行うことが可能であり、電源コストを低減させることができるからである。 図 1 9の実施形態にあつては、 中間転写口ーラ 3 8— 1〜 3 8— 4は感光体ドラ ム 1 4一 1〜1 4一 4のベルト接触点となる転写二ップに対し同じ位置に配置し ているので、 各色の転写効率の電圧特性はほぼ同じ傾向を示しており、 この結果 、 単一の電源による転写電圧の印加を可能にしている。 本質的には、各色の感光 体ドラム 1 4一 1〜1 4— 4のベルト接触点となる転写ニップにおける実行転写 電圧のばらつき力転写効率の電圧マージン内にあり、且つ各色の電圧マージンが 重なっていればよい。
図 2 1は、 図 1 9の実施形態で用紙転写ローラ 4 5に印加している 2次転写電 圧の変化に対する 2次転写効率を表している。 ここで 2次転写効率とは、 ベタ画 像における中間転写ベルト 2 4上の転写前のトナー付着量に対する用紙などの記 録媒体上に転写されたトナーの量の割合として定義している。 この場合も 2次転 写効率は 9 0 %以上で良好と判断する。 図 2 1にあっては、 2次転写効率が 9 0 %以上となるのは 2次転写電圧 1 5 0 0 V〜2 0 0 0 Vの範囲であり、 その中の 1点として例えば 2次転写電圧を 2 0 0 0 Vに設定する。 この図 2 0及び図 2 1 の特性から、 電源 7 2の定電圧制御により 2次転写電圧 2 0 0 0 Vを供給し、 抵 抗体 7 4によって 1次転写電圧 1 0 0 0 Vへ電圧降下させればよい。
図 2 2は 2次転写電圧として 2 0 0 0 Vを供給した状態で図 1 9の抵抗体 7 4 の抵抗値を変ィ匕させたときの 1次転写電圧を表している。 この特性曲線から抵抗' 値を 2 0 ΜΩとしたときに 2 0 0 0 Vの 2次転写電圧を 1 0 0 0 Vの 1次転写電 圧に降下させることができる。
なお図 1 9の実施形態にあっては、 電源 7 2を定電圧制御としているが、 抵抗 体 7 4を設置することによって最適な実行転写電圧が得られればよく、 必要な 1 次転写電圧を得るための電圧降下は抵抗体 7 4の抵抗値によって決まるため、 電 源 7 2として定電流制御を行うようにしてもよい。
図 2 3は、転写ローラの抵抗値によって感光体ドラムの転写二ップに最適な実 効転写電圧を設定する実施形態の説明図であり、 カラ一プリン夕を例にとってい る。 図 2 3において、 カラープリンタ 1 0内には、 駆動ローラ 2 6、転写ローラ 2 8, 3 0、 及びバックアップローラ 3 2により掛け回された中間転写ベルト 2 4が設けられ、 中間転写ベルト 2 4の上部の搬送方向に沿って画像形成ュニット 1 2— 1〜1 2— 4を並べて配置している。 画像形成ュニット 1 2— 1〜1 2— 4は感光体ドラム 1 4— 1〜 1 4一 4を備え、 中間転写ベルト 2 4を挟んだ反対 側に 1次転写電圧を印加する中間転写ローラ 3 8— 1〜3 8— 4を配置している 。 またバックアップローラ 3 2の中間転写ベルト 2 4を挟んだ反対側には、 ピッ クアップローラ 5 2で送り出された用紙 5 2上に 2次転写を行うための用紙転写 ローラ 4 5が配置され、 2次転写された用紙は定着器 5 4で現像剤の加熱溶着に よる固定を行った後、 スタツ力 6 0に排出される。
ここで中間転写ローラ 3 8— 1〜3 8— 4に対しては共通の電源 4 0より同一 の転写電圧を印加しているが、 中間転写ローラ 3 8— 1〜3 8— 4の抵抗値を異 ならせることによって感光体ドラム 1 4一 1〜1 4— 4の転写二ップに加わる実 効的な転写電圧を、 色重ね数の少ない上流側の転写部ほど低くし、 色重ね数の多 くなる下流側の転写部ほど高くなるように設定している。 このような色重ね数の 異なる転写部に対する実効的な転写電圧の最適化を実現するため、 中間転写ロー ラ 3 8— 1〜3 8— 4の抵抗値は、 色重ね数の少ない上流側の転写部ほど抵抗値 を高くし、 色重ね数の多い下流側の転写部ほど抵抗値を低くするようにしている 。 図 2 4は、 色重ね数が多い転写部ほど転写ニップに加わる実効の転写電圧が 高くなるようにした本発明の実施形態における 1次転写電圧の変化に対する各色 の転写効率を、 全ての転写部の実効の転写電圧を同じとした場合の比較例と対比 して表している。 即ち図 2 4 (A) は色重ね数が多くなつても転写部の実効転写 電圧を変えずに一定とした場合の 1次転写電圧に対する各色の転写効率の比較例 であり、 図 2 4 (B). が本発明により色重ね数の多い転写部ほど実効の転写電圧 が高くなるようにした場合の 1次転写電圧に対する各色の転写効率である。 まず図 2 4 (A) の Jt較例をみると、 1次色としてのイェロー、 マゼン夕、 シ アンの特性 7 8— 1, 7 8— 2, 7 8— 3、 2次色としてイエローにマゼンタを 重ねたレッドの特性 8 0— 1、 イェローにシァンを重ねたグリ一ンの特性 8 0 - 2、 更にマゼン夕にシアンを重ねたプル一の特性 8 0— 3が示される。 更に 3次 色は、 イエローにマゼン夕、 シアンを順次重ねたブラックの特性 8 2となる。 こ のような比較例における 1次色から 3次色の 1次転写電圧に対する転写効率の特 性において、 1次転写効率の電圧マージン 7 5は最終色の 1次色であるシアンの 特性 7 8— 3と 3次色となるブラックの特†生 8 2で決定される。 即ち電圧マージ ン 7 5の定電圧側の境界は 3次色であるブラックの特性 8 2の転写効率の立下が りの肩部分で決まり、 一方、 電圧マージン 7 5の高電圧側の境界は最終色の 1次 色であるシアンの特性 7 8— 3の立下がり側の肩部分の電圧で決まっている。 こ のような比較例における電圧マージン 7 5に対し、 1次色及び 2次色の特性 7 8 —1〜8 0— 3のそれぞれにあっては、 低圧側の電圧マージンに余裕はあるが、 3次色の特性 8 2にあっては電圧側の電圧マージンに余裕度力少ない。 一方、 高 電圧側の電圧マ一ジンの余裕度については、 3次色であるブラックの特性 8 2以 外は余裕度が少ない。 特に 1次色の 1色目のイエロ一の特性 7 8— 1と 2色目の マゼン夕の特性 7 8— 2については、 定電圧側の電圧マ一ジン力く広いのに対し高 電圧側のマ一ジンが狭くなっている。
これに対し図 2 4 (B) の本発明による色重ね数の多い転写部ほど実効の転写 電圧を高くした場合にあっては、 最初の 1次色であるシアンの特性 8 8— 3と 3 ' 次色であるブラックの特性 9 2で決まる共焉電圧マ一ジン 8 5を持ち、 転写部に おける実効電圧は色重ね数の多い下流より色重ね数の少ない上流の方が低くなる ため、 1次色の 1色目のイェローの特性 8 8—1と 2色目のマゼンタの特性 8 8 — 2における転写効率の電圧マ一ジンが高電圧側に拡大する。 これと同時に低電 圧側の転写効率の立上がりは遅くなるが、 もともと定電圧側の余裕度は高いため 、 何等支障はない。 もちろん 1次色から 3次色までの共通電圧マージン 8 5は最 終色 0 1次色であるシアンの 8 8— 3と 3次色であるブラックの特性 9 2で決定 されるため、 比較例の電圧マ一ジン 7 5は変わらないが、 最終色以外の転写特性 は飛躍的に安定化される。 次に図 2 3の中間転写ローラ 3 8— 1〜3 8— 4の抵抗値を色重ね数力多くな るほど低くなるようにした実施形態の具体例を説明する。 図 2 3において、 1次 転写を行う中間転写ローラ 3 8— 1〜3 8— 4は、 直径 8 mmの金属シャフトに 力一ボンで導電性を付与したスポンジを被覆した外径 1 4 mmのスポンジローラ を使用している。 スポンジの硬度はァス力で C 4 0度程度とし、 感光体ドラム 1 4一 1〜1 4一 4と中間転写ベルト 2 4が接触する転写二ップの圧力は線圧で 2 0〜3 0 gZ c m程度とする。 また中間転写ローラ 3 8— 1〜3 8— 4に使用し たスポンジローラの抵抗は、 軸心の両端に 5 0 0 gの加重を掛けた状態で軸心の + 1 0 0 0 Vの電圧を印加したときのスポンジ線幅の抵抗として測定する。 本願 発明者にあっては、 1 04 Ω、 1 06 Ω及び 1 08 Ωのスポンジローラを中間転 写ローラ 3 8— 1〜3 8— 4に用いて 1次転写効率の電 J$特性を調べた。 この場 合、 1次転写電圧は単一の電源 4 0から全色共通に電圧を印加する。 また転写効 率はべ夕画像における感光体ドラム上の転写前のトナー付着量に対する中間転写 ベルト上に転写されたトナー量の割合としており、転写効率は 9 0 %以上で良好 と判断する。
図 2 5は 1 04 Ωのスポンジローラを中間転写ローラ 3 8— 1〜3 8— 4に用 いたときの各色における 1次色から 3次色の 1次転写電圧に対する 1次転写効率 の測定結果を表している。 即ち、 図 2 5 (A) はイェロー、 マゼン夕、 シアン、 ブラックの 1次転写電圧に対する 1次転写効率の測定結果であり、 これは各色で 画像形成条件と転写条件がほぼ同じであることから、 各色とも同様の転写特性を 示している。 図 2 5 (B) は 2色を重ね合わせた 2次色の 1次転写電圧に対する 1次転写効率を表しており、 この場合も各色で画像形成条件と転写条件がほぼ同 じであるため、 2次色も各色同様の転写特性を示している。 図 2 5 (C) はイエ ロー、 マゼン夕、 シアンを重ねた 3次色の 1次転写電圧に対する 1次転写効率の 測定結果である。 この図 2 5 (A) (B) (C) の 1次色、 2次色、 3次色の転 写特性を対比してみると、 良好となる転写効率 9 0 %への立上がりと立下がりは 図 2 5 (A) の 1次色が立上がりは 6 0 0 V、立下がりは 1 3 0 0 Vと最も低い 1次転写電圧で起こ ており、 色重ね数が増加する図 2 5 (B) の 2次色にあつ ては、立上がりは 7 0 0 V、立ち下がりは 1 5 0 0 V、更に図 2 5 (C) の 3次 色にあっては、 立上がりは 8 0 0 Vと色重ね数力増えるに従って転写特性は高電 圧側にシフトしている。 この図 2 5と同様な 1次色、 2次色、 3次色に対する転 写電圧の変化に対する転写効率の調査を 1 0 6 Ω及び 1 08 Ωのスポンジローラ について行い、 その結果から図 2 6のように 1 04 Ω、 1 06 Ω、 1 08 Ωの 3 種類のスポンジローラの立上がり電圧と立下がり電圧をまとめている。
この結果から各色の中間転写ローラ 3 8— 1〜3 8— 4として最適なスポンジ ローラを選択すると、 イエロ一、 マゼン夕、 ブラックの中間転写ローラ 3 8—1 , 3 8— 2及び 3 8— 4については 1 06 Ωのスポンジローラを選択し、 シアン の中間転写ローラ 3 8— 3については 1.04 Ωのスポンジローラを選択すること が望ましい。
図 2 7は全色に 1 04 Ωのスポンジローラを使用した場合と、 イエロ一、 マゼ ンタ、 ブラックに 1 0 6 Ωローラ、 シアンに 1 04 Ωローラを選択した最適な組 み合わせにおける 1次転写電圧と 9 0 %以上の転写効率を持つ電圧マージンをま とめて表している。 図 2 7 (A) は全色 1 04 Ωローラとした場合であり、 この 比較例として図 2 7 (Β) にイエロ一、 マゼンタ、 ブラックを 1 0 6 Ωローラ、 シアンを 1 04 Ωローラとした最適な組み合わせにおける 1次転写電圧に対する 電圧マージンをまとめている。
まず 2 7 (Α) の比較例及び図 2 7 (Β) の最適例における共通電圧マ一ジン 7 1は、 1次色の最終色シアンと 3次色のブラックで決まる立上がり電圧 8 0 0 V〜立下がり電圧 1 3 0 O Vの範囲であり、 比較例及び最適例は共に同じ電圧マ —ジンとなっている。 これに対し、 1次色におけるイエロ一、 マゼンタ及びブラ ックについて、 図 2 7 (Β) の点線で示すように、比較例に対し高電圧側に電圧 マ一ジンが広がった部分 7 2— 1, 7 2 - 2, 7 2— 3か '得られ、 1 ?欠色の電圧 マ一ジンが中心電圧である 1 1 0 O Vに対し高電圧側で、 より余裕度が増してい る。 このように中間転写ローラ 3 8— 1〜3 8— 4の抵抗値を最適ィ匕することに よって、 最終転写色以外の転写特性を、 より安定化することができる。 なお図 2 3の実施形態にあっては、 中間転写ローラ 3 8— 1〜3 8— 4としてスポンジ口 —ラを使用したが、 抵抗体ブラシ、 抵抗体シートなどの形状でも使用することが できる。 またこれらの中間転写電極部材としての抵抗値は図 2 3の実施形態に限 定されず、 中間転写ベルト 2 4の抵抗値、 印刷速度、 トナー帯電量、 トナー付着 量及び 1次転写電圧などによって、 9 0 %以上の転写効率の電圧マ一ジン力得ら れる範囲で選択できる。
図 2 8は、 共通の電源からの経路に接続した捕償抵抗の抵抗値によって感光体 ドラムの転写二ップに最適な実効転写電圧を設定する本発明の実施形態の説明図 であり、 同様にカラ一プリンタを例にとっている。 図 2 8において、 カラープリ ンタ 1 0のシングルパス型の構造は図 2 3の実施形態と同じであるが、 1次転写 電圧を供給する電源 4 0から中間転写ローラ 3 8— 1〜3 8— 4に電圧を供給す る経路に補償抵抗 7 4— 1, 7 4 - 2 , 7 4— 3及び 7 4— 4を挿入接続し、 こ れらの抵抗値を異ならせることによって、 中間転写ローラ 3 8— ;!〜 3 8— 4を 介して各色ごとの感光体ドラム 1 4一 1〜1 4— 4のベルト接触点となる転写二 ップに加わる実効的な転写電圧を色重ね数の多くなる転写部ほど高くなるように している。 更に具体的に説明すると、 中間転写ローラ 3 8— 1〜 3 8— 4として 全て抵抗値が 1 04 Ωのスポンジローラを使用している。
図 2 9は、 図 2 8において挿入する補償抵抗 7 4—1〜7 4— 4の抵抗値を変 えたときの 1次色から 3次色までの転写効率の電圧マージンについて、 口一ラ抵 杭に補償抵抗を加えた抵抗値の変化に対する立下がり電圧及び立上がり電圧を表 している。 このような特性を考慮して、 最適な補償抵抗の抵抗値として例えばィ エロー、 マゼン夕、 ブラックの補償抵抗 7 4— 1, 7 4— 2及び 7 4— 4に 1 M Ωを設定し、 シアンの捕償抵抗 7 4— 3は抵抗なしとする。
図 3 0は捕償抵抗を接続せずに全てのスポンジローラを 1 04 Ωローラとした 場合の 1次転写電圧に対する 1次色、 2次色、 3次色の電圧マ一ジンを比較例と して示し、 図 3 0 (B) がイェロー、 マゼン夕、 ブラックについて補償抵抗 1 M Ωを選択しシアンの捕償抵抗をなしとした場合、 同じく 1 04 Ωローラについて の最適例についての 1次転写電圧についての電圧マ—ジンを表している。 この図 3 0 (A) の比較例と (B) の最適例については、 共通電圧マ一ジン 7 5は 8 0 0 V〜l 3 0 0 Vと同じであるが、 最適例にあっては比較例に対し 1次色のイエ 口一、 マゼン夕、 ブラックについて、高電圧側に電圧マ一ジンが広がった部分 7 6— 1, 7 6 - 2 , 7 6— 3が得られた。 また 2次色のレッドについても、 高電 圧側に僅かであるが電圧マージン力広がった部分 7 6— 4が得られた。 この結果 、特に 1次色の電圧マージンが中心電圧である 1 1 0 0 Vに対し、 高電圧側でよ り余裕度力増している。 このように中間転写ローラに転写電圧を印加し、 回路に 設けた補償抵抗の抵抗値を最適化することによって、最終転写色以外の転写特性 をより安定化することができる。
図 3 1は、 中間転写ローラの転写ニップに対する離間距離により最適な実効転 写電圧を設定する本発明の実施形態であり、 同じくカラ一プリン夕を例にとって いる。 この実施形態にあっては、 中間転写ローラ 8 0— 1〜8 0— 4としてステ ンレス性の外径 8 0 mmの金属ローラを使用している。 中間転写ローラ 8 0 - 1 〜8 0— 4は、 感光体ドラム 1 4一 1〜1 4一 4の中心から鉛直下方に延ばした 中心線に対し、 中間転写口一ラ 8 0— 1〜8 0— 4の同じく中心から鉛直下方に 延ばした中心線との距離を離間距離 L l, L 2, L 3 , L 4とし、 転写二ップの 下流側に配置している。 ここで中間転写ローラ 8 0— 1〜8 0— 4の距離 L 1〜 L 4は 1 0〜4 5 mmの範囲で変化させている。 ここで 4 5 mmとはドラム軸間 距離 9 0 mmのほぼ半分であり、 ドラム間のほぼ中央に当たる。 もちろんドラム 間距離は 9 0 mmに限定されることはなく、 装置構成によって許容できる適宜の 範囲で設定できる。
図 3 2は、 図 3 1における中間転写ローラ 8 0— 1〜8 0— 4の転写二ップに 対する離間距離を変えたときの 1次色から 3次色までの転写効率の電圧マ一ジン 、 即ち電圧マ一ジンのローラ離間距離に対する立上がり電圧と立下がり電圧をま とめている。 この特性から明らかなように、 ローラ離間距離の増加に伴って各色 の電圧マージンは高電圧側にシフトしている。 このような特性を考慮して、 図 3 1の実施形態については、 例えばイェローの離間距離を L 1 = 3 O mm、 マゼン 夕の離間距離を L 2 = 2 0 mm、 シァンの離間距離を L 3 = 1 0 mm、 更にブラ ックの離間距離を L 4 = 3 0 mmとしている。
図 3 3 (A) は全色の離間距離を 1 0 mmとした場合の 1次転写電圧に対する 1次色、 2次色、 3次色の電圧マ一ジンを比較例として、 図 3 3 (B) に最適な 離間距離を選択した場合の 1次転写電圧に対する本発明による電圧マージンを最 適例として表している。 この場合にも、 離間距離を各色で調整して最適例とした 場合にあっては、 比較例に対し 1次色のイェロー、 マゼン夕、 ブラック、 更に 2 次色のレッドについて破線で囲むように高電圧側に電圧マージンが拡大した部分
8 2— 1, 8 2 - 2 , 8 2 - 3 , 8 2— 4力得られている。 これによつて中間転 写ローラ 3 8—丄〜 3 8— 4の転写二ップに対する離間距離 L 1〜 L 4を最適化 することによって、 最終転写色以外の転写特性をより安定化することができる。 ここで図 3 1の実施形態にあつては、 中間転写ローラ 3 8— 1〜 3 8— 4として 金属ローラを使用しているが、 これ以外に導電性を有するブラシ、 シートなどの 形状であってもよい。 また中間転写ローラ 3 8— 1〜3 8— 4の位置は、 転写二 ップの下流側に限らず、上流側または上流側と下流側の組み合わせであつてもよ い。
なお、 上記の実施形態は電子写真記録装置としてカラープリン夕への適用を例 にとるものであったが、 同様にして画像形成を行うコピアなど適宜の画像形成装 置にそのまま適用することができる。 産業上の利用可能性
以上説明してきたように本発明によれば、電子写真記録の処理プロセスに使用 する中間転写ベルトの比誘電率、表面抵抗及び体積抵抗の最適領域を見出すこと によって、転写位置を移動する間にベルト転写電位が十分に減衰し、次の転写位 置で同じ転写電圧を加えることができる。 これによつて複数色の転写部に対する 電源を同一の電源とし、 転写電源のコストの低減と装置の小型ィ匕を図ることがで きる。
また複数色の 1次転写部の転写電圧と 1次転写後の 2次転写に使用する 2次転 写電圧を同じ電源から供給できるようにすることで、 転写電源のコストを抑え、 また装置をコンパクトにすることができる。
更に複数色の転写部に対する電源を単一の電源とした場合、 感光体ドラムの転 写二ップに加わる実効的な転写電圧を色重ね数が多くなるほど高くなるように設 定することで、 単一の電源から複数の転写部に転写電圧を印加する場合の色重ね 転写を安定化させることができる。

Claims

請求の範囲
1. 像担持体上に色の異なる現像剤を静電的に付着させて各色の可視画像を形成 する複数の画像形成部と、
前記画像形成部のそれぞれの像担持体上に付着した現像剤を順次転写して重ね 合わせるために前記各色の像担持体と接触したベルト状転写部材と、
前記画像形成部に設けた各像担持体の反対側に位置して前記ベルト状転写部材 を挟んで接触配置され、前記画像形成部からベルト状転写部材に画像を静電的に 転写するための 1次転写電圧を印加する中間転写電極部材と、
バックァップ部材の反対側に前記ベルト状転写部材を挟んで接触配置され、前 記ベルト状転写部材に転写された可視画像を用紙に一括転写するための 2次転写 電圧を印加する用紙転写電極部材と、
を備え、
前記複数の中間転写電極部材に同一の電源から同一の 1次転写電圧を共通に印 加することを特徴とする画像形成装置。 ―
2. 請求の範囲 1に於いて、 前記ベルト状転写部材は、 最初の転写で帯電された 電位が次の転写位置にくるまでに、転写電圧の 1 Z 3以下に減衰しているように 比誘電率、表面抵抗及び体積抵抗を調整していることを特徴とする画像形成装置 o
3. 請求の範囲 2の画像形成装置に於いて、前記ベルト状転写部材の比誘電率は 8以上、表面抵抗は 1 0 0 0 Vの測定で 1 X 1 09 〜1 X 1 0 11 Ω/口、 体積抵 抗は 1 0 0 Vの測定で 1 0 10 Ω · c m以上、 5 0 0 Vの測定では 1 X 1 08 〜 1 X I 0 10 Ω - c m以下であることを特徴とする画像形成装置。
4. 請求の範囲 3の電子写真記録装置に於いて、前記中間転写電極部材は、外周 にスポンジ層を形成した転写ローラであり、前記転写ローラの抵抗は 1 X 1 0 5 〜: L X 1 07 Ωであることを特徴とする画像形成装置。
5. ベルト移動方向に並べられた複数の像担持体に形成した異なる色の現像剤を 付着させた画像を、 ベルト状転写部材に静電的に順次 1次転写して重ね合せた後 に記録媒体上に一括して 2次転写させるために使用する中間転写ベルトに於いて 、
最初の 1次転写で帯電された電位が次の 1次転写の位置にくるまでに、転写電 圧の 1 , 3以下に減衰しているように比誘電率、表面抵抗及び体積抵抗を調整し たことを特徴とする中間転写ベルト。
6. 請求の範囲 5の中間転写ベルトに於いて、前記比誘電率は 8以上、 表面抵抗 は 1000 Vの測定で 1 X 109 〜1 X 1011 Ω/ロ、体積抵抗は 100 Vの測 定で 1010Ω · cm以上、 500Vの測定値で l x l 08〜1 Χ 1010Ω · cm であることを特徴とする中間転写ベルト。
7. 画像形成装置に使用される中間転写ベルトの体積抵抗測定方法に於いて、 中間移転者ベルトの表面と裏面に接触させた電極間に測定対象とする任意の転 写電圧を印加し、 該転写電圧の印加を断つた際の経過時間に対するベルト電位の 減衰特性を測定する測定ステツプと、
前記ベルト電位の減衰特性の測定結果に基づいて、 ベルト電位の変化に依存し た体積抵抗 Pを算出する計算ステップと、
を備えたことを特徴とする中間転写ベルトの体積抵抗測定方法。
8. 請求の範囲 7の中間転写ベルトの体積抵抗測定方法に於いて、
前記測定ステップは、転写電圧の印加を断った時から一定時間 Δ t毎のベルト 電位を測定し、 '
前記計算ステップは、 時刻 のベルト電位を V (tn ) 、一定時間厶 t前の mtn-X のベルト電位を V (t„-a ) とした場合、
P [V (tn-! ) -V (t„ ) } Z2] = Δ t / { ε * ε 0 ( 1 n V ( t„-ι ) - 1 n V ( t n ) } 但し、 ε * は比誘電率
ε 0 は真空の誘電率で 8. 8 5 4 x 1 0— 12 [F/m] によりベルト電位 V ( t n ) に依存した体積抵抗 pを算出することを特徴とする 転写ベルトの体積抵抗測定方法。
9. 像担持体上に色の異なる現像剤を静電的に付着させて各色の可視画像を形成 する複数の画像形成部と、
前記画像形成部のそれぞれの像担持体上に付着した現像剤を順次転写して重ね 合わせるための前記各色の像担持体と接触したベルト状転写部材と、
前記画像形成部に設けた各像担持体の反対側に位置して前記ベルト状転写部材 を挟んで接触配置され、前記画像形成部からベルト状転写部材に画像を静電的に 転写するための 1次転写電圧が印加された中間転写電極部材と、
バックアツプ部材の反対側に前記ベルト状転写部材を挟んで接触配置され、前 記ベルト状転写部材に転写された可視画像を用紙に一括転写するための 2次転写 電圧を印加する用紙転写電極部材と、
を備え、
前記複数の中間転写電極部材に印加する 1次転写電圧と前記用紙転写電極部材 に印加する 2次転写電圧を同一の電源から供給することを特徴とする画像形成装
1 0. 請求の範囲9の画像形成装置に於いて、前記電源から用紙転写電極部材に 2次転写電圧を直接供給すると共に、 前記電源から前記複数の中間転写電極部材 に電圧降下部材を介して低下させた 1次転写電圧を供給することを特徴とする画
1 1. 像担持体上に色の異なる現像剤を静電的に付着させて各色の可視画像を形 成する複数の画像形成部と、 前記画像形成部のそれぞれの像担持体上に付着した現像剤を順次転写して重ね 合わせるための前記各色の像担持体と接触したベルト状転写部材と、
前記画像形成部に設けた各像担持体の反対側に位置して前記ベルト状転写部材 を挟んで接触配置され、 前記画像形成部からベルト状転写部材に画像を静電的に 転写するための 1次転写電圧を転写部に印加する中間転写電極部材と、
バックアツプ部材の反対側に前記ベルト状転写部材を挟んで接触配置され、 前 記ベルト状転写部材に転写された可視画像を用紙に一括転写するための 2次転写 電圧を印加する用紙転写電極部材と、
前記複数の中間転写電極部材に同一の 1次転写電圧を共通に印加する 1次転写 電源と、 ' を備え、前記複数の中間転写電極部材の抵抗は、 色重ね数の少ない転写部ほど高 く設定し、 色重ね数の多い転写部ほど低く設定することを特徴とする画像形成装
1 2. 像担持体上に色の異なる現像剤を静電的に付着させて各色の可視画像を形 成する複数の画像形成部と、
前記画像形成部のそれぞれの像担持体上に付着した現像剤を順次転写して重ね 合わせるための前記各色の像担持体と接触したベルト状転写部材と、
前記画像形成部に設けた各像担持体の反対側に位置して前記ベルト状転写部材 を挟んで接触配置され、前記画像形成部からベルト状転写部材に画像を静電的に 転写するための 1次転写電圧を転写部に印加する中間転写電極部材と、
バックアツプ部材の反対側に前記ベルト状転写部材を挟んで接触配置され、前 記ベルト状転写部材に転写された可視画像を用紙に一括転写するための 2次転写 電圧を印加する用紙転写電極部材と、
前記複数の中間転写電極部材に同一の 1次転写電圧を共通に印加する 1次転写 電源と、
を備え、前記 1次転写電源と前記複数の中間転写電極部材の各々の間に補償抵抗 を有し、前記捕償抵抗の抵抗値は、 色重ね数の少ない転写部ほど高く設定し、 色 重ね数の多い転写部ほど低く設定することを特徴とする画像形成装置。
1 3. 像担持体上に色の異なる現像剤を静電的に付着させて各色の可視画像を形 成する複数の画像形成部と、
前記画像形成部のそれぞれの像担持体上に付着した現像剤を順次転写して重ね 合わせるための前記各色の像担持体と接触したベルト状転写部材と、
前記画像形成部に設けた各像担持体の反対側に位置して前記ベルト状転写部材 を挟んで接触配置され、前記画像形成部からベルト状転写部材に画像を静電的に 転写するための 1次転写電圧を転写部に印加する中間転写電極部材と、
バックアツプ部材の反対側に前記ベルト状転写部材を挟んで接触配置され、前 記ベルト状転写部材に重ね合せ転写された可視画像を用紙に一括転写するための 2次転写電圧を印加する用紙転写電極部材と、
前記複数の中間転写電極部材に同一の 1次転写電圧を共通に印加する 1次転写 電源と、
を備え、前記複数の中間転写電極部材は導電性部材であり、各色の像担持体とベ ルト状転写部材との接触位置からベルト表面方向の離間した位置に配置され、前 記離間距離は、 色重ね数の多い転写部ほど短く設定し、 色重ね数の少ぃ転写部ほ ど長く設定することを特徴とする画像形成装置。
PCT/JP2001/000165 2001-01-12 2001-01-12 Dispositif de formation d'image WO2002056119A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2001/000165 WO2002056119A1 (fr) 2001-01-12 2001-01-12 Dispositif de formation d'image
EP01900736A EP1351101B1 (en) 2001-01-12 2001-01-12 Image forming device
JP2002556313A JPWO2002056119A1 (ja) 2001-01-12 2001-01-12 画像形成装置
US10/611,809 US6922542B2 (en) 2001-01-12 2003-07-02 Image forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2001/000165 WO2002056119A1 (fr) 2001-01-12 2001-01-12 Dispositif de formation d'image

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/611,809 Continuation US6922542B2 (en) 2001-01-12 2003-07-02 Image forming apparatus

Publications (1)

Publication Number Publication Date
WO2002056119A1 true WO2002056119A1 (fr) 2002-07-18

Family

ID=11736905

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/000165 WO2002056119A1 (fr) 2001-01-12 2001-01-12 Dispositif de formation d'image

Country Status (4)

Country Link
US (1) US6922542B2 (ja)
EP (1) EP1351101B1 (ja)
JP (1) JPWO2002056119A1 (ja)
WO (1) WO2002056119A1 (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004258432A (ja) * 2003-02-27 2004-09-16 Minolta Co Ltd 画像形成装置
JP2005134509A (ja) * 2003-10-29 2005-05-26 Oki Data Corp 転写部材および画像形成装置
JP2007065546A (ja) * 2005-09-02 2007-03-15 Konica Minolta Business Technologies Inc 中間転写ベルト
JP2007183576A (ja) * 2005-12-08 2007-07-19 Ricoh Co Ltd 画像形成装置
JP2007241164A (ja) * 2006-03-13 2007-09-20 Ricoh Co Ltd 画像形成装置
JP2007256592A (ja) * 2006-03-23 2007-10-04 Ricoh Co Ltd 画像形成装置
JP2007322534A (ja) * 2006-05-30 2007-12-13 Ricoh Co Ltd 画像形成装置
CN100375932C (zh) * 2003-12-26 2008-03-19 夏普株式会社 转印装置
CN100394318C (zh) * 2003-12-24 2008-06-11 佳能株式会社 图像形成装置
CN100419588C (zh) * 2004-09-30 2008-09-17 夏普株式会社 成像装置和转印方法
JP2009075530A (ja) * 2007-08-31 2009-04-09 Ricoh Co Ltd 画像形成装置
US8099032B2 (en) 2008-02-18 2012-01-17 Ricoh Company, Ltd. Image forming apparatus
US8200105B2 (en) 2007-08-31 2012-06-12 Ricoh Company, Ltd. First stage transfer bias of an image forming device
WO2013005803A1 (ja) 2011-07-05 2013-01-10 株式会社ブリヂストン 現像ローラ
JP2013231942A (ja) * 2012-04-03 2013-11-14 Canon Inc 画像形成装置
JP2014115339A (ja) * 2012-12-06 2014-06-26 Canon Inc 画像形成装置
US10120323B2 (en) 2016-07-29 2018-11-06 Canon Kabushiki Kaisha Image forming apparatus
US11169473B2 (en) 2019-03-28 2021-11-09 Canon Kabushiki Kaisha Image forming apparatus with image bearing member and a belt that contact each other to form a wound area by urging a transfer member toward the image bearing member

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7485709B2 (en) * 2002-05-31 2009-02-03 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Identification of a novel BHD gene
JP2005107101A (ja) * 2003-09-30 2005-04-21 Brother Ind Ltd 画像形成装置
JP2005250254A (ja) * 2004-03-05 2005-09-15 Canon Inc 画像形成装置
US7215912B2 (en) * 2004-03-19 2007-05-08 Ricoh Company Limited Intermediate transfer medium and image forming apparatus using the intermediate transfer medium
KR100631195B1 (ko) * 2004-10-04 2006-10-04 삼성전자주식회사 중간전사벨트의 저항변화를 방지하는 화상형성장치 및 그방법
JP2006113285A (ja) * 2004-10-14 2006-04-27 Sharp Corp カラー画像形成装置
KR100597242B1 (ko) * 2004-11-23 2006-07-06 삼성전자주식회사 화상전사부재, 화상전사장치 및 그것을 사용하는화상형성시스템
JP4628854B2 (ja) * 2005-04-27 2011-02-09 株式会社リコー 画像形成装置
US7560209B2 (en) * 2005-08-23 2009-07-14 Konica Minolta Business Technologies, Inc. Electrophotographic image forming apparatus and image forming unit
JP2008268714A (ja) * 2007-04-24 2008-11-06 Konica Minolta Business Technologies Inc 画像形成装置
KR101427112B1 (ko) * 2007-06-20 2014-08-07 삼성전자 주식회사 전사장치 및 이를 가지는 화상형성장치
US8219010B2 (en) * 2008-07-14 2012-07-10 Kabushiki Kaisha Toshiba Image forming apparatus, image forming method, intermediate transfer belt, and method of evaluating the same
JP2011164298A (ja) * 2010-02-08 2011-08-25 Fuji Xerox Co Ltd 画像形成装置
JP5906047B2 (ja) 2010-10-04 2016-04-20 キヤノン株式会社 画像形成装置
JP5693426B2 (ja) * 2010-10-04 2015-04-01 キヤノン株式会社 画像形成装置
JP5904739B2 (ja) 2010-10-04 2016-04-20 キヤノン株式会社 画像形成装置
JP5822533B2 (ja) * 2011-05-11 2015-11-24 キヤノン株式会社 画像形成装置
JP6080652B2 (ja) * 2013-04-01 2017-02-15 キヤノン株式会社 画像形成装置
JP6395499B2 (ja) * 2014-08-14 2018-09-26 キヤノン株式会社 画像形成装置
JP6435910B2 (ja) * 2015-02-20 2018-12-12 株式会社リコー 電力供給装置、画像形成装置及び電力供給方法
JP6684466B2 (ja) * 2016-02-04 2020-04-22 株式会社リコー 画像形成装置
JP6729172B2 (ja) * 2016-08-24 2020-07-22 コニカミノルタ株式会社 画像形成装置および画像形成方法
JP6885166B2 (ja) * 2017-04-06 2021-06-09 コニカミノルタ株式会社 画像形成装置および画像形成方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6474571A (en) * 1987-09-16 1989-03-20 Sharp Kk Image forming device
JPH06289686A (ja) * 1993-04-02 1994-10-18 Oki Electric Ind Co Ltd カラー画像形成装置
JPH0934269A (ja) * 1995-07-13 1997-02-07 Canon Inc 画像形成装置
JPH1124433A (ja) * 1997-06-27 1999-01-29 Fuji Xerox Co Ltd 画像形成装置
JPH11202651A (ja) 1998-01-19 1999-07-30 Minolta Co Ltd 画像形成装置
JP2000242096A (ja) 1999-02-22 2000-09-08 Minolta Co Ltd 画像形成装置及び転写電圧印加方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4004020B2 (ja) * 2001-07-23 2007-11-07 株式会社リコー バイアス印加方法、バイアス印加装置、画像形成装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6474571A (en) * 1987-09-16 1989-03-20 Sharp Kk Image forming device
JPH06289686A (ja) * 1993-04-02 1994-10-18 Oki Electric Ind Co Ltd カラー画像形成装置
JPH0934269A (ja) * 1995-07-13 1997-02-07 Canon Inc 画像形成装置
US5832351A (en) 1995-07-13 1998-11-03 Canon Kabushiki Kaisha Transfer sheet and image forming apparatus
JPH1124433A (ja) * 1997-06-27 1999-01-29 Fuji Xerox Co Ltd 画像形成装置
US5893022A (en) 1997-06-27 1999-04-06 Fuji Xerox Co., Ltd. Image forming apparatus
JPH11202651A (ja) 1998-01-19 1999-07-30 Minolta Co Ltd 画像形成装置
JP2000242096A (ja) 1999-02-22 2000-09-08 Minolta Co Ltd 画像形成装置及び転写電圧印加方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1351101A4 *

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004258432A (ja) * 2003-02-27 2004-09-16 Minolta Co Ltd 画像形成装置
US7645515B2 (en) 2003-10-29 2010-01-12 Oki Data Corporation Transfer arrangement and image forming apparatus
JP2005134509A (ja) * 2003-10-29 2005-05-26 Oki Data Corp 転写部材および画像形成装置
CN100394318C (zh) * 2003-12-24 2008-06-11 佳能株式会社 图像形成装置
CN100375932C (zh) * 2003-12-26 2008-03-19 夏普株式会社 转印装置
CN100419588C (zh) * 2004-09-30 2008-09-17 夏普株式会社 成像装置和转印方法
JP2007065546A (ja) * 2005-09-02 2007-03-15 Konica Minolta Business Technologies Inc 中間転写ベルト
JP2007183576A (ja) * 2005-12-08 2007-07-19 Ricoh Co Ltd 画像形成装置
JP2007241164A (ja) * 2006-03-13 2007-09-20 Ricoh Co Ltd 画像形成装置
JP2007256592A (ja) * 2006-03-23 2007-10-04 Ricoh Co Ltd 画像形成装置
JP2007322534A (ja) * 2006-05-30 2007-12-13 Ricoh Co Ltd 画像形成装置
JP2009075530A (ja) * 2007-08-31 2009-04-09 Ricoh Co Ltd 画像形成装置
US8200105B2 (en) 2007-08-31 2012-06-12 Ricoh Company, Ltd. First stage transfer bias of an image forming device
JP2013020279A (ja) * 2007-08-31 2013-01-31 Ricoh Co Ltd 画像形成装置
US8099032B2 (en) 2008-02-18 2012-01-17 Ricoh Company, Ltd. Image forming apparatus
WO2013005803A1 (ja) 2011-07-05 2013-01-10 株式会社ブリヂストン 現像ローラ
US9201337B2 (en) 2011-07-05 2015-12-01 Bridgestone Corporation Developing roller
JP2013231942A (ja) * 2012-04-03 2013-11-14 Canon Inc 画像形成装置
JP2014115339A (ja) * 2012-12-06 2014-06-26 Canon Inc 画像形成装置
US10120323B2 (en) 2016-07-29 2018-11-06 Canon Kabushiki Kaisha Image forming apparatus
US11169473B2 (en) 2019-03-28 2021-11-09 Canon Kabushiki Kaisha Image forming apparatus with image bearing member and a belt that contact each other to form a wound area by urging a transfer member toward the image bearing member

Also Published As

Publication number Publication date
US6922542B2 (en) 2005-07-26
US20050058473A1 (en) 2005-03-17
JPWO2002056119A1 (ja) 2004-05-20
EP1351101A1 (en) 2003-10-08
EP1351101A4 (en) 2008-03-26
EP1351101B1 (en) 2012-11-21

Similar Documents

Publication Publication Date Title
WO2002056119A1 (fr) Dispositif de formation d'image
JPWO2002099536A1 (ja) カラー画像形成方法及びカラー画像形成装置
WO2002056118A1 (en) Image forming device and method
JP6610565B2 (ja) 定着装置およびこれを備えた画像形成装置
JP3600102B2 (ja) カラー画像形成装置
US6782232B2 (en) Fixing unit for an image forming apparatus
JP2004184875A (ja) 転写装置及び画像形成装置
JP2010204235A (ja) 加熱転写定着装置および画像形成装置
JP4114991B2 (ja) 画像形成装置
JP4255709B2 (ja) 画像形成装置及びその転写材ジャム検出方法
JP3346091B2 (ja) トナー像転写装置及びこれを用いた転写電圧制御方法
JPH0836329A (ja) 画像形成装置
JP2006126320A (ja) 画像形成装置
JPH10240028A (ja) 中間転写ユニット
JPWO2002069056A1 (ja) 画像形成装置
JPH10240041A (ja) 中間転写ユニット
JP2006010882A (ja) カラー画像形成装置
WO2002061507A1 (fr) Appareil de formation d'image
JPH10240039A (ja) 中間転写ユニット
JPH07146597A (ja) カラー画像形成装置
JP3441992B2 (ja) 画像形成装置
JPH08160756A (ja) カラー画像形成装置
JPH10240031A (ja) 中間転写ユニット
JP2003280436A (ja) 画像形成装置
JPH10240030A (ja) 中間転写ユニット

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2001900736

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10611809

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2002556313

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 2001900736

Country of ref document: EP