WO2002040615A1 - Dispositif et procede permettant de mesurer la largeur d'un four - Google Patents

Dispositif et procede permettant de mesurer la largeur d'un four Download PDF

Info

Publication number
WO2002040615A1
WO2002040615A1 PCT/JP2001/009966 JP0109966W WO0240615A1 WO 2002040615 A1 WO2002040615 A1 WO 2002040615A1 JP 0109966 W JP0109966 W JP 0109966W WO 0240615 A1 WO0240615 A1 WO 0240615A1
Authority
WO
WIPO (PCT)
Prior art keywords
furnace
furnace width
measuring device
measurement
width measuring
Prior art date
Application number
PCT/JP2001/009966
Other languages
English (en)
French (fr)
Inventor
Masato Sugiura
Shuji Naito
Takanori Kajiya
Masahiko Yokomizo
Michitaka Sakaida
Hizuru Egawa
Original Assignee
Nippon Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corporation filed Critical Nippon Steel Corporation
Priority to EP01982784A priority Critical patent/EP1340799A4/en
Priority to BRPI0107629-9B1A priority patent/BR0107629B1/pt
Publication of WO2002040615A1 publication Critical patent/WO2002040615A1/ja
Priority to HK03104526.2A priority patent/HK1052366B/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D21/00Arrangements of monitoring devices; Arrangements of safety devices
    • F27D21/0021Devices for monitoring linings for wear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J6/00Heat treatments such as Calcining; Fusing ; Pyrolysis
    • B01J6/001Calcining
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B41/00Safety devices, e.g. signalling or controlling devices for use in the discharge of coke
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B41/00Safety devices, e.g. signalling or controlling devices for use in the discharge of coke
    • C10B41/02Safety devices, e.g. signalling or controlling devices for use in the discharge of coke for discharging coke
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B45/00Other details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/026Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by measuring distance between sensor and object

Definitions

  • the present invention relates to a furnace width measuring device for quickly and easily measuring a furnace width in a high-temperature furnace chamber such as a coke oven carbonization chamber.
  • the furnace walls that make up the furnace room are made of refractory, and it is necessary to accurately grasp the state of deterioration of the refractory.
  • the coking chamber of a coke oven is operated continuously under severe conditions for a long period of time, usually more than 20 years, and the refractory bricks constituting the coking chamber are subject to thermal, chemical and mechanical factors. Degrades gradually. As a result, the blockage of the service due to the deterioration of the refractory brick occurs, or the refractory brick falls off. If an accident such as the refractory brick falls occurs, it is difficult to repair it and the operation will be significantly affected. Therefore, it is extremely important to keep track of the condition of the refractory bricks that make up the furnace wall, especially in the coking chamber, in coke oven operation management.
  • the distance between the two furnace walls increases if the furnace wall refractories are worn away. Therefore, by measuring the distance between the furnace walls, it is possible to estimate the state of wear of the refractories constituting the furnace walls.
  • the distance meter is accurately placed at a fixed position in the furnace. It is necessary to.
  • the furnace wall as described above In the method of measuring the distance between the furnace walls, there is no significant error in the measured value of the distance between the furnace walls even if (1) the furnace wall measuring device deflects. Therefore, in the method of measuring the distance between furnace walls, it is not necessary to strictly align the measuring device.
  • the furnace width is measured by attaching a furnace width measuring device to the extrusion ram of a coke oven extruder. be able to.
  • a furnace width measuring device for example, in Japanese Patent Application Laid-Open No. 62-293112, one or more pairs of non-contact type distance meters directed to respective furnace walls are provided on a ram or the like of a coat extruder. It is described that it measures the width of the carbonization chamber from the total distance by measuring the left and right walls simultaneously from the installation position. By moving the extruder horizontally, the width of the furnace wall can be measured continuously.
  • Japanese Unexamined Utility Model Publication No. 2-13151 and Japanese Unexamined Patent Publication No. Sho 60-144384 disclose methods of similarly measuring the interval between furnace walls using a contact-type distance meter.
  • the furnace width measurement in the coke oven is performed during the operation of the coke oven in a short time after extruding the manufactured coke and before charging the next raw material. Therefore, it is natural that the inside of the furnace to be measured is at a high temperature, and the furnace width measurement unit of the furnace width measurement device ⁇ ⁇ is an electronic device and cannot withstand a high temperature environment. It is necessary to take measures to prevent temperature rise.
  • the distance meter is housed in a water-cooled jacket, and a cooling water pipe for supplying, circulating, and discharging cooling water is installed in the water-cooled jacket.
  • a signal cable for guiding the measurement result of the distance meter to the outside of the furnace is arranged in the cooling water pipe, and the signal cable is protected from a high-temperature environment.
  • Furnace width measuring device is pushed
  • the cooling water pipe is taken up by a winding device because it moves with the horizontal movement of the delivery ram, and the cooling water pipe is sent out with the movement of the furnace width measuring device.
  • furnace width measurement unit The entire furnace width measurement unit is covered with heat insulating material to form a furnace width measurement device.
  • the furnace width measurement device is inserted into the furnace for a very short time to measure the furnace width, and the temperature of the furnace width measurement unit itself is reduced.
  • a furnace width measuring device is known which is taken out of a furnace before ascending. Since there is no need to provide cooling water piping, the equipment is compact and can be easily installed in a coke oven extruder. Since there is no cooling water pipe, the signal cable cannot be guided outside the furnace.
  • the furnace width measurement data is stored in a data recording device in the furnace width measurement unit, and the furnace width measurement device is extracted outside the furnace. And then retrieve the data.
  • a power supply for operating the electronic equipment is also provided in the furnace width measurement unit.
  • the furnace width measurement unit is not actively cooled, but is simply shut off by a heat insulating material. Therefore, the apparatus can stay in a high-temperature furnace such as a coke oven for at most 3 hours. Minutes. Even inserting the extruder of the coke oven into the furnace and making one round trip in the furnace usually requires about 3 minutes. Therefore, if the time allowed to stay in the furnace is 3 minutes at the maximum, there is little extra time, and if it takes time for extrusion, electronic equipment such as a distance meter may be damaged. In addition, each time the furnace was measured, it was necessary to allow the heat stored in the heat insulating material to cool down over a long period of time.
  • the present invention rapidly and easily measures the furnace width in a high-temperature furnace chamber such as a coke oven carbonization chamber, does not require installation of a cooling water pipe, and performs measurement by inserting a measuring device into the furnace. It is an object of the present invention to provide a furnace width measuring device capable of withstanding high temperatures within a time required for extraction. That is, the gist of the present invention is as follows.
  • a furnace width measuring device for measuring a width between opposed furnace walls, a measuring unit 2 for measuring a furnace width includes a furnace width measuring device 8 and a power supply device 10, and a measuring unit 2 is a furnace width measuring apparatus characterized in that it is housed in a heat absorbing box 3 having heat absorbing ability, and the outside of the heat absorbing box 3 is covered with a heat insulating material 4.
  • the furnace width measuring device 8 is a pair of laser distance meters, each of which measures the distance to each furnace wall 12.
  • the furnace width measuring device according to any one of (1) to (4).
  • the laser range finder further includes a timer, and starts irradiation of laser light from a point in time when a set value corresponding to a preset installation time of the furnace width measuring device is reached.
  • the furnace width measuring device according to the above.
  • the measurement unit 2 further includes a wireless transmission transmitter 18 for transmitting the furnace width measurement data to the external data recording device 22, wherein the measurement unit 2 has any of the above (1) to (7).
  • Furnace width measuring device Furnace width measuring device.
  • the external data recording device 22 records the current measurement position data 35 in the horizontal direction together with the furnace width measurement data.
  • the furnace width measuring device according to (8).
  • the measurement unit 2 according to the above (10) or (11), further comprising a wireless transmission receiver for receiving data on a measurement start time and a measurement position from outside. measuring device.
  • the furnace width measuring device 1 is mounted on a ram 14 or a ram beam of a coke oven extruder 13 and the furnace width is measured while horizontally moving the extruder. Furnace width measuring device.
  • the external data recording device 22 or the data recording device 9 records the distance between each laser range finder and the furnace wall, and the furnace width measurement according to any one of (5) to (13) above. apparatus.
  • a heat absorbing box 3 is arranged between the heat insulating material 4 and the internal measuring unit 2.
  • the heat absorbing box 3 itself has a heat absorbing capacity, and the heat that has entered inside through the outermost heat insulating material 4 is absorbed by the heat absorbing box 3 and can delay the temperature rise of the measurement unit 2 inside the heat absorbing box. .
  • the furnace width measuring device 1 can stay in the high-temperature furnace for 5 minutes, so that, for example, the furnace width measuring device 1 is attached to the extrusion ram 14 of the coater furnace extruder 13 to measure the furnace width. In doing so, the measurement can be performed with sufficient time. Further, since the furnace width measuring apparatus of the present invention does not require the installation of a cooling water pipe or a signal cable, it is extremely easy to install and remove it from the extrusion ram 14 or the like. BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a cross-sectional plan view showing a state where a furnace width measuring apparatus of the present invention is arranged in a furnace chamber.
  • FIG. 2 is a cross-sectional view showing a state where the furnace width measuring apparatus of the present invention is mounted on an extrusion ram and inserted into a coke oven carbonization chamber.
  • FIG. 3 is a cross-sectional plan view showing a state where the furnace width measuring apparatus of the present invention is arranged in a furnace chamber.
  • FIG. 4 is a cross-sectional view showing a state where the furnace width measuring device of the present invention is mounted on an extrusion ram and inserted into a coke oven carbonization chamber.
  • FIG. 5 is a side sectional view of the heat absorbing box of the present invention.
  • FIG. 6 is a conceptual diagram showing a device connection status of the present invention having a wireless transmission transceiver.
  • a heat absorbing material having heat absorbing ability is used for the heat absorbing box 3. It is necessary to use a heat-absorbing material that has a large heat capacity per weight and per volume. Although it is possible to use a metal material as the heat absorbing material, it is more preferable that the heat absorbing box 3 has a jacket structure for filling the liquid 7 and the liquid 7 filled in the jacket as the heat absorbing material. preferable.
  • the heat absorbing box 3 is composed of an outer box 5 and an inner box 6, and a space between the outer box 5 and the inner box 6 is a jacket for filling the liquid 7.
  • Liquids can generally be selected to have a large heat capacity per weight and volume. It is preferable to use water as the most easily industrially available and most suitable liquid as the heat absorbing material. Since water has a large heat capacity, it can delay the temperature rise inside the heat absorbing box. Furthermore, when the temperature of the water reaches 100 ° C, a large amount of heat of vaporization is taken off by boiling, so that the temperature inside the heat absorbing box becomes lower.
  • the opening can be provided also as the cooling water inlet 24.
  • the liquid is supplied and discharged during the furnace width measurement in the furnace. It is characterized by the fact that the pipe for taking out is not connected.
  • the furnace width measuring device of the present invention In the furnace width measurement of the coke oven carbonization chamber by the furnace width measuring device of the present invention, for example, when the furnace width measuring device of the present invention is mounted on a coke extruder and the measurement is performed, the extruder moves on a rail. The process of pushing out coke in the coking chamber where the carbonization has been completed is continuously repeated one after another at intervals of 5 to 10 minutes. During this operation, the furnace width of many coking chambers will be measured. Since the temperature of the liquid in the heat absorption box has risen by one insertion of the carbonization chamber, the liquid in the heat absorption box can be measured as soon as it is inserted into the next carbonization chamber. The temperature of the furnace gradually rises, and the dwell time in the furnace is shortened. As shown in FIG.
  • a discharge port 23 for discharging the internal liquid is provided at the lower part of the heat absorbing box 3 of the present invention, and the internal liquid 7 whose temperature has increased each time the in-furnace measurement is completed is discharged.
  • the temperature of liquid 7 can be prevented from rising.
  • the temperature of the endothermic box itself can be reduced by continuing the discharge from the outlet 23 while supplying the cooled liquid from the inlet 24 when a new liquid is introduced. As a result, a sufficient in-furnace stay time can be ensured each time.
  • the heat insulating material 4 that covers the outside of the heat absorbing box 3 a ceramic fiber port, a calcium silicate board, or the like can be used.
  • the furnace width of a coke oven is usually about 400 mm, and the oven width measuring device of the present invention needs to be dimensioned so that it can be stored in this space.
  • the jacket that stores the water has a width of 40 mn on the left and right sides of the furnace in the furnace width direction. ⁇ 60mm.
  • a ceramic fiber board is used, and the thickness of the heat insulating material 4 is 40mn! Up to about 60 marauders.
  • the internal space for storing the measuring unit 2 is about L 420 mm XW 160 mm XH 310 mm.
  • the temperature of the internal space accommodating the measurement unit changes with every elapsed time after the insertion. 25 minutes after 3 minutes, 40 degrees after 5 minutes, and 55 degrees after 7 minutes. Since the normal operating temperature upper limit of the measurement unit is 50 ° C, it is possible to stay in a high-temperature furnace for 5 minutes.
  • the measurement unit 2 housed in the furnace width measuring device 1 has a furnace width measuring device 8, a power supply device 10, and a data recording device 9 as required.
  • a non-contact distance meter As the furnace width measuring instrument 8, it is preferable to use a non-contact distance meter.
  • a non-contact range finder a laser range finder, a microwave range finder, or the like can be used.
  • a laser range finder When using a laser range finder, at least one pair of laser range finder is prepared, and each laser range finder is directed to the corresponding furnace wall, and the distance from each laser range finder to each furnace wall is measured.
  • the furnace width can be calculated by adding the measured distances from the two laser rangefinders.
  • a non-contact laser range finder or the like When a non-contact laser range finder or the like is used as the furnace width measuring device 8, heat is absorbed by irradiating the laser beam from the laser range finder to the furnace wall 12 and guiding the reflected light from the furnace wall 12 to the range finder.
  • the box 3 and the insulation 4 around its periphery have windows 16 on both sides.
  • the window 16 is provided with heat-resistant glass such as quartz glass.
  • the heat-resistant glass preferably has a function of reflecting external radiant heat by means such as metal deposition.
  • a narrow band interference filter 37 is further provided in front of the laser receiving window of the laser range finder as shown in FIG.
  • the narrow-band interference filter 37 is a half-width 10 with respect to the center wavelength.
  • a narrow-band interference filter with the center wavelength at the laser wavelength used in laser rangefinders the measurement accuracy of the laser rangefinder can be ensured by forcing the wavelength range that disturbs the measurement accuracy. it can.
  • the laser range finder 8 Since the laser range finder 8 has a certain length in the direction of the optical axis, and the furnace width of a coke oven or the like is very narrow, it is difficult to arrange two laser distance meters coaxially in the furnace width direction. May be. As shown in Fig. 3, the laser rangefinder 8 is arranged in the longitudinal direction of the furnace, and the optical axis 33 is changed in the furnace width direction using the reflection by the mirror 32, so that the inside of the furnace having a narrow furnace width is obtained. Measurement can be enabled.
  • the furnace width measuring device of the present invention cannot route the signal cable outside the furnace, the data measured in the furnace is recorded in the data recording device 9 arranged in the measuring unit, and the measurement is completed. After extracting the furnace width measuring device 1 outside the furnace, the recorded data is referred to.
  • the data recording device 9 can be arbitrarily selected from a magnetic storage device such as a magnetic disk, a semiconductor storage device such as an LSI card, an optical storage device, and a magneto-optical storage device.
  • the measuring unit 2 records, for example, the current time and the furnace width measurement data in the data recording device 9 correspondingly, while outside the furnace, the current time and the current horizontal position of the extruder are recorded. By recording correspondingly and combining the two data as parameters after the measurement is completed, it is possible to correspond the furnace width measurement data for each horizontal position. When the furnace width measuring device is still outside the furnace, the measured furnace width is very large.
  • the furnace width measuring device moves horizontally and enters the furnace, the furnace width measurement value suddenly changes to a value approximately equal to the actual furnace width, so the furnace width measuring device itself recognizes the start time of insertion into the furnace. can do. Therefore, when the moving speed of the extruder 13 is constant, the furnace width measuring device uses the above-mentioned furnace insertion time recognized by itself, and the data after the furnace insertion time is regarded as a constant moving speed, and the furnace speed is made constant. It is also possible to correspond to each position.
  • a wireless transmission transmitter 18 is arranged in the measurement unit instead of the data recording device 9, and the measurement data is transmitted to the outside of the furnace and transmitted to the external data recording device 22 outside the furnace. Data can also be recorded.
  • wireless transmission wireless transmission using electromagnetic waves or wireless transmission using light such as visible light or infrared light can be used.
  • a transmission window 17 is provided on the wall of the heat absorption box facing the outside of the furnace.
  • a metal film coating is not used to prevent the penetration of radiant heat from the outside, and non-conductive materials such as silica coating are used. Conductive material coating.
  • digital wireless transceivers that transmit digital signals by radio waves for wireless transmission can be used. Since the distance signal of the analog aperture is output from the laser range finder 8, this signal is converted into a digital signal by the AZD converter 26, and this digital signal is transmitted by the digital radio transmitter 27, and is output from the furnace. Received by the digital wireless receiver 28. The received digital signal can be converted into an analog signal by a DZA converter 29 and output to a recorder such as a data display 31, or recorded as a digital signal on a recorder such as a recording computer 30. it can.
  • the furnace width measurement data is transmitted from the measurement unit to the external wireless transmission receiver 21, and the data is recorded in the external data recording device 22.
  • the furnace width measurement data and the current measurement position data 35 in the furnace horizontal direction can be simultaneously recorded in the external data recording device 32. Since the external data recording device 22 is located outside the furnace, the measured current position data 35 of the furnace width measuring device can be calculated and taken in from the current position data of the extruder 13 equipped with the furnace width measuring device. is there.
  • the external data recording device 22 makes it possible to associate the measurement position in the horizontal direction with the furnace width measurement data in real time, and immediately identifies damaged parts and repaired parts in the furnace during measurement. can do.
  • the wireless transmission transmitter 18 transmits the furnace width measurement data to the external data recording device 22, it is also possible to transmit data obtained by converting distance data measured by a pair of laser distance meters into furnace width. However, it is of course possible to transmit the distance data measured by each laser range finder as it is and calculate the furnace width on the external data recording device 22 side.
  • thermometer 36 for measuring the temperature of the measurement unit 2 and the liquid temperature in the heat absorption box is further installed in the measurement unit as shown in FIG.
  • the measured temperature can be transmitted outside the furnace by the wireless transmission transmitter 18.
  • the temperature of the furnace width measuring device can be grasped at the present time outside the furnace. Damage to the furnace width measurement device due to abnormally high temperatures can be prevented.
  • a data recording device 9 and a wireless transmission receiver are installed in the measurement unit, and the measurement unit is externally input to the measurement unit at the time of insertion of the measurement unit into the furnace and in the horizontal direction in the furnace.
  • Measurement current position data 35 always It is also possible to transmit the data wirelessly and simultaneously record the furnace width measurement data and the current measurement position data 35 in the horizontal direction of the furnace in the data recording device 9 in the measurement unit.
  • a transceiver having both functions of transmission and reception may be used.
  • the measuring unit 2 Since the furnace width measuring device 1 of the present invention cannot supply operating power from outside during the measurement, the measuring unit 2 has the power supply device 10.
  • the furnace width measuring device 8, the data recording device 9, and the wireless transmission transmitter 18 are operated by the power supplied from the power supply device 10.
  • the power supply device 10 a dry battery, a rechargeable storage battery, or the like can be used.
  • a non-rechargeable battery is used as the power supply 10
  • Even when a chargeable power source is used as the power supply device 10 if the charging cable connection plug is located inside the heat absorbing box, it is necessary to open the heat absorbing box each time charging is performed.
  • Charging can be performed without opening the heat absorbing box, which can improve workability.
  • the charging cable connection plug 25 may be covered with a heat insulating material cover 34 at the time of introduction into the furnace, and the charge cable may be connected by removing only the heat insulating material cover 34 at the time of charging.
  • the furnace width measuring device 1 is mounted on the extruder 13 at the fixed height of the extrusion ram 14 of the extruder 13, and the furnace width is measured while the extruder 13 is moved horizontally, and the measured values are used as data. If the recording is performed by the recording device 9, the furnace width at a certain height in the coke oven can be continuously measured. Since the furnace width measuring apparatus 1 of the present invention is compact and lightweight and does not require installation of cooling pipes or the like, the height attached to the extrusion ram 14 is arbitrary. By changing the mounting position at each predetermined height and performing measurements, it is possible to obtain furnace width measurement data for the entire furnace height.
  • the furnace width measuring device of the present invention is attached to the furnace measuring device, and the extruder is attached to the furnace. Furnace width measurements can be made in the same way.
  • furnace width measurement which measures the width between opposing furnace walls in the furnace
  • measurement must be performed without accurately determining the position of the furnace width measuring device in the furnace width direction in the furnace.
  • the furnace width measuring device 8 is a pair of laser distance meters, and each laser distance meter measures the distance to each furnace wall 12
  • the position of the measuring device in the furnace width direction is determined. If it is accurately determined, instead of calculating and using the furnace width from a pair of laser rangefinder measurement results, the surface of each of the left and right furnace walls is directly obtained from the distance measurement data to the furnace wall by each laser rangefinder. It is more advantageous because the situation can be evaluated.
  • the present invention can be applied to such a case where the furnace wall surface is evaluated. That is, as described in the above (16) of the present invention, the external data recording device 22 or the data recording device 9 records the distance between each laser distance meter and the furnace wall in place of the furnace width measurement value. However, it is possible to individually evaluate the state of wear of the opposing furnace walls and to formulate an optimum furnace wall repair plan for each furnace wall.
  • the furnace width is measured after removing the carbon adhering to the furnace wall 12. Adhered carbon is removed by means such as burning off. On the other hand, the furnace width was measured before and after removing the adhered carbon, and a comparison of the two was made. You can know the thickness.
  • the furnace width measuring apparatus of the present invention makes it possible to grasp significant deterioration of the furnace wall.
  • the furnace width measuring device shown in Fig. 1 was used to measure the furnace width of the coke oven carbonization chamber.
  • the outer dimensions of the furnace width measuring device 1 are 550 mm in height, 360 mm in width, and 620 mm in length, and the total weight is about 50 kg.
  • a ceramic fiber board was used as the outer heat insulating material 4, and the thickness of the heat insulating material 4 was set to 50 mm.
  • a heat absorbing box 3 having a jacket structure including an outer box 5 and an inner box 6 made of stainless steel is arranged inside the heat insulating material 4.
  • the jacket was filled with a total of 25 liters of water7.
  • the thickness of the layer of water 7 is 45 mm.
  • a pair of laser rangefinders was placed as a furnace width measuring device 8 in the measurement unit 2 inside the heat absorbing box 3.
  • Each laser range finder (8a, 8b) measures the distance to the left and right furnace walls 12.
  • windows 16 are placed on the left and right sides of the heat absorbing box 3 and the heat insulating material 4 facing the furnace wall, and the window 16 is quartz glass with metal deposition. Is embedded.
  • a small personal computer was placed in the measurement unit 2 as the data recording device 9.
  • a rechargeable storage battery is provided as the power supply device 10 and serves as a power supply for the laser distance meter 8, the data recording device 9, and a control device that controls them.
  • the furnace width measuring device 1 is attached to the front or rear of the extrusion ram of the extruder 13.
  • the supporting device 15 was attached to the front surface of the ram 14. Since the total weight of the furnace width measuring device 1 is relatively light, about 50 kg, and there is no need to arrange cooling water piping and signal cables, it can be easily installed at any position in the height direction of the extrusion ram 14. Is possible.
  • the mounting positions of the furnace width measuring device 1 were set at four locations in the height direction of the extrusion ram, and the furnace width measurement was performed sequentially at each height to obtain furnace width measurement data for the entire furnace wall of the carbonization chamber. could be collected.
  • a timer is installed to prevent laser light irradiation during installation. Since the laser irradiation is started after the timer is up, the extruder 13 starts to be inserted into the furnace at a predetermined speed. Since the furnace width measurement data has a value substantially equal to the predetermined furnace width at the same time when the laser range finder is inserted into the furnace, the furnace insertion timing can be detected. Thereafter, the extruder 13 is horizontally moved at a constant speed, the furnace width is measured over the entire length of the furnace wall 12, and the furnace width data can be recorded in a data recording device.
  • the furnace width measurement device 1 can stay in the furnace for 5 minutes, so the extruder 13 is immediately extracted from the furnace after the measurement is completed. Normally, it takes about 3 minutes from the start of insertion to the completion of extraction.
  • the inside of the measuring unit was 15 ° C and the water temperature was 15 ° C at the start of insertion.
  • the inside of the measurement unit was 25 ° C and the temperature of water was 30 ° C.
  • the normal upper temperature limit of the measurement unit is 50 ° C, so the temperature rise during the measurement was within the allowable range.
  • the furnace width measuring device 1 was taken out from the extrusion ram 14, and the data recorded in the internal data recording device 9 was read out to an external analyzer. Since the data recording device 9 records the furnace width measured value at the start time of the import and at each time after the start of the import, the data is extruded. By taking into account the actual insertion speed of the ram, the actual furnace width at each position in the furnace horizontal direction was obtained.
  • Furnace wall wear was measured by measuring the furnace width at three levels in the height direction for the furnace wall brick wear parts that were visually confirmed, and comparing the furnace width in a healthy state with the furnace width results. It is possible to draw a contour line of the wear amount of the part. This made it possible to formulate a repair plan such as the repair method and repair time for the repair of worn parts, and improved repair efficiency.
  • Example 1 For the same purpose, the furnace width measuring device shown in FIGS. 3 to 6 was used.
  • the wireless transmission transmitter 18 is arranged instead of the data recording device 9 in the measurement unit, and the wireless transmission receiver 21 and the external data recording device 22 are arranged outside the furnace.
  • the laser rangefinder 8 is arranged in the longitudinal direction of the carbonization chamber, the optical axis 33 is bent 90 ° by the mirror 32, and a narrow-band interference filter 37 is arranged in front of the laser rangefinder 8 as an optical filter. Is a point.
  • the other common parts are the same as in the first embodiment, and thus detailed description is omitted.
  • Wireless transmission uses digital signal radio waves for wireless transmission.
  • the output of the two laser rangefinders 8 and the output of the thermometer 36 that measures the temperature in the measurement unit are converted to digital signals by the A / D converter 26, and the digital signals are transmitted wirelessly via the RS-232C interface.
  • the digital signal wireless transmitter 27 functions as the wireless transmission transmitter 18, and sends the wireless transmission signal 19 to the wireless transmission receiver 21 outside the furnace.
  • a window 17 is provided in the portion of the endothermic box 3 through which radio waves pass, and silica glass coated with silica is arranged. Silica coating The radiant heat from the furnace is cut off by coating, and it is not a metal coating, so it does not hinder the propagation of radio waves.
  • a digital signal radio receiver 28 is arranged as a wireless transmission receiver 21, and a recording computer 30 and a data display 31 are arranged as an external data recording device 22.
  • the digital signal received by the digital signal wireless receiver 28 is transmitted to the DZA converter 29 and the recording computer 30 via the RS-232C interface.
  • the data sent to the recording computer 30 is recorded in the computer, and the analog signal output from the D / A converter 29 is sent to the data display 31 to display the furnace width data measured in real time. Since the measured current position data 35 obtained based on the current position data of the extrusion ram 14 has also been sent to the external data recording device 22, this data is also sent to the recording computer 30 and the data display 31.
  • the actual current position 35 of the width measuring device is displayed on the horizontal axis, and the furnace width data is displayed on the vertical axis, and the location where the furnace width abnormality has occurred can be specified.
  • Example 1 In the case of Example 1, by opening a part of the heat absorption box 3 after the measurement is completed, a data reading cable is attached to the data recording device 9 in the measurement unit and the data is read out to an external analyzer. Or it was necessary to take out the data recording medium from the data recording device 9, but in the case of Example 2, since the data was sequentially transmitted to the external data recording device 22 during the measurement, the heat absorbing box 3 was removed after the measurement was completed. There was no need to open it, greatly improving the workability of the measurement. In addition, during the measurement, the furnace width abnormality in the furnace can be caught in real time, and the location where the furnace width abnormality has occurred can be accurately identified.Therefore, a repair plan for the coking chamber should be made without delay. Was completed.
  • the outlet 23 at the bottom of the heat absorbing box was opened, and the cooling water 7 with the increased temperature was discharged, and at the same time, water at room temperature was injected from the inlet 24 at the top.
  • the outlet 23 at the bottom of the heat absorbing box was closed, and water 7 was filled in the heat absorbing box. In this way, the temperature of the heat absorption box 3 and the water 7 in the heat absorption box were sufficiently lowered each time, and the next measurement was performed. Measurement time was secured.
  • the rechargeable storage battery used as the power supply device 10 in the measurement unit has a capacity capable of continuously measuring the furnace width of the five carbonization chambers. Charging can be performed by connecting the charging cable to the charging cable connection plug 25 placed outside the heat absorbing box, so there is no need to open the heat absorbing box for charging, and good work Was able to charge under the gender
  • the measuring unit is housed in a heat absorbing box having a heat absorbing ability, and the outside of the heat absorbing box is covered with a heat insulating material.
  • the temperature of the measurement unit can be kept below a certain temperature even after a long stay. Therefore, it is possible to take a sufficient time to measure the furnace width in the furnace.
  • the furnace width measuring device of the present invention does not require cooling water piping or signal cable wiring, it can be quickly and easily attached to and removed from a furnace insertion / movement device such as an extrusion ram. Become.
  • the furnace width measuring device having the wireless transmission transmitter of the present invention has good workability because it is not necessary to open the heat absorption box to extract measurement data after measurement, and the furnace width measurement position outside the furnace is good. Since the data processing can be performed together with the above, the location where the furnace width abnormality has occurred can be specified accurately, Since measurement data analysis can be performed during furnace width measurement, the results can be promptly reflected in the next function.
  • the heat absorbing box has a liquid outlet, continuous measurement can be performed for a long time without increasing the temperature of the measuring device, and a charging cable connection plug is provided. In addition, measurement can be performed continuously without opening the heat absorbing box, thereby improving workability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Coke Industry (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Description

明 細 書 炉幅測定装置及び炉幅測定方法 技術分野
本発明は、 コ ークス炉炭化室等の高温の炉室内における炉幅を迅 速かつ容易に測定するための炉幅測定装置に関する。 背景技術
コークス炉の炭化室をはじめとする高温の炉室においては、 炉室 を構成する炉壁が耐火物で構成され、 該耐火物の劣化状況を的確に 把握することが必要である。 特にコークス炉の炭化室は、 過酷な条 件下で通常 20年以上の長期間にわたって連続操業されるものであり 、 炭化室を構成する耐火煉瓦は熱的、 化学的および機械的要因によ つて徐々に劣化する。 そのため耐火煉瓦の劣化に起因するコ ータス の押し詰まりが生じたり、 耐火煉瓦が脱落したりする。 このような 耐火煉瓦の脱落などの事故が生じるとその補修は困難であり、 操業 に著しい影響が及ぼされる。 従って、 炭化室内の特に炉壁を構成す る耐火煉瓦の状況を常時把握しておく ことは、 コ ークス炉操業管理 上極めて重要である。
コ ークス炉炭化室の炉壁のように、 狭い炉室において左右の炉壁 が平行に相い対している場合には、 炉壁耐火物が損耗すれば両炉壁 間の距離が増大する。 従って、 両炉壁間の距離を測定することによ り、 炉壁を構成する耐火物の損耗状況を推定することができる。 炉内に距離計を設置し、 この距離計と炉壁との間の距離を測定し て耐火物の損耗を把握しよ う とすると、 該距離計を炉内の定まった 位置に正確に配置することが必要である。 一方、 上記のように炉壁 間の距離を測定する方法においては、 たとぇ炉壁測定装置の横ぶれ があったとしても、 炉壁間の距離の測定値には大きな誤差は与えな い。 従って、 炉壁間の距離を測定する方法においては測定装置の位 置あわせを厳密に行う必要がなく、 例えばコ ークス炉押し出し機の 押し出しラムに炉幅測定装置を取り付けることによって炉幅を測定 することができる。
このような炉幅測定装置と して、 例えば特開昭 62— 293112号公報 においては、 コ ータス押出機のラム等にそれぞれの炉壁に指向する 1対又は複数対の非接触式距離計を設け、 その取り付け位置から左 右の壁を同時測定し、 その合計距離から炭化室の幅を連続測長する ものが記載されている。 押し出し機を水平移動することによって炭 化室炉壁幅を連続的に測定することができる。
上記特開昭 62— 293112号公報においては、 非接'触式距離計と して レーザー光、 マイクロ波などの距離計を用いている。 一方、 実開平 2 - 13151号公報、 特開昭 60— 144384号公報においては、 接触式の距 離計を用いて同じように炉壁の間隔を測定する方法が記載されてい る。
コ ークス炉における炉幅測定は、 コ ークス炉操業中において、 製 造したコ ークスを押し出した後、 次回原料を装入する前の短時間に 行う。 従って、 当然のことながら測定すべき炉内は高温であり、 一 方炉幅測定装置內の炉幅測定ュニッ トは電子装置であって高温環境 には耐え得ないので、 炉幅測定ュニッ トの温度上昇を防止するため の対策が必要である。 前記特開昭 62— 293112号公報に記載のものは 、 距離計を水冷ジャケッ ト内に収納し、 該水冷ジャケッ トに冷却水 を供給循環排出するための冷却水配管を設置している。 距離計の測 定結果を炉外に導くための信号ケーブルは冷却水配管内に配置され 、 信号ケーブルを高温環境から保護している。 炉幅測定装置は押し 出しラムの水平移動に伴って移動するため、 上記冷却水配管は卷取 り装置に巻き取られ、 炉幅測定装置の移動に伴って冷却水配管が送 り出される。
炉幅測定装置の冷却に循環水を用いる上記の方法では、 コ ータス 押し出し機に炉幅測定装置を取り付,ける際、 および取り外す際には 大掛かりな組み立て · 取り外し作業が必要となり、 コ ークス炉操業 の合間に短時間で測定作業を行う ことが極めて困難であった。
炉幅測定ュニッ ト全体を断熱材で覆って炉幅測定装置を構成し、 この炉幅測定装置を極めて短時間炉内に挿入して炉幅を測定し、 炉 幅測定ュニッ ト自体の温度が上昇する前に炉内から取り出すことを 特徴とする炉幅測定装置が知られている。 冷却水配管の配設が必要 ないので装置はコンパク トであり、 コ ークス炉押し出し機等への設 置も容易である。 冷却水配管が存在しないため、 信号ケーブルを炉 外に導く こ とはできず、 炉幅測定データは炉幅測定ュニッ ト内のデ ータ記録装置に蓄え、 炉幅測定装置を炉外に抽出した後にデータを 取り出す。 電子装置を動作させるための電源も炉幅測定ュニッ ト内 に備える。
上記装置では、 炉幅測定ュニッ トを積極的に冷却することはせず 、 単に断熱材によって熱を遮断するのみであるため、 コークス炉の よ うに高温状態の炉内に滞在できる時間はせいぜい 3分程度である 。 コークス炉の押し出し機を炉内に挿入し炉内を 1往復するだけで も通常は 3分程度の時間を必要とする。 従って、 炉内に滞在できる 時間が最大で 3分では余裕時間が少なく、 押出しに時間を要すと距 離計等の電子機器が破損することも考えられる。 また、 ー炉測定す るたびに断熱材の蓄熱を長時間かけて放冷する必要があった。 発明の開示 本発明は、 コークス炉炭化室等の高温の炉室内における炉幅を迅 速かつ容易に測定するため、 冷却水配管の設置を必要とせず、 かつ 炉内に測定装置を揷入し測定を行い抽出するのに必要な時間内にお いて高温に耐え得るよ うな炉幅測定装置を提供することを目的とす る。 即ち、 本発明の要旨とするところは以下のとおりである。
( 1 ) 相対する炉壁間の幅を測定するための炉幅測定装置であつ て、 炉幅を測定する測定ュュッ ト 2は炉幅計測器 8 と電源装置 10と を有し、 測定ュニッ ト 2は吸熱能力を有する吸熱箱 3に収納され、 更に吸熱箱 3の外側は断熱材 4で覆われていることを特徴とする炉 幅測定装置。
( 2 ) 吸熱箱 3は液体 7を充填したジャケッ トであり、 該液体が 吸熱能力を有することを特徴とする上記 ( 1 ) に記載の炉幅測定装 置。
( 3 ) 吸熱箱 3の上部には前記液体を注入するための注入口を有 し、 下部には液体 7を排出するための排出口 23を有することを特徴 とする上記 ( 2 ) に記載の炉幅測定装置。
( 4) 液体 7は水であることを特徴とする上記 ( 2 ) 又は ( 3 ) に記載の炉幅測定装置。
( 5 ) 炉幅計測器 8は 1対のレーザ距離計であり、 各レーザ距離 計はそれぞれ各炉壁 12までの距離を測定することを特徴とする上記
( 1 ) 乃至 (4 ) のいずれかに記載の炉幅測定装置。
( 6 ) 前記レーザ距離計のレーザ受光窓の前方に更に狭帯域干渉 フィルターが設置されていることを特徴とする上記 ( 5 ) に記載の 炉幅測定装置。
( 7 ) 前記レーザ距離計は、 更にタイマーを有し、 予め設定され た炉幅測定装置の取り付け作業時間に相当する設定値になった時点 からレーザ光の照射を開始することを特徴とする上記 ( 5 ) 又は ( 6 ) に記載の炉幅測定装置。
( 8 ) 測定ュニッ ト 2は更に炉幅測定データを外部データ記録装 置 22に伝送するためのワイャレス伝送送信機 18を有することを特徴 とする上記 ( 1 ) 乃至 ( 7 ) のいずれかに記載の炉幅測定装置。
( 9 ) 外部データ記録装置 22において、 炉幅測定データとともに 水平方向の測定現在位置データ 35を記録することを特徴とする上記
( 8 ) に記載の炉幅測定装置。
(10) 測定ュニッ ト 2は更にデータ記録装置 9を有することを特 徴とする上記 ( 1 ) 乃至 ( 7 ) のいずれかに記載の炉幅測定装置。
(11) データ記録装置 9は、 前記測定データが予め設定された炉 幅に相当する設定値になつた時点から炉幅測定データの記録を開始 することを特徴とする上記 (10) に記載の炉幅測定装置。
(12) 測定ュニッ ト 2は更に外部から測定開始時期および測定位 置に関するデータを受信するためのワイャレス伝送受信機を有する こ とを特徴とする上記 (10) 又は (11) に記載の炉幅測定装置。
(13) 電源装置 10を充電するための充電ケーブル接続ブラグ 25を 吸熱箱 3の外部に備えることを特徴とする上記 ( 1 ) 乃至 (12) の いずれかに記載の炉幅測定装置。
(14) コ ークス炉炭化室の炉幅を測定することを特徴とする上記 ( 1 ) 乃至 (13) のいずれかに記载の炉幅測定装置。
(15) 前記炉幅測定装置 1 をコークス炉押し出し機 13のラム 14又 はラムビームに取り付け、 該押し出し機を水平移動しつつ炉幅を測 定することを特徴とする上記 (14) に記載の炉幅測定装置。
(16) 外部データ記録装置 22又はデータ記録装置 9は各レーザー 距離計と炉壁までの距離を記録することを特徴とする上記 ( 5 ) 乃 至 (13) のいずれかに記載の炉幅測定装置。
(17) 上記 ( 3 ) 乃至 (16) のいずれかに記載の炉幅測定装置を 用いた炉幅測定方法であって、 一の炉室の炉! ^測定が完了した後に 前記排出口 23を開いて吸熱箱内の液体 7を排出し、 その後新たな液 体 7 を吸熱箱内に注入して次の炉室の炉幅測定を行う ことを特徴と する炉幅測定方法。
( 18) 上記 (13) 乃至 (16) のいずれかに記載の炉幅測定装置を 用いた炉幅測定方法であって、 一の炉室の炉幅測定が完了した後に 前記電源装置を充電し、 その後次の炉室の炉幅測定を行うことを特 徴とする炉幅測定方法。
本発明においては、 炉幅測定装置 1の最外周は断熱材 4で覆われ るため、 高温の炉内においても、 炉幅測定装置内への熱の移動を大 幅に低減することができる。 更に、 本発明においては前記断熱材 4 と内部の測定ユニッ ト 2 との間に吸熱箱 3を配置する。 吸熱箱 3は それ自体が吸熱能力を有し、 最外周の断熱材 4を通して内部に浸入 した熱はこの吸熱箱 3に吸収され、 吸熱箱内部の測定ュニッ ト 2の 温度上昇を遅らせることができる。 これによ り、 炉幅測定装置 1は 高温の炉内に 5分間は滞在することができるので、 例えばコ ータス 炉押し出し機 13の押し出しラム 14に炉幅測定装置 1 を取り付けて炉 幅を測定するに際し、 時間的に余裕を持って測定を行う ことができ る。 また、 本発明の炉幅測定装置は冷却水配管や信号ケーブルを設 置する必要がないので、 押し出しラム 14等への設置 · 取り外しがき わめて容易である。 図面の簡単な説明
図 1 は、 本発明の炉幅測定装置を炉室内に配置した状態を示す平 面断面図である。
図 2は、 本発明の炉幅測定装置を押し出しラムに装着してコーク ス炉炭化室内に挿入した状況を示す断面図である。 図 3は、 本発明の炉幅測定装置を炉室内に配置した状態を示す平 面断面図である。
図 4は、 本発明の炉幅測定装置を押し出しラムに装着してコーク ス炉炭化室内に挿入した状況を示す断面図である。
図 5は、 本発明の吸熱箱の側面断面図である。
図 6は、 ワイャレス伝送送受信機を有する本発明の機器接続状況 を示す概念図である。 発明を実施するための最良の形態
図 1〜図 6に基づいて本発明の説明を行う。
吸熱箱 3には吸熱能力を有する吸熱材料を用いる。 吸熱材料と し ては、 重量あたり、 体積あたりの熱容量の大きいものを用いること が必要である。 吸熱材料と して金属材料を用いることも可能である が、 吸熱箱 3を液体 7を充填するジャケッ ト構造と し、 吸熱材料と して該ジャケッ ト内に充填した液体 7を用いるとよ り好ましい。 図
1 において、 吸熱箱 3は外箱 5 と内箱 6 とで構成され、 該外箱 5 と 内箱 6 との間が液体 7を充填するジャケッ ト となる。 液体は概して 重量 · 体積あたりの熱容量の大きいものを選択することができる。 工業的に最も容易に入手できかつ吸熱材料と して最適な液体として 、 水を用いることが好ましい。 水は熱容量が大きいため、 吸熱箱内 部の温度上昇を遅らせることができる。 更に、 水の温度が 100°Cに 達すると沸騰によ り大量の気化熱を奪うため、 吸熱箱内部の温度が
100°Cを超えることはない。 水の温度が 100°Cに到達して沸騰を開 始した際の水蒸気を放出するため、 吸熱箱 3の上部には開放ロを設 けるかあるいは安全弁を設けると良い。 図 5に示すように、 開放口 は冷却水の注入口 24と兼用したものを設けることができる。 本発明 の炉幅測定装置においては、 炉内での炉幅測定中には液体を供給排 出するための配管が接続されていない点が特徴である。
本発明の炉幅測定装置によるコ ークス炉炭化室の炉幅測定におい ては、 例えばコークス押し出し機に本発明の炉幅測定装置を搭載し て測定を行う場合、 押し出し機はレールの上を移動しながら乾留が 完了した炭化室のコ ークスを押し出す作業を 5 〜 10分間隔で連続し て次々と繰り返していき、 この作業の中で多数の炭化室の炉幅測定 を行うこととなる。 1回の炭化室挿入によつて吸熱箱内の液体は温 度が上昇しているので、 時間をおかずにこのまま次の炭化室に揷入 しての測定を行う と、 吸熱箱内の液体 7の温度は逐次上昇し、 炉内 滞在可能時間が短く なる。 図 5に示すよ うに、 本発明の吸熱箱 3の 下部に内部の液体を排出するための排出口 23を設けておき、 炉内測 定が完了する毎に温度が上昇した内部の液体 7を排出して温度が低 い新しい液体を投入することにより、 液体 7の温度上昇を防止でき る。 新しい液体投入時に注入口 24から冷えた液体を供給しつつ排出 口 23からの排出を継続すれば、 吸熱箱自身の温度も低下させること ができる。 この結果、 各回毎に十分な炉内滞在時間を確保すること ができる。
吸熱箱 3の外側を覆う断熱材 4 と しては、 セラミ ックファイバー ポー ド、 またはケィ酸カルシウムボード等を用いるこ とができる。 コークス炉の炉幅は通常 400mm程度であり、 本発明の炉幅測定装 置はこのスペースに収納可能な寸法とする必要がある。 吸熱材料と して水を用いる場合、 水を収納するジャケッ トは炉幅方向で水の占 める幅を左右それぞれ 40mn!〜 60mm程度とする。 吸熱箱外周の断熱材 4 と しては、 例えばセラミ ックフアイパーボー ドを用い、 断熱材 4 の厚さを 40mn!〜 60匪程度とすることができる。 炉幅測定装置 1 の外 部寸法を L 620mm X W 360mm X H 550mmと したとき、 測定ユニッ ト 2を収納する内部空間は L 420mm X W 160mm X H 310mm程度となる このよ うな形状を有する炉幅測定装置 1 を炉内温度 1000°Cのコ一 クス炉炭化室 11に挿入したとき、 測定ュニッ トを収納する内部空間 の温度は、 揷入後経過時間ごとに、 3分後 25°C、 5分後 40°C、 7分 後 55°Cとなる。 測定ュニッ トの通常使用温度上限は 50°Cであるから 、 高温の炉内に 5分間は滞在することが可能である。 また、 1窯測 定が約 2分である場合は、 奥行き 15mの窯を往復して測定するのに 要する時間は約 2分であり、 1測定当たりの内部空間温度は約 5 °C 上昇する。 連続測定を行う場合は、 水温度を予め 0 °Cにしておく こ とによ り、 5 °C X 10回 = 50°Cとなり連続 10回の水交換なしでの測定 が可能となる。
炉幅測定装置 1 に収納される測定ュニッ ト 2は、 炉幅計測器 8、 電源装置 10と必要に応じてデータ記録装置 9を有する。
炉幅計測器 8 と しては、 非接触の距離計を用いることが好ましい 。 非接触の距離計と しては、 レーザ距離計、 マイク ロ波距離計等を 用いることができる。 レーザ距離計を用いる場合、 少なく とも 1対 のレーザ距離計を準備し、 各レーザ距離計を相対する各炉壁に向け 、 それぞれのレーザ距離計から各炉壁までの距離を測 する。 こ う して測定された両レーザ距離計からの距離を加算することによ り、 炉幅を計算することができる。
炉幅計測器 8 と して非接触のレーザ距離計等を用いる場合、 レー ザ距離計からのレーザ光を炉壁 12に照射し炉壁 12からの反射光を距 離計に導くため、 吸熱箱 3及びその外周の断熱材 4は両サイ ドに窓 16を有する。 窓 16には石英ガラス等の耐熱ガラスを装着する。 耐熱 ガラスは金属蒸着等の手段によって外部からの輻射熱を反射する機 能を有することが好ましい。 また、 レーザ距離計のレーザ受光窓の 前方に更に図 3に示すよ うに狭帯域干渉フィルター 37を設置すると 好ましい。 狭帯域干渉フィルター 37とは、 中心波長に対し半値幅 10 nm程度のパンドパスフィルターであり、 到達した光線のうちの特定 領域の波長の光線のみを透過させるものである。 レーザ距離計に用 いられているレーザ波長を中心波長と した狭帯域干渉フィルターを 用い、 測定精度に対する外乱となる波長域を力ッ トすることでレー ザ距離計の測定精度を確保することができる。
レーザ距離計 8はその光軸方向にある程度の長さを有し、 一方コ 一クス炉等の炉幅は非常に狭いので、 炉幅方向にレーザ距離計を 2 台同軸に並べることは困難となる場合がある。 図 3に示すように、 レーザ距離計 8を炉の長手方向に配置し、 鏡 32による反射を用いて 光軸 33を炉幅方向に変更することによ り、 狭い炉幅を有する炉内の 測定を可能にすることができる。
本発明の炉幅測定装置は信号ケーブルを炉外まで配線することが できないので、 炉内で測定したデータは、 測定ユニッ ト内に配置さ れたデータ記録装置 9に記録し、 測定が完了して炉幅測定装置 1 を 炉外に抽出してから該記録したデータを参照する。 データ記録装置 9 と しては、 磁気ディスク等の磁気記憶装置、 LS I カー ド等の半導 体記憶装置、 光記憶装置、 光磁気記憶装置等のうちから任意に選択 することができる。
コークス炉炭化室 11を水平移動しつつ炉幅測定を行う場合には、 水平方向の測定位置と炉幅測定データとを対応させる必要がある。 測定中においては水平方向の測定現在位置を測定ュニッ ト 2におい て知ることはできない。 従って、 測定中は測定ユニッ ト 2において は例えば現在時刻と炉幅測定データとを対応してデータ記録装置 9 に記録し、 一方炉外においては現在時刻と押し出し機の水平方向現 在位置とを対応して記録し、 測定完了後に両データを時刻をパラメ ータと して結合することによ り、 水平方向の位置毎に炉幅測定デー タを対応させることが可能である。 炉幅測定装置がまだ炉外にあるときは炉幅測定値は非常に大きな 値となっている。 炉幅測定装置を水平移動して炉内に入った時点で 、 炉幅測定値は実際の炉幅に略等しい値に急激に変化するので、 炉 幅測定装置自身が炉内挿入開始時点を認識することができる。 従つ て、 押し出し機 13の移動速度が一定である場合には、 炉幅測定装置 自身が認識した上記炉内揷入時刻を用い、 炉内挿入時刻以降のデー タを移動速度一定として炉内の各位置に対応させることも可能であ る。
図 3、 図 4に示すように、 測定ユニッ ト内に上記データ記録装置 9 のかわりにワイャレス伝送送信機 18を配置し、 測定データを炉外 に送信して炉外の外部データ記録装置 22にデータを記録させること もできる。 ワイヤレス伝送には、 電磁波を用いた無線送信、 あるい は可視光や赤外線などの光を用いたワイヤレス伝送を用いることが できる。 ワイヤレス伝送を行う場合、 吸熱箱の炉外側に向いた壁に は伝送用の窓 17を設ける。 窓 17には耐熱ガラスを装着し、 伝送媒体 と して電磁波を用いる場合には、 外部からの輻射熱侵入を防止する ためのコーティングには金属膜コーティングは用いず、 シリカコー ティ ングのような非電導性材料のコーティ ングを行う。
図 6に示すように、 ワイヤレス伝送にデジタル信号を電波で伝送 するデジタル無線送受信機 (27, 28) を採用することができる。 レ 一ザ距離計 8からはアナ口グの距離信号が出力されるので、 この信 号を A Z D変換器 26でデジタル信号と し、 このデジタル信号をデジ タル無線送信機 27で送信し、 炉外のデジタル無線受信機 28で受信す る。 受信したデジタル信号は D Z A変換器 29でアナ口グ信号に変換 してデータディスプレイ 31などの記録計に出力したり、 あるいはデ ジタル信号のままで記録用コンピュータ 30などの記録計に記録する ことができる。 測定ュニッ ト内にワイヤレス伝送送信機 18を配置した場合、 炉幅 測定データを測定ュニッ トから外部のワイャレス伝送受信機 21に伝 送し、 そのデータを外部データ記録装置 22に記録する。 その際、 炉 幅測定データと炉内水平方向の測定現在位置データ 35を同時に外部 データ記録装置 32に記録することもできる。 外部データ記録装置 22 は炉外に配置されているので、 炉幅測定装置を搭載した押し出し機 13の現在位置データから炉幅測定装置の測定現在位置データ 35を算 出して取り込むことができるからである。 その結果、 外部データ記 録装置 22においてリアルタイムに水平方向の測定位置と炉幅測定デ 一タとを対応させることが可能になり、 測定中において即座に炉内 の損傷個所や要補修個所を特定することができる。 ワイャレス伝送 送信機 18は、 炉幅測定データを外部データ記録装置 22に伝送するた め、 1対のレーザ距離計で測定した距離データを炉幅に換算した後 のデータを送信することも可能であるが、 もちろん各レーザ距離計 で測定した距離データをそのまま送信し、 外部データ記録装置 22の 側で炉幅に計算することも可能である。
測定ュニッ ト内にワイヤレス伝送送信機 18を配置した場合、 さら に図 6に示すように測定ュニッ ト内に測定ュニッ ト 2の温度や吸熱 箱内の液体温度を測定する温度計 36を設置し、 測定した温度をワイ ャレス伝送送信機 18によつて炉外に送信することもできる。 これに よ り、 炉外において現時点で炉幅測定装置の温度を把握することが でき、 温度が管理上限に近づいたときには測定を中止して炉幅測定 装置を炉外に引き出すことによ り、 異常高温による炉幅測定装置の 損傷を未然に防ぐこともできる。
上記とは逆に、 測定ユニッ ト内にデータ記録装置 9 とワイ ヤレス 伝送受信機を設置し、 外部から測定ュ-ッ トに対して測定ュニッ ト の炉内揷入時刻および炉内水平方向の測定現在位置データ 35を常時 ワイャレス送信し、 炉幅測定データと炉內水平方向の測定現在位置 データ 35を同時に測定ュニッ ト内のデータ記録装置 9に記録するこ ともできる。
ワイヤレス伝送送信機 18及びワイヤレス伝送受信機 21には、 送信 と受信の両方の機能を兼ね備えた送受信機を用いても良い。
本発明の炉幅測定装置 1は測定中は外部から動作電源を供給する ことができないので、 測定ユニッ ト 2には電源装置 10を有する。 炉 幅計測器 8やデータ記録装置 9、 ワイヤレス伝送送信機 18はこの電 源装置 10から供給される電力によって作動する。 電源装置 10と して は、 乾電池、 充電式蓄電池等を用いるこ とができる。
電源装置 10と して充電できない電池を用いると、 電池交換のたび に吸熱箱を開放する必要がある。 また電源装置 10と して充電可能な 電源を用いる場合においても、 充電ケーブル接続プラグが吸熱箱内 部に位置する場合には充電のたびに吸熱箱を開放することが必要と なる。 電源装置 10と して充電可能な電源を用い、 さらに本発明の上 記 ( 13) のよ うに、 図 5に示すよ うな充電ケーブル接続プラグ 25を 吸熱箱 3の外部に備えることによ り、 吸熱箱を開放せずに充電する ことが可能になり、 作業性を改善するこ とができる。 充電ケーブル 接続プラグ 25は、 炉内揷入時には断熱材蓋 34でその外部を覆い、 充 電時に断熱材蓋 34のみを取り外して充電ケーブルを接続するように しても良い。
炉幅測定装置 1 を例えば図 2に示すよ うに押し出し機 13の押し出 しラム 14の一定高さ部分に装着し、 押し出し機 13を水平移動しつつ 炉幅の測定を行って測定値をデータ記録装置 9に記録すれば、 コー クス炉内の一定高さ部分の炉幅を連続的に測定することができる。 本発明の炉幅測定装置 1 は形状がコンパク トかつ軽量であり、 冷却 配管等の設置が不要なので、 押し出しラム 14に取り付ける高さは任 意に変更することが容易であり、 所定の各高さ毎に取り付け位置を 変えて測定を行う ことにより、 炉高全体の炉幅測定データを得るこ とができる。
押し出し機以外に炭化室内に挿入可能な装置、 例えば炉内測定装 置を有している場合には、 該炉内測定装置に本発明の炉幅測定装置 を取り付け、 押し出し機に取り付けた場合と同じよ うに炉幅測定を 行うこともできる。
以上述べたように、 炉内の相対する炉壁間の幅を測定する炉幅測 定においては、 炉幅測定装置の炉内における炉幅方向位置を正確に 決定しなくても測定を行うことができるので、 コークス炉炉幅方向 の位置を正確に定めることのできない測定においては便利である。 一方、 炉幅計測器 8を 1対のレーザ距離計と し、 各レーザ距離計は それぞれ各炉壁 12までの距離を測定する上記 ( 5 ) の発明において は、 測定装置の炉幅方向位置を正確に定められるのであれば、 1対 のレーザ距離計測定結果から炉幅を計算して用いるのではなく、 各 レーザ距離計による炉壁までの距離測定データから直接に左右の各 炉壁の表面状況を評価できるのでよ り有利である。 本発明は、 この ような炉壁表面評価を行う場合においても適用することができる。 即ち、 本発明の上記 (16) にあるとおり、 外部データ記録装置 22又 はデータ記録装置 9は、 炉幅測定値に替えて各レーザー距離計と炉 壁までの距離を記録することによ り、 相対する各炉壁の損耗状況を 個別に評価し、 各炉壁に最適な炉壁補修計画を立案することが可能 になる。
炭化室の炉幅を正確に測定するためには、 炉壁 12に付着している 付着カーボンを除去した後に炉幅の測定を行う。 付着カーボンは焼 き落と し等の手段によって除去する。 一方、 付着カーボン除去前と 除去後に炉幅の測定を行い、 両者の比較を行えば、 付着カーボンの 厚みを知ることができる。
炉壁に目地切れがある場合には、 その部分で炉幅測定値が異常に 大きな値となるため、 本発明の炉幅測定装置によって目地切れを検 出することが可能である。 従って、 本発明の炉幅測定装置により、 重大な炉壁の劣化も把握することが可能である。
実施例
(実施例 1 )
コークス炉炭化室の炉幅を測定する目的で図 1 に示す炉幅測定装 置を用いた。 炉幅測定装置 1の外形寸法は、 高さ 550mm、 幅 360mm 、 長さ 620mmであり、 総重量は約 50kgである。
外周の断熱材 4 と してセラミ ックファイバーボー ドを用い、 断熱 材 4の厚さは 50mmと した。 断熱材 4の内側には、 ステンレス鋼製の 外箱 5 と内箱 6 とからなるジャケッ ト構造の吸熱箱 3を配置した。 ジャケッ ト内には合計 25リ ッ トルの水 7を充填した。 吸熱箱 3の炉 壁に面する部分において、 水 7の層の厚さは 45mmである。
吸熱箱 3の内部の測定ュニッ ト 2に、 炉幅測定器 8 として 1対の レーザ距離計を配置した。 それぞれのレーザ距離計 ( 8 a , 8 b ) は左右の炉壁 12までの距離を測定する。 レーザ距離計から炉壁まで の光路を確保するため、 吸熱箱 3及び断熱材 4の左右の炉壁に面す る部分には窓 16を配置し、 窓 16には金属蒸着を行った石英ガラスを はめ込んでいる。
測定ュニッ ト 2には、 データ記録装置 9 と して小型パソコンを配 置した。 また、 電源装置 10として充電式蓄電池を配置し、 レーザ距 離計 8、 データ記録装置 9及びそれらを制御する制御装置に対する 供給電源と した。
上記炉幅測定装置 1 を押し出し機 13の押し出しラム前面ないし後 部に取り付ける。 本実施例 おいては、 図 2に示すように、 押し出 しラム 14の前面に支持装置 15を用いて取り付けた。 炉幅測定装置 1 の総重量が約 50kgと比較的軽量であり、 更に冷却水配管や信号ケー プルを配置する必要がないので、 押し出しラム 14の高さ方向の任意 の位置に容易に取り付けることが可能である。 本実施例においては 、 押し出しラム高さ方向 4箇所に炉幅測定装置 1 の取り付け位置を 設定し、 各高さにおいて順次炉幅測定を実施することにより、 炭化 室内炉壁全面に関する炉幅測定データを採取することができた。 押し出しラム 14の所定の位置に炉幅測定装置 1 を取り付ける。 取 り付け中にレーザ光が照射されないよう、 タイマーが設置されてい る。 タイマーアップ後にレーザ照射が開始されるので、 押し出し機 13を所定の速度で炉内に挿入開始する。 レーザ距離計部分が炉内に 挿入すると同時に炉幅測定データが略所定の炉幅に等しい値となる ので、 炉内挿入タイ ミ ングを検出することができる。 その後一定速 度で押し出し機 13を水平移動し、 炉壁 12の全長にわたって炉幅の測 定を行い、 炉幅データをデータ記録装置に記録することができる。 炉幅測定装置 1の炉内滞在可能時間は 5分間なので、 測定完了後 速やかに押し出し機 13を炉内から抽出する。 通常は挿入開始から抽 出完了まで 3分間程度で完了する。 吸熱箱中の測定ュニッ ト 2の温 度及び吸熱箱ジャケッ ト内の水 7の温度を測定したところ、 挿入開 始時には測定ュニッ ト内が 15°C、 水の温度が 15°Cであったのに対し 、 揷入後 3分経過後の抽出時には、 測定ュニッ ト内が 25°C、 水の温 度が 30°Cであった。 測定ュニッ 卜の通常使用上限温度は 50°Cである から、 測定中の温度上昇は許容できる範囲内であった。
測定終了後に炉幅測定装置 1 を押し出しラム 14から取り出し、 内 部のデータ記録装置 9に記録されたデータを外部の解析装置に読み 出した。 データ記録装置 9には揷入開始時刻及び揷入開始後の各時 刻における炉幅測定値が記録されているので、 このデータに押し出 しラムの挿入速度実績を加味することによ り、 炉内水平方向各位置 における炉幅実績を知ることができた。
目視によ り確認された炉壁煉瓦損耗部に対して、 高さ方向 3水準 程度で炉幅測定を行い、 健全状態での炉幅と炉幅実績を比較するこ とで、 炉壁煉瓦損耗部の損耗量等高線を描く ことができる。 これに よ り、 損耗部補修において、 補修方法および補修時間等の補修計画 の立案が可能となり、 補修効率の向上が図られた。
(実施例 2 )
実施例 1 同様の目的で、 図 3〜図 6に示す炉幅測定装置を用い た。 実施例 1 との相違点は、 測定ユニッ ト内にデータ記録装置 9を 配置する代わりにワイャレス伝送送信機 18を配置し、 炉外にワイャ レス伝送受信機 21と外部データ記録装置 22を配置した点、 断熱箱 3 の下部に冷却水の排出口 23、 上部に開放口を兼ねた冷却水注入口 24 を設けた点、 吸熱箱 3の外部に充電ケーブル接続ブラグ 25を設けた 点、 2個のレーザ距離計 8を炭化室長手方向に配置し鏡 32にて光軸 33を 90° 曲げている点、 レーザ距離計 8 の前方に光学フィルターと して狭帯域干渉フィルター 37を配置している点である。 それ以外の 共通する部分については実施例 1 と同様であるので詳細な記述は省 略する。
ワイャレス伝送にはデジタル信号の電波を用いた無線通信を採用 している。 2個のレーザ距離計 8の出力及び測定ュニッ ト内の温度 を測定する温度計 36の出力を A / D変換器 26によってディジタル信 号に変換し、 RS— 232Cィ ンターフェースでデジタル信号無線送信機 27に送る。 デジタル信号無線送信機 27がワイャレス伝送送信機 18と して機能し、 ワイャレス伝送信号 19を炉外のワイャレス伝送受信機 21に送る。 吸熱箱 3の電波が通過する部分には窓 17を設け、 シリカ コーティングを施した石英ガラスを配置している。 シリカコーティ ングによって炉からの輻射熱を遮断し、 かつ金属コーティ ングでは ないので電波の伝搬を阻害することがない。
炉外にはワイヤレス伝送受信機 21と してデジタル信号無線受信機 28が配置され、 外部データ記録装置 22と して記録用コンピュータ 30 及びデータディスプレイ 31が配置される。 デジタル信号無線受信機 28で受信したデジタル信号を RS— 232Cインターフエ,ースで D Z A変 換器 29及び記録用コンピュータ 30に伝送する。 記録用コンピュータ 30に送られたデータはコンピュータ内に記録され、 D / A変換器 29 から出力するアナログ信号はデータディスプレイ 31に送られ、 リア ルタイムに測定された炉幅データを表示する。 外部データ記録装置 22には押し出しラム 14の現在位置データに基づいて求められた測定 現在位置データ 35も送られてきているので、 このデータも記録用コ ンピュータ 30とデータディスプレイ 31に送られる。 データディスプ レイ 31においては、 幅測定装置の測定現在位置 35を横軸に、 炉幅デ ータを縦軸に実績を表示し、 炉幅異常の発生個所を特定することが できる。
実施例 1 の場合には、 測定完了後に吸熱箱 3の一部を開放するこ とによって、 測定ュニッ ト内のデータ記録装置 9にデータ読取りケ 一ブルを装着しデータを外部の解析装置に読み出したり、 あるいは データ記録装置 9からデータ記録媒体を取り出す必要があつたが、 実施例 2の場合には測定中に外部データ記録装置 22に逐次データが 伝送されるので、 測定完了後に吸熱箱 3を開ける必要がなく、 測定 の作業性を大幅に向上することができた。 また測定中にリ アルタイ ムで炉内の炉幅異常をキャッチし、 当該炉幅異常の発生個所も正確 に特定するこ とができるので、 遅滞なく当該炭化室の補修計画を立 案するこ とができた。
一つの炭化室の炉幅測定を完了した後に続けて次の炭化室の炉幅 測定を行う前に、 吸熱箱下部の排出口 23を開き、 温度が上昇した冷 却水 7を排出すると同時に上部の注入口 24から常温の水を注水した 。 15リ ッ トルの水を注水して吸熱箱 3の温度を低下させた後、 吸熱 箱下部の排出口 23を閉じ、 吸熱箱内に水 7を充填した。 このよ うに 毎回吸熱箱 3 と吸熱箱内の水 7の温度を十分に下げてから次の測定 を行ったので、 連続して炭化室の炉幅測定を行う際にも毎回 5分以 上の測定時間を確保することができた。
測定ュニッ ト内の電源装置 10と して用いる充電式蓄電池は、 連続 して 5室の炭化室の炉幅測定が可能な容量を有している。 充電に際 しては、 吸熱箱外部に配置した充電ケーブル接続プラグ 25に充電ケ 一ブルを接続して行う ことができるので、 充電のために吸熱箱を開 放する必要がなく、 良好な作業性のもとで充電を行う ことができた
産業上の利用可能性
本発明の炉幅測定装置は、 測定ュニッ トを吸熱能力を有する吸熱 箱に収納し、 更に吸熱箱の外側を断熱材で覆っているため、 コーク ス炉のような高温の炉内に比較的長時間滞在しても測定ユニッ トの 温度を一定温度以下に保持することができる。 そのため、 炉内の炉 幅測定を充分な時間をかけて行う ことが可能になる。 また、 本発明 の炉幅測定装置は、 冷却水配管や信号ケーブル配線を必要と しない ので、 押し出しラム等の炉内揷入 ·移動装置に迅速かつ容易に取り 付け · 取り外しを行う ことが可能になる。
更に、 本発明のワイャレス伝送送信機を有する炉幅測定装置は、 測定後に測定データを抽出するために吸熱箱を開放する必要がない ので作業性が良好であり、 炉外にて炉幅測定位置と ともにデータ処 理ができるので炉幅異常の発生個所を正確に特定することができ、 炉幅測定中に測定データ解析ができるので結果を迅速に次のァクシ ヨ ンに反映させるこ とができる。 また、 吸熱箱に液体排出口を有す るために、 連続測定においても測定装置の温度の上昇を抑えて長時 間の測定を行う こ とができる と共に、 充電ケーブル接続プラグを備 えているので、 吸熱箱を開放するこ となく測定を連続して行う こ と ができ、 作業性を改善するこ とができる。

Claims

請 求 の 範 囲
1 . 相対する炉壁間の幅を測定するための炉幅測定装置であって 、 炉幅を測定する測定ュニッ トは炉幅計測器と電源装置とを有し、 該測定ュニッ トは吸熱能力を有する吸熱箱に収納され、 更に該吸熱 箱の外側は断熱材で覆われていることを特徴とする炉幅測定装置。
2 . 前記吸熱箱は液体を充填したジャケッ トであり、 該液体が吸 熱能力を有することを特徴とする請求項 1に記載の炉幅測定装置。
3 . 前記吸熱箱の上部には前記液体を注入するための注入口を有 し、 下部には前記液体を排出するための排出口を有することを特徴 とする請求項 2に記載の炉幅測定装置。
4 . 前記液体は水であることを特徴とする請求項 2又は 3に記載 の炉幅測定装置。
5 . 前記炉幅計測器は 1 対のレーザ距離計であり、 各レーザ距離 計はそれぞれ各炉壁までの距離を測定することを特徴とする請求項 1乃至 4のいずれかに記載の炉幅測定装置。
6 . 前記レーザ距離計のレーザ受光窓の前方に更に狭帯域干渉フ ィルターが設置されていることを特徴とする請求項 5に記載の炉幅 測定装置。
7 . 前記レーザ距離計は、 更にタイマーを有し、 予め設定された 炉幅測定装置の取り付け作業時間に相当する設定値になった時点か らレーザ光の照射を開始することを特徴とする請求項 5又は 6に記 载の炉幅測定装置。
8 . 前記測定ュニッ トは更に炉幅測定データを外部データ記録装 蘆に伝送するためのワイャレス伝送送信機を有することを特徴とす る請求項 1乃至 7のいずれかに記載の炉幅測定装置。
9 . 前記外部データ記録装置において、 炉幅測定データと ともに 水平方向の測定現在位置データを記録することを特徴とする請求項
8に記載の炉幅測定装置。
10. 前記測定ュニッ トは更にデータ記録装置を有することを特徴 とする請求項 1乃至 7のいずれかに記載の炉幅測定装置。
11. 前記データ記録装置は、 前記測定データが予め設定された炉 幅に相当する設定値になった時点から炉幅測定データの記録を開始 することを特徴とする請求項 10に記載の炉幅測定装置。
12. 前記測定ュニッ トは更に外部から測定開始時期および測定位 置に関するデータを受信するためのワイャレス伝送受信機を有する ことを特徴とする請求項 10又は 11に記載の炉幅測定装置。
13. 前記電源装置を充電するための充電ケーブル接続プラグを吸 熱箱の外部に備えることを特徴とする請求項 1乃至 12のいずれかに 記載の炉幅測定装置。
14. コークス炉炭化室の炉幅を測定することを特徴とする請求項 1乃至 13のいずれかに記載の炉幅測定装置。
15. 前記炉幅測定装置をコークス炉押し出し機のラム又はラムビ ームに取り付け、 該押し出し機を水平移動しつつ炉幅を測定するこ とを特徴とする請求項 14に記載の炉幅測定装置。
16. 前記外部データ記録装置又はデータ記録装置は各レーザー距 離計と炉壁までの距離を記録し、 前記ワイヤレス伝送送信機は各レ 一ザ一距離計と炉壁までの距離を伝送することを特徴とする請求項 5乃至 15のいずれかに記載の炉幅測定装置。
17. 請求項 3乃至 16のいずれかに記載の炉幅測定装置を用いた炉 幅測定方法であって、 一の炉室の炉幅測定が完了した後に前記排出 口を開いて吸熱箱内の液体を排出し、 その後新たな液体を吸熱箱内 に注入して次の炉室の炉幅測定を行う ことを特徴とする炉幅測定方
18. 請求項 13乃至 16のいずれかに記載の炉幅測定装置を用いた炉 幅測定方法であって、 一の炉室の炉幅測定が完了した後に前記電源 装置を充電し、 その後次の炉室の炉幅測定を行うことを特徴とする 炉幅測定方法。
PCT/JP2001/009966 2000-11-14 2001-11-14 Dispositif et procede permettant de mesurer la largeur d'un four WO2002040615A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP01982784A EP1340799A4 (en) 2000-11-14 2001-11-14 METHOD AND DEVICE FOR MEASURING THE WIDTH OF AN OVEN
BRPI0107629-9B1A BR0107629B1 (pt) 2000-11-14 2001-11-14 aparelho e mÉtodo para a mediÇço da largura de uma cÂmara de forno
HK03104526.2A HK1052366B (zh) 2000-11-14 2003-06-24 用於測量爐室寬度的裝置和方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2000-347150 2000-11-14
JP2000347150 2000-11-14
JP2001-209046 2001-07-10
JP2001209046A JP3965032B2 (ja) 2000-11-14 2001-07-10 コークス炉炭化室炉幅測定装置

Publications (1)

Publication Number Publication Date
WO2002040615A1 true WO2002040615A1 (fr) 2002-05-23

Family

ID=26603969

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/009966 WO2002040615A1 (fr) 2000-11-14 2001-11-14 Dispositif et procede permettant de mesurer la largeur d'un four

Country Status (8)

Country Link
EP (1) EP1340799A4 (ja)
JP (1) JP3965032B2 (ja)
KR (1) KR100497765B1 (ja)
CN (1) CN1218017C (ja)
BR (1) BR0107629B1 (ja)
HK (1) HK1052366B (ja)
TW (1) TW544463B (ja)
WO (1) WO2002040615A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003066775A1 (en) * 2002-01-09 2003-08-14 Nippon Steel Corporation Furnace wall observation device and furnace wall shape measuring device

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4220800B2 (ja) * 2003-02-13 2009-02-04 関西熱化学株式会社 コークス炉炭化室の検査装置を用いたコークス炉炭化室を検査する内部観察手段の軌跡の特定方法およびコークス炉炭化室の検査方法
WO2004090071A1 (ja) * 2003-04-09 2004-10-21 The Kansai Coke And Chemicals Co., Ltd. コークス炉炭化室の診断装置および診断方法
JP4711856B2 (ja) 2006-02-28 2011-06-29 関西熱化学株式会社 炉幅測定装置およびそれを備えた押出ラム
CA2666059C (en) * 2007-02-22 2013-09-24 Nippon Steel Corporation Coke oven wall surface evaluation and repair supporting apparatus and method
JP6227220B2 (ja) * 2010-12-27 2017-11-08 Jfeスチール株式会社 炉壁形状測定装置、炉壁形状測定システム、および炉壁形状測定方法
AU2012380733B2 (en) * 2012-05-25 2016-07-21 Foss Analytical A/S Optical spectrometer
TWI480512B (zh) * 2013-04-17 2015-04-11 China Steel Corp The method of obtaining the best position of blast furnace wall blast furnace
JP6302677B2 (ja) * 2014-01-10 2018-03-28 新日鐵住金株式会社 炉幅測定装置及びコークス押出機
CN109916346B (zh) * 2019-03-31 2021-06-22 东莞职业技术学院 一种基于视觉系统的工件平整度的检测装置及检测方法
WO2024189803A1 (ja) * 2023-03-15 2024-09-19 Jfeスチール株式会社 コークス炉の炉壁補修方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55132635U (ja) * 1979-03-13 1980-09-19
JP3032354U (ja) * 1995-06-30 1996-12-17 デー エム テー−ゲゼルシャフト フュア フォルシュング ウント プリューフング ミット ベシュレンクテル ハフツング 変形を測定するための装置
JPH0926309A (ja) * 1995-07-13 1997-01-28 Sumitomo Metal Ind Ltd コークス炉の炉体膨張計測方法
WO1997038278A1 (en) * 1996-04-04 1997-10-16 Nippon Steel Corporation Apparatus for monitoring wall surface
JPH10279946A (ja) * 1997-04-08 1998-10-20 Nippon Steel Corp コークス炉炭化室の炉壁面プロフィール測定方法
JP2000336370A (ja) * 1999-05-26 2000-12-05 Sumitomo Metal Ind Ltd 炉内状況検査方法及び炉内状況検査装置
JP2001003058A (ja) * 1999-06-16 2001-01-09 Sumitomo Metal Ind Ltd コークス炉炭化室の壁面検査方法及び壁面検査装置
JP2001011465A (ja) * 1999-06-30 2001-01-16 Sumitomo Metal Ind Ltd コークス炉炭化室の内壁観測装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3042758B2 (ja) * 1995-02-17 2000-05-22 川崎製鉄株式会社 コークス炉炭化室の炉壁診断方法および装置
JP3895928B2 (ja) * 1999-03-16 2007-03-22 新日本製鐵株式会社 壁面観察装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55132635U (ja) * 1979-03-13 1980-09-19
JP3032354U (ja) * 1995-06-30 1996-12-17 デー エム テー−ゲゼルシャフト フュア フォルシュング ウント プリューフング ミット ベシュレンクテル ハフツング 変形を測定するための装置
JPH0926309A (ja) * 1995-07-13 1997-01-28 Sumitomo Metal Ind Ltd コークス炉の炉体膨張計測方法
WO1997038278A1 (en) * 1996-04-04 1997-10-16 Nippon Steel Corporation Apparatus for monitoring wall surface
JPH10279946A (ja) * 1997-04-08 1998-10-20 Nippon Steel Corp コークス炉炭化室の炉壁面プロフィール測定方法
JP2000336370A (ja) * 1999-05-26 2000-12-05 Sumitomo Metal Ind Ltd 炉内状況検査方法及び炉内状況検査装置
JP2001003058A (ja) * 1999-06-16 2001-01-09 Sumitomo Metal Ind Ltd コークス炉炭化室の壁面検査方法及び壁面検査装置
JP2001011465A (ja) * 1999-06-30 2001-01-16 Sumitomo Metal Ind Ltd コークス炉炭化室の内壁観測装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1340799A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003066775A1 (en) * 2002-01-09 2003-08-14 Nippon Steel Corporation Furnace wall observation device and furnace wall shape measuring device

Also Published As

Publication number Publication date
JP2002213922A (ja) 2002-07-31
HK1052366A1 (en) 2003-09-11
EP1340799A1 (en) 2003-09-03
CN1218017C (zh) 2005-09-07
KR20020067066A (ko) 2002-08-21
BR0107629A (pt) 2002-10-08
BR0107629B1 (pt) 2013-09-03
TW544463B (en) 2003-08-01
HK1052366B (zh) 2005-12-09
EP1340799A4 (en) 2006-05-31
KR100497765B1 (ko) 2005-06-29
CN1395608A (zh) 2003-02-05
JP3965032B2 (ja) 2007-08-22

Similar Documents

Publication Publication Date Title
WO2002040615A1 (fr) Dispositif et procede permettant de mesurer la largeur d'un four
CA2998778C (en) Asset life optimization and monitoring system
US4580908A (en) Thermometer for coke oven chamber walls
CA2784648A1 (en) Thermal sensing for material processing assemblies
WO2003066775A1 (en) Furnace wall observation device and furnace wall shape measuring device
CN111004882B (zh) 在线测量高炉炉缸炉墙厚度的方法及装置
CN109163810B (zh) 高温转子辐射测温装置及方法
JP4328361B2 (ja) コークス炉炭化室炉幅測定方法
KR101604144B1 (ko) 낮은 정도의 열교환을 갖는 코크스 오븐 챔버의 내용물을 배출하기 위한 장치
JP2004271446A (ja) コークス炉における石炭装入レベルの測定方法及びその装置
CA1173506A (en) Apparatus for measuring temperature of coke ovens
CN209927234U (zh) 一种可实现高频雷达物位计测量高温物料的辅助装置
CN103558231A (zh) 高炉衬砌无损检测方法
JP2003268377A (ja) 炉壁観察装置
CA3081366C (en) Controlling operation and position of a lance and nozzle assembly in a molten metal bath in a vessel
JPS62293112A (ja) コ−クス炉炭化室巾測定装置
CN213113394U (zh) 一种熔融还原炉前置出铁炉用工艺监控装置
Swartling et al. Experimentally determined temperatures in blast furnace hearth
CN110926619A (zh) 一种钢包内钢水温度的连续测温方法
JP2000336370A (ja) 炉内状況検査方法及び炉内状況検査装置
JPWO2004090071A1 (ja) コークス炉炭化室の診断装置および診断方法
CN111157118A (zh) 一种焦炉直行火道温度自动测温系统
KR100574401B1 (ko) 코크스오븐의 연소실 온도분포 측정장치
CN211497683U (zh) 一种高炉铁水流股可视化在线测温系统
RU2357217C1 (ru) Устройство для измерения температуры нагрева объекта в металлургических печах и способ работы устройства

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): BR CN KR

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

WWE Wipo information: entry into national phase

Ref document number: 2001982784

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020027009109

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 018037437

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020027009109

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2001982784

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1020027009109

Country of ref document: KR