WO2002036684A1 - Thermoplastische blends mit verbesserter tieftemperaturzähigkeit - Google Patents

Thermoplastische blends mit verbesserter tieftemperaturzähigkeit Download PDF

Info

Publication number
WO2002036684A1
WO2002036684A1 PCT/EP2001/012161 EP0112161W WO0236684A1 WO 2002036684 A1 WO2002036684 A1 WO 2002036684A1 EP 0112161 W EP0112161 W EP 0112161W WO 0236684 A1 WO0236684 A1 WO 0236684A1
Authority
WO
WIPO (PCT)
Prior art keywords
graft polymer
polymer composition
composition according
weight
styrene
Prior art date
Application number
PCT/EP2001/012161
Other languages
English (en)
French (fr)
Inventor
Holger Warth
Heinrich Alberts
Original Assignee
Bayer Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Aktiengesellschaft filed Critical Bayer Aktiengesellschaft
Priority to CA002427480A priority Critical patent/CA2427480A1/en
Priority to AU2002212334A priority patent/AU2002212334A1/en
Priority to EP01980504A priority patent/EP1334152A1/de
Priority to JP2002539434A priority patent/JP2004524382A/ja
Priority to BR0115113-4A priority patent/BR0115113A/pt
Priority to MXPA03003860A priority patent/MXPA03003860A/es
Priority to KR10-2003-7006069A priority patent/KR20030053523A/ko
Publication of WO2002036684A1 publication Critical patent/WO2002036684A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/06Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond

Definitions

  • the invention relates to compositions containing acrylonitrile / ethylene- ⁇ -olefin / styrene resin, in particular acrylonitrile / ethylene propylene rubber / styrene (AES) resin, and other thermoplastics and molded articles containing them with improved toughness in the low-temperature range.
  • AES acrylonitrile / ethylene propylene rubber / styrene
  • blends containing AES rubbers and AES resins are weather-resistant, but their mechanical properties in the low-temperature range are unsatisfactory. At temperatures below 0 ° C, they become brittle and have unsatisfactory toughness, which hinders the use of these molding compositions at lower temperatures. In particular, the notched impact strength of AES blends in the low temperature range is poor, in particular in comparison to acrylic / butadiene / styrene (ABS) blends.
  • ABS acrylic / butadiene / styrene
  • EP-A 0 502 367 relates to the production of AES graft polymers and a copolymer, the copolymer comprising from 60 to 16% by weight of a aromatic monomer of the vinyl type and 40 to 24% of an aliphatic copolymer. Grafted on are vinyl aromatics and / or nucleus-substituted vinyl aromatics and vinyl cyanides and or (meth) acrylic acid (C 1 -Cg) alkyl esters. In addition to the desired good properties with regard to surface gloss, weather resistance and sliding properties, these thermoplastic copolymers are said to have, among other things, good impact resistance.
  • JP-A 50 109 247 describes polycarbonate blends with AES which contains 0.1 to 10% by weight paraffin oil.
  • JP-A 58 098 354 describes polycarbonate blends with AES and 0.5 to 20% by weight of plasticizers for vinyl polymers. It is not known that the use of special additives, which concentrate specifically in the soft phase of the blend, leads to a significant improvement in the low-temperature properties in polycarbonate AES blends.
  • the object of the invention is to modify AES blends in such a way that they have an improved property profile, in particular also improved notched impact strengths, while maintaining weather resistance in the low-temperature range.
  • a graft polymer composition based on acrylonitrile / ethylene- ⁇ -olefin rubber / styrene and selected thermoplastics, such as polycarbonate, polyamide or polyalkylene terephthalate or mixtures thereof, containing an additive selected from triglycerides, aliphatic saturated and / or unsaturated hydrocarbons and their mixtures, which is characterized by the fact that it concentrates in the soft phase of the blend.
  • Additives which, in addition to the increase in the soft phase in the blend, have the least possible influence on the glass transition of the matrix are suitable. This can be seen in particular in the case of an improvement in the notched impact strength of moldings obtainable therefrom in the low temperature range. The improved impact strength goes hand in hand with a significantly reduced toughness / brittleness transition of the blends. The low temperature properties are improved while maintaining the essential usage properties. It is particularly advantageous and surprising that no significant increase in the melt volume flow rate (MVR) of the composition can be observed with the additives according to the invention as with known plasticizers. The MVR is essentially unchanged.
  • the comparison of the MVR of a sample of a composition according to the invention with a sample which differs only in the absence of the plasticizer used according to the invention shows that the MVR of the sample according to the invention by at most 9, preferably at most 6 and most preferably at most three units of one Sample deviates without this plasticizer. Units in the sense of the invention are integer MVR values.
  • the change in the soft phase can be defined according to the formulas (IV) and (V) by the ratio of the storage module G 'at room temperature to the storage module G' at -125 ° C, standardized to the level for ABS (1650 MPa)
  • G orr G ' (23 ° C) * 1650 R (IV) G' (- 125 ° C)
  • the additives effective according to the invention include all oils and additives which, in the manner described above, increase the soft phase of the blends.
  • Triglycerides, aliphatic saturated and / or unsaturated hydrocarbons and mixtures thereof are particularly suitable.
  • Triglycerides to be used according to the invention are preferably those of higher fatty acids with 12 to 35, preferably 14 to 30
  • the triglycerides can be vegetable, animal and synthetic fats and oils. Suitable vegetable oils are, for example, linseed oil, castor oil, rapeseed oil, corn oil and wheat germ oil.
  • Aliphatic saturated and / or unsaturated hydrocarbons suitable according to the invention are those with molecular weights of at least about 400 and mixtures thereof.
  • the hydrocarbons can, for example and preferably have molecular weights of 300 to 50,000, particularly preferably 500 to 30,000, in particular 600 to 10,000.
  • Particularly effective oils have one branched structure, with short-chain branched hydrocarbon oils being particularly effective.
  • Polybutenes or polyisobutenes are particularly suitable, in particular if they are notable for a high content, preferably> 50%, in particular> 60%, based on the end groups, of vinylidene end groups.
  • Low molecular weight EPDM oils are also suitable according to the invention.
  • Low molecular weight EPDM oils are in particular those with molecular weights of 1,000 to 30,000, preferably 5,000 to 10,000, and mixtures thereof.
  • EPDM oils with molecular weights of approximately 5,600 to 8,800 are particularly preferred.
  • the additives to be used according to the invention can be used in amounts of 0.1 to about 25% by weight, for example about 1 to 10% by weight, based on the mass of the blends.
  • the graft polymers used according to the invention are those with EP (D) M rubbers as the graft base.
  • the glass transition temperature of such rubbers can be -40 to -60 ° C, they have only a small number of double bonds, for example less than 20 per 1000 carbon atoms.
  • Examples include at least one copolymer or terpolymer containing ethylene and an ⁇ -olefin, preferably with only a small number of double bonds; in this respect reference is made to EP-A 163 411 and 244 857. Those which are preferred by polymerization of at least 30% by weight are preferred.
  • Propylene, 1-butene, octene, hexene, and optionally 0.5 to 15 parts by weight of a non-conjugated diolefinic component can be produced, the sum of the parts by weight giving 100.
  • Diolefins with at least five carbon atoms such as 5-ethylidene norbornene, dicyclopentadiene, 2,2,1-dicyclopentadiene and 1,4-hexadiene are generally used as the ter component.
  • polyethylenes such as polypentamers, polyoctenamers, polydodecanamers or their mixtures. mix.
  • partially hydrogenated polybutadiene rubbers are also suitable, in which at least 70% of the residual double bonds are hydrogenated.
  • EP (D) M rubbers have a Mooney viscosity L W (100 ° C) of 25 to 120. They are commercially available. Furthermore, the polyolefin elastomers or ethene / octene polyolefins offered under the trade name Engage can also be used analogously.
  • Vinylaromatics and / or nucleus-substituted vinylaromatics and vinylcyanides and / or (meth) acrylic acid (C 1 -C 8 ) alkyl esters are grafted on.
  • the graft base 2 generally has an average particle size (dso value) of 0.05 to 5 ⁇ m, preferably 0.10 to 2 ⁇ m, particularly preferably 0.15 to 1 ⁇ m.
  • Monomers 1) are preferably mixtures of
  • Nitriles such as acrylonitrile and methacrylonitrile) and / or (meth) acrylic acid- (C 1 -
  • C 8 C 8 ) -alkyl esters, such as methyl methacrylate, n-butyl acrylate, t-butyl acrylate, and or derivatives, such as anhydrides and imides of unsaturated carboxylic acids, for example maleic anhydride and N-phenylmaleimide.
  • Preferred monomers 1.1 are selected from at least one of the monomers styrene, ⁇ -methylstyrene and methyl methacrylate
  • preferred monomers 1.2 are selected from at least one of the monomers acrylonitrile, maleic anhydride and methyl methacrylate.
  • the EP (D) M-based graft polymer can be prepared, for example, by preparing a solution of the EP (D) M elastomer in the monomer mixture and, if appropriate, indifferent solvents, and by radical initiators such as azo compounds or peroxides at higher temperatures
  • the graft polymer compositions according to the invention can be aromatic
  • Aromatic polycarbonates can be prepared by reacting diphenols with carbonic acid halides, preferably phosgene, and / or with aromatic dicarboxylic acid dihalides, preferably benzenedicarboxylic acid dihalo- geniden, according to the phase interface method, optionally using chain terminators, for example monophenols and optionally using trifunctional or more than trifunctional branching agents, for example triphenols or tetraphenols.
  • Diphenols for the preparation of the aromatic polycarbonates and / or aromatic polyester carbonates are preferably those of the formula (I)
  • R5 and R6 can be selected individually for each ⁇ , independently of one another hydrogen or Ci-Cg-alkyl, preferably hydrogen, methyl or ethyl,
  • n is an integer from 4 to 7, preferably 4 or 5, with the proviso that at least one atom ⁇ , R ⁇ and R ⁇ are simultaneously alkyl.
  • Preferred diphenols are hydroquinone, resorcinol, dihydroxydiphenols, bis- (hydroxyphenyl) -C ⁇ -C5-alkanes, bis- (hydroxyphenyl) -C5-C6-cycloalkanes, bis- (hydroxyphenyl) ethers, bis- (hydroxyphenyl) sulfoxides, bis- (hydroxyphenyl) -ketones,
  • diphenols are 4,4'-dihydroxydiphenyl, bisphenol-A, 2,4-bis (4-hydroxyphenyl) -2-methylbutane, l, l-bis (4-hydroxyphenyl) cyclohexane, 1,1-
  • 4,4'-dihydroxydiphenyl sulfone and its di- and tetrabrominated or chlorinated Derivatives such as 2,2-bis (3-chloro-4-hydroxyphenyl) propane, 2,2-bis (3,5-dichloro-4-hydroxyphenyl) propane or 2,2-bis (3, 5-dibromo-4-hydroxyphenyl) propane.
  • 2,2-Bis (4-hydroxyphenyl) propane (bisphenol-A) is particularly preferred.
  • the diphenols can be used individually or as any mixtures.
  • Diphenols are known from the literature or can be obtained by processes known from the literature.
  • Suitable chain terminators for the production of the thermoplastic, aromatic polycarbonates or polyester carbonates are, for example, phenol, p-chlorophenol, p-tert-butylphenol or 2,4,6-tribromophenol, but also long-chain alkylphenols such as 4- (1,3-tetramethylbutyl) - phenol according to DE-A 2 842 005 or monoalkylphenol.
  • the amount of chain terminator is generally 0.5 to 10 mol%, based on the molar sum of the diphenols used in each case.
  • thermoplastic, aromatic polycarbonates have average weight-average molecular weights (M w ), measured by ultracentrifuge or scattered light measurement, of 10,000 to 200,000, preferably 15,000 to 80,000. Mixtures of polycarbonates with different molecular weights can also be used.
  • thermoplastic, aromatic polycarbonates or polyester carbonates can be branched in a known manner, preferably by incorporating 0.05 to 2.0 mol%, based on the sum of the diphenols used, of trifunctional or more than trifunctional compounds, for example sol - Chen with three and more phenolic groups.
  • 3- or polyfunctional carboxylic acid chlorides such as trimesic acid trichloride, cyanuric acid trichloride, or 3- or polyfunctional phenols such as phloroglycine can be used as branching agents in amounts of 0.01 to 1.0 mol%, based on the diphenols used.
  • Phenolic branching agents can be introduced with the diphenols
  • acid chloride branching agents can be introduced together with the acid dichlorides.
  • homopolycarbonates and copolycarbonates are suitable.
  • preferred polycarbonates are the copolycarbonates of bisphenol-A with up to 15 mol%, based on the molar sums of diphenols, of other diphenols, in particular 2,2-bis (3, 5-dibromo-4-hydroxyphenyl) propane.
  • Aromatic dicarboxylic acid dihalides for the production of aromatic polyester carbonates are preferably the diacid dichlorides of isophthalic acid, terephthalic acid, diphenyl ether-4,4'-dicarboxylic acid and naphthalene-2,6-dicarboxylic acid.
  • Mixtures of the diacid dichlorides of isophthalic acid and terephthalic acid in a ratio between 1:20 and 20: 1 are particularly preferred.
  • a carbonic acid halide preferably phosgene, is additionally used as a bifunctional acid derivative in the production of polyester carbonates.
  • the aromatic polyester carbonates can also contain built-in aromatic hydroxycarboxylic acids.
  • the proportion of carbonate structural units in the thermoplastic, aromatic polyester carbonates can vary as desired.
  • the proportion of carbonate groups is preferably up to 100 mol%, in particular up to 80 mol%, particularly preferably up to 50 mol%, based on the sum of ester groups and carbonate groups. Both the ester and carbonate content of the aromatic
  • Polyester carbonates can be in the form of blocks or randomly distributed in the polycondensate.
  • the relative solution viscosity ( ⁇ re ⁇ ) of the aromatic polycarbonates and polyester carbonates is in the range from 1.18 to 1.4, preferably 1.20 to 1.32, measured on solutions of 0.5 g polycarbonate or polyester carbonate in 100 ml methylene chloride solution at 25 ° C.
  • thermoplastic, aromatic polycarbonates and polyester carbonates can be used alone or in any mixture.
  • the blend compositions according to the invention can also include polyalkylene terephthalates, as described, for example, in WO 0 029 476, and / or vinyl (co) polymers, as described in EP-A 640 655, in particular styrene / acrylonitrile ( Co) polymers.
  • Preferred polyalkylene terephthalates are polyethylene or polybutylene terephthalates or mixtures thereof.
  • blend compositions according to the invention can contain further additives known for blends and aromatic polycarbonates, such as at least one of the customary additives, such as lubricants and mold release agents, for example pentaerythritol tetrastearate, nucleating agents, flame retardants, antistatic agents, stabilizers, fillers and reinforcing materials, and also dyes and pigments, and also electrically conductive additives, e.g. Polyaniline or nanotubes.
  • customary additives such as lubricants and mold release agents, for example pentaerythritol tetrastearate, nucleating agents, flame retardants, antistatic agents, stabilizers, fillers and reinforcing materials, and also dyes and pigments, and also electrically conductive additives, e.g. Polyaniline or nanotubes.
  • Phosphorus-containing flame retardants in the sense of the invention are particularly preferably selected from the groups of the mono- and oligomeric phosphorus and phosphonic acid esters, phosphonatamines and phosphazenes, mixtures of several components selected from one or different of these groups also being able to be used as flame retardants.
  • Other halogen-free phosphorus compounds not specifically mentioned here can also be used alone or in any combination with other halogen-free phosphorus compounds.
  • the filled or reinforced molding compositions can contain up to 60% by weight, preferably
  • Preferred reinforcing materials are glass fibers.
  • Preferred fillers, which can also have a reinforcing effect, are glass balls, mica, silicates, quartz, talc, titanium dioxide, wollastonite.
  • the molding compositions according to the invention can contain up to 35% by weight, based on the
  • Composition contain another, optionally synergistic flame retardant.
  • Organic halogen compounds such as decabromobisphenyl ether, tetrabromobisphenol, inorganic halogen compounds such as ammonium bromide and nitrogen compounds such as melamine are mentioned as examples of further flame retardants.
  • compositions according to the invention can be prepared by mixing the constituents in a known manner and melt-compounding or melt-extruding them at elevated temperatures, preferably at from 200 to 350 ° C., in the customary devices, such as internal kneaders, extruders or twin-screw screws.
  • the individual components can be mixed in one after the other or simultaneously.
  • the moldings according to the invention can be produced by extrusion or injection molding.
  • Moldings according to the invention are, for example, outdoor applications, e.g. Window parts, air conditioners, water tanks, automotive exterior parts, garden equipment, housing parts for household appliances, such as juicers, coffee machines, mixers, for office machines, such as monitors, printers, copiers or cover plates for the construction sector and automotive parts. They can also be used in the field of electrical engineering because they have very good electrical properties.
  • Molding compositions are also suitable for the production of moldings by deep drawing from previously produced sheets or foils.
  • telecommunication devices such as telephone devices and faxes, computers, printers, scanners, plotters, monitors, keyboards, typewriters, dictation devices, etc.
  • garden tools garden furniture, lawn mower housings, pipes and housings for garden irrigation, garden houses, leaf vacuums, shredders, shredders, sprayers etc.,
  • sports / play equipment toy vehicles, seats, pedals, sports equipment, bicycles,
  • Polycarbonate / AES or polyamide / AES blends of the following composition are produced as the base material for carrying out tests:
  • AES blend (Blendex® WX 270patentede Cycon Ltd, Tokyo, Japan or Royaltuf® 372, Uniroyal, Great Britain or AES 665, Techno Polymers, Tokyo, Japan) 0.9 parts by weight of common additives , such as B. mold release agents, antioxidants
  • PA / AES blends base material B
  • Samples of the base material A or B are 1, 5 or 10 parts by weight of corn oil, 5 parts by weight of Napvis® D2, D5 or D07 (BP Amoco Chemicals Lavera,
  • the components are mixed on a 3-1 kneader.
  • the moldings are produced on an Arburg 270 E injection molding machine at 260 ° C.
  • Step drop and the melt volume rate.
  • the memory module G ' is determined by a dynamic mechanical analysis in a manner known to the person skilled in the art. From the ratio of the storage module at room temperature to the storage module at -125 ° C normalized to the level for ABS (1650 MPa), a measure for the change in the soft phase can be defined according to formula (IV) and (V):
  • G orr G ' (23 ° C) * 1650 R ⁇ (IN) G' (- 125 ° C)
  • the notched impact strength a k is determined in accordance with ISO 180 / 1A.
  • the critical temperature the temperature below which a brittle fracture behavior occurs instead of a tough fracture behavior, is determined accordingly.
  • the melt volume rate indicates the volume of the blends that flow through a nozzle of a specified size in 10 minutes at a certain temperature and under a certain load.
  • the melt volume flow rate (MVR) is determined according to ISO 1133 at 260 ° C and 5kg coating weight.
  • Tables 1 to 3 and 5 contain the base material A, which

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Eine Pfropfpolymer-Zusammensetzung auf der Basis von Acrylnitril/Ethylen-α-Olefin-Kautschuk/Styrol (AES) mit einem den Weichphasenanteil in der Zusammensetzung gezielt erhöhenden Additiv ermöglicht Formkörper mit verbesserter Zähigkeit im Tieftemperaturbereich, wobei durch das zuvor genannte Additiv die Schmelzvolumenfließrate im wesentlichen nicht verändert wird.

Description

Thermoplastische Blends mit verbesserter Tieftemperaturzähigkeit
Die Erfindung betrifft Zusammensetzungen, enthaltend Acrylnitril/Ethylen-α- Olefin/Styrol-Harz, insbesondere Acrylnitril/Ethylenpropylenkautschuk/Sty- rol(AES)-Harz, und anderen Thermoplasten und diese enthaltende Formkörper mit verbesserter Zähigkeit im Tieftemperaturbereich.
Es ist bekannt, dass AES-Kautschuke und AES Harze enthaltende Blends witterungs- beständig sind, deren mechanische Eigenschaften im Tieftemperaturbereich jedoch unbefriedigend sind. Bei Temperaturen unter 0°C werden diese spröd und weisen unbefriedigende Zähigkeiten auf, dadurch wird ein Einsatz dieser Formmassen bei tieferen Temperaturen behindert. Insbesondere die Kerbschlagzähigkeit von AES- Blends im Tieftemperaturbereich ist, insbesondere im Vergleich zu Acryl/Bu- tadien/Styrol (ABS)-Blends, schlecht.
Die EP-A 0 502 367 betrifft die Herstellung von AES-Propfpolymerisaten und einem Copolymer, wobei das Copolymer aus 60 bis 16 Gew.-% eines aromatischen Monomers vom Ninyltyp und 40 bis 24 % eines aliphatischen Copolymers enthält. Aufge- pfropft werden Ninylaromaten und/oder kernsubstituierte Ninylaromaten und Ninyl- cyanide und oder (Meth)acrylsäure-(C1-Cg)-alkylester. Diese thermoplastischen Co- polymere sollen neben den gewünschten guten Eigenschaften bezüglich Ober- flächenglanz, Wetterfestigkeit und Gleiteigenschaften unter anderem eine gute Schlagfestigkeit aufweisen.
In JP-A 50 109 247 werden Polycarbonatblends mit AES, das 0,1 bis 10 Gew.-% Paraffϊnöl enthält, beschrieben. In der JP-A 58 098 354 werden Polycarbonatblends mit AES und 0,5 bis 20 Gew.-% Weichmachern für Ninylpolymere beschrieben. Es ist nicht bekannt, dass der Einsatz spezieller Additive, die sich gezielt in der Weichphase des Blends konzentrieren, bei Polycarbonat-AES-Blends zu einer deutlichen Verbesserung der Tieftemperatureigenschaften führt. Der Erfindung liegt die Aufgabe zugrunde, AES-Blends so zu modifizieren, dass sie unter Erhalt der Witterungsbeständigkeit im Tieftemperaturbereich ein verbessertes Eigenschaftsprofil, insbesondere auch verbesserte Kerbschlagzähigkeiten, aufweisen.
Gelöst wird diese Aufgabe durch eine Pfropfpolymer-Zusammensetzung auf der Basis von Acrylnitril/Ethylen-α-Olefin-Kautschuk/Styrol und ausgewählten Thermoplasten, wie Polycarbonat, Polyamid oder Polyalkylenterephthalat oder Mischungen hieraus, enthaltend ein Additiv, ausgewählt aus Triglyceriden, aliphatischen gesättigten und/oder ungesättigten Kohlenwasserstoffen und deren Gemischen, das sich dadurch auszeichnet, dass es sich gezielt in der Weichphase des Blends konzentriert.
Es ist dem Fachmann bekannt, dass der Zusatz von entsprechenden Additiven in analogen ABS Blends keinen merkbaren, positiven Effekt bewirkt.
Überraschend wurde festgestellt, dass der Zusatz von speziellen Additiven, wie Triglyceriden und/oder speziellen Kohlenwasserstoffen, zu AES-Blends und diese enthaltenden Blendgemischen die Weichphase der Blends - ersichtlich in einer Ab- nähme des korrigierten Speichermoduls (G'korr) - vergrößert.
Insbesondere geeignet sind Additive, die neben der Zunahme der Weichphase im Blend, einen möglichst geringen Einfluss auf den Glasübergang der Matrix haben. Ersichtlich ist dies insbesondere bei einer Verbesserung der Kerbschlagzähigkeit daraus erhältlicher Formkörper im Tieftemperaturbereich. Die verbesserte Kerbschlagzähigkeit geht einher mit einem deutlich abgesenktem Zäh/Sprödübergang der Blends. Die Tieftemperatureigenschaften werden unter Erhalt der wesentlichen Gebrauchseigenschaften verbessert. Insbesondere vorteilhaft und überraschend ist, dass bei den erfindungsgemäßen Additiven keine deutliche Zunahme der Schmelz- volumenfließrate (MVR) der Zusammensetzung wie bei bekannten Weichmachern zu beobachten ist. Die MVR wird im wesentlichen nicht verändert. Der Vergleich der MVR einer Probe einer erfindungsgemäßen Zusammensetzung mit einer Probe, die sich nur durch das Fehlen des erfindungsgemäß eingesetzten Weichmachers unterscheidet, zeigt, dass die MVR der erfindungsgemäßen Probe höchstens um 9, vorzugsweise höchstens um 6 und in am meisten bevorzugter Weise höchstens um drei Einheiten von einer Probe ohne diesen Weichmacher abweicht. Einheiten im Sinne der Erfindung sind ganzzahlige MVR- Werte.
Die Änderung der Weichphase kann nach den Formeln (IV) und (V) definiert werden durch das Verhältnis aus dem Speichermodul G' bei Raumtemperatur zu dem Speichermodul G' bei -125 °C, normiert auf das Niveau für ABS (1650 MPa)
G orr = G'(23°C) * 1650 R (IV) G'(-125°C)
-iι ohne Additiv ψ
Figure imgf000004_0001
ΔWeichphase = *»• ,, 100 (V)
^ korr.
Die erfindungsgemäß wirksamen Additive umfassen alle Öle und Additive, die in oben bezeichneter Art die Weichphase der Blends vergrößern. Besonders geeignet sind Triglyceride, aliphatische gesättigte und/oder ungesättigte Kohlenwasserstoffe und deren Gemische. Erfindungsgemäß zu verwendende Triglyceride sind vorzugs- weise solche aus höheren Fettsäuren mit 12 bis 35, vorzugsweise 14 bis 30
Kohlenstoffatomen. Die Triglyceride können pflanzliche, tierische und synthetische Fette und Öle sein. Geeignete pflanzliche Öle sind beispielsweise Leinöl, Rizinusöl, Rapsöl, Maisöl und Weizenkeimöl.
Erfindungsgemäß geeignete aliphatische gesättigte und/oder ungesättigte Kohlenwasserstoffe sind solche mit Molekulargewichten von mindestens etwa 400 und Gemische derselben. Die Kohlenwasserstoffe können beispielsweise und bevorzugt Molekulargewichte von 300 bis 50.000, besonders bevorzugt 500 bis 30.000, insbesondere 600 bis 10.000 aufweisen. Besonders wirksame Öle haben eine verzweigte Struktur, wobei kurzkettig verzweigte Kohlenwasserstoff-Öle ganz besonders wirksam sind. Besonders geeignet sind Polybutene oder Polyisobutene, insbesondere dann, wenn sie sich durch einen hohen Gehalt, vorzugsweise >50 %, insbesondere >60 % bezogen auf die Endgruppen, an Vinylidenendgruppen aus- zeichnen.
Erfindungsgemäß geeignet sind ferner niedermolekulare EPDM-Öle. Niedermolekulare EPDM-Öle sind insbesondere solche mit Molekulargewichten von 1.000 bis 30.000, vorzugsweise 5.000 bis 10.000 und deren Gemische. Besonders bevorzugt sind EPDM-Öle mit Molekulargewichten von etwa 5.600 bis 8.800.
Die erfindungsgemäß einzusetzenden Additive können in Mengen von 0,1 bis etwa 25 Gew.-%, beispielsweise etwa 1 bis 10 Gew.%, bezogen auf die Masse der Blends eingesetzt werden.
Die erfindungsgemäß eingesetzten Pfropfpolymerisate sind solche mit EP(D)M- Kautschuken als Pfropfgrundlage. Die Glastemperatur solcher Kautschuke kann -40 bis -60°C betragen, sie haben nur eine geringe Anzahl von Doppelbindungen, beispielsweise weniger als 20 je 1000 Kohlenstoffatomen. Beispielhaft seien mindestens ein Ethylen und ein α-Olefin enthaltende Copolymerisate oder Terpolymerisat mit vorzugsweise einer nur geringen Anzahl an Doppelbindungen genannt, insoweit wird verwiesen auf die EP-A 163 411 und 244 857. Bevorzugt sind solche, die durch Polymerisation von mindestens 30 Gew.-Teilen Ethylen, mindestens 30 Gew.-Teilen α-Olefin, vorzugsweise in α-Stellung ungesättigte, aliphatische C3-C20-, vorzugs- weise C3-C ^-Kohlenwasserstoffe, wie beispielsweise und besonders bevorzugt
Propylen, 1 -Buten, Octen, Hexen, und gegebenenfalls 0,5 bis 15 Gew.-Teilen einer nichtkonjugierten diolefinischen Komponente hergestellt werden, wobei die Summe der Gewichtsteile 100 ergibt. Als Terkomponente werden in der Regel Diolefϊne mit mindestens fünf Kohlenstoffatomen wie 5-Ethylidennorbornen, Dicyclopentadien, 2,2,1 -Dicyclopentadien und 1,4-Hexadien eingesetzt. Geeignet sind ferner Poly- alylenamere wie Polypentamer, Polyoctenamer, Polydodecanamer oder deren Ge- mische. Schließlich kommen auch teilhydrierte Polybutadienkautschuke in Betracht, bei denen mindestens 70% Restdoppelbindungen hydriert sind. In der Regel haben EP(D)M-Kautschuke eine Mooney-Viskosität LW (100°C) von 25 bis 120. Sie sind im Handel erhältlich. Desweiteren können auch analog den unter dem Handelsnamen Engage angebotene Polyolefinelastomere oder Ethen/Octen- Polyolefine Verwendung finden.
Aufgepfropft werden Vinylaromaten und/oder kernsubstituierte Vinylaromaten und Vinylcyanide und/oder (Meth)acrylsäure-(C1-C8)-alkylester.
Besonders bevorzugt sind Propfpolymerisate von
1) 5 bis 95 Gew.-%, vorzugsweise 20 bis 80 Gew.-%, insbesondere 30 bis 50 Gew.%, wenigstens eines Vinylmonomeren auf
2) 95 bis 5 Gew.-%, vorzugsweise 80 bis 20, insbesondere 70 bis 20 Gew.-% einer oder mehrerer Propfgrundlagen mit Glasübergangstemperaturen der Kautschukkomponente< 0°C, vorzugsweise < -20°C, besonders bevorzugt < -40°C auf der Basis von EP(D)M-Kautschuken.
Die Pfropfgrundlage 2) hat im allgemeinen eine mittlere Teilchengröße (dso-Wert) von 0,05 bis 5 μm, vorzugsweise 0,10 bis 2 μm, besonders bevorzugt 0,15 bis 1 μm.
Monomere 1) sind vorzugsweise Gemische aus
1.1) 50 bis 99, vorzugsweise 60 bis 80 Gew.-Teilen Vinylaromaten und/oder kernsubstituierten Vinylaromaten wie Styrol, α-Methylstyrol, p-Methylstyrol, p-Chlorstyrol und/oder Methacrylsäure-(Cι-C8)-alkylester wie Methyl- methacrylat und Ethylmethacrylat und 1.2) 1 bis 50, vorzugsweise 40 bis 20 Gew.-Teilen Vinylcyanide (ungesättigte
Nitrile wie Acrylnitril und Methacrylnitril) und/oder (Meth)acrylsäure-(C1-
C8)-alkylester wie Methylmethacrylat, n-Butylacrylat, t-Butylacrylat, und oder Derivate, wie Anhydride und Imide ungesättigter Carbonsäuren, beispielsweise Maleinsäureanhydrid und N-Phenylmaleinimid.
Bevorzugte Monomere 1.1 sind ausgewählt aus mindestens einem der Monomere Styrol, α-Methylstyrol und Methylmethacrylat, bevorzugte Monomere 1.2 sind ausgewählt aus mindestens einem der Monomere Acrylnitril, Maleinsäureanhydrid und Methylmethacrylat.
Die Herstellung des Pfropfpolymerisats auf EP(D)M-Basis kann beispielsweise erfolgen, indem eine Lösung des EP(D)M-Elastomeren in dem Monomerengemisch und gegebenenfalls indifferenten Lösungsmitteln hergestellt wird und durch Radikalstarter wie Azoverbindungen oder Peroxiden bei höheren Temperaturen die
Pfropfreaktion durchgeführt wird. Beispielhaft seien die Verfahren der DE- AS 23 02 014 und DE-A 25 33 991 genannt. Es ist auch möglich in einer Suspension entsprechend der US-A 4202 948 oder in Masse zu arbeiten.
Die erfindungsgemäßen Pfropfpolymerisat-Zusammensetzungen können aromatische
Polycarbonate und/oder aromatische Polyestercarbonate, enthalten. Diese sind literaturbekannt und nach literaturbekannten Verfahren herstellbar. Zur Herstellung aromatischer Polyestercarbonate siehe beispielsweise Schnell, "Chemistry and Physics of Polycarbonates", Interscience Publishers, 1964 sowie die DE-A 1 495 626, DE-A 2 232 877, DE-A 2 703 376, DE-A 2 714 544, DE-A 3 000 610,
DE-A 3 832 396; zur Herstellung aromatischer Polyestercarbonate z. B. DE-A 3 077 934) oder WO 00/26275.
Die Herstellung aromatischer Polycarbonate kann erfolgen durch Umsetzung von Diphenolen mit Kohlensäurehalogeniden, vorzugsweise Phosgen, und/oder mit aromatischen Dicarbonsäuredihalogeniden, vorzugsweise Benzoldicarbonsäuredihalo- geniden, nach dem Phasengrenzflächenverfahren, gegebenenfalls unter Verwendung von Kettenabbrechern, beispielsweise Monophenolen und gegebenenfalls unter Verwendung von trifunktionellen oder mehr als trifunktionellen Verzweigern, beispielsweise Triphenolen oder Tetraphenolen.
Diphenole zur Herstellung der aromatischen Polycarbonate und/oder aromatischen Polyestercarbonate sind vorzugsweise solche der Formel (I)
OH
(I),
H
Figure imgf000008_0002
wobei
eine Einfachbindung, Cι-C5-Alkylen, C2-C5-Alkyliden, Cs-Cg-Cyclo- alkyliden, -O-, -SO-, -CO-, -S-, -SO2-, Cö-Ci^-Arylen, an das weitere aromatische gegebenenfalls Heteroatome enthaltende Ringe kondensiert sein können,
oder ein Rest der Formel (II) oder (III)
Figure imgf000008_0001
FT Rc
Figure imgf000009_0001
B jeweils Ci-C^Nlkyl» vorzugsweise Methyl, Halogen, vorzugsweise Chlor und/oder Brom
x jeweils unabhängig voneinander 0, 1 oder 2,
p 1 oder 0 sind, und
R5 und R6 für jedes χ individuell wählbar, unabhängig voneinander Wasserstoff oder Ci-Cg-Alkyl, vorzugsweise Wasserstoff, Methyl oder Ethyl,
X1 Kohlenstoffund
m eine ganze Zahl von 4 bis 7, bevorzugt 4 oder 5 bedeuten, mit der Maßgabe, dass an mindestens einem Atom χ , R^ und R^ gleichzeitig Alkyl sind.
Bevorzugte Diphenole sind Hydrochinon, Resorcin, Dihydroxydiphenole, Bis- (hydroxyphenyl)-C \ -C5-alkane, Bis-(hydroxyphenyl)-C5-C6-cycloalkane, Bis- (hydroxyphenyl)-ether, Bis-(hydroxyphenyl)-sulfoxide, Bis-(hydroxyphenyl)-ketone,
Bis-(hydroxyphenyl)-sulfone und α,α-Bis-(hydroxyphenyl)-diisopropyl-benzole sowie deren kernbromierte und/oder kernchlorierte Derivate.
Besonders bevorzugte Diphenole sind 4,4'-Dihydroxydiphenyl, Bisphenol-A, 2,4- Bis(4-hydroxyphenyl)-2-methylbutan, l,l-Bis-(4-hydroxyphenyl)-cyclohexan, 1,1-
Bis-(4-hydroxyphenyl)-3,3,5-trimethylcyclohexan, 4,4'-Dihydroxydiphenylsulfid,
4,4'-Dihydroxydiphenyl-sulfon sowie deren di- und tetrabromierten oder chlorierten Derivate wie 2,2-Bis(3-Chlor-4-hydroxyphenyl)-propan, 2,2-Bis-(3,5-dichlor-4-hy- droxyphenyl)-propan oder 2,2-Bis-(3,5-dibrom-4-hydroxyphenyl)-propan. Insbesondere bevorzugt ist 2,2-Bis-(4-hydroxyphenyl)-propan (Bisphenol- A).
Die Diphenole können einzeln oder als beliebige Mischungen eingesetzt werden. Die
Diphenole sind literaturbekannt oder nach literaturbekannten Verfahren erhältlich.
Für die Herstellung der thermoplastischen, aromatischen Polycarbonate oder Polyestercarbonate geeignete Kettenabbrecher sind beispielsweise Phenol, p-Chlorphenol, p-tert.-Butylphenol oder 2,4,6-Tribromphenol, aber auch langkettige Alkylphenole wie 4-(l,3-Tetramethylbutyl)-phenol gemäß DE-A 2 842 005 oder Monoalkylphenol. Die Menge des Kettenabbrechers beträgt im allgemeinen 0,5 bis 10 Mol-%, bezogen auf die Molsumme der jeweils eingesetzten Diphenole.
Die thermoplastischen, aromatischen Polycarbonate haben mittlere Gewichtsmittelmolekulargewichte (Mw), gemessen durch Ultrazentrifuge oder Streulichtmessung, von 10.000 bis 200.000, vorzugsweise 15.000 bis 80.000. Es können auch Mischungen aus Polycarbonaten mit verschiedenen Molekulargewichten eingesetzt werden.
Die thermoplastischen, aromatischen Polycarbonate oder Polyestercarbonate können in bekannter Weise verzweigt sein, und zwar vorzugsweise durch den Einbau von 0,05 bis 2,0 Mol-%, bezogen auf die Summe der eingesetzten Diphenole, an dreifunktionellen oder mehr als dreifunktionellen Verbindungen, beispielsweise sol- chen mit drei und mehr phenolischen Gruppen. Als Verzweigungsmittel können beispielsweise 3- oder mehrfunktionelle Carbonsäurechloride, wie Trimesinsäuretri- chlorid, Cyanursäuretrichlorid oder 3- oder mehrfunktionelle Phenole wie Phloro- glucin in Mengen von 0,01 bis 1,0 Mol% bezogen auf eingesetzte Diphenole verwendet werden. Phenolische Verzweigungsmittel können mit den Diphenolen vorgelegt, Säurechlorid-Verzweigungsmittel können zusammen mit den Säuredichloriden eingetragen werden. Geeignet sind sowohl Homopolycarbonate als auch Copolycarbonate. Bevorzugte Polycarbonate sind neben den Bisphenol-A-Homopolycarbonaten die Copolycarbonate von Bisphenol-A mit bis zu 15 Mol%, bezogen auf die Molsummen an Di- phenolen, anderen als bevorzugt oder besonders bevorzugt genannten Diphenolen, insbesondere 2,2-Bis(3,5-dibrom-4-hydroxyphenyl)-propan.
Aromatische Dicarbonsäuredihalogenide zur Herstellung von aromatischen Poly- estercarbonaten sind vorzugsweise die Disäuredichloride der Isophthalsäure, Tere- phthalsäure, Diphenylether-4,4'-dicarbonsäure und der Naphthalin-2,6-dicarbonsäure.
Besonders bevorzugt sind Gemische der Disäuredichloride der Isophthalsäure und der Terephthalsäure im Verhältnis zwischen 1:20 und 20:1.
Bei der Herstellung von Polyestercarbonaten wird zusätzlich ein Kohlensäure- halogenid, vorzugsweise Phosgen, als bifunktionelles Säurederivat mitverwendet.
Die aromatischen Polyestercarbonate können auch aromatische Hydroxycarbon- säuren eingebaut enthalten.
In den thermoplastischen, aromatischen Polyestercarbonaten kann der Anteil an Car- bonatstruktureinheiten beliebig variieren. Vorzugsweise beträgt der Anteil an Carbonatgruppen bis zu 100 Mol-%, insbesondere bis zu 80 Mol-%, besonders bevorzugt bis zu 50 Mol-%, bezogen auf die Summe an Estergruppen und Carbonatgruppen. Sowohl der Ester- als auch der Carbonatanteil der aromatischen
Polyestercarbonate kann in Form von Blöcken oder statistisch verteilt im Polykondensat vorliegen.
Die relative Lösungsviskosität (ηreι) der aromatischen Polycarbonate und Poly- estercarbonate liegt im Bereich 1,18 bis 1,4, vorzugsweise 1,20 bis 1,32, gemessen an Lösungen von 0,5 g Polycarbonat oder Polyestercarbonat in 100 ml Methylenchlorid-Lösung bei 25°C.
Die thermoplastischen, aromatischen Polycarbonate und Polyestercarbonate können allein oder im beliebigen Gemisch eingesetzt werden.
Die erfindungsgemäßen Blend-Zusammensetzungen können weiterhin auch Poly- alkylenterephthalate, wie sie beispielsweise in WO 0 029 476 beschrieben sind, und/oder Vinyl-(Co)polymere, wie sie in EP-A 640 655 beschrieben sind, insbesondere Styrol/Acrylnitril-(Co)polymere, enthalten. Bevorzugte Polyalkylen- terephthalate sind Polyethylen- oder Polybutylenterephthalate oder Mischungen hieraus.
Die erfindungsgemäßen Blend-Zusammensetzungen können weitere für Blends sowie aromatische Polycarbonate bekannte Zusätze wie wenigstens eines der üblichen Additive, wie Gleit- und Entformungsmittel, beispielsweise Penta- erythrittetrastearat, Nukleiermittel, Flammschutzmittel, Antistatika, Stabilisatoren, Füll- und Verstärkungsstoffe sowie Farbstoffe und Pigmente sowie elektrisch leitfähige Additive, z.B. Polyanilin oder Nanotubes, enthalten.
Phosphorhaltige Flammschutzmittel im erfindungsgemäßen Sinne sind besonders bevorzugt ausgewählt aus den Gruppen der Mono- und oligomeren Phosphor- und Phosphonsäureester, Phosphonatamine und Phosphazene, wobei auch Mischungen von mehreren Komponenten ausgewählt aus einer oder verschiedenen dieser Gruppen als Flammschutzmittel zum Einsatz kommen können. Auch andere hier nicht speziell erwähnte halogenfreie Phosphorverbindungen können alleine oder in beliebiger Kombination mit anderen halogenfreien Phosphorverbindungen eingesetzt werden.
Die gefüllten bzw. verstärkten Formmassen können bis zu 60 Gew.-%, vorzugsweise
5 bis 40 Gew.-%, bezogen auf die gefüllte bzw. verstärkte Formmasse, Füll- und/oder Verstärkungsstoffe enthalten. Bevorzugte Verstärkungsstoffe sind Glasfasern. Bevorzugte Füllstoffe, die auch verstärkend wirken können, sind Glaskugeln, Glimmer, Silikate, Quarz, Talkum, Titandioxid, Wollastonit.
Die erfindungsgemäßen Formmassen können bis zu 35 Gew.-%, bezogen auf die
Zusammensetzung, eines weiteren, gegebenenfalls synergistisch wirkenden Flammschutzmittels enthalten. Beispielhaft werden als weitere Flammschutzmittel organische Halogenverbindungen wie Decabrombisphenylether, Tetrabrombisphenol, anorganische Halogenverbindungen wie Ammoniumbromid, Stickstoffverbindungen wie Melamin genannt.
Die erfindungsgemäßen Zusammensetzungen können hergestellt werden, indem man die Bestandteile in bekannter Weise vermischt und bei erhöhten Temperaturen, vorzugsweise bei 200 bis 350°C, in den üblichen Vorrichtungen, wie Innenknetern, Extrudern oder Doppelwellenschnecken schmelzkompoundiert oder schmelz- extrudiert. Die einzelnen Komponenten können nacheinander oder gleichzeitig zugemischt werden. Die erfindungsgemäßen Formkörper können durch Extrusion oder Spritzguss hergestellt werden.
Erfindungsgemäße Formkörper sind beispielsweise Anwendungen im Außeneinsatz, z.B. Fensterteile, Klimaanlagen, Wassertanks, Automobilaußenteile, Gärtengeräte, Gehäuseteile für Haushaltsgeräte, wie Saftpressen, Kaffeemaschinen, Mixer, für Büromaschinen, wie Monitore, Drucker, Kopierer oder Abdeckplatten für den Bausektor und Kfz-Teile. Sie sind außerdem auf dem Gebiet der Elektrotechnik ein- setzbar, weil sie sehr gute elektrische Eigenschaften haben. Die erfindungsgemäßen
Formmassen sind ferner geeignet zur Herstellung von Formkörpern durch Tiefziehen aus zuvor hergestellten Platten oder Folien.
Weitere Anwendungen sind möglich als Dateitechnikgeräte: Telekommunikationsgeräte wie Telefongeräte und Telefaxe, Computer, Drucker, Scanner, Plotter, Monitor, Tastatur, Schreibmaschine, Diktiergeräte, usw.,
als Elektrogeräte: Netzteile, Ladegeräte, Kleintransformatoren für Computer und
Unterhaltungselektronik, Niederspannungstransformatoren, usw.,
als Gartengeräte: Gartenmöbel, Rasenmähergehäuse, Rohre und Gehäuse für Gartenbewässerung, Gartenhäuser, Laubsauger, Schredder, Hächsler, Spritzgeräte usw.,
im Möbelbereich: Arbeitsplatten, Möbellaminate, Rolladenelemente, Büromöbel, Tische, Stühle, Sessel, Schränke, Regale, Türelemente, Fensterelemente, Bettkästen usw.,
als Sport-/Spielgeräte: Spielfahrzeuge, Sitzflächen, Pedale, Sportgeräte, Fahrräder,
Tischtennisplatte, Heimtrainer, Golf-Caddys, Snow boards, Bootsaussenteile, Campingartikel, Strandkörbe usw.,
im Bausektor innen/außen: Hausverkleidung, Profilleiste, Rohre, Kabel, Rolladen- elemente, Briefkästen, Lampengehäuse, Dachziegel, Fliesen, Trennwände, Kabelkanäle, Fußbodenleiste, Steckdosen usw.
im Bereich der Kfz/Schienenfahrzeuge: Wand-, Decken-Verkleidungen, Sitzschalen, Sitze, Bänke, Tische, Gepäckablagen, Radkappen, Heckspoiler, Kotflügel, Heckklappen, Motorhauben, Seitenteile usw. Die folgenden Beispiele dienen der weiteren Erläuterung der Erfindung.
Beispiele
Es werden Polycarbonat/AES bzw. Polyamid/AES Blends der folgenden Zusammensetzung als Basismaterial zur Durchführung von Prüfungen hergestellt:
PC/AES-Blends (Basismaterial A)
57 Gew.-Teile Polycarbonat
25 Gew.-Teile SAN-1
18 Gew.-Teile AES-Blend (Blendex® WX 270 Übe Cycon Ltd, Tokio, Japan bzw. Royaltuf® 372, Uniroyal, Großbritannien bzw. AES 665, Techno Polymers, Tokio, Japan) 0,9 Gew.-Teile übliche Additive, wie z. B. Entformungsmittel, Antioxidantien
PA/AES-Blends (Basismaterial B)
44 Gew.Teile Polyamid (Durethan B29, Bayer AG) 23 Gew.Teile SAN-2
27 Gew.-Teile AES-Blend (Blendex® WX 270 Übe Cycon Ltd, Tokio, Japan oder
Royaltuf® 372, Uniroyal, Großbritannien bzw. AES 665, Techno
Polymers, Tokio, Japan)
7,5 Gew.-Teile übliche Additive, wie z. B. Entformungsmittel, Antioxidantien,
Verträglichkeitsvermittler Polycarbonat:
Lineares Polycarbonat auf Basis Bishenol A mit einer relativen Lösungsviskosität von 1,272, gemessen in CH2CI2 als Lösungsmittel bei 25°C und einer Konzentration von 0,5 g/100 ml.
SAN-1:
Styrol/Acrylnitril-Copolymerisat mit einem Styrol/Acrylniril-Gewichtsverhältnis von 72:28 und einer Grenzviskosität von 0,55 dl/g (Messung in Dimethylformamid bei
20°C).
SAN-2:
Styrol/Acrylnitril-Copolymerisat mit einem Styrol/Acrylniril-Gewichtsverhältnis von
72:28 und einer Grenzviskosität von 0,75 dl/g (Messung in Dimethylformamid bei 20°C).
Talk: Naintsch A3, Talk der Firma Naintsch Mineralwerke GmbH, Deutschland, d50 = l,2 μm
Proben des Basismaterials A bzw. B werden 1, 5 bzw. 10 Gew.-Teile Maiskeimöl, 5 Gew.-Teile Napvis® D2, D5 beziehungsweise D07 (BP Amoco Chemicals Lavera,
Frankreich) und 5 Gew.-Teile Poly R® 10 (Pitco Industrigs N.V., Niederlande) zuge- setzt.
Als Vergleich werden herangezogen ein PC/AES bzw. PA/AES-Blend ohne ein entsprechendes Additiv sowie PC/AES-Blends mit Zusätzen von 5 Gew.-Teilen Admoll® DO und 5 Gew.-Teilen Oppanol® B200 (jeweils BASF AG, Ludwigshafen, Deutschland). Das Mischen der Komponenten erfolgt auf einem 3-1-Innenkneter. Die Formkörper werden auf einer Spritzgießmaschine Typ Arburg 270 E bei 260°C hergestellt.
Untersucht wird an Formkörpern aus den erhaltenen Materialien die Kerbschlag- Zähigkeit bei 23 °C und bei tiefen Temperaturen inklusive des Zäh/Sprödübergangs
(Steilabfall) und die Melt- Volume-Rate. Zur Untersuchung des Einflusses der Additive auf das Weichphasenvolumen wird in einer dem Fachmann bekannten Art der Speichermodul G' durch eine dynamisch-mechanische Analyse bestimmt. Aus dem Verhältnis des Speichermoduls bei Raumtemperatur zu dem Speichermodul bei -125°C normiert auf das Niveau für ABS (1650 MPa) kann nach Formel (IV) und (V) ein Maß für die Änderung der Weichphase definiert werden:
G orr = G'(23°C) * 1650 Rα (IN) G'(-125° C)
Figure imgf000017_0001
Die Bestimmung der Kerbschlagzähigkeit ak wird gemäß ISO 180/1A durchgeführt. Entsprechend wird die kritische Temperatur, die Temperatur unterhalb derer statt einem zähen Bruchverhalten ein sprödes Bruchverhalten auftritt, bestimmt. Die Melt- Volume-Rate gibt das Volumen der Blends an, das in 10 Minuten bei einer bestimmten Temperatur und unter einer bestimmten Belastung durch eine Düse mit festgelegter Größe fließt. Die Schmelzvolumenfließrate (MVR) wird nach ISO 1133 bei 260°C und 5kg Auflagegewicht bestimmt.
In den Tabellen 1, 2, 3 und 4 sind die Prüfergebnisse wiedergegeben. Diese Ergebnisse zeigen eine deutliche Senkung der kritischen Temperatur (Zäh/Sprödübergang), ohne mechanische Eigenschaften wie die Kerbschlagzähigkeit zu beeinträchtigen. Außerdem lässt sich die Zunahme der Weichphasenvolumina mit dem Verschieben des Steilabfalls zu tiefen Temperaturen hin gut korrelieren. Auffällig ist, dass bei den erfindungsgemäßen Additiven keine deutliche Zunahme des MVR zu beobachten ist, wie er für den dem bekannten Stand der Technik entsprechenden Weichmachern entspräche.
Die Beispiele in den Tabellen 1 bis 3 und 5 enthalten das Basismaterial A, die
Beispiele in Tabelle 4 Basismaterial B.
Tabelle 1
Figure imgf000019_0001
In Tabelle 2 und 3 sind alle Versuche mit 18 Gew.-Teilen WX270 durchgeführt. Tabelle 2
Figure imgf000019_0002
Tabelle 3
Figure imgf000020_0001
Tabelle 4: PA/ AES
Figure imgf000020_0002
Tabelle 5
Figure imgf000021_0001
Figure imgf000021_0002
Figure imgf000021_0003

Claims

Patentansprflche
1. Pfropφolymer-Zusammensetzung auf der Basis von Acryinitril/Ethylen-α- Olefin-Kautschuk/Styrol, enthaltend ein Additiv, das den Weichphasenanteil gemäß Formel (V)
Figure imgf000022_0001
in der Zusammensetzung gezielt erhöht.
2. Pfropφolymer-Zusammensetzung auf der Basis von Acrylnitril/Ethylen-α- Olefin-Kautschuk/Styrol, enthaltend ein Additiv, ausgewählt aus Triglyceriden, aliphatischen gesättigten und/oder ungesättigten Kohlenwasserstoffen und Mischungen hieraus.
3. Pfropφolymer-Zusammensetzung nach Anspruch 1 oder 2, worin die Schmelzvolumenfließrate (MVR) um höchstens neun Einheiten von einer entsprechenden Zusammensetzung ohne das Additiv abweicht.
4. Pfropφolymer-Zusammensetzung nach einem der Ansprüche 1 bis 3, worin das Triglycerid eine höhere Fettsäure mit 12 bis 24 Kohlenstoffatomen oder ein Gemisch hieraus ist.
5. Pfropφolymer-Zusammensetzung nach einem der Ansprüche 1 bis 4, worin das Additiv ein Kohlenwasserstoff mit Molekulargewichten von etwa 300 bis
50.000 oder eine Mischung von Kohlenwasserstoffen ist.
6. Pfropφolymer-Zusammensetzung nach einem der Ansprüche 1 bis 6, worin der Kohlenwasserstoff ein Ethylenpropylenterpolymer (EPDM)-Öl mit einem Molekulargewicht von 1.000 bis 30.000 ist.
7. Pfropφolymer-Zusammensetzung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Zusammensetzung weitere Polymere ausgewählt aus mindestens einem aus der Gruppe der Polycarbonate, Polyamide, Poly- alkylenterephthalate, Copolymere und Schlagzähmodifikatoren enthält.
8. Pfropφolymer-Zusammensetzung nach Anspruch 7, enthaltend ein Copoly- merisat aus 50 bis 99 Gewichtsteilen Vinylaromaten und/oder kernsub- stituierten Vinylaromaten und oder (Meth)acrylsäure(C1-C8)alkylester und 1 bis 50 Gewichtsteilen Vinylcyaniden und/oder (Meth)acrylsäure-(Cι-C8)-alkylester und/oder Anhydriden und/oder Imiden ungesättigter Carbonsäuren.
9. Zusammensetzungen enthaltend eine Pfropφolymerisat-Zusammensetzung gemäß Anspruch 1 und mindestens eine Komponente ausgewählt aus Polycarbonaten und Polyestercarbonaten.
10. Zusammensetzung gemäß Anspruch 9, enthaltend mindestens eine weitere Komponente ausgewählt aus Vinyl-(Co)polymeren, Polyalkylenterephthalaten, Flammschutzmitteln, mineralischen Füllstoffen und Additiven.
11. Zusammensetzung gemäß Anspruch 9 und 10 enthaltend phosphorhaltige Flammschutzmittel.
12. Formkörper, enthaltend eine Pfropφolymerisat-Zusammensetzung nach einem der Ansprüche 1 bis 11.
13. Formkörper nach Anspruch 12, der mineralische Füllstoffe enthält.
14. Verwendung von Additiven zur Erhöhung des Weichphasenanteils gemäß Foπnel (V) ΔWeichphase (V)
Figure imgf000024_0001
in Pfropφolymer-Zusammensetzungen auf der Basis von Acrylnitril/Ethylen- α-Olefϊn-Kautschuk/Styrol.
PCT/EP2001/012161 2000-11-02 2001-10-22 Thermoplastische blends mit verbesserter tieftemperaturzähigkeit WO2002036684A1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CA002427480A CA2427480A1 (en) 2000-11-02 2001-10-22 Thermoplastic blends exhibiting an improved low-temperature strength
AU2002212334A AU2002212334A1 (en) 2000-11-02 2001-10-22 Thermoplastic blends exhibiting an improved low-temperature strength
EP01980504A EP1334152A1 (de) 2000-11-02 2001-10-22 Thermoplastische blends mit verbesserter tieftemperaturzähigkeit
JP2002539434A JP2004524382A (ja) 2000-11-02 2001-10-22 改良された低温強度を示す熱可塑性ブレンド
BR0115113-4A BR0115113A (pt) 2000-11-02 2001-10-22 Misturas termoplásticas com tenacidade de baixa temperatura aperfeiçoada
MXPA03003860A MXPA03003860A (es) 2000-11-02 2001-10-22 Mezclas termoplasticas con tenacidad mejorada a baja temperatura.
KR10-2003-7006069A KR20030053523A (ko) 2000-11-02 2001-10-22 저온 강도가 개선된 열가소성 블렌드

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10054274A DE10054274A1 (de) 2000-11-02 2000-11-02 Thermoplastische Blends mit verbesserter Tieftemperaturzähigkeit
DE10054274.3 2000-11-02

Publications (1)

Publication Number Publication Date
WO2002036684A1 true WO2002036684A1 (de) 2002-05-10

Family

ID=7661875

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2001/012161 WO2002036684A1 (de) 2000-11-02 2001-10-22 Thermoplastische blends mit verbesserter tieftemperaturzähigkeit

Country Status (14)

Country Link
US (1) US7135510B2 (de)
EP (1) EP1334152A1 (de)
JP (1) JP2004524382A (de)
KR (1) KR20030053523A (de)
CN (1) CN1245449C (de)
AR (1) AR031045A1 (de)
AU (1) AU2002212334A1 (de)
BR (1) BR0115113A (de)
CA (1) CA2427480A1 (de)
DE (1) DE10054274A1 (de)
MX (1) MXPA03003860A (de)
RU (1) RU2003116511A (de)
TW (1) TWI278485B (de)
WO (1) WO2002036684A1 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10217519A1 (de) 2002-04-19 2003-11-06 Bayer Ag Thermoplastische Zusammensetzungen mit verbesserter Tieftemperaturzähigkeit
US8119720B2 (en) * 2008-12-29 2012-02-21 Cheil Industries Inc. Thermoplastic resin composition having improved flowability
KR101576726B1 (ko) 2013-07-02 2015-12-10 주식회사 엘지화학 내열 san 수지, 이의 제조방법 및 이를 포함하는 내열 abs 수지 조성물
CN103613711B (zh) * 2013-11-07 2015-11-18 包兰珍 一种改性三元乙丙橡胶的制备方法
JP5820040B2 (ja) * 2014-09-24 2015-11-24 テクノポリマー株式会社 軋み音を低減した熱可塑性樹脂組成物製接触用部品
CN108250606B (zh) * 2017-12-29 2020-07-07 青岛海尔新材料研发有限公司 一种超耐低温asa复合材料及其制备方法
CN111499813B (zh) * 2020-04-09 2022-12-06 北方华锦化学工业股份有限公司 一种采用连续本体法制备高流动aes树脂的方法
CN115947881B (zh) * 2023-03-15 2023-05-30 山东润科化工股份有限公司 一种溴化三元乙丙橡胶的合成方法
CN116082784B (zh) * 2023-04-10 2023-06-27 佛山市塑聚新材料科技有限公司 一种阻燃复合材料及其制备方法和应用

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5067355A (de) * 1973-10-19 1975-06-06
JPS5141145A (en) * 1974-10-02 1976-04-06 Nissan Motor Nainenkikanno reikyakusochi
GB1509636A (en) * 1975-07-30 1978-05-04 Bayer Ag High-impact non-ageing aes-polymers
EP0089182A2 (de) * 1982-03-11 1983-09-21 Uniroyal, Inc. Mischung von Pfropfcopolymer und Polyvinylchloridharz
EP0163411A1 (de) * 1984-04-23 1985-12-04 UNIROYAL CHEMICAL COMPANY, Inc. Polykarbonat-Zusammensetzungen mit Schlagfestigkeit bei niedriger Temperatur
EP0244857A1 (de) * 1986-05-09 1987-11-11 BASF Aktiengesellschaft Thermoplastische Formmasse auf Basis von Polycarbonat, 2 Pfropfmischpolymerisaten unterschiedlicher Pfropfgrundlage (ASA + AES) und Vinylaromat/AN enthaltenden Copolymerisaten
WO1991004296A1 (en) * 1988-08-22 1991-04-04 The Dow Chemical Company Thermoplastic blend of polycarbonate, polymethylmethacrylate and aes and process for preparing the same
EP0502367A1 (de) * 1991-03-04 1992-09-09 Ube Cycon, Ltd. Thermoplastische Kunststoffzusammensetzung, Pfropfcopolymer enthaltend
WO2001023474A2 (de) * 1999-09-28 2001-04-05 Bayer Aktiengesellschaft Polymerblends enthaltend modifizierte polyester
WO2001048043A1 (en) * 1999-12-28 2001-07-05 Bayer Corporation Extrusion-grade abs polymer having improved properties and a process for its preparation

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50109247A (ja) 1974-02-04 1975-08-28 Sumitomo Chemical Co Netsukasoseijushisoseibutsu
JPS5898354A (ja) 1981-12-07 1983-06-11 Sumitomo Naugatuck Co Ltd 熱可塑性樹脂組成物
EP0545902B1 (de) * 1987-09-17 1996-12-27 Tonen Sekiyukagaku K.K. Thermoplastische Zusammensetzung
US5534379A (en) * 1994-06-20 1996-07-09 Xerox Corporation Environmentally friendly toner composition
EP0893476A1 (de) * 1997-07-23 1999-01-27 Daicel Chemical Industries, Ltd. Thermoplastische Harzzusammensetzung
JP3662420B2 (ja) * 1998-08-13 2005-06-22 出光興産株式会社 熱可塑性樹脂組成物および射出成形品
US6084031A (en) * 1998-11-30 2000-07-04 Advanced Elastomer Systems, L.P. TPV from hydrosilylation crosslinking of acrylic modified bromo XP-50 butyl rubber
JP2004522811A (ja) * 2000-10-18 2004-07-29 エクソンモービル・ケミカル・パテンツ・インク エラストマー組成物

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5067355A (de) * 1973-10-19 1975-06-06
JPS5141145A (en) * 1974-10-02 1976-04-06 Nissan Motor Nainenkikanno reikyakusochi
GB1509636A (en) * 1975-07-30 1978-05-04 Bayer Ag High-impact non-ageing aes-polymers
EP0089182A2 (de) * 1982-03-11 1983-09-21 Uniroyal, Inc. Mischung von Pfropfcopolymer und Polyvinylchloridharz
EP0163411A1 (de) * 1984-04-23 1985-12-04 UNIROYAL CHEMICAL COMPANY, Inc. Polykarbonat-Zusammensetzungen mit Schlagfestigkeit bei niedriger Temperatur
EP0244857A1 (de) * 1986-05-09 1987-11-11 BASF Aktiengesellschaft Thermoplastische Formmasse auf Basis von Polycarbonat, 2 Pfropfmischpolymerisaten unterschiedlicher Pfropfgrundlage (ASA + AES) und Vinylaromat/AN enthaltenden Copolymerisaten
WO1991004296A1 (en) * 1988-08-22 1991-04-04 The Dow Chemical Company Thermoplastic blend of polycarbonate, polymethylmethacrylate and aes and process for preparing the same
EP0502367A1 (de) * 1991-03-04 1992-09-09 Ube Cycon, Ltd. Thermoplastische Kunststoffzusammensetzung, Pfropfcopolymer enthaltend
WO2001023474A2 (de) * 1999-09-28 2001-04-05 Bayer Aktiengesellschaft Polymerblends enthaltend modifizierte polyester
WO2001048043A1 (en) * 1999-12-28 2001-07-05 Bayer Corporation Extrusion-grade abs polymer having improved properties and a process for its preparation

Also Published As

Publication number Publication date
BR0115113A (pt) 2004-01-27
JP2004524382A (ja) 2004-08-12
AR031045A1 (es) 2003-09-03
KR20030053523A (ko) 2003-06-28
MXPA03003860A (es) 2004-04-20
EP1334152A1 (de) 2003-08-13
US20060235123A1 (en) 2006-10-19
AU2002212334A1 (en) 2002-05-15
CA2427480A1 (en) 2002-05-10
DE10054274A1 (de) 2002-05-08
CN1245449C (zh) 2006-03-15
CN1484673A (zh) 2004-03-24
US7135510B2 (en) 2006-11-14
RU2003116511A (ru) 2004-11-27
TWI278485B (en) 2007-04-11

Similar Documents

Publication Publication Date Title
EP0315868B1 (de) Verwendung von Redoxpfropfpolymerisaten zur Verbesserung der Benzinbeständigkeit von thermoplastischen, aromatischen Polycarbonat- und/oder Polyestercarbonat-Formmassen
EP0158931B1 (de) Thermoplastische Formmassen auf Basis von Polycarbonat-Pfropfpolymerisat-Gemischen
DE69920200T2 (de) Kompatibilisierte abs-polycarbonat-formmasse
DE10061081A1 (de) Flammwidrige Polycarbonat-Blends
EP2556114B1 (de) Flammgeschützte polycarbonat-zusammensetzungen
EP2125952A1 (de) Schlagzähmodifizierte polycarbonat-zusammensetzungen
EP1383836A2 (de) Schlagzähmodifizierte blends aus polyethylenterephthalat und mindestens einem auf dihydroxydiarylcyclohexan basierenden polycarbonat
EP2291451B1 (de) Schlagzähmodifizierte polycarbonat-zusammensetzungen
EP1334152A1 (de) Thermoplastische blends mit verbesserter tieftemperaturzähigkeit
DE3641990A1 (de) Thermoplastische formmassen auf basis spezieller pfropfpolymerisate
EP1910469B2 (de) Verfahren zur herstellung von schlagzähmodifizierten polycarbonat- zusammensetzungen
EP1363973B1 (de) Flammwidrige wärmeformbeständige polycarbonat-zusammensetzungen
EP1499678B1 (de) Thermoplastische zusammensetzungen mit verbesserter tieftemperaturzähigkeit
EP0372336B1 (de) Hochschlagzähe Polycarbonat-Formmassen
EP0585778B1 (de) Verfahren zur Herstellung von Pulvermischungen für matte Polycarbonat-Formmassen
DE10259500A1 (de) Pfropfpolymerisate auf Basis von Ethylen-α-Olefin-Kautschuken und Verfahren zu ihrer Herstellung
EP3307827A1 (de) Glasfaserverstärkte polycarbonat-formmassen mit verbesserter zähigkeit
WO2018122140A1 (de) Zusammensetzung und thermoplastische formmasse mit guter tieftemperaturzähigkeit, hohem glanzgrad und hoher verarbeitungsstabilität
DE10360367A1 (de) Stabilisierte thermoplastische Zusammensetzungen
DE19639821A1 (de) Polycarbonat-ABS-Mischungen mit feinteiligen Pfropfpolymerisaten
DE10105714A1 (de) Zusammensetzung auf Basis von Copolycarbonaten

Legal Events

Date Code Title Description
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2001980504

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2427480

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: PA/a/2003/003860

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 1020037006069

Country of ref document: KR

Ref document number: 677/DELNP/2003

Country of ref document: IN

Ref document number: 00677/DELNP/2003

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2002539434

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2003116511

Country of ref document: RU

Kind code of ref document: A

Ref country code: RU

Ref document number: RU A

WWP Wipo information: published in national office

Ref document number: 1020037006069

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 018217117

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2001980504

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642