WO2002055853A1 - Moteur a combustion interne de type v a plusieurs cylindres - Google Patents

Moteur a combustion interne de type v a plusieurs cylindres Download PDF

Info

Publication number
WO2002055853A1
WO2002055853A1 PCT/JP2001/010925 JP0110925W WO02055853A1 WO 2002055853 A1 WO2002055853 A1 WO 2002055853A1 JP 0110925 W JP0110925 W JP 0110925W WO 02055853 A1 WO02055853 A1 WO 02055853A1
Authority
WO
WIPO (PCT)
Prior art keywords
internal combustion
combustion engine
crankshaft
pistons
cylinder
Prior art date
Application number
PCT/JP2001/010925
Other languages
English (en)
French (fr)
Inventor
Noboru Yamashita
Original Assignee
Honda Giken Kogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Giken Kogyo Kabushiki Kaisha filed Critical Honda Giken Kogyo Kabushiki Kaisha
Priority to BRPI0109126-3A priority Critical patent/BR0109126B1/pt
Priority to DE60112971T priority patent/DE60112971T2/de
Priority to US10/204,255 priority patent/US6745730B2/en
Priority to EP01273178A priority patent/EP1350935B1/en
Publication of WO2002055853A1 publication Critical patent/WO2002055853A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B77/00Component parts, details or accessories, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/16Engines characterised by number of cylinders, e.g. single-cylinder engines
    • F02B75/18Multi-cylinder engines
    • F02B75/22Multi-cylinder engines with cylinders in V, fan, or star arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B61/00Adaptations of engines for driving vehicles or for driving propellers; Combinations of engines with gearing
    • F02B61/02Adaptations of engines for driving vehicles or for driving propellers; Combinations of engines with gearing for driving cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/22Compensation of inertia forces
    • F16F15/24Compensation of inertia forces of crankshaft systems by particular disposition of cranks, pistons, or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/28Counterweights, i.e. additional weights counterbalancing inertia forces induced by the reciprocating movement of masses in the system, e.g. of pistons attached to an engine crankshaft; Attaching or mounting same
    • F16F15/283Counterweights, i.e. additional weights counterbalancing inertia forces induced by the reciprocating movement of masses in the system, e.g. of pistons attached to an engine crankshaft; Attaching or mounting same for engine crankshafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/025Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle two
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/16Engines characterised by number of cylinders, e.g. single-cylinder engines
    • F02B75/18Multi-cylinder engines
    • F02B2075/1804Number of cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/16Engines characterised by number of cylinders, e.g. single-cylinder engines
    • F02B75/18Multi-cylinder engines
    • F02B2075/1804Number of cylinders
    • F02B2075/182Number of cylinders five

Definitions

  • the present invention relates to an odd-numbered cylinder V-type internal combustion engine, and more particularly, to a structure for preventing a primary vibration generated due to a primary inertial force of a reciprocating portion such as a piston.
  • a balancer mechanism such as a balancer shaft has been provided in order to prevent vibration due to imbalance in inertial force generated in a reciprocating portion such as a piston of a reciprocating internal combustion engine.
  • the balancer mechanism such as the balancer shaft is driven to rotate in synchronization with the crankshaft by the power of the crankshaft transmitted through a transmission mechanism such as a chain or a gear.
  • a balancer mechanism in an odd-cylinder V-type internal combustion engine the one disclosed in Japanese Patent Publication No. Hei 4-316252 is known.
  • the V-type internal combustion engine disclosed in this publication is a five-cylinder internal combustion engine having three cylinders disposed in front of a vehicle body frame and two cylinders disposed in rear of the vehicle body frame.
  • the connecting rod of the front cylinder and the connecting rod of the rear cylinder are connected together to one crankpin, and the other crankpin at the left end of the crankshaft (on the left side in the direction of travel when the motorcycle is mounted) is connected to each of the crankpins.
  • the connecting rod of the remaining one front cylinder located at the left end is connected.
  • a balancer mechanism is provided at the large end of the connecting rod of the left front cylinder in order to eliminate the imbalance in fake power generated by the operation of the internal combustion engine.
  • the balancer mechanism includes two arms that perform a pendulum motion with the rotation of the large end, and a housing that houses the balancer mechanism is provided adjacent to the left side of the rear cylinder.
  • a balancer mechanism is required in order to eliminate imbalance in fake power, and a space for accommodating the balancer mechanism is also required, so that the weight of the internal combustion engine increases and Larger internal combustion engine and more parts SUMMARY OF THE INVENTION
  • the present invention has been made in view of such circumstances, and further has a disadvantage that frictional loss increases due to an increase in the number of sliding parts. It is another object of the present invention to provide an odd-numbered V-type internal combustion engine that can prevent the occurrence of primary vibration due to unbalance of the primary inertia force without increasing the size. Primary vibration is prevented by using a piston fitted to one of the cylinders that does not form a pair, and the primary inertial force in the rotation direction of the crankshaft is equalized for each cylinder. Aim.
  • a further object of the present invention is to prevent a cutting vibration which is generated by a simple structure as a primary force due to a couple.
  • two V-shaped banks are formed (2 n + l) (where n is a natural number) and the cylinder bore of each cylinder is formed. And a connecting rod respectively connected to these pistons, and a crankshaft, wherein the crankshaft is connected to each of a pair of pistons respectively belonging to the two banks. Odd cylinder V-type internal combustion engine with n shared crankpins with connecting rods connected together and one single crankpin with only connecting rods connected to one remaining piston In the institution,
  • the puncture angle 0 formed by the two banks is set to satisfy the following equation:
  • the single crankpin is delayed from the common crankpin by an angle of (180-—) degrees in the rotation direction.
  • the remaining piston is If the bank belongs to the bank on the lag side in the rotational direction, the common crank pin is disposed on the advance side in the rotational direction at an angle of (180-0) degrees, and the reciprocating motion of the piston and the like in all the cylinders
  • the masses of the parts are set equal,
  • the crankshaft is provided with balance weight means having a magnitude of kMr 2 and generating a balance force in a direction of ( ⁇ + 180) degrees.
  • the operation of the internal combustion engine is the magnitude of kMr ⁇ 2 generated in the balance weight means provided on the crankshaft, and ( ⁇ + 180) Since the balance is performed by the balance force having the degree direction, the occurrence of the primary vibration caused by the primary inertial force is prevented.
  • the primary vibration is prevented by the balance weight means provided on the crankshaft, so that it is necessary to provide a balancer mechanism having an arm and a balancer mechanism having a transmission mechanism and a balancer shaft as in the related art.
  • the increase in the weight of the internal combustion engine is suppressed. Seki is downsized.
  • the number of parts is reduced, so that productivity is improved.
  • the frictional loss is reduced due to the reduced number of sliding parts, so that the effective engine output can be increased.
  • the balance weight means includes a plurality of balance weights, and the balance weight is set so as to have a balance rate of 50% for each reciprocating portion of the piston or the like, and
  • the crank pin may be provided on the opposite side of the crank pin by 180 degrees with respect to the rotation axis of the shaft.
  • the unbalanced primary inertial force of the reciprocating parts of all pistons etc. connected to the common crankpin becomes unbalanced of the reciprocating parts of the piston etc. connected to the single crankpin.
  • the primary vibration is prevented by balancing with the force, thereby utilizing the reciprocating parts of the remaining pistons and the like other than the pair of reciprocating parts of the pistons and the like connected to the common crank pin.
  • Primary vibration can be prevented from being generated in a form in which the balance weight can be easily installed.
  • the balance weight is set so as to have a 50% balance ratio for each reciprocating portion of the piston or the like, the primary inertial force in the rotational direction of the crankshaft is equalized, so that the In addition, the design of the bearing for supporting the crankshaft is facilitated, and an increase in weight for increasing rigidity is avoided, so that the weight of the internal combustion engine can be reduced.
  • the balance weight means includes a plurality of balance weights
  • the single crankpin is provided at the center of the crankshaft in the rotation axis direction.
  • an imaginary plane including the center axis of the cylinder pore in which the remaining pistons are fitted and orthogonal to the rotation axis the reciprocating parts of all the pistons and the like and all the balance gates are arranged plane-symmetrically. It can be configured to be.
  • the primary inertial force generated on the crankshaft balances the balance force generated on the balance 8 and the primary inertial force and balance weight generated on the reciprocating parts of each piston etc. Since the generated balance force is plane-symmetric with respect to the virtual plane, no couple is formed by the primary inertial force and the balance force, and the reciprocating parts such as the single crankpin and the piston, and the c and lances Way
  • the simple structure of the plane symmetric arrangement prevents the occurrence of force coupling vibration due to the primary inertial force and balance force.
  • FIG. 1 is a left side view of a main part of a motorcycle equipped with a V-type internal combustion engine of the present invention.
  • FIG. 2 is a plan view of a main part of the motorcycle of FIG.
  • FIG. 3 is a development view taken along a line II-III in FIG.
  • FIG. 4 is a diagram for explaining a first-order characteristic generated in a reciprocating portion such as a pair of pistons connected to the same crankpin.
  • FIG. 5 is a diagram for explaining a primary inertial force generated in a reciprocating portion of a piston or the like connected to one crankpin in a puncture of MM in the rotation direction of the crankshaft.
  • FIG. 6 is an explanatory diagram showing the primary inertial force of the entire internal combustion engine.
  • FIG. 7 is a diagram for explaining a primary inertial force generated in a reciprocating portion of a piston or the like connected to one crankpin on a puncture side on the lag side in the rotation direction of the crankshaft.
  • FIG. 8 is an explanatory diagram showing a balance force generated in the balance weight of the V-type internal combustion engine in FIG.
  • FIG. 9 is an explanatory diagram showing the unbalanced primary inertial force of the V-type internal combustion engine in FIG.
  • a V-type internal combustion engine E to which the present invention is applied is a DOHC, water-cooled, V-type, five-cylinder, four-stroke internal combustion engine mounted on a motorcycle V.
  • “front, rear, left and right” means “front, rear, left and right” with reference to the motorcycle V body.
  • the internal combustion engine E has a cylinder block 1, and an upper portion of the cylinder block 1 forms a front bank la and a rear bank lb which form a V-shaped V bank having a bank angle of 0 in the front-rear direction, and a lower portion has an upper crank. Case lc is formed.
  • a head pipe 30 holding a front suspension for supporting the front wheel WF, and a pair of left and right main frames 31, 32 having a front end connected to the head pipe 30 and extending obliquely downward and rearward.
  • the internal combustion engine E is provided with a crankshaft 5 that is horizontally arranged so as to be directed in the left-right direction.
  • the crankshaft 5 is rotatably supported by the cylinder block 1 and the lower crankcase 3 with the rotation axis L positioned on the mating surface between the lower end surface of the cylinder block 1 and the upper end surface of the lower crankcase 3. . Since the crankshaft 5 rotates counterclockwise in FIG. 1, the front bank la is on the leading side in the rotation direction of the crankshaft 5 with respect to the rear bank lb.
  • the internal combustion engine E is disposed below the fuel tank 33 and obliquely below the front of the seat 34 and between the main frames 31 and 32 in plan view. That is, front brackets 31a, 32a extending substantially vertically downward are provided at the front of each main frame 31, 32, and the pair of front brackets 31a, 32a are provided with front punctures outside the V bank.
  • the support portion T1 formed integrally with the fixing member is fixed. Further, connecting portions 31b and 32b are provided so as to extend almost horizontally rearward from the vertical middle portions of the front brackets 31a and 32a, and these connecting portions 31b and 32b are provided inside the V bank.
  • the support part T2 formed integrally with the front bank la is fixed.
  • the rear portions of the main frames 31, 32 are provided with hanging portions 31c, 32c extending substantially vertically downward.
  • the hanging portions 31c, 32c are integrated with the rear portions of the upper crankcase lc at the upper positions of the pair of hanging portions 31c, 32c.
  • the support portion T3 formed integrally with the rear portion of the lower crankcase 3 is fixed to the lower position of the hanging portions 31c and 32c.
  • the front end of the U-shaped rear fork 35 that supports the rear wheel WR is located at the middle in the vertical direction of the portion where the support portions T3 and T4 are fixed in the hanging portions 31c and 32c. Be pivoted.
  • the front bank la has three cylinders CI, C3, C5 arranged along the direction of the rotation axis L of the crankshaft 5 and integrally connected.
  • the central axes Nl, N3, N5 of the cylinder pores Bl, B3, B5 formed in C5 are directed obliquely upward and forward from the rotation axis, and the cylinders CI, C3, C5 are inclined forward.
  • the rear bank lb has two cylinders C2 and C4 arranged along the direction of the rotation axis L and joined together, and the center axes N2 and C2 of the cylinder pores B2 and B4 formed in the cylinders C2 and C4, respectively.
  • N4 is directed obliquely rearward and upward from the rotation axis L, and the cylinders C2 and C4 are tilted rearward.
  • Cylinder pores B1 to B5 of each cylinder Cl to C5 have pistons P1 to which piston rings are attached! > 5 are slidably fitted, and the pistons P1 ⁇ ! Reciprocate by the combustion pressure of the combustion chamber formed between each piston P1 ⁇ P5 and the corresponding cylinder head 2a, 2b.
  • crankshaft 5 has journals J1 to J4 formed on the cylinder block 1 and the lower crankcase 3 by four bearings Dl to M formed at predetermined intervals in the direction of the rotation axis L, respectively. Is supported via a main bearing.
  • a crank pin K1 between the bearing portion D1 and the bearing portion D2 has a pair of pistons P and P2 fitted respectively to the cylinders Cl and C2 belonging to both the punctures la and lb.
  • Connecting rods Rl and R2 connected to piston pins Sl and S2, respectively, are connected together.
  • a connecting rod R3 connected to a piston pin S3 of a piston P3 fitted to a cylinder C3 belonging to the front puncture la is provided between a bearing D2 and a bearing D3 and adjacent to the crankpin K1.
  • Connecting rods R4 and R5 connected to piston pins S4 and S5 of P4 and P5 are connected together.
  • the two crankpins Kl, K3 constitute a common crankpin to which two pairs of connecting ports Rl, R2, R4, R5 are connected, and the journals ⁇ , J4 at both ends of the crankshaft 5 Between them, the crank pin K2 arranged at the center in the direction of the rotation axis L constitutes a single crank pin to which only one connecting rod R3 connected to the piston P3 is connected.
  • crankpins K1 and K3 are arranged in the same phase
  • the connecting rod R1 and the connecting rod R5, and the connecting rod R2 and the connecting rod R4 are arranged at positions overlapping with each other when viewed from the rotation axis L direction of the connecting shaft 5, and the center axis N3 of the cylinder bore B3 of the cylinder C3 is connected to the connecting rod R1 and the connecting rod R5.
  • the reciprocating parts of> 5 mag are arranged plane-symmetrically with respect to the virtual plane H.
  • piston P1 ⁇ ! The reciprocating parts such as> 5 are pistons P1 ⁇ ! > 5, Piston ring ⁇ Piston pin Piston S1 ⁇ S5 etc.
  • P1 ⁇ ! * Piston P1 reciprocating with 5! means a combination of the accessory member of No. 5 and a reciprocating portion of the connecting rods R1 to R5 connected to the pistons P1 to P5 via the piston pins S1 to S5.
  • crank webs Gl, G2 are provided at both ends of the crank pin K1
  • two crank webs G3, G4 are provided at both ends of the crank pin K2
  • two crank webs G5, G6 are provided, respectively.
  • the balance weights that generate a balance force that reduces the primary inertial force generated in the reciprocating parts of the pistons P1 to P5, etc. are arranged symmetrically with respect to the virtual plane H. Each is set up individually.
  • the balance rate sets the balance ratio of the reciprocating parts such as pistons # 1 to # 5 to the primary inertial force to 50%.
  • the rear bank lb whose width in the direction of the rotation axis L is smaller than that of the front bank la, occupies a position closer to the sheet 34 than the front bank la, and all the cylinder pores B1 to B5 They are arranged symmetrically with respect to the virtual plane H. Therefore, the left and right ends of the front bank la and the rear puncture lb in the direction of the rotation axis L occupy almost symmetrical positions with respect to the vehicle center Y in the left direction, and the three banks of the front bank 1a.
  • the cylinders C2, C4 in the cylinders Cl, C3, C5 and the rear bank lb occupy almost symmetrical positions with respect to the center Y of the vehicle body.
  • the internal combustion engine E has a balance weight that generates a balance force that balances the primary inertial force generated due to the reciprocating motion of the reciprocating portions of the pistons P1 to P5, etc., by operating the internal combustion engine E.
  • This balance force prevents the occurrence of primary vibration by setting the unbalanced primary inertial force, which is the unbalanced primary inertial force, to 0 (zero). Therefore, the primary vibration prevention structure will be described below.
  • V-type internal combustion engine having (2 n + l) (where n is a natural number) odd-numbered cylinders and a bank angle of 6> will be described first, and then the above-mentioned special case will be described.
  • the five-cylinder V-type internal combustion engine E will be described.
  • (n + 1) cylinders are arranged in a direction along the rotation axis of the crankshaft to form a first puncture, and the n cylinders
  • the second banks are arranged in a direction along the rotation axis.
  • the crankshaft is composed of n shared crank pins connected together with connecting rods connected to two pistons respectively fitted to two cylinders respectively belonging to the first and second banks, and the rest of the first bank. It has one single crankpin to which only the connecting rod connected to one piston that fits into the cylinder is connected.
  • crankpins are arranged in the same phase, that is, arranged at positions overlapping when viewed in the direction of the rotation axis of the crankshaft. Further, the single crankpin may be located at any position on the crankshaft in the rotation axis direction.
  • FIG. 4 is an explanatory view as seen in the direction of the rotation axis of the crankshaft, are connected to one common crank pin K c, and a first, two cylinders C physician respectively belonging to the second bank Two reciprocating motions of two pistons P and P M respectively fitted to C M The generated primary inertial force will be described.
  • Crankshaft is intended to rotate in the arrow direction indicated by A in the figure, as the origin the rotation axis, the central axis of Shirindapoa cylinder C M of the second bank extending from the origin to the Y-axis, and Y axis
  • the positive direction is the half line extending from the origin at a position rotated 90 degrees from the positive direction of the Y axis in the direction opposite to the rotation direction A.
  • Central axis of Shirindapoa cylinder C t belonging to the first bank is located advanced side in the rotational direction from the Y axis by the bank angle of 0. further,
  • the primary inertial force generated in reciprocating portion of the piston P t and the like of the first bank has the formula (1)
  • the primary inertial force generated on the piston P M reciprocating portions such as the second bank F 2 is expressed by equation (2).
  • the subscripts X and Y represent the X-axis direction component and the ⁇ -axis direction component.
  • the primary inertial force F T of the entire V-type internal combustion engine having (2 n + 1) cylinders is the vector sum of the primary inertial force F n and the primary inertial force F c , and is expressed by equation (6). Is performed.
  • crankpin K phase located so as to satisfy the equation (8) of s, i.e. common crankpin K from c (1 8 0 - 0) It is placed on the delay side in the direction of rotation with an angle of degrees.
  • the primary inertial force F T which is the resultant of the primary inertial forces generated in the reciprocating motion of each piston of the V-type internal combustion engine, has a magnitude of k M r ⁇ 2 . It can be seen that the vector rotates at the same angular speed as the crankshaft, with a delay of ⁇ degrees from the rotation angle of the shaft. Therefore, if a balance weight that generates a balance force that balances the primary inertial force F T is provided on the crankshaft, the imbalance of the V-type internal combustion engine as a whole will always be 0 (zero). can do. Therefore, the balance weight W B is shown in FIG. 6 showing the state when the common crank pin K c is on the Y axis. As described above, the primary inertial force F T indicated by the solid white arrow is provided at a position of (+180) degrees, and its mass is set to, for example, k M having its center of gravity on the crank radius. You.
  • the first bank when in delayed side in the rotational direction relative to the second puncture, as shown in Figure 7, corresponding to the formula (5), fitted to the remaining cylinders C N
  • the primary inertial force F c generated in the reciprocating part of the biston PN, etc., is as follows: If the phase of the single crank pin K s is 3 degrees in the rotation direction A from the common crank pin K c , It is represented by
  • the primary inertial force F T of the entire V-type internal combustion engine is the vector sum of the primary inertial force F n and the primary inertial force F c and is expressed by equation (17).
  • the primary inertial force F T has a magnitude of k M r ⁇ 2 , which is a vector that advances by ⁇ degrees with respect to the rotation angle of the crankshaft and turns at the same angular velocity as the crankshaft. Therefore, if a balance weight W B that generates a paransker balanced with the primary inertial force F T is provided on the crankshaft, the unbalanced primary inertial force of the entire V-type internal combustion engine is always set to 0 (zero). be able to. Therefore, as shown in FIG.
  • the position of the balance weight may be any part of the crankshaft as long as Equation (15) or Equation (20) is satisfied.
  • the primary inertia force of the reciprocating parts of the pistons P1 to P5, etc. by the balance weights provided on all the crank webs G1 to G6. Is set to 50% I have. This means that each piston PI ⁇ ! This is equivalent to providing a balance weight having a mass of MZ 2 on an imaginary circle having a crank radius corresponding to a reciprocating portion such as ⁇ .
  • FIGS. 8A to 8E show the state when the crankpins Kl and K3 are positioned on the Y-axis.
  • the balance weight In response to reciprocating parts, such as 1 ⁇ P5, the balance weight, the balance force F B l as shown, F B 2 is generated, balance force F B of the whole internal combustion engine E, each balancing force This is the vector sum of F B 1 and F B 2 .
  • FIG. 9 showing a state in which the crankpins Kl and # 3 are positioned on the ⁇ axis
  • the cylinders Cl and C5 respectively connected to the crankpins Kl and # 3 and belonging to the front bank la of the primary inertial force of reciprocating parts of the piston Pl, P5, etc. is equal to physicians each other, obtained by the respective formulas (1), the size of their force, be 2 X (M r to 2 cos 0)
  • the direction is 0 degrees from the positive direction of the Y axis.
  • the balance force provided by the balance weights provided corresponding to the reciprocating parts such as the pistons Pl and P5 is 2 X (M r ⁇ 2 ) / 2, and the direction is the positive direction of the ⁇ axis. From 180 degrees. Therefore, the unbalanced primary inertial force of the reciprocating parts such as the pistons Pl and ⁇ 5 is the vector sum of the primary inertial force and the balance force, and the magnitude is 2 X (M r ⁇ 2 ) / 2. The direction is 20 degrees from the positive direction of the ⁇ axis. On the other hand, the primary inertial forces of the reciprocating parts of the pistons P2, P4, etc.
  • the unbalanced primary inertial force Fu 2 of the reciprocating parts of the pistons ⁇ 2, ⁇ 4, etc. is the vector sum of the primary inertial force and the balance force, and its magnitude is 2 X (Mr ⁇ 2 ) ⁇ 2 And its direction is the positive direction of the ⁇ axis.
  • both unbalanced primary inertial force Fm, 2 pieces of Clan Kupyn Kl, K3 to linked pistons PI, P2, P4, unbalanced primary inertial force of reciprocating parts such as P5 is the vector sum of F U2 F U12, the size is 2 XMR 2 cos0, its orientation is 0 degrees from the positive direction of the Y-axis.
  • the magnitude of the unbalanced first-order inertial force F U12 is Mr ⁇ 2 ⁇ 2.
  • the primary inertial force of the reciprocating portion of the cylinder C3 belonging to the front bank la, such as the piston P3, which is connected to the crankpin ⁇ ⁇ 2 is obtained by Expression (5), and its magnitude is Mr ⁇ 2.
  • the direction is-(180-0) degrees from the positive direction of the ⁇ axis.
  • reciprocating portion of the unbalanced primary ' ⁇ force F U3, such as piston ⁇ 3 becomes a base vector sum of the primary inertial force and the balancing force, its magnitude is an M r ⁇ 2 ⁇ 2
  • the direction is-(180-S) degrees from the positive direction of the ⁇ axis.
  • the primary vibration is prevented by the balance weight provided on the crankshaft 5, so that there is no need to provide a balancer mechanism having an arm and a balancer mechanism having a power transmission mechanism and a balancer shaft as in the related art.
  • the increase in the weight of the internal combustion engine E is suppressed, and the size of the internal combustion engine E is reduced.
  • the number of parts is reduced, so that productivity is improved, and further, the frictional loss is reduced by reducing the number of sliding parts, so that the effective engine output can be increased.
  • Parance weight, piston ⁇ ⁇ ! The balance ratio is set to 50% for each reciprocating motion part such as> 5 etc., and it is provided 180 degrees opposite to each crankpin with respect to the rotation axis L. all bis ton P1 connected respectively, [rho] 2, [rho] 4, unbalanced primary inertial force F U 1 2 of reciprocating parts such as ⁇ 5 is unbalanced reciprocating portion of the piston P3 or the like which is connected to Kurankupi down K2 occurrence of the primary vibration can be prevented by the primary inertial force F U 3 commensurate Ukoto. Therefore, the reciprocating parts such as the piston P3 connected to the crankpin K2 other than the pair of reciprocating parts such as the pistons Pl, P2, P4, P5 etc.
  • crankshaft 5 when the crankshaft 5 is composed of a prefabricated crankshaft, the components including the crank webs G1 to G6 can be shared, and the cost can be reduced.
  • the crankpin is located in the rotation axis L direction of the crankshaft 5. Generated in the crankshaft 5 because the reciprocating parts of the five pistons P1 to P5 and the like and all the balance weights are arranged in plane symmetry with respect to the virtual plane H.
  • the primary inertia force balances the balance force generated in the balance weight, and the primary inertia force generated in the reciprocating portion of each of the pistons P1 to P5 and the balance force generated in the balance weight are plane-symmetric with respect to the virtual plane H. No couple is formed by the primary inertial force and balance force.
  • the rear bank lb When the internal combustion engine ⁇ is mounted on the motorcycle V, the rear bank lb, whose width in the direction of the rotation axis L is smaller than that of the front bank la, occupies a position close to the seat 34. By narrowing the knees and sandwiching the fuel tank 33 between the inside of the legs, the two-wheel grip, which stabilizes the riding posture, is improved. Also, not only the front bank la but also the two cylinders C2 and C4 of the rear bank lb are located almost symmetrically with respect to the vehicle body center Y in the left and right direction. In addition, since the center of gravity of the internal combustion engine E approaches the center Y of the vehicle body in the left-right direction, the maneuverability and running stability are improved.
  • n 2
  • n 3
  • the reciprocating parts such as pistons of all cylinders and all the balance weights are at both ends of the crankshaft.
  • the cylinder bore of the cylinder into which the piston connected to the single crank pin arranged in the center in the direction of the rotation axis L includes the center axis of the cylinder bore of the cylinder, and is perpendicular to the rotation axis L. If they are arranged symmetrically, the occurrence of coupling vibration is prevented.
  • the internal combustion engine may be used for other than the vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)

Description

明 細 書 奇数気筒の V型内燃機関 技 術 分 野
本発明は、 奇数気筒の V型内燃機関に関し、 詳細には、 ピストン等の往復運動 部分の 1次慣性力に起因して発生する 1次振動を防止するための構造に関する。
背 景 技 術
従来、 往復動内燃機関のピストン等の往復運動部分に発生する慣性力の不釣り 合いによる振動を防止するためには、 バランサ軸等のバランサ機構を設けること が行われている。 バランサ軸等のバランサ機構は、 チェーンや歯車等の伝動機構 を介して伝達されるクランク軸の動力により、 クランク軸と同期して回転駆動さ れるようになっている。 そのうち、 奇数気筒の V型内燃機関におけるバランサ機 構としては、 日本国特公平 4一 3 6 2 5 2号公報に開示されたものが知られてい る。 この公報に開示された V型内燃機関は、 車体フレーム前方に配置された 3つ のシリンダと、 車体フレーム後方に配置された 2つのシリンダとを有する 5気筒 内燃機関であり、 そのクランク軸の 2つのクランクピンには、 それぞれ、 前方シ リンダのコネクティングロッドおよび後方シリンダのコネクティングロッドが共 に接続され、 クランク軸の左端 (自動二輪車の搭載した場合の進行方向左側) に ある残りのクランクピンには、 左端に位置する残りの 1つの前方シリンダのコネ クティングロッドが接続される。 そして、 内燃機関の運転により発生する'贋性力 の不釣り合いを解消するために、 左端の前方シリンダのコネクティングロッドの 大端部にバランサ機構が設けられる。 このバランサ機構は、 該大端部の回転に伴 つて振り子運動をする 2つのアームからなり、 またバランサ機構を収容する収容 部が後方シリンダの左方に隣接して設けられる。
ところで、 前記従来技術では、 '贋性力の不釣り合いを解消するために、 バラン サ機構が必要となり、 しかも該パランサ機構を収容するスペースも必要となるた め、 内燃機関の重量が増加すると共に内燃機関が大型となるうえ、 部品点数が増 加するものであり、 さらに摺動部が増えるため摩擦損失が増加する難点があった 本発明は、 このような事情に鑑みてなされたものであり、 その主目的は、 内燃 機関の重量増および大型化を招来することなく、 1次慣性力の不釣り合いに起因 する 1次振動の発生を防止できる奇数気筒の V型内燃機関を提供することにある また、 本発明は、 さらに、 奇数気筒のうちの対とならない 1つの気筒に嵌合す るピストンを利用して 1次振動の発生を防止すると共に、 気筒毎に、 クランク軸 の回転方向での 1次慣性力の均等化を図ることを目的とする。
本発明は、 さらに、 簡単な構造で 1次 '置性力が偶力となって発生するカツプリ ング振動を防止することを目的とする。
発 明 の 開 示
前記主目的を達成するために、 本発明では、 V字状をなす 2つのバンクを形成 する (2 n + l ) (ここで、 nは自然数) 個の気倚と、 前記各気筒のシリンダポ ァに嵌合するピストンと、 これらのピストンにそれぞれ連結されたコネクティン グロッドと、 クランク軸と、 を備え、 前記クランク軸は、 前記 2つのバンクにそ れぞれ属するピストンの対のそれぞれに連結されたコネクティングロッドが共に 連結された n本の共用クランクピンと、 1つの残りのピストンに連結されたコネ クティングロッドのみが連結された 1本の単独クランクピンを有している奇数気 筒の V型内燃機関において、
前記 n本の共用クランクピンは、 同じ位相に配置され、
前記両バンクがなすパンク角 0は次式を満たすように設定され、
0 = cos- ' ( 1 / ( 2 π ) )
前記単独クランクピンは、 前記残りのピストンが前記クランク軸の回転方向で 進み側にある前記バンクに属する場合は、 前記共用クランクピンから (1 8 0— Θ ) 度の角度をもって前記回転方向で遅れ側に配置され、 前記残りのピストンが 前記回転方向で遅れ側にある前記バンクに属する場合は、 前記共用クランクピン から (180— 0) 度の角度をもって前記回転方向で進み側に配置され、 前記全ての気筒において前記ピストン等の往復運動部分の質量は等しく設定さ れ、
k = 1 1 2
2 V 4«2 + ("一 2
Figure imgf000005_0001
:前記共用クランクピンからの前記回転方向への角度
M:前記各往復運動部分の質量
r :クランク半径
ω:前記クランク軸の角速度
としたとき、
前記クランク軸には、 kMr 2の大きさで、 かつ (《+ 180) 度の向きの バランス力が発生するバランスウェイト手段が設けられている。
この発明によれば、 (n+ 1) 個の気筒で形成されるバンクと n個の気筒で形 成されるバンクとがバンク角 Θをなす奇数気筒の V型内燃機関において、 内燃機 関の運転により、 (2 n+ 1) 個のピストン等の往復運動部分に発生する 1次慣 性力が、 クランク軸に設けられたバランスウェイト手段に発生する kMr ω2の 大きさで、 かつ (α+ 180) 度の向きを有するバランス力により釣り合うため 、 1次慣性力に起因する 1次振動の発生が防止される。 その結果、 1次振動が、 クランク軸に設けられたパランスウェイト手段により防止され、 それにより、 従 来技術のようにアームを有するパランサ機構や、 伝動機構やバランサ軸を有する バランサ機構を設ける必要がなく、 内燃機関の重量増が抑制さると共に、 内燃機 関が小型化される。 また、 部品点数が削減されるので生産性が向上し、 さらに摺 動部の減少により摩擦損失が減少して、 有効な機関出力を増大させることができ る。
本発明では、 前記バランスウェイト手段は、 複数個のバランスウェイトからな り、 前記パランスウェイトは、 前記ピストン等の往復運動部分毎に 5 0 %のバラ ンス率となるように設定され、 かつ前記クランク軸の回転軸線に対して前記各ク ランクピンの 1 8 0度反対側に設けられるようにすることができる。
このようにすることにより、 共用クランクピンに連結された全てのピストン等 の往復運動部分の不平衡 1次慣性力が、 単独クランクピンに連結されたピストン 等の往復運動部分の不平衡 1次慣性力と釣り合うことで 1次振動の発生が防止さ れ、 それにより、 共用クランクピンに連結されて 1対となったピストン等の往復 運動部分以外の残りのピストン等の往復運動部分を利用して、 パランスウェイト の設置が容易な形態で 1次振動の発生を防止できる。 しかも、 パランスウェイト は、 ピストン等の往復運動部分毎に 5 0 %のパランス率となるように設定される ため、 クランク軸の回転方向での 1次慣性力が均等化されるので、 クランク軸お よびクランク軸を支持する軸受部の設計が容易となると共に、 剛性を高めるため の重量増が回避されて、 内燃機関を軽量化できる。
本発明では、 奇数気筒の V型内燃機関において、 nは偶数であり、 前記バラン スウェイト手段は複数個のバランスウェイトからなり、 前記単独クランクピンは 、 前記クランク軸にその回転軸線方向での中央に配置され、 前記残りのピストン が嵌合するシリンダポアの中心軸線を含みかつ前記回転軸線に直交する仮想平面 に関して、 前記全てのピストン等の往復運動部分および前記全てのバランスゥェ ィトが面対称に配置されるように構成することができる。
このようにすることによって、 クランク軸に発生する 1次慣性力はバランスゥ エイトに発生するパランス力と釣り合ううえ、 各ピストン等の往復運動部分に発 生する 1次'貭性力およびバランスウェイトに発生するバランス力は仮想平面に関 して面対称になるため、 1次慣性力およびバランス力により偶力が形成されるこ とがなく、 単独クランクピン、 ピストン等の往復運動部分およびハ、ランスウェイ トの面対称な配置という簡単な構造により、 1次慣性力およびバランス力に起因 する力ップリング振動の発生が防止される。
図 面 の 簡 単 な 説 明
図 1は、 本発明の V型内燃機関が搭載された自動 2輪車の主要部の左側面図で ある。
図 2は、 図 1の自動 2輪車の要部平面図である。
図 3は、 図 1の概略 I I I— I I I線で截断したときの展開図である。
図 4は、 同じクランクピンに連結される 1対のピストン等の往復運動部分に生 じる 1次'貭性カを説明するための図である。
図 5は、 クランク軸の回転方向で進み^ Mのパンクにある 1つのクランクピンに 連結されるピストン等の往復運動部分に生じる 1次慣性力を説明するための図で ある。
図 6は、 内燃機関全体の 1次慣性力を示す説明図である。
図 7は、 クランク軸の回転方向で遅れ側のパンクにある 1つのクランクピンに 連結されるピストン等の往復運動部分に生じる 1次慣性力を説明するための図で ある。
図 8は、 図 1の V型内燃機関のバランスウェイトに発生するパランス力を示す 説明図である。
図 9は、 図 1の V型内燃機関の不平衡 1次慣性力を示す説明図である。
発明を実施するための最良の形態
以下、 本発明の実施の形態を図 1ないし図 9を参照して説明する。
図 1に示すように、 本発明が適用される V型内燃機関 Eは、 自動 2輪車 Vに搭 載される D O H C型で水冷式の V型 5気筒 4サイクル内燃機関である。 なお、 こ の明細書において、 「前後左右」 は、 自動 2輪車 Vの車体を基準としたときの 「 前後左お」 を意味するものとする。 内燃機関 Eは、 シリンダプロック 1を有し、 このシリンダブロック 1の上部は、 前後方向にバンク角 0の V字形の Vバンクを 形成する前バンク laおよび後バンク lbを形成し、 下部が上クランクケース lcを形 成している。 各バンク la, lbにおいてシリンダブロック 1の上端面にはて前シリ ンダへッド 2aおよび後シリンダへッド 2bが結合され、 シリンダブ口ック 1の下端 面には下クランクケース 3が結合され、 下クランクケース 3の下端面にはオイル パン 4が結合されている。
図 1および図 2に示すように、 前輪 WFを支持するフロントサスペンションを保 持するへッドパイプ 30と該へッドパイプ 30に前端が接続されて後方斜め下方に延 びる左右 1対のメインフレーム 31, 32等とを備える車体フレームが設けられてい る。 また、 内燃機関 Eには、 左右方向を指向するように横置き配置とされるクラ ンク軸 5が設けられている。 クランク軸 5は、 シリンダブロック 1の下端面と下 クランクケース 3の上端面との合わせ面上にその回転軸線 Lが位置した状態で、 シリンダブロック 1および下クランクケース 3に回転自在に支持される。 クラン ク軸 5は、 図 1において、 反時計方向に回転するため、 前バンク l aは後バンク lb に対してクランク軸 5の回転方向で進み側にある。
図 2にも示されるように、 内燃機関 Eは、 燃料タンク 33の下方で、 かつシート 34の前方斜め下方であって、 平面視で両メインフレーム 31, 32の間に配置される 。 すなわち、 各メインフレーム 31, 32の前部には、 ほぼ鉛直下方に延びる前ブラ ケット 31 a, 32aが設けられ、 該 1対の前ブラケット 31 a, 32aに、 Vバンクの外側 で前パンク l aに一体に形成された支持部 T1が固定される。 また、 各前ブラケット 31 a, 32aの上下方向での中間部から後方にほぼ水平に延びるように連結部 31 b, 3 2bが設けられ、 これらの連結部 31b, 32bに、 Vバンクの内側で前バンク l aに一体 形成された支持部 T2が固定される。 さらに、 各メインフレーム 31, 32の後部には 、 ほぼ鉛直下方に延びる垂下部 31c, 32cが設けられ、 該 1対の垂下部 31 c, 32cの 上部位置に、 上クランクケース l cの後部に一体に形成された支持部 T3が固定され 、 両垂下部 31c, 32cの下部位置に、 下クランクケース 3の後部に一体に形成され た支持部 T4が固定される。 また、 両垂下部 31 c, 32cにおいて、 両支持部 T3, T4が 固定される部分の、 上下方向での中間部に、 後輪 WRを支持する U字状のリャフォ ーク 35の前端部が枢支される。
図 3を併せて参照すると、 前バンク l aは、 クランク軸 5の回転軸線 L方向に沿 つて配列されて一体に結合された 3つの気筒 CI , C3, C5を有し、 各気筒 Cl, C3, C5に形成されたシリンダポア Bl, B3, B5の中心軸線 Nl, N3, N5は、 回転軸線 か ら前方斜め上方を指向して、 各気筒 CI , C3, C5が前傾している。 また、 後バンク lbは、 回転軸線 L方向に沿って配列されて一体に結合された 2つの気筒 C2, C4を 有し、 各気筒 C2, C4に形成されたシリンダポア B2, B4の中心軸線 N2, N4は、 回転 軸線 Lから後方斜め上方を指向して、 各気筒 C2, C4が後傾している。 各気筒 Cl〜 C5のシリンダポア B1〜B5には、 ピストンリングが装着されたピストン P1〜! >5が摺 動自在に嵌合し、 各ピストン P1〜P5と対応するシリンダヘッド 2a, 2bとの間に形 成される燃焼室の燃焼圧力により往復運動するピストン P1〜! ^が、 各ピストン P1 〜P5とクランク軸 5とを連結するコネクティングロッド R1〜R5を介して、 クラン ク軸 5を回転駆動する。
具体的には、 クランク軸 5は、 シリンダブロック 1および下クランクケース 3 に、 それぞれ回転軸線 L方向に所定の間隔をおいて形成された 4つの軸受部 Dl〜 Mにより、 そのジャーナル J 1〜J4にて主軸受を介して支持される。 そして、 ク ランク軸 5において、 軸受部 D1と軸受部 D2との間のクランクピン K1には、 両パン ク l a, lbにそれぞれ属する気筒 Cl, C2にそれぞれ嵌合する 1対のピストン , P2 のピストンピン Sl, S2にそれぞれ連結されたコネクティングロッド Rl, R2が共に 連結される。 また、 軸受部 D2と軸受部 D3との間にあってクランクピン K1に隣接す るクランクピン K2には、 前パンク laに属する気筒 C3に嵌合するピストン P3のピス トンピン S3に連結されたコネクティングロッド R3のみが連結され、 軸受部 D3と軸 受部 D4との間にあってクランクピン K2に隣接するクランクピン K3には、 両バンク lb , l aにそれぞれ属する気筒 C4, C5にそれぞれ嵌合する 1対のピストン P4, P5 のピストンピン S4, S5に連結されたコネクティングロッド R4, R5が共に連結され る。 したがって、 2つのクランクピン Kl, K3は、 2組の 1対のコネクティング口 ッド Rl, R2, R4, R5が連結される共用クランクピンを構成し、 クランク軸 5の両 端のジャーナル Π , J4の間で、 回転軸線 L方向での中央に配置されたクランクピ ン K2は、 ピストン P3に連結された 1つのコネクティングロッド R3のみが連結され る単独クランクピンを構成する。
また、 クランクピン K1とクランクピン K3とは同じ位相に配置、 すなわちクラン ク軸 5の回転軸線 L方向から見たとき重なる位置に配置され、 コネクティングロ ッド R1およびコネクティングロッド R5と、 コネクティングロッド R2およびコネク ティングロッド R4とは、 気筒 C3のシリンダポア B3の中心軸線 N3を含み、 かつ回転 軸線 Lに直交する仮想平面 Hに対して面対称な位置において、 クランクピン お よびクランクピン K3にそれぞれ連結され、 さらに仮想平面 Hに対して、 全シリン ダポア B1〜B5が面対称に配置される。 そのため、 ピストン P1〜! >5等の往復運動部 分は、 仮想平面 Hに関して面対称に配置される。
なお、 この明細書において、 ピストン P1〜! >5等の往復運動部分とは、 ピストン P1〜! >5と、 ピストンリングゃピストンピン S1〜S5等のピストン P1〜! *5と共に往復 運動するピストン P1〜!》5の付属部材と、 ピストンピン S1〜S5を介してピストン P1 〜P5に連結されるコネクティングロッド R1〜R5のうち往復運動する部分とを合わ せたものを意味する。
さらに、 回転軸線 L方向において、 クランクピン K1の両端には、 2つのクラン クウエブ Gl, G2が設けられ、 同様に、 ククランクピン K2の両端には、 2つのクラ ンクウェブ G3, G4が、 そしてクランクピン K3の両端には、 2つのクランクウェブ G5, G6がそれぞれ設けられる。 それらクランクウェブ G1〜G6には、 各ピストン P1 〜P5等の往復運動部分に発生する 1次慣性力を減少させるパランス力を発生する バランスウェイ卜が、 仮想平面 Hに関して面対称な配置となるようにぞれぞれ設 けられる。 そして、 4つのピストン Pl, P2, P4, P5については、 回転軸線 Lに関 してクランクピン Kl, Κ3の 1 8 0度反対側で、 クランクピン Kl, Κ3の中心軸線上 、 すなわちクランク半径をもつ仮想円上にその重心が位置するようバランスゥェ イトが設けられる。 また、 ピストン Ρ3については、 回転軸線 Lに関してクランク ピン Κ2の 1 8 0度反対側で、 クランクピン Κ2の中心軸線上、 すなわちクランク半 径をもつ仮想円上 (この半径は、 クランクピン Kl, Κ3のそれと等しい) にその重 心が位置するようバランスウェイトが設けられる。 さらに、 全て等しい質量を有 するように設定されたピストン Π〜! >5等の往復運動部分に対して、 バランスゥェ イトにより、 各ピストン Ρ1〜Ρ5等の往復運動部分の 1次慣性力に対するバランス 率がいずれも 5 0 %に設定される。 そして、 図 2を参照すると、 回転軸線 L方向での幅が前バンク laのそれよりも 小さい後バンク lbは、 前バンク laよりもシート 34に近い位置を占め、 また全シリ ンダポア B1〜B5は仮想平面 Hに関して面対称に配置されている。 したがって、 前 バンク laおよび後パンク lbの回転軸線 L方向での両端部である左右端部は、 左お 方向での車体中心 Yに関してほぼ対称な位置を占め、 また前バンク 1 aの 3つの気 筒 Cl, C3, C5および後バンク lbの 2つの気筒 C2, C4は、 車体中心 Yに関してほぼ 対称な位置を占める。
この内燃機関 Eは、 前述のように、 内燃機関 Eの運転により、 ピストン P1〜P5 等の往復運動部分の往復運動に起因して発生する 1次慣性力に釣り合うバランス 力を発生するバランスウェイトを備えており、 このバランス力により 1次慣性力 の不釣り合い分である不平衡 1次慣性力を 0 (零) として、 1次振動の発生を防 止している。 そこで、 以下、 この 1次振動防止構造について説明する。
まず、 一般に、 (2 n + l ) (ここで、 nは自然数) 個の奇数の気筒を有し、 バンク角 6>の V型内燃機関について説明し、 その後、 その特別の場合としての前 述の 5気筒の V型内燃機関 Eについて説明する。
( 2 n + l ) 個の気筒を有する V型内燃機関において、 (n + 1 ) 個の気筒が クランク軸の回転軸線に沿う方向に配列されて第 1パンクを形成し、 n個の気筒 が前記回転軸線の沿う方向に配列されて第 2バンクを形成する。 クランク軸は、 第 1 , 第 2バンクにそれぞれ属する 2つの気筒にそれぞれ嵌合する 2つのピスト ンにそれぞれ連結されたコネクティングロッドが共に連結される n本の共用クラ ンクピンと、 第 1バンクの残りの気筒に嵌合する 1つのビストンに連結されたコ ネクティングロッドのみが連結される 1本の単独クランクピンを有する。 そして 、 n本の共用クランクピンは同じ位相に配置、 すなわちクランク軸の回転軸線方 向に見たとき重なる位置に配置される。 また、 単独クランクピンは、 前記回転軸 線方向でクランク軸のどの位置にあってもよい。
最初に、 クランク軸の回転軸線方向に見た説明図である図 4を参照して、 1本 の共用クランクピン Kcに連結され、 かつ第 1 , 第 2バンクにそれぞれ属する 2 つの気筒 Cい CMにそれぞれ嵌合する 2つのピストン Pい PMの往復運動により 発生する 1次慣性力について説明する。 クランク軸は、 図中の Aで示される矢印 方向に回転するものとし、 前記回転軸線を原点として、 原点から延びる第 2バン クの気筒 CMのシリンダポアの中心軸線を Y軸とし、 Y軸と直交する X軸は、 Y 軸の正方向から回転方向 Aとは反対方向に 90度回転した位置で原点から延びる 半直線を正方向とする。 第 1バンクに属する気筒 C tのシリンダポアの中心軸線 は、 Y軸からバンク角 0だけ回転方向で進み側に位置する。 さらに、
M: ピストン等の往復運動部分の質量
て : Y軸からのクランク軸の回転角または共用クランクピン Kcの回転角 r :クランク半径
ω:クランク軸の角速度
とする。 このとき、 第 1バンクのピストン Pt等の往復運動部分に発生する 1次 慣性力 は式 (1) で、 また第 2バンクのピストン PM等の往復運動部分に発生 する 1次慣性力 F2は式 (2) で表される。
F1 1 _ F- rco" cos(r-ff)sin<9l い )
FlY j Μτώ1 cos(r - 0 cos θ
(2)
Figure imgf000012_0001
ここで、 添字 X, Yは、 X軸方向成分および Υ軸方向成分を表す。
したがって、 この 2つのピストン Ρい ΡΜ等の往復運動部分を合わせた 1次慣 性力 F12は、 各 1次慣性力 F,, F2のベクトル和となり、 式 (3) で表される。
Figure imgf000013_0001
一 COS(T— sin0
(3)
COST + cos(r—0)cos0
よって、 (2 n+ l) 個の気筒を有する V型内燃機関の n本の共用クランクピ ンに連結されたピストン等の往復運動部分の全体の 1次慣性力 F„は、 式 (4) で表される。
nY
Figure imgf000013_0004
Figure imgf000013_0002
次に、 図 5を参照して、 単独クランクピン Ksに連結され、 第 1バンクの残り の気筒 CNに嵌合するピストン PN等の往復運動部分に発生する 1次慣性力 F cを 求める。 第 1バンクが、 第 2バンクに対して回転方向で進み側にある場合につい て説明する。 単独クランクピン Ksの位相が、 共用クランクピン Kcから回転方向 Aに; S度であるとすると、 その 1次 '置性力 Fcは、 式 (5) で表される。
Figure imgf000013_0003
したがって、 (2 n+ 1) 個の気筒を有する V型内燃機関全体の 1次慣性力 FTは、 1次慣性力 Fnと 1次慣性力 Fcのベクトル和となり、 式 (6) で表され る。
Figure imgf000014_0001
- n COS(T - β) sin Θ - cos(r - Θ + β) Ϊηθ
= Mrco (6)
n COST + n COSIT - β) COS0 + COS(T -Θ + /8)COS0
ここで、 バンク角 0を式 (7) を満たすように設定し、 単独クランクピン Ks の位相を式 (8) を満たすように配置、 すなわち共用クランクピン Kcから (1 8 0 - 0) 度の角度をもって回転方向で遅れ側に配置する。
e=co&-] ( 1 / (2 n) ) (7) sin σ— "丄ー cos Θ = 1- (8)
4«' β =— ( 1 80-0) (9〉 なお、 式 (8) で、 s in 0が正の値となるのは、 回転方向でバンク角 0が 0度 < θ< 1 8 0度であることによる。
式 (7) , (8), (9) を式 (6) に代入して整理すると式 (10) が得られる
. n COS(T ~e)sinO+ COST sin Θ '
TY I n COST + n cos r -B)cosd - COST COS Θ
Figure imgf000014_0002
:で、 (1 1 )
1
Figure imgf000015_0001
とおくと、
s i n o! 4n2 (13)
k
1
n
cos (14)
k
であることから、 式 (13) , (14) を考慮して、 式 (10) を変形すると次式が得 られる。
Figure imgf000015_0002
式 (15) から、 この V型内燃機関の各ピストンの往復運動部分に発生する 1次 慣性力の合力である 1次慣性力 FTは、 その大きさが k M r ω2であり、 クランク 軸の回転角てに対して α度遅れて、 クランク軸と同じ角速度で回るべクトルであ ることがわかる。 それゆえ、 この 1次慣性力 FTに釣り合うパランス力を発生す るバランスウェイトがクランク軸に設けられれば、 この V型内燃機関全体の不平 衡 1次'匿性力を常に 0 (零) とすることができる。 したがって、 バランスウェイ ト WBは、 共用クランクピン Kcが Y軸上にある時の状態を示す図 6に示されるよ うに、 実線の白抜きの矢印で示される 1次慣性力 FTに対して、 ( + 180) 度の位置に設けられ、 その質量は、 例えばクランク半径上にその重心を有する k Mに設定される。
また、 第 1バンクが、 第 2パンクに対して回転方向で遅れ側にある場合には、 図 7に図示されるように、 式 (5) に対応して、 残りの気筒 CNに嵌合するビス トン PN等の往復運動部分に発生する 1次慣性力 Fcは、 単独クランクピン Ksの 位相を、 共用クランクピン Kcから回転方向 Aに ]3度であるとすると、 次式で表 される。
F, CY
Figure imgf000016_0001
したがつて、 V型内燃機関全体の 1次慣性力 FTは、 1次慣性力 Fnと 1次慣性 力 Fcのベクトル和となり、 式 (17) で表される。
E
F,
Figure imgf000016_0003
CY
— Mrm2 ( ,一17、)
Figure imgf000016_0002
ここで、 バンク角 Sを式 (7) を満たすように設定し、 さらに単独クランクピ ン の位相を式 (18) を満たすように配置、 すなわち共用クランクピン Kcから (180-0) 度の角度をもって回転方向で進み側に配置する。
β= ( 1 80— β) (18) 式 (7) , (8), (18) を式 (17) に代入して整理すると次式が得られる。
Figure imgf000017_0001
さらに、 式 (13) , (14) を式 (19) に代入すると、
ΊΎ
Figure imgf000017_0002
となって、 式 (15) に対応する式が得られる。
この式 (20) から、 残りの気筒が属する第 1バンクが、 第 2バンクに対して回 転方向で遅れ側にある場合には、 1次慣性力 FTは、 その大きさが k M r ω 2であ り、 クランク軸の回転角てに対して α度進んで、 クランク軸と同じ角速度で回る ベクトルであることがわかる。 それゆえ、 この 1次慣性力 FTに釣り合うパラン スカを発生するバランスウェイト WBをクランク軸に設ければ、 この V型内燃機 関全体の不平衡 1次慣性力を常に 0 (零) とすることができる。 したがって、 パ ランスウェイ卜は、 共用クランクピン Kcが Y軸上にある時の状態を示す図 6に 示されるように、 破線の白抜きの矢印で示される 1次慣性力 FTに対して、 (ひ + 1 8 0 ) 度の位置に設けられ、 その質量は、 例えばクランク半径をもつ仮想円 上にその重心を有する k Mに設定される。
次に、 このような一般的な 1次振動防止構造の特別な場合として、 n = 2の場 合である前述の V型 5気筒の内燃機関 Eの 1次振動防止構造について説明する。
( 2 n + l ) 気筒の V型内燃機関の場合は、 式 (15) または式 (20) を満たす限 り、 バランスウェイトの位置は、 クランク軸のどの部分であってもよかったが、 この内燃機関 Eでは、 各ピストン P1〜P5等の往復運動部分に対応して、 全てのク ランクウェブ G1〜G6に設けられたパランスウェイトにより、 各ピストン P1〜P5等 の往復運動部分の 1次慣性力に対するパランス率がいずれも 5 0 %に設定されて いる。 このことは、 各ピストン PI〜! ^等の往復運動部分に対応して、 クランク半 径をもつ仮想円上に MZ 2の質量を有するバランスウェイトが設けられることと 等価である。
それゆえ、 分かり易くするためクランクピン Kl, K3が Y軸上に位置するときの 状態を示す図 8 Aないし図 8 Eにおいて、 各ピストン! >1〜P5等の往復運動部分に 対応して、 バランスウェイトにより、 図示のようなバランス力 FB l, FB 2が発生 し、 内燃機関 E全体でのバランス力 FBは、 各バランス力 FB 1 , FB 2のベクトル 和となる。 そして、 図 8 Fに示されるように、 このバランス力 FBは、 式 (15) において、 n = 2とすることにより得られる 1次慣性力 FTと、 大きさが同じで 、 その向きが 1 8 0度異なるため、 両者の合力は 0 (零) となり、 1次慣性力に よる振動の発生が防止される。
また、 このことは、 クランクピン Kl, Κ3に連結された 4つのピストン Pl, Ρ2, Ρ4, Ρ5等の往復運動部分の 1次慣性力と該ピストン Ρ1, Ρ2, Ρ4, Ρ5等の往復運動 部分に対応するバランスウェイトのバランス力との和として残る不平衡 1次慣性 力が、 クランクピン Κ2に連結されたビストン Ρ3等の往復運動部分の 1次慣性力と 該ピストン Ρ3等の往復運動部分に対応するバランスウェイトのバランス力との和 として残る不平衡 1次慣性力により釣り合わされて、 内燃機関 Ε全体の不平衡 1 次慣性力が 0 (零) となることも示している。
すなわち、 分かり易くするためクランクピン Kl, Κ3が Υ軸上に位置するときの 状態を示す図 9を参照すると、 クランクピン Kl, Κ3にそれぞれ連結されて、 前バ ンク laに属する気筒 Cl, C5のピストン Pl, P5等の往復運動部分の 1次慣性力は互 いに等しく、 それぞれ式 ( 1 ) で求められ、 それらの合力の大きさは、 2 X (M r to2 cos 0 ) であり、 その向きは Y軸の正方向から 0度である。 そして、 それら ピストン Pl, P5等の往復運動部分に対応して設けられたバランスウェイトによる バランス力は、 その大きさが 2 X (M r ω2 ) / 2で、 その向きは Υ軸の正方向 から 1 8 0度である。 したがって、 両ピストン Pl, Ρ5等の往復運動部分の不平衡 1次慣性力 は、 1次慣性力とバランス力とのベクトル和となり、 その大きさ は 2 X (M r ω2 ) / 2であり、 その向きは Υ軸の正方向から 2 0度である。 一方、 クランクピン Kl, K3に連結されて、 後バンク lbに属する気筒 C2, C4のピ ストン P2, P4等の往復運動部分の 1次慣性力は互いに等しく、 それぞれ式 (2) で求められ、 それらの合力の大きさは、 2XMro>2であり、 その向きは Y軸の 正方向である。 そして、 それらピストン P2, P4等の往復運動部分に対応して設け られたバランスウェイトによるバランス力は、 その大きさが 2 XMr ω2Ζ2で 、 その向きが Υ軸の正方向から 180度である。 したがって、 両ピストン Ρ2, Ρ4 等の往復運動部分の不平衡 1次慣性力 Fu 2は、 1次慣性力とバランス力とのべク トル和となり、 その大きさは 2 X (Mr ω2) Ζ2であり、 その向きは Υ軸の正 方向である。
したがって、 両不平衡 1次慣性力 Fm, FU2のベクトル和である 2本のクラン クピン Kl, K3に連結されたピストン PI, P2, P4, P5等の往復運動部分の不平衡 1 次慣性力 FU12は、 その大きさが 2 XMr 2cos0であり、 その向きが Y軸の正 方向から 0度である。 そして、 式 (7) より、 不平衡 1次慣性力 FU12の大きさ は、 Mr ω2Ζ2である。
そして、 クランクピン Κ2に連結されて、 前バンク laに属する気筒 C3のピストン P3等の往復運動部分の 1次慣性力は、 式 (5) で求められ、 その大きさは、 Mr ω2であり、 その向きが Υ軸の正方向から— (180— 0) 度である。 そして、 ピストン Ρ3等の往復運動部分に対応して設けられたバランスウェイトによるバラ ンスカは、 その大きさが Mr ω2/2で、 その向きが Υ軸から Θ度である。 した がって、 ピストン Ρ3等の往復運動部分の不平衡 1次'置性力 FU3は、 1次慣性力と バランス力とのべクトル和となり、 その大きさは M r ω2Ζ2であり、 その向き は Υ軸の正方向から— (180— S) 度である。
以上のことから、 クランクピン Kl, Κ3に連結された 4つのピストン Pl, Ρ2, Ρ4 , Ρ5等の往復運動部分の 1次不平衡慣性力 Ful2が、 クランクピン K2に連結され たピストン P3等の往復運動部分の 1次不平衡慣性力 Fu 3により釣り合わされて、 内燃機関 E全体の不平衡 1次慣性力が 0 (零) となることがわかる。 さらに、 同 様のことが、 (2n+ l) 気筒を有し、 バランスウェイトが、 各ピストン等の往 復運動部分毎に 50%のバランス率となるように設定される V型内燃機関につい てもいえる。
次に、 前述のように構成された実施例の作用おょぴ効果について説明する。
3個の気筒 CI, C3, C5で形成される前バンク laと 2個の気筒 C2, C4で形成され る後バンク lbとがバンク角 0をなす内燃機関 Eが運転されたとき、 クランク軸 5 に、 k M r co2の大きさで、 かつ (ひ+ 1 8 0 ) 度 (ここで、 k = ( 1 5 / 4 ) 1 Z 2であり、 a =— s in—1 ( 1 /4 ) である) の向きのバランス力が発生するバラ ンスウェイトが設けられた (図 8の (F) 参照) ことにより、 全ピストン 〜P5 等の往復運動部分に発生する 1次慣性力が、 クランク軸 5に設けられたバランス ウェイトに発生するバランス力により釣り合うため、 1次慣性力に起因する 1次 振動の発生が防止される。 その結果、 1次振動がクランク軸 5に設けられたバラ ンスウェイトにより防止されるので、 従来技術のようにアームを有するバランサ 機構や、 伝動機構やバランサ軸を有するバランサ機構を設ける必要がなく、 内燃 機関 Eの重量増が抑制さると共に、 内燃機関 Eが小型化される。 また、 部品点数 が削減されるので生産性が向上し、 さらに摺動部の減少により摩擦損失が減少し て、 有効な機関出力を増大させることができる。
パランスウェイトが、 ピストン Π〜! >5等等の往復運動部分毎に 5 0 %のバラン ス率となるように設定され、 かつ回転軸線 Lに関して各クランクピンの 1 8 0度 反対側に設けられるので、 クランクピン Kl, Κ3にそれぞれ連結された全てのビス トン P1, Ρ2, Ρ4, Ρ5等の往復運動部分の不平衡 1次慣性力 FU 1 2が、 クランクピ ン K2に連結されたピストン P3等の往復運動部分の不平衡 1次慣性力 FU 3と釣り合 うことで 1次振動の発生が防止される。 したがって、 クランクピン Kl, K3にそれ ぞれ連結されて 1対となったピストン Pl, P2, P4, P5等の往復運動部分以外の、 クランクピン K2に連結されたビストン P3等の往復運動部分を利用して、 バランス ウェイトの設置が容易な形態で 1次振動の発生を防止できる。 しかも、 バランス ウェイトは、 ピストン P1〜P5等の往復運動部分毎に 5 0 %のバランス率となるよ うに設定されるため、 クランク軸 5の回転方向での 1次慣性力が均等化される。 これにより、 クランク軸 5およびクランク軸 5を支持する軸受部 D1〜!) 4の設計が 容易となると共に、 剛性を高めるための重量増が回避されて、 内燃機関 Eを軽量 化できる。 そのうえ、 クランク軸 5が組立式クランク軸から構成される場合には 、 クランクウェブ G1〜G6を含む部品の共用化が可能となり、 コスト削減ができる クランクピン は、 クランク軸 5の、 回転軸線 L方向での中央に配置され、 仮 想平面 Hに対して、 5つのピストン P1〜P5等の往復運動部分および全ての前記バ ランスウェイトが面対称に配置されていることから、 クランク軸 5に発生する 1 次慣性力はパランスウェイトに発生するバランス力と釣り合ううえ、 各ピストン P1〜P5等の往復運動部分に発生する 1次慣性力およびバランスウェイトに発生す るバランス力は仮想平面 Hに関して面対称になり、 1次慣性力およびバランス力 により偶力が形成されることがない。 その結果、 クランクピン K1〜K3、 ピストン Π〜Ρ5等の往復運動部分およびパランスウェイトの面対称な配置という簡単な構 造により、 1次'贋性力およびバランス力に起因するカップリング振動の発生が防 止される。
内燃機関 Εが自動 2輪車 Vに搭載された状態で、 回転軸線 L方向の幅が前バン ク laのそれよりも小さい後バンク lbが、 シート 34に近い位置を占めるため、 運転 者が両膝を狭めて、 両脚の内側で燃料タンク 33を挟むことで、 乗車姿勢をより安 定化させる二一グリップ性が良好になる。 また、 前バンク laのみでなく後バンク lbの 2つの気筒 C2, C4も、 左右方向での車体中心 Yに対してほぼ対称に位置する ことから、 車体に対する内燃機関 Eの左右での重量のバランスがとれるうえ、 内 燃機関 Eの重心が左右方向で車体中心 Yに近づくので、 操縦性および走行安定性 が向上する。 また、 また仮想平面 Hに関して、 全シリンダポア B1〜B5が面対称に 配置されることから、 回転軸線 L方向での前バンク laおよび後バンク lbの左右端 部は、 車体中心 Yに対してほぼ対称な位置を占める。 したがって、 内燃機関 Eの 、 車体フレームに対する搭載性が向上する。
5気筒 V型内燃機関 Eにおいて、 クランクピン K2に連結されるピストン P3が後 バンク lbに属する場合、 さらに、 前述したように、 5気筒 V型内燃機関 Eに限ら れることなく、 一般に (2 n + l ) 気筒の V型内燃機関においても、 1次振動の 発生が防止される。 以下、 前述した実施例の一部の構成を変更した実施例について、 変更した構成 に関して説明する。
n = 2の場合である前述の 5気筒 V型内燃機関 E以外にも、 nが 2以外の偶数 であって、 全気筒のピストン等の往復運動部分および全てのパランスウェイトが 、 クランク軸の両端のジャーナルの間で、 回転軸線 L方向での中央に配置された 単独クランクピンに連結されるピストンが嵌合する気筒のシリンダポアの中心軸 線を含み、 かつ回転軸線 Lに直交する仮想平面に関して面対称に配置されるもの であれば、 カップリング振動の発生が防止される。
また、 内燃機関は車両以外に使用されるものであってもよい。

Claims

請 求 の 範 囲
1. V字状をなす 2つのパンクを形成する (2 n+ l) (ここで、 nは自然 数) 個の気筒と、 前記各気筒のシリンダポアに嵌合するピストンと、 これらのピ ストンにそれぞれ連結されたコネクティングロッドと、 クランク軸と、 を備え、 前記クランク軸は、 前記 2つのバンクにそれぞれ属するピストンの対のそれぞれ に連結されたコネクティングロッドが共に連結された n本の共用クランクピンと 、 1つの残りのピストンに連結されたコネクティングロッドのみが連結された 1 本の単独クランクピンを有している奇数気筒の V型内燃機関において、
前記 n本の共用クランクピンは、 同じ位相に配置され、
前記両バンクがなすパンク角 0は次式を満たすように設定され、
0=cos-' (1 / (2 n) ) 前記単独クランクピンは、 前記残りのビストンが前記クランク軸の回転方向で 進み側にある前記バンクに属する場合は、 前記共用クランクピンから (180— Θ) 度の角度をもって前記回転方向で遅れ側に配置され、 前記残りのピストンが 前記回転方向で遅れ側にある前記バンクに属する場合は、 前記共用クランクピン から (180_0) 度の角度をもって前記回転方向で進み側に配置され、 前記全ての気筒において前記ピストン等の往復運動部分の質量は等しく設定さ れ、
k = 1 L 1 ) ^( 1ゝ 2
Figure imgf000023_0001
:前記共用クランクピンからの前記回転方向への角度 M:前記各往復運動部分の質量
r :クランク半径
ω:前記クランク軸の角速度
としたとき、
前記クランク軸には、 k M r ω2の大きさで、 かつ (α + 1 8 0 ) 度の向きの バランス力が発生するバランスウェイト手段が設けられていることを特徴とする 奇数気筒の V型内燃機関。
2 . 前記バランスウェイト手段は、 複数個のバランスウェイトからなり: 前 記ピストン等の往復運動部分毎に 5 0 %のバランス率となるように設定され、 か つバランスウェイトは、 前記クランク軸の回転軸線に対して前記各クランクピン の 1 8 0度反対側に設けられていることを特徴とする請求項 1記載の奇数気筒の V型内燃機関。
3 . ηは偶数であり、 前記バランスウェイト手段は複数個のバランスウェイ 卜からなり、 前記単独クランクピンは、 前記クランク軸にその回転軸線方向での 中央に配置され、 前記残りのピストンが嵌合するシリンダポアの中心軸線を含み かつ前記回転軸線に直交する仮想平面に関して、 前記全てのピストン等の往復運 動部分および前記全てのバランスウェイトが面対称に配置されていることを特徴 とする請求項 1記載の奇数気筒の V型内燃機関。
PCT/JP2001/010925 2001-01-10 2001-12-13 Moteur a combustion interne de type v a plusieurs cylindres WO2002055853A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
BRPI0109126-3A BR0109126B1 (pt) 2001-01-10 2001-12-13 motor de combustão interna do tipo em v de cilindros ímpares.
DE60112971T DE60112971T2 (de) 2001-01-10 2001-12-13 V-type brennkraftmaschine mit einer ungeraden anzahl von zylindern
US10/204,255 US6745730B2 (en) 2001-01-10 2001-12-13 Odd-cylinder v-type internal combustion engine
EP01273178A EP1350935B1 (en) 2001-01-10 2001-12-13 Odd-cylinder v-type internal combustion entine

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2001-3092 2001-01-10
JP2001003092 2001-01-10
JP2001003638A JP3910016B2 (ja) 2001-01-10 2001-01-11 奇数気筒のv型内燃機関
JP2001-3638 2001-01-11

Publications (1)

Publication Number Publication Date
WO2002055853A1 true WO2002055853A1 (fr) 2002-07-18

Family

ID=26607490

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/010925 WO2002055853A1 (fr) 2001-01-10 2001-12-13 Moteur a combustion interne de type v a plusieurs cylindres

Country Status (9)

Country Link
US (1) US6745730B2 (ja)
EP (1) EP1350935B1 (ja)
JP (1) JP3910016B2 (ja)
KR (1) KR100503259B1 (ja)
CN (1) CN1175176C (ja)
BR (1) BR0109126B1 (ja)
DE (1) DE60112971T2 (ja)
TW (1) TW512202B (ja)
WO (1) WO2002055853A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004042765B4 (de) * 2004-09-05 2007-07-19 Clemens Neese Kraftrad mit einer platz- und gewichtsparenden Motoranordnung
JP2007120429A (ja) * 2005-10-28 2007-05-17 Toyota Central Res & Dev Lab Inc 内燃機関及び圧縮機
JP4671887B2 (ja) * 2006-02-24 2011-04-20 本田技研工業株式会社 バランサを備える内燃機関
KR100719632B1 (ko) * 2006-03-23 2007-05-17 한국기계연구원 왕복동 압축기의 밸런싱 방법
JP4922044B2 (ja) * 2007-03-30 2012-04-25 本田技研工業株式会社 自動二輪車用v型4気筒エンジン
US8714295B2 (en) * 2010-01-15 2014-05-06 GM Global Technology Operations LLC Internal combustion engine and vehicle packaging for same
US8528510B2 (en) * 2010-01-15 2013-09-10 GM Global Technology Operations LLC Intake manifold
US9103305B2 (en) * 2010-01-15 2015-08-11 GM Global Technology Operations LLC Internal combustion engine
US8943797B2 (en) 2010-01-15 2015-02-03 GM Global Technology Operations LLC Cylinder head with symmetric intake and exhaust passages
US11047449B2 (en) * 2019-10-24 2021-06-29 Kevin Blane Engine counterbalanced by unbalanced crankshaft mounted accessory

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6065935A (ja) * 1983-09-17 1985-04-15 Yamaha Motor Co Ltd V型多気筒エンジン
JPS6148628A (ja) * 1984-08-16 1986-03-10 Kawasaki Heavy Ind Ltd V形内燃機関
JPH08226493A (ja) * 1995-02-23 1996-09-03 Toyama Univ V型8気筒機関

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4519344A (en) * 1981-11-07 1985-05-28 Honda Giken Kogyo Kabushiki Kaisha V-type internal combustion engine
JPS5881251A (ja) * 1981-11-07 1983-05-16 Honda Motor Co Ltd V型3倍数気筒内燃機関
JPS5968523A (ja) 1982-10-13 1984-04-18 Suzuki Motor Co Ltd 自動二輪車におけるv形エンジン

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6065935A (ja) * 1983-09-17 1985-04-15 Yamaha Motor Co Ltd V型多気筒エンジン
JPS6148628A (ja) * 1984-08-16 1986-03-10 Kawasaki Heavy Ind Ltd V形内燃機関
JPH08226493A (ja) * 1995-02-23 1996-09-03 Toyama Univ V型8気筒機関

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1350935A4 *

Also Published As

Publication number Publication date
EP1350935A4 (en) 2004-05-19
US20030075122A1 (en) 2003-04-24
CN1175176C (zh) 2004-11-10
BR0109126B1 (pt) 2010-05-04
US6745730B2 (en) 2004-06-08
CN1416502A (zh) 2003-05-07
JP3910016B2 (ja) 2007-04-25
EP1350935A1 (en) 2003-10-08
BR0109126A (pt) 2002-11-26
EP1350935B1 (en) 2005-08-24
KR100503259B1 (ko) 2005-07-21
KR20020077530A (ko) 2002-10-11
DE60112971T2 (de) 2006-05-18
TW512202B (en) 2002-12-01
JP2002276386A (ja) 2002-09-25
DE60112971D1 (de) 2005-09-29

Similar Documents

Publication Publication Date Title
WO2005068872A1 (ja) 乗物用直列4気筒エンジンおよびこのエンジンを搭載した乗物
US8757123B2 (en) Balancing an opposed-piston, opposed-cylinder engine
WO2002055853A1 (fr) Moteur a combustion interne de type v a plusieurs cylindres
JP5847688B2 (ja) 並列二気筒内燃機関のバランサ装置
JPS5969514A (ja) 内燃機関のクランク軸
JP6918868B2 (ja) 車両用パワーユニット
JP3656921B2 (ja) 並列4気筒エンジンのクランク構造
CZ2005717A3 (cs) Multifunkcní vyvazovací systém
JP2007002698A (ja) 6気筒エンジン
JPS61119842A (ja) 直列4気筒型エンジン
JP4430462B2 (ja) V型2気筒エンジンのバランサ構造
WO2017141458A1 (ja) 往復スライダクランク機構を備えた機械および往復スライダクランク機構を備えた機械の設計方法
JPH08193643A (ja) V型8気筒4サイクルエンジン用バランサ装置
JP2017172419A (ja) 直列4気筒エンジン
KR960011922B1 (ko) V형 6기통엔진의 크랭크샤프트
JPH0252099B2 (ja)
JP2001187913A (ja) エンジンのクランク軸
KR960011923B1 (ko) V형 6기통엔진의 크랭크샤프트
JPS6323625Y2 (ja)
ZA200206258B (en) Odd-cylinder V-type internal combustion engine.
JP3044497B2 (ja) 内燃機関のバランサー装置
JPS61119840A (ja) 狭角v型4気筒エンジン
JPS59187133A (ja) 3気筒エンジンのバランサ装置
JPS61119839A (ja) 広角v型6気筒エンジン
JPH0637916B2 (ja) 車両のv型エンジン

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): BR CN IN KR US ZA

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

WWE Wipo information: entry into national phase

Ref document number: IN/PCT/2002/01062/MU

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 10204255

Country of ref document: US

Ref document number: 2001273178

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2002/06258

Country of ref document: ZA

Ref document number: 200206258

Country of ref document: ZA

WWE Wipo information: entry into national phase

Ref document number: 018062253

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020027011846

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1020027011846

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2001273178

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1020027011846

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 2001273178

Country of ref document: EP