WO2002033862A1 - Dispositif de radiocommunication, dispositif d'emission et dispositif de reception - Google Patents

Dispositif de radiocommunication, dispositif d'emission et dispositif de reception Download PDF

Info

Publication number
WO2002033862A1
WO2002033862A1 PCT/JP2001/009105 JP0109105W WO0233862A1 WO 2002033862 A1 WO2002033862 A1 WO 2002033862A1 JP 0109105 W JP0109105 W JP 0109105W WO 0233862 A1 WO0233862 A1 WO 0233862A1
Authority
WO
WIPO (PCT)
Prior art keywords
wave
signal
user
frequency
video
Prior art date
Application number
PCT/JP2001/009105
Other languages
English (en)
French (fr)
Inventor
Eiji Suematsu
Hiroyo Ogawa
Kiyoshi Hamaguchi
Yozo Syoji
Original Assignee
Sharp Kabushiki Kaisha
Communications Research Laboratory, Independent Administrative Institution
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha, Communications Research Laboratory, Independent Administrative Institution filed Critical Sharp Kabushiki Kaisha
Priority to EP01976710A priority Critical patent/EP1330059B1/en
Priority to US10/399,566 priority patent/US7697574B2/en
Publication of WO2002033862A1 publication Critical patent/WO2002033862A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H20/00Arrangements for broadcast or for distribution combined with broadcast
    • H04H20/65Arrangements characterised by transmission systems for broadcast
    • H04H20/71Wireless systems
    • H04H20/74Wireless systems of satellite networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/403Circuits using the same oscillator for generating both the transmitter frequency and the receiver local oscillator frequency
    • H04B1/406Circuits using the same oscillator for generating both the transmitter frequency and the receiver local oscillator frequency with more than one transmission mode, e.g. analog and digital modes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/18502Airborne stations
    • H04B7/18506Communications with or from aircraft, i.e. aeronautical mobile service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H20/00Arrangements for broadcast or for distribution combined with broadcast
    • H04H20/02Arrangements for relaying broadcast information

Definitions

  • the present invention relates to a wireless communication device, a transmission device, and a reception device, and particularly to a wireless communication device, a transmission device, and a reception device that wirelessly transmit a plurality of types of signals.
  • the millimeter wave band transmitting / receiving apparatus includes a transmitter 1100 shown in FIG. 1OA and a receiver 1150 shown in FIG. 10B.
  • the transmitter 1] .00 and the receiver 1 150 are composed of a baseband unit (indoor unit) and a radio unit (outdoor unit) as described below.
  • the transmitter 1100 includes a modulator 1103 (symbol “MOD for voice” in the figure), a bandpass filter 1104 (symbol “FIL” in the figure), and an analog Z digital (A / D) converter 1109 and Baseband section including 1109R, FM modulator 1105, 2 passerby 1107a (symbol “X2" in the figure), 4 delay doubler 1107b (symbol in the figure, "X4"), a radio unit including an amplifier 1108 and an antenna 1106.
  • a modulator 1103 symbol “MOD for voice” in the figure
  • FIL bandpass filter
  • a / D analog Z digital converter
  • Baseband section including 1109R, FM modulator 1105, 2 passerby 1107a (symbol “X2" in the figure), 4 delay doubler 1107b (symbol in the figure, "X4")
  • a radio unit including an amplifier 1108 and an antenna 1106.
  • the baseband section in transmitter 1100 multiplexes the video signal and the audio signal.
  • Audio signal input terminal L The audio stereo signals (R ⁇ L) input from 1 L and 1 102 R are converted to digital signals by the analog-to-digital converters 1109 L and 1109 R, and then the modulator Modulated by 1 103.
  • the output of the modulator 1103 is combined with the video signal received from the video signal input terminal 1101 via the bandpass filter 1104. This makes it a birth band] A video transmission signal for the channel is generated.
  • the generated video transmission signal is modulated by a 6 GHz band FM modulator 1105 (F: Frequency Modulation) included in the radio unit.
  • the output of the FM modulator i ⁇ 05 is frequency-modulated by 8 times through the 2 ⁇ 11 1 7a and 4 ⁇ 1 1 1b, and further through the amplifier 11 ° 8 ⁇ It is width. Then, the generated millimeter-wave video transmission signal is radiated by the antenna 1 ] .06.
  • the receiver 1 150 has a radio section including a local oscillator 1 151, a down converter 1 152, an antenna 1]. 56, and an FM demodulator] 1 53 (symbol “DEM” in the figure). , Filter and distributor 1 1 54 (symbol “FI” in the figure), audio demodulator 1 1 5 5 (symbol “DEM for audio” in the figure), and digital-analog (DZA) converter 1 1 5 7 L And a baseband section including 1157R.
  • the downconverter 1152 downconverts the received video transmission signal based on the output of the local oscillator in the 50 GHz band;!, 15].
  • a transmitter 1200 according to Reference 2 will be described with reference to FIGS.
  • the transmitter 1200 comprises three types of millimeter-wave transmitters 210, 122 and 1230.
  • Transmitter 1200 receives a video component signal (Y, Pb, Pr) as an input signal.
  • the luminance signal Y is input to the millimeter-wave transmitter 1 2 10 via the input terminal 1 2 1 1
  • the color difference signal P b is input to the millimeter-wave transmitter 1 2 1 via the terminal 1 2 2 1
  • the color difference signal Pr is input to the millimeter wave transmitter 1230 via the terminal 1231.
  • Millimeter-wave transmitter 1.210 has video amplifier ⁇ 2 1 2, temperature compensator 121 7, FM modulator 1 213, 4x multiplier 121 4 (symbol “X 4” in the figure), power amplifier 1 2 1 5 , And antenna 1216. Millimeter-wave transmitter; 1 220 video amplifier
  • Millimeter-wave transmitter 1 230, Video amplifier 1232, Temperature compensator 1237, FM modulator 1233, 4 divider multiplier 1
  • Each of the millimeter-wave transmitters 12, 10, 1220, and 1230 generates a radio signal modulated in the millimeter-wave band, radiates and emits a radio signal generated from the antennas 1216, 1226, and 1236.
  • the signals Y, Pb, and Pr are configured to be multiplexed in space.
  • each of the millimeter-wave transmitters 1210, 1220, and 1230 amplifies an input video component signal to an appropriate level with video amplifiers 122, 1222, and 1223.
  • Outputs of the video amplifiers 1212, 1222, and 1223 are input to FM modulators 1213, 1223, and 1233, and are FM-modulated.
  • the frequency of the FM-modulated signal is quadrupled by four multipliers 1214, 1224,] 234, and the frequency shift and the modulation frequency of the FM modulation are expanded.
  • Each of the modulated signals that have been raised in the millimeter wave is output by the power amplifier 1 215, .1 225,
  • the millimeter-wave band modulated signals ⁇ , Pb, and Pr are combined as one video signal in the space.
  • the information that can be transmitted by one transceiver is video and There is only one channel including audio. Therefore, it is not possible to wirelessly connect video signals and broadcast wave signals from a plurality of electronic devices indoors or at home.
  • TV broadcast waves Single V: television version
  • video from electronic devices such as videos, DVDs (digital versatile discs), television cameras, and bassocons (sonic consoles) are used indoors. Audio signals cannot be wirelessly connected simultaneously and independently.
  • the electronic device can be carried between rooms and at the same time could not be used in multiple places.
  • the transmitter 12 ⁇ 0 according to Document 2 transmits a video component signal for a no vision.
  • this transmitter 1200 it is also possible to transmit three channels of video in the NTSC system.
  • transmitter 1200 requires several types of transmitters. In such a configuration using three types of transmitting units, stable demodulation cannot be performed on the receiving side if the stability of the FM modulator frequency fluctuates. Therefore, extremely stable frequency modulation is required.
  • the frequency is multiplied by four in order to use the modulated wave as a millimeter wave radio frequency.
  • the frequency fluctuation of the modulated wave is quadrupled, so the frequency stability is further degraded in the millimeter-wave radio frequency band.
  • it is vulnerable to mechanical fluctuations and fluctuations in power supply voltage, making it difficult to carry and use between rooms.
  • an object of the present invention is to provide a millimeter-wave compatible radio communication device, a transmission device, and a reception device capable of stably transmitting and receiving a plurality of different signal waves. Is to provide. Disclosure of the invention
  • a wireless communication apparatus includes a broadcast wave including a terrestrial broadcast wave, a satellite broadcast wave, or a cable television broadcast wave and a user-specific signal wave different from the broadcast wave at different positions on a frequency axis.
  • the transmitter includes a transmitter configured to transmit the arranged multiplex wave to the millimeter wave, and a receiver configured to receive the output of the transmitter and perform frequency down conversion of the broadcast wave and the user-specific signal wave.
  • the transmitter includes a multiplexing circuit for multiplying the broadcast wave and the user-specific signal wave in accordance with the arrangement, and an amplifier for converting the multiplexed wave output from the multiplexing circuit into a millimeter wave.
  • the receiver includes a receiving unit that receives the output of the transmitter, and a downconverter that performs frequency down conversion of the multiplex received by the receiving unit.
  • the user-specific signal wave includes a video signal and an audio signal from at least one or more electronic devices including a television receiver, a video recorder, a video camera, and a personal computer. It is multiplexed with the satellite broadcast wave at the intermediate frequency stage and / or the terrestrial broadcast wave itself propagated from the ground, and is placed between the terrestrial broadcast wave frequency band and the satellite broadcast wave frequency band.
  • the user-specific signal wave may be a signal wave obtained by modulating the video signal / audio signal by a plurality of modulating means.
  • the multiplexing circuit includes a conversion circuit for converting a cable television broadcast wave into an intermediate frequency, and a circuit for multiplexing the intermediate frequency cable television broadcast wave and a user-specific signal wave.
  • the receiver further includes: a distributor that distributes an output of the downconverter to a broadcast wave and a user-specific signal wave; and a demodulator that receives the output of the distributor and demodulates a user-specific signal wave. Including.
  • the transmitter has a function of changing the frequency domain of the user-dedicated signal wave
  • the receiver has a function of setting the use channel of the user-dedicated signal wave according to the frequency of the user-dedicated signal wave.
  • a video component signal and an audio signal are input as user-specific signal waves
  • the multiplexing circuit includes a modulating means for modulating the video component signal and the audio signal, and a circuit for multiplexing after modulation.
  • a D-terminal video signal and an audio signal for high-definition are input as a user-dedicated signal wave
  • the multiplexing circuit includes modulation means for modulating the D-terminal video signal and the audio signal and a circuit for multiplexing after the modulation. Including.
  • a transmitting apparatus arranges a broadcast wave including a terrestrial broadcast wave, a satellite broadcast wave, or a cable TV broadcast wave, and a user-specific signal wave different from the broadcast wave at different positions on a frequency axis.
  • a receiving apparatus includes a terrestrial broadcast wave, a satellite broadcast wave, Millimeter wave reception corresponding to a transmitter having a configuration in which a multiplex wave in which a broadcast wave including a cable TV broadcast wave and a user-specific signal wave different from the broadcast wave are arranged at different positions on a frequency axis to perform a millimeter wave transmission.
  • a demodulator that receives the output of the distributor and demodulates the user-specific signal wave.
  • the wireless communication device the transmitting device, and the receiving device, it is possible to simultaneously and independently wirelessly connect a TV broadcast wave and a video / audio signal from an electronic device such as a bass computer with indoors / at home. Therefore, the electronic device can be carried in the room ⁇ , and a plurality of the electronic devices can be used in different places at the same time. Furthermore, since the TV broadcast wave and the video / audio signal can support multiple channels, it is possible for a plurality of electronic devices to have different video / audio information respectively. Further, according to the wireless communication device, the transmitting device and the receiving device, the frequency band of the intermediate frequency band of satellite broadcasting and the frequency band of terrestrial broadcasting are multiplexed with the frequency band of the user area.
  • FIG. 1 is a diagram showing an outline of the configuration of the millimeter wave transmitter 15 according to the first embodiment.
  • FIG. 2 is a diagram showing an outline of the configuration of the millimeter wave receiver 29 according to the first embodiment.
  • 3A to 3C are diagrams illustrating an example of an arrangement of signal waves according to the first embodiment.
  • 4A to 4C are diagrams illustrating an example of an arrangement of signal waves according to the first embodiment.
  • FIG. 5 is a diagram illustrating an example of use of the millimeter wave transceiver according to the first embodiment.
  • FIG. 6 is a diagram illustrating an example of use of the millimeter wave transceiver according to the second embodiment.
  • FIG. 7 is a diagram illustrating an example of an arrangement of CATV waves according to the second embodiment.
  • FIG. 8 is a diagram showing an outline of a configuration of a millimeter-wave transmitter 15C compatible with CATV waves according to the second embodiment.
  • FIG. 9 is a diagram showing an outline of a configuration of a millimeter wave receiver 29C for CATV waves according to the second embodiment.
  • FIGS. 10A and 10B are diagrams showing an outline of the configuration of the millimeter-wave band transmitting / receiving device according to Document 1.
  • FIG. 10A is a diagram showing an outline of the configuration of the millimeter-wave band transmitting / receiving device according to Document 1.
  • FIG. 11 is a diagram showing an outline of a configuration of a millimeter-wave band transmission device according to Document 2.
  • FIG. 12 is a diagram showing an overview of the transmitter of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • the wireless communication device according to the first embodiment includes a millimeter wave transmitter 1.5 shown in FIG. 1 and a millimeter wave receiver 29 shown in FIG.
  • the millimeter wave transmitter 15 will be described.
  • the millimeter-wave transmitter 15 includes an IF multiplexing circuit 1, a millimeter-wave upconverter 4, and a millimeter-wave antenna 3.
  • the IF multiplexing circuit:!. Will be described.
  • the first and second TV broadcast waves (TV: television) are input to the connection terminals 6 and 5, respectively.
  • the first and second TV broadcast waves include intermediate frequency waves of satellite broadcast.
  • the D- signal combiner 9 is combined with the output of the signal combiner 8 described later by the signal combiner 9. As a result, a frequency multiplexed wave can be generated.
  • the audio signal is input from the stereo audio signal input terminals 20 L and 20 R, and the video image signal is input from the video input terminal 2 OV.
  • the received video signal is described as 20 V.
  • An audio signal is input from the stereo audio signal input terminals 21 L and 21 R, and a video image signal is input from the video input terminal 21 V.
  • the audio signal received at input terminal 21 L is referred to as 21 L, the audio signal received at input terminal 21 R as 21 R, and the video signal received at input terminal 2 IV as 2 IV.
  • An audio signal is input from the stereo audio signal input terminals 22L and 22R, and a video image signal is input from the video input terminal 22V.
  • the audio signal received at the input terminal 22L is referred to as 22L, the audio signal received at the input terminal 22R as 22R, and the video signal received at the input terminal 22V as 22V.
  • an audio signal is input from the stereo audio signal input terminals 23 L and 23 R, and a video image signal is input from the video input terminal 23 V.
  • the audio signal received at the input terminal 23 L is referred to as 23 L, the audio signal received at the input terminal 23 R as 23 R, and the video signal received at the input terminal 23 V as 23 V.
  • the first modulation circuit 121 forms a first modulation wave signal in a microwave region.
  • the second modulation circuit 122 forms a second modulated wave signal in the microwave region.
  • a third modulation circuit 123 forms a third modulated wave signal in a microwave region.
  • a fourth modulation circuit 124 forms a fourth modulated wave signal in the microwave region.
  • a specific example of the first modulation circuit .121 will be described.
  • a stereo composite signal is generated by a stereo modulator receiving the audio signal 20 L, 2 OR. Then, the generated stereo composite signal can be FM-modulated. Then, it is multiplexed with the video signal 20 V to generate a video / audio multiplex signal.
  • the video / audio multiplex signal is FM-modulated by the FM modulator in the microwave region. As a result, a first modulated signal wave is generated.
  • the audio signal and the video signal may be configured to be subjected to A / D (analog / digital) conversion and PCM encoding (pulse code modulation), and to be digitally modulated by a phase modulation method or the like, or VHF band (very high frequency) and upconverted to the microwave band.
  • a / D analog / digital
  • PCM encoding pulse code modulation
  • VHF band very high frequency
  • Each of the second modulation circuit 122, the third modulation circuit 123, and the fourth modulation circuit 124 has the same configuration and function as the first modulation circuit 121.
  • the first to fourth modulated signal waves are combined by a signal combiner 8 and then input to a signal combiner 9.
  • the signal combiner 9 combines the first and second TV broadcast waves with the first to fourth modulated signal waves. As a result, a multiplex wave is generated on the frequency axis.
  • the D terminal is a terminal for inputting and outputting digital broadcast Hi-Vision signals, and consists of 14 pins. Since the signal at the D terminal has a large amount of information and a wide bandwidth, the luminance signal Y and the color difference signals Pb (Cb) and Pr (Cr) are transmitted independently.
  • the D terminal includes a terminal for a control signal that changes the number of scanning lines and the spectrum ratio of the received broadcast.
  • D terminal 25 is connected to signal lines of terminals 2 IV, 22 V, and 23 V
  • D terminal 55 is connected to signal lines of terminals 51 V, 52 V, and 53 V.
  • the D terminal is an interface for sending these signals together in a parallel cable.
  • An example of the use of the D terminal will be described in a second embodiment.
  • the millimeter wave up-converter 4 that receives the multiplex wave will be described.
  • the millimeter-wave up-converter 4 includes an IF amplifier 10, a local oscillator 1'1, a frequency mixer (up-converter) 12, a filter 13, and a millimeter-wave amplifier 14.
  • IF amplifier 10 receives the multiplex wave.
  • the output of the IF amplifier 10 is up-converted in the frequency mixer 12 based on the output (fLOl) of the local oscillator; L 1.
  • the output of the frequency mixer 12 is input to the filter 13 and then amplified by the millimeter-wave amplifier 14.
  • the output of the millimeter-wave amplifier 14 is arranged such that the u- multiplexed wave radiated from the millimeter-wave antenna 3 is frequency-arrayed from the UHF band (ultra high frequency) to the microwave as shown in FIGS. 3A to 3C. .
  • UHF band ultra high frequency
  • the terrestrial broadcast wave (UHF) frequency band 61 As shown in FIG. 3A, from the lowest frequency, the terrestrial broadcast wave (UHF) frequency band 61, the user region 62, the first satellite broadcast wave (BS) frequency ⁇ 63, and The frequency of the second satellite broadcast wave (CS-R, CS-L) is arranged in the order of 64,65.
  • the frequency band and the signal are represented using the same symbols.
  • the user area is a signal other than a terrestrial digital broadcast wave and a satellite broadcast wave, and is a frequency area such as a personal information, for example, a signal (user area signal wave) obtained by modulating a video signal of a video camera. Means castle.
  • the radio frequency of the terrestrial broadcast wave is the broadcast frequency itself when it propagates from the ground, and the first satellite broadcast wave is transmitted from the low noise block converter (LNB) attached to the parabolic antenna to the IF (medium (Between)
  • LNB low noise block converter
  • IF intermediate (Between)
  • the IF frequency signal itself that has been frequency-converted to the frequency, and the second satellite broadcast wave is also the IF frequency signal that has been frequency-converted by the low-noise block converter.
  • the second satellite wave may be a component of either the horizontal or vertical polarization, or a component of either the horizontal or vertical polarization. May be frequency-converted and rearranged on the frequency axis.
  • both right-teZ left-handed polarized signals are used, either the right-handed or left-handed components may be frequency-converted and rearranged on the frequency axis.
  • the user region 62 is arranged between the terrestrial broadcast wave frequency band 61 and the satellite broadcast wave intermediate frequency band 63 using the first to fourth modulation circuits 1 2 1 to 1 2 4. . More specifically, the frequencies of the modulated signals (carriers) of the first to fourth modulation circuits are expressed as follows: the user region 62 is the frequency band 61 of the terrestrial broadcast wave and the intermediate frequency band 63 3 of the satellite broadcast wave. It is decided to be placed between the two. This makes it possible to use the frequency efficiently because there is no unnecessary gap in the frequency band when upcoming to the millimeter wave band.
  • terrestrial broadcast waves 61, user area signal waves 62, first satellite broadcast waves 63, and second satellite broadcast waves 64, 65 can be selected. In some cases, you may not use
  • the frequency of the millimeter wave band of each TV broadcast wave is fixed; it can be arranged as shown below with a crane.
  • Terrestrial broadcast wave UHF band + user area signal wave + first satellite broadcast wave + second satellite broadcast wave
  • Terrestrial broadcast wave UHF band
  • UHF band User area signal wave + 1st satellite broadcast wave
  • V User area signal wave + 1st satellite broadcast wave
  • UHF band Terrestrial broadcast wave + The area signal wave
  • Figure 3 B is a terrestrial broadcast waves (UHF) 61, a user domain signal wave 62, the first satellite broadcast wave 63, and the relationship between the second satellite wave 6 4, FIG. 3 C, the terrestrial broadcasting wave
  • UHF terrestrial broadcast waves
  • UHF Ultra High Speed Downlink
  • a user area signal wave 62 a user area signal wave 62
  • a first satellite broadcast wave 63 a first satellite broadcast wave 63
  • the user area 62 is arranged between the frequency band 61 of the terrestrial broadcast wave and the intermediate frequency band 63 of the satellite broadcast wave.
  • FIG. 4A shows the relationship between the user area signal wave 62, the first satellite broadcast wave 63, and the second satellite broadcast waves 64, 65.
  • FIG. 4B shows the user area signal wave 62
  • the first FIG. 4C shows the relationship between the user area signal wave 62 and the first satellite broadcast wave 63.
  • the relationship between the satellite broadcast wave 63 and the second satellite broadcast wave 64 is shown in FIG.
  • the frequency arrangement used between the transmitter and the receiver should be the same as each other.
  • the transmitter of the type (i) the receiver of either the type (ii) or (V) can be used. It is also possible to use u .
  • the user area signal wave is easy to use and use if the models used are compatible.
  • analog terrestrial broadcast waves depending on the receiving area, there may be cases where the video characteristics are poor, and in wireless transmission in the millimeter wave band, the quality of analog video deteriorates and the transmission distance increases. However, there is a possibility that it cannot be secured in + minutes. In such a case, the user area is used for transmission of analog terrestrial broadcast waves.
  • the terrestrial analog video signal output from the TV or video is sent to the video / audio terminal of the transmitter (for example, terminal 20V 20L, 20R, terminal 21V in Fig. 1). , 21L 21R, terminals 22V, 22L, 22R, terminals 23V 23L, 23R). This enables analog terrestrial broadcast waves to be transmitted wirelessly up to four channels.
  • the frequency is adjusted to the frequency range, which is the stage of the initial product.
  • the transmitter and receiver are configured so that they are randomly allocated at certain frequency intervals, and for the receiving side, set the user channel for the user area signal when first used.
  • the millimeter-wave transmitter] 5 is configured so that the user region can be shifted from 100 MHz to 100 MHz, and several types of frequencies in the user region are prepared in advance. Keep it. It is desirable that the millimeter wave receiver 29 be configured so that the frequency can be adjusted in consideration of the shift in the user area, and that the channel used can be initialized.
  • the transmitting side makes the frequency variable so that the transmitting and receiving sides can adjust the frequency.
  • the millimeter-wave transmitter 15 side and the millimeter-wave receiver 29 side also have a frequency conversion function, and adjust the frequency in the frequency domain so that no interference occurs between the transmission side and the reception side. It is desirable to have a function to set the channel to be used.
  • the millimeter-wave down-converter 32 includes a low-noise amplifier 34, a filter 35, a frequency mixer 36, an amplifier 37, and a local oscillator 40.
  • the received wave received by the antenna 31 is amplified by the low noise amplifier 34.
  • the filter 35 allows only a desired signal wave among the output waves of the low noise amplifier 34 to pass.
  • the output wave of the filter 35 is down-converted to an intermediate frequency band in the frequency mixer 36 based on the output (fL02) of the local oscillator 40.
  • the multiplexed wave signal output from the frequency mixer 36 becomes a signal combiner on the transmitting side.
  • the output signal of 9 becomes the same as the frequency component.
  • the output of the frequency mixer 36 is amplified by the amplifier 37.
  • the multiplexed signal wave output from the amplifier 37 is divided into three by the frequency divider 38 (referred to as a first signal wave, a second signal wave, and a third signal wave). 1st signal, 2nd signal wave, 3rd signal output from frequency divider 38 Each of the waves is filtered by filters 39a, 39b, 39c, which pass only the desired signal.
  • the V broadcast waves (first signal wave and second signal wave) that have passed through the filters 39a and 39b are level-adjusted by the amplifiers 56a and 56b.
  • the output terminal 43 receiving the output of the amplifier 56a outputs an intermediate frequency signal of a satellite broadcast wave.
  • An output terminal 44 receiving the output of the amplifier 56b outputs a UHF terrestrial broadcast wave signal.
  • the user area signal wave (third signal wave) that has passed through the filter 39c is down-converted by the frequency mixer 42 based on the output (fL03) of the IF band local oscillator 41, and is then subjected to four-minute filtering.
  • the four signal waves output from the frequency mixer 42 are supplied to a first demodulation circuit 46, a second demodulation circuit 47, a third demodulation circuit 48, and a fourth demodulation circuit 49, respectively.
  • the first demodulation circuit 46 demodulates one of the four signal waves output from the frequency mixer 42. As a result, the video signal 5 OV is output from the output terminal 50 V, and the audio signals 50 R and 50 L are output from the output terminals 50 R and 50 L, respectively.
  • the second demodulation circuit 47 demodulates one of the four signal waves output from the frequency mixer 42. As a result, the video signal 51 V is output from the output terminal 51 V, and the audio signals 51 R and 51 L are output from the output terminals 51 R and 51 L, respectively.
  • One of the four signal waves output from the frequency mixer 42 is demodulated by the third demodulation circuit 48.
  • the video signal 52 V is output from the output terminal 52 V, and the audio signals 52 R and 52 L are output from the output terminals 52 R and 52 L, respectively.
  • the fourth demodulation circuit 49 demodulates one of the four signal waves output from the frequency mixer 42.
  • the video signal 53 V is output from the output terminal 53 V, and the audio signals 53 R, 53 L are output from the output terminals 53 R, 53 L, respectively.
  • FIG. 5 An example of use of the first embodiment according to the millimeter wave transmitter 15 and the millimeter wave receiver 29, the D Figure 5 will be described with reference to FIG. 5, one of the millimeter wave transmitter 15 and one millimeter wave receiver An example is shown in which the transmitter 29a is arranged in a room A in the home and one millimeter wave receiver 29b is arranged in a room B different from the room A.
  • the configuration of each of the millimeter-wave receivers 29 a and 29 b is the same as that of the millimeter-wave receiver 29.
  • a mixed wave of the intermediate frequency signals of the first satellite broadcast wave and the second satellite broadcast wave is input from input terminal 6 and terrestrial digital broadcast wave (UHF) is input to millimeter wave transmitter 15 from input terminal 5 .
  • UHF terrestrial digital broadcast wave
  • the video and audio signals output from the second video device 81 are input to the millimeter wave transmitter 15 from the second input terminal 21.
  • the video and audio signals output from the video camera 82 are input to the millimeter-wave transmitter 15 from the third input terminal 22.
  • the video and audio signals that can be output from the DVD 83 are input to the millimeter-wave transmitter 15 from the fourth input terminal 23.
  • the input terminal 20 is the terminals 20 L, 20 R, 20 V shown in FIG. 1
  • the input terminal 21 is the terminals 21 L, 21 R, 21 V
  • the input terminal 22 is the terminals 22 L, 22 R shown in FIG. , 22 V
  • the input terminal 23 includes the terminals 23 L, 23 R, and 23 V shown in FIG. 1, respectively.
  • the broadcast wave signal wave and the user region signal wave are multiplexed into an IF multiplexed signal wave, and then up-converted into a millimeter wave band signal and transmitted wirelessly.
  • the wirelessly transmitted millimeter wave signal wave 90 is supplied to the millimeter wave receiver 29a in the room A and the millimeter wave receiver 29b in the room B, respectively.
  • the intermediate frequency signal waves of the first and second satellite broadcast waves are output from the output terminal 44a of the millimeter wave receiver 29a, and transmitted to the first TV receiver 84a via the satellite broadcast tuner. Is entered.
  • a terrestrial digital signal wave in the UHF band is output from the output terminal 43a of the millimeter wave receiver 29a, and is input to the first TV receiver 84a.
  • the terrestrial analog broadcast wave transmitted as a user area signal is output from the video / audio terminal 50a of the millimeter-wave receiver 29a, and is input to the first V receiver 84a. It is.
  • the video / audio signal of the second video device 81 transmitted as a user area signal / wave is output from the video / audio terminal 51a of the millimeter wave receiver 29a, and the video / audio terminal Is input to the bath controller 85 a having a child.
  • Transmitted video force camera 82 of the video as a user domain signal wave 'audio signals, millimeter wave receiver 2 9 a video' are speech terminals 5 2 a mosquito ⁇ et output is a liquid crystal display 8 6 a input .
  • the video and audio signals of DVD 83 transmitted as the user area signal wave are output from the video / audio terminal 53a of the millimeter wave receiver 29a, and the video
  • the intermediate frequency signal waves of the first and second satellite broadcast waves are output from the output terminal 44b of the millimeter wave receiver 29b, and the second frequency signal is transmitted through the satellite broadcast tuner.
  • the TV receiver 84b a digital signal wave is output from the output terminal 43b of the millimeter wave receiver 29b on the ground in the UHF band, and is input to the L-th TV receiver 84b.
  • the terrestrial analog broadcast wave transmitted as the area signal wave is a millimeter wave receiver 2
  • the video / audio terminal 50b of 9b is output from the terminal 50b and input to the second TV receiver 84b.
  • the video / audio signal of the second video device 81 transmitted as the user area signal wave is output from the video / audio terminal 51 b of the millimeter wave receiver 29 b, and a personal computer having a video / audio terminal. Entered in 8 5 b.
  • the video / audio signal of the video camera 82 transmitted as the user area signal wave is output from the video / audio terminal 52 b of the millimeter wave receiver 29 b and input to the liquid crystal display 86 b.
  • the video / audio signal of DVD 83 transmitted as the user area signal wave is output from the video / audio terminal 53 b of the millimeter-wave receiver 29 b, and the video camera
  • terminals 43a and 43b correspond to the terminal 43 in FIG. 2, and the terminals 44a and 44b correspond to the terminal 44 in FIG.
  • Terminals 50a, 50b are the terminals 5 ⁇ V, 50L, 5OR in FIG. 2 and terminals 5la, 51b are the terminals 5IV, 51L, 5113 ⁇ 4 in FIG.
  • Terminals 52 and 52b are terminals 52V, 52L and 52R in FIG. 2
  • terminals 53a and 53b are terminals 53 and 53 in FIG.
  • Millimeter-wave transmitted broadcast waves (UHF terrestrial digital broadcast wave, first satellite broadcast wave, second satellite broadcast wave) are transmitted to the first TV receiver 84a and the second TV receiver 84b. Are tuned in.
  • the signal wave (electronic device signal) transmitted using the user area is transmitted to the corresponding device for reproduction (device 85a, 86a or 87a in room A, and device B in room B). Threaded to device 85b, 86b or 87b).
  • a broadcast wave and a signal wave from an electronic device other than the broadcast wave can be simultaneously and independently wirelessly connected.
  • TV broadcast waves and video / video / audio signals can support multiple channels.
  • the wireless communication device according to the second embodiment has the above-described millimeter-wave transmitter 15 and millimeter-wave receiver 29 as basic configurations.
  • FIG. 6 An example of use of the wireless communication device according to the second embodiment will be described with reference to FIG.
  • Fig. 6 one millimeter-wave transmitter 15 and one millimeter-wave receiver 29a are placed in room A in the home, and one millimeter-wave receiver 29b is placed in room B, which is different from room A.
  • An example of arrangement is shown.
  • a digital video recorder 91 that outputs a video component signal is used instead of the second video device 81, the video camera 82, and the DVD 83.
  • a video component signal is transmitted using three terminals 21, 22, 23 of four terminals receiving a user area signal wave.
  • the video component signal is composed of a luminance signal Y and color difference signals: Pb (Cb) and Pr (Cr).
  • the luminance signal Y and the color difference signals Pb and Pr are converted into second to fourth modulation circuits 1 2 2 included in the millimeter wave transmitter 15 via terminals (modulators) 21, 22 and 23. , 1 2 3, 1
  • the modulated signal is combined by the signal combiner 8, and the broadcast wave received at the terminals 5 and 6 and the modulated signal wave are combined by the signal combiner 9.
  • the millimeter-wave up-converter 4 up-converts the IF multiplex to a millimeter-wave band. Then, millimeter wave wireless transmission is performed.
  • the audio stereo signals (R, L) for the video component signals are 3 Terminals 21 L, 21R, 22L, 22R, 23L, 23R Any audio terminal may be input. Desirably, the signal is input to the audio terminals 23R and 23L included in the terminal 23 corresponding to the color difference signal Pr having a narrow transmission band.
  • the wirelessly transmitted millimeter-wave signal wave 9 ⁇ is supplied to the millimeter-wave receiver 29a in the room A and the millimeter-wave receiver 29b in the room B, and is down-converted.
  • the signal is separated into a user area signal wave and a broadcast wave at the intermediate frequency stage. Further, the user area signal wave is down-converted, and then independently demodulated in the Lth to fourth demodulation circuits 46 to 49.
  • the demodulated terrestrial analog broadcast wave is output from terminals 50a and 50b as in the first embodiment.
  • the demodulated signal Y is output from terminals 51a and 51b
  • the demodulated signal Pb (Cb) is output from terminals 52a and 52b
  • the demodulated signal Pr (Cr) is output from terminals 53a and 52b.
  • the audio signals are output from terminals 53R and 53L, respectively.
  • the outputs of the terminals 43a and 50a of the millimeter-wave receiver 29a and the outputs of the terminal 44a of the millimeter-wave receiver 29a. are connected to the high-definition TV receiver 184a. Is entered.
  • the outputs of the terminals 43 b and 50 b of the millimeter wave receiver 29 b and the output of the terminal 44 b of the millimeter wave receiver 29 b are input to the high-definition TV receiver 184 b.
  • the outputs of the terminals 51 a, 52 a, and 53 a of the millimeter-wave receiver 29 a are supplied to, for example, a liquid crystal display 92 a having a D terminal, and the terminals 51 b, 52 b, and 52 b of the millimeter-wave receiver 29 b are provided.
  • the output of 53b is supplied to, for example, a DVD 93 having a D terminal.
  • NTSG National Television System
  • the millimeter-wave transmitter 15 and the digital video recorder 91 are connected by a cable for a video component.
  • the millimeter-wave transmitter 15 converts the video component signal to the D terminal side (the video component signals of 21 V, 22 V, and 23 V). Formed by connecting the D terminal to the D terminal). In this case, it becomes possible to connect the digital video recorder and the millimeter-wave transmitter with the D terminal cable.
  • connection between the millimeter-wave receivers 29a and 29b and the high-definition TV can also be established by installing a converter from the video component signal to the D-terminal 55 in the millimeter-wave receiver. It will be possible to connect.
  • terrestrial digital broadcast waves and first and second satellite broadcast waves were used as TV broadcast waves, but cable television (CATV: cable television / community antenna television) was used. Ig No. wave (CATV wave is also available.
  • a frequency converter that once converts the frequency in the 1 GHz to 2 GHz Z band is installed in the millimeter wave transmitter 15, and as shown in Fig. 7, the high frequency side of the down link signal section 73 of the CATV waves In 74, signal waves (USER) in the user area are arranged, and the uplink signal section 72 for CA TV waves is arranged on the lower frequency side of the downlink signal section 73. Then, the signals arranged in this way are configured to convert the (IF signal) into millimeter waves.
  • USR signal waves
  • the millimeter-wave transmitter 15G shown in FIG. 8 includes a TF multiplexing circuit 1C, a millimeter-wave upconverter 4, and a millimeter-wave antenna 3.
  • the multiplexing circuit 1C includes a frequency converter 200 instead of the amplifiers 2a and 2b.
  • Frequency converter 200 includes amplifier 2, frequency mixer 201 and local oscillator 202.
  • the CATV wave signal received at terminal 6 is amplified by amplifier 2.
  • the frequency of the output of the amplifier 2 is converted by the frequency mixer 201 so as to satisfy the relationship shown in FIG.
  • the output of the frequency converter 200, the output of the signal synthesizer 8 and the force signal combiner 9 are combined.
  • the millimeter-wave receiver 29 C shown in Fig. 9 has an antenna 31 and a millimeter-wave downconverter 3
  • Output processing circuit 45 C is c the frequency converter 210 comprises a frequency converter 210 in place of the filter 39 a, 39 b and ⁇ device 56 a, 56 b are filter 39, a frequency mixer 2 1 1, a local oscillator 21 2 and amplifier 56 included.
  • User signal wave distributed by frequency divider 38 Is demodulated by the first to fourth demodulation circuits as described above.
  • Other CATV waves pass through the high-pass filter 39. Then, based on the output of the local oscillator 211, the frequency is converted by the frequency mixer 211.
  • the output of the frequency mixer 211 is amplified by an amplifier 56 and then output to a terminal 43.
  • a TV broadcast wave and the video / audio signal from electronic devices can be wirelessly connected simultaneously and independently in a house. Therefore, the electronic device can be carried between rooms, and a plurality of electronic devices can be used in different places at the same time. Furthermore, since TV broadcast waves and video / audio signals can support multiple channels, multiple electronic devices can have different video / audio information.
  • the intermediate frequency band for satellite broadcasting and the frequency ⁇ for terrestrial broadcasting are frequency-multiplexed with the frequency band in the user region. For this reason, it is not necessary to use a frequency converter in the mouthband of the microphone in the 6 GHz band or 150 GHz band as in the past. As a result, the frequency stability is excellent and the need for doubling is eliminated. As a result, not only can good frequency stability be obtained, but also frequency multiplexing of satellite broadcasting, terrestrial broadcasting, and CATV broadcasting becomes possible. Then, after frequency multiplexing in the IF frequency band, the frequency is up-converted to a millimeter wave band, and wireless communication can be performed. Industrial applicability
  • a plurality of different signal waves can be transmitted and received stably, so that TV broadcast waves and video TV cameras and personal computers can be used indoors and at home.
  • Video and audio signals from such electronic devices can be wirelessly connected simultaneously and independently. Therefore, the electronic device can be carried between rooms, and a plurality of electronic devices can be used in different places at the same time.
  • TV broadcast waves and video / video / ⁇ -voice signals can support multiple channels, so that multiple electronic devices can have different video / audio information.

Description

明細書 無線通信装置、 送信装置および受信装置 技術分野
本発明は、 無線通信装置、 送信装置および受信装置に関し、 特に複数種類の信 号を無線伝送する無線通信装置、 送信装置および受信装置に関するものである。 背景技術
ミリ波帯の信号を送受信するミリ波帯送受信装置の一例として、 「 50GHz 簡昜無線装置の改良 (1 997年電子情報通信学会総合大会 G— 2 - 123, pp. 1 78) 」 (文献 1と記す) に示される 50 GH z帯のビデオトランスミツショ ンシステムがある。
文献 1によるミリ波帯送受信装置は、 図 1 OAに示す送信機 1 100と図 1 0 Bに示す受信機 1 1 50とを備える。 送信機 1 ].00および受信機 1 150は、 次に説明するようにベースバンド部 (屋内部) と無線部 (屋外部) とで構成され る。
送信機 1 1 00は、 変調器 1 103 (図中記号 "音声用 MOD" ) 、 バンドパ スフィルタ 1 104 (図中記号 " F I L" ) 、 ならびにアナログ Zディジタル (A/D) 変換器 1109しおよび 1 109 Rを含むベースバンド部と、 FM変 調器 1 1 0 5、 2通悟器 1 10 7 a (図中記号 "X 2" ) 、 4遲倍器 1 10 7 b (図中記号、 "X 4" ) 、 増幅器 1 108およびアンテナ 1 106を含む無線部 とを備える。
送信機 1 100におけるべ一スバンド部は、 映像信号と音声信号とを多重化す る。 音声信号入力端子 L 1◦ 2 Lおよび 1 102 Rから入力される音声ステレオ 信号 (R · L) は、 アナログ ディジタル変換器 1 109 Lおよび 1 109 Rに よりディジタル信号に変換された後、 変調器 1 103により変調される。 変調器 1103の出力は、 バンドパスフィルタ 1 104を介して、 映像信号入力端子 1 10 1から受ける映像信号と合成される。 これにより、 バースバンドで] チャン ネルの映像伝送信号が生成される。
生成された映像伝送信号は、 無線部に含まれる 6 GHz帯の FM変調器 1 1 0 5 (F : Frequency Modulation) によって変調される。 FM変調器 i 丄 0 5の 出力は、 2通倍器 1 1 ◦ 7 aおよび 4遁倍器 1 1 0 7 bを介して 8通倍に周波数 変調され、 さらに増幅器 1 1 ◦ 8を介して增幅される。 そして、 アンテナ 1 ]. 0 6により、 生成されたミリ波の映像伝送信号が放射されることになる。
受信機 1 1 50は、 局部発振器 1 1 5 1、 ダウンコンバータ 1 1 5 2、 アンテ ナ 1 ]. 5 6、 および FM復調器] 1 5 3 (図中記号 "DEM" ) を含む無線部と、 フィルタおよび分配器 1 1 54 (図中記号 "F I じ' ) 、 音声復調器 1 1 5 5 (図中記号 "音声用 DEM" ) 、 ならびにディジタルノアナログ (DZA) 変換 器 1 1 5 7 Lおよび 1 1 5 7 Rを含むベースバンド部とを備える。
ダウンコンバータ 1 1 5 2は、 5 0 GH z帯の局部発振器;!, 1 5 ].の出力に基 づき、 受信した映像伝送信号をダウンコンバートする。 ダウンコンバータ: 1. 1 5 2から出力される I F信号 (中間周波数信号) は、 FM復調器 1 1 5 3により復 調きれる。 FM復調器 1 1 5 3からべしスバンド信号が出力される。 生成された ベースバンド信号は、 フィルタ 1 1 54を介して音声信号と映像信号とに解重さ れる。 音声信号は、 復調器 1 1 5 5により復調される。 これにより、 音声ステレ ォ信号 (R ' L) が生成される。 映像信号および音声ステレオ信号は、 映像端子 1 1 6 0および音声端子 1 1 6 1 L, 1 1 6 1 Rを有するディスプレイ装置に供 給さ る。
ミリ波裩の信号を送信するミリ波锆送信装匱の他の一例として、 「60- GHz- Band Ultracompact Transmitter for HDTV ( 1 9 9 7年 I E E E MTT— S ダイジェスト, p p 1 143 _ 1 146) J (文献 2と記す) に示される 6 0 G H z帯対応の HDTV (High Definition TV) 用トランスミッタがある。 図 1 1 および図 1 2を用いて、 文献 2による送信機 1 200について説明する。
文献 2による送信機 1 200は、 3種類のミリ波送信機 2 1 0、 1 2 20お よび 1 230を備える。 送信機 1 200は、 映像コンポーネント信号 (Y、 P b、 P r ) を入力信号として受ける。 輝度信号 Yは、 入力端子 1 2 1 1 を介してミリ 波送信機 1 2 1 0に、 色差信号 P bは、 端子 1 2 2 1を介してミリ波送信機 1 2 20に、 色差信号 P rは、 端子 123 1を介してミリ波送信機 1230に入力さ れる。
ミリ波送信機 1.210は、 ビデオアンプ Ί 2 1 2、 温度捕償器 121 7、 F M 変調器 1 21 3、 4通倍器 121 4 (図中記号 "X 4" ) 、 パワーアンプ 1 2 1 5、 およびアンテナ 1 216を備える。 ミリ波送信機; 1 220は、 ビデオアンプ
1222、 温度補俊器 1 227、 FM変調器 ].223、 4通倍器 1.224、 ノ、。ヮ ^"アンプ 1225、 およびアンテナ:! 226を備える。 ミリ波送信機 1 230は、 ビデオアンプ 1232、 温度補償器 1237、 FM変調器 1233、 4遞倍器 1
234、 パワーアンプ 1235、 およびアンテナ 1236を備える。
ミリ波送信機 12 10, 1 220, 1230のそれぞれは、 ミリ波帯で変調さ れた無線信号を生成し、 アンテナ 1216, 1226, 1 236から生成した無 線信号を放射し、 かつ放射されだ信号 Y, P b , P rが空間上で多重化されるよ うに構成されている。
より具体的には、 ミリ波送信機 1210, 1220, 1230のそれぞれは、 入力されたビデオコンポーネント信号をビデオアンプ 1 21 2, 1222, 1 2 23で適当なレベルまで増幅する。 ビデオアンプ 1212, 1222, 1223 の出力は、 FM変調器 121 3, 1223, 1233に入力され、 FM変調され る。 FM変調された信号は、 4通倍器 1214, 1224, ] 234により周波 数が 4遞倍され、 かつ FM変調の周波数偏移と変調周波数とが拡大される。
ミリ波上昇した各変調信号は、 パワーアンプ 1 215, .1 225, ].235で
±#幅され、 アンテナ 1 216 , 1 226, 1 236から放射される。 そして、 空 間上でミリ波帯変調信号 Υ, P b , P rは 1つの映像信号として合成される ところで、 文献 1によるシステムにおいては、 1つの送受信機で伝送可能な情 報は、 映像や音声を含めて 1チャンネルだけである。 したがって、 屋内 .家庭内 で複数の電子機器からの映像信号と放送波信号等とを無線接続できない。 つまり、 屋内 ' 家庭内で T V放送波 (丁 V : テレビジョ ン) と、 ビデオ、 DVD (digital versatile disc) 、 テレビカメラ、 バソコン (ハ °—ソナルコンビユー タ) 等の電子機器からの映像■音声信号とを同時にかつ独立に無線接続すること ができない。 さらに、 当該電子機器を部屋間で持ち運びでき、 かつ同時に異なつ た場所で複数台使用することができなかった。
文献 2による送信機 1 2◦ 0は、 ノヽィビジョン用の映像コンポーネン卜信号を 送信する。 この送信機 1 2 0 0により、 N T S C方式の映像 3チャンネルを送信 することも可能である。 し力 しながら、 送信機 1 2 0 0は、 種類の送信部を必 要とする。 このように 3種類の送信部を使用する構成では、 F M変調器周波数の 安定性が各々変動してしまうと受信側で安定した復調ができない。 そこで、 極め て安定した周波数変調が必要とされる。
しかしながら、 送信機 1 2 0 0の構成では、 映像信号に関しては、 広帯域の F M変調器が必要であり、 周波数を偏移させることが必要である。 このため、 安定 性の髙ぃ発振器を使用することができない。
送信機 1 2 0 0では、 広帯域の F M変調用温度補償器 1 2 1 7 , 1 2 2 7, 1 2 3 7を備えているが、 基本的には 1 5 GH z帯の誘電体共振器で周波数を安定 させており、 安定発振は困難である。
さらには、 変調波はミリ波無線周波数とするため、 周波数が 4通倍されている。 その結果、 変調波の周波数変動は 4倍になってしまうので、 ミリ波帯の無線周波 数帯では周波数安定性がさらに悪化する。 加えて機械的な変動や電源電圧変動に 弱く、 部屋間で持ち運んで使用することは困難である。
そこで、 本発明はかかる問題を解决するためになされたものであり、 その目的 は、 複数の異なった信号波を安定して送受信することができるミリ波対応の無線 通信装置、 送信装置および受信装置を提供することにある。 発明の開示
この発明のある局面による無線通信装置は、 地上波放送波、 衛星放送波または ケ一ブルテレビ放送波を含む放送波と放送波と異なるユーザ専用信号波とを周波 数軸上で互いに異なる位置に配置した多重波をミリ波送信する構成を有する送信 機と、 送信機の出力を受けて、 放送波とユーザ専用信号波とを周波数下降変換す る構成を有する受信機とを備える。
好ましくは、 送信機は、 放送波とユーザ専用信号波とを配置に従って多電化す るための多重化回路と、 多重化回路の出力する多重波をミリ波にヒ昇変換するァ ップコンバータとを含み、 受信機は、 送信機の出力を受ける受信部と、 受信部で 受ける多重波を周波数下降変換するダウンコンバータとを含む。
特に、 ユ^"ザ専用信号波は、 テレビ受信機、 ビデオレコーダ、 ビデオカメラお よびパ ソナルコンピュータを含む少なくとも 1以上の電子機器からの映像信 号 '音声信号を含む。 ユーザ専用信号波は、 中間周波数の段階にある衛星放送波 または (および) 地上から伝播される地上波放送波そのものと多重化され、 地.ヒ 波放送波の周波数帯と衛星放送波の周波数帯との間に配置される。 なお、 ユーザ 専用信号波は、 映像信号■音声信号が複数の変調手段で変調された信号波を構成 するものであってもよい。
好ましくは、 多重化回路は、 ケーブルテレビ放送波を中間周波数に変換する変 換回路と、 中間周波数のケーブルテレビ放送波とユーザ専用信号波とを多重化す るための回路とを含む。
好ましくは、 受信機は、 ダウンコンバータの出力を、 放送波とュ"ザ専用信号 波とに分配する分配器と、 分配器の出力を受けてユーザ専用信号波を復調する復 調器とをさらに含む。
送信機は、 ユーザ専用信号波の周波数領域を変更する機能を有し、 受信機は、 ユーザ専用信号波の周波数禅に応じて、 ユーザ専用信号波の使用チャンネルを設 定する機能を有する。
特に、 ュ ザ専用信号波として、 映像コンポ ネント信号と音声信号とが入力 され、 多重化回路は、 映像コンポーネント信号と前記音声信号とを変調する変調 手段と変調後に多重化する回路とを含む。
特に、 ユーザ専用信号波として、 ハイビジョン用の D端子映像信号と音声信号 とが入力され、 多重化回路は、 D端子映像信号と音声信号とを変調する変調手段 と変調後に多重化する回路とを含む。
この発明のさらなる局面による送信装置は、 地上波放送波、 衛星放送波または ケ ブルテレビ放送波を含む放送波と放送波と異なるユーザ専用信号波とを周波 数軸上で互いに異なる位置に配置するように多— S化するための多重化回路と、 多 重化回路の出力する多重波をミリ波に上昇変換するアップコンバータとを備える。 この発明のさらなる局面による受信装置は、 地上波放送波、 衛星放送波または ケーブルテレビ放送波を含む放送波と放送波と異なるュ一ザ専用信号波とを周波 数軸上で互いに異なる位置に配置した多重波をミリ波送信する構成を有する送信 装置に対応するミリ波受信する受信装置であって、 多重波を受信する受信部と、 放送波と前記ユーザ専用信号波とを周波数下降変換するダゥンコンバータと、 ダ ゥンコンバ^タの出力を、 前記放送波と前記ユ^"ザ専用信号波とに分配する分配 器と、 分配器の出力を受けて前記ュ"ザ専用信号波を復調する復調器とを備える。 上記無線通信装置、 送信装置および受信装置によれば、 屋内 '家庭内で、 T V 放送波とビデオ ·テレビカメラ ' バソコン等の電子機器からの映像 '音声信号と を同時にかつ独立に無線接続できる。 このため、 当該電子機器を部屋閒を持ち運 びでき、 かつ同時に異なった場所で複数台使用することが可能になる。 さらに、 T V放送波およびビデオ映像■音声信号は多チャンネルに対応できるため、 複数 台の電子機器はそれぞれ異なった映像■音声情報を有することが可'能になる。 さらに、 上記無線通信装置、 送信装置および受信装置によれば、 衛星放送の中 間周波数帯および地上波放送の周波数帯でユーザ領域の周波数帯と周波数多重化 している。 このため、 7 0 O Mti z〜 l G H z付近の F M変調器で対応すること ができるため、 周波数安定性に優れる。 この結果、 良好な周波数安定性を得るこ とができるのみならず、 衛星放送、 地上波放送、 C A T V放送とも周波数多重化 することが可能になる。 図面の簡単な説明
図 1は、 第 1の実施の形態によるミリ波送信機 1 5の構成の概要を示す図であ る。
図 2は、 第 1の実施の形態によるミリ波受信機 2 9の構成の概要を示す図であ る。
図 3 A〜図 3 Cは、 第 1の実施の形態による信号波の配列の一例を示す図であ る。
図 4 A〜図 4 Cは、 第 1の実施の形態による信号波の配列の一例を示す図であ る。
図 5は、 第 1の実施の形態によるミリ波送受信機の使用例を示す図である。 図 6は、 第 2の実施の形態によるミリ波送受信機の使用例を示す図である。 図 7は、 第 2の実施の形態による CATV波の配列の一例を示す図である。 図 8は、 第 2の実施の形態による CATV波対応のミリ波送信機 15 Cの構成 の概要を示す図である。
図 9は、 第 2の実施の形態による CATV波対応のミリ波受信機 29 Cの構成 の概要を示す図である。
図 10A、 図 10Bは、 文献 1によるミリ波帯送受信装置の構成の概要を示す 図である。
図 11は、 文献 2によるミリ波帯送信装置の構成の概要を示す図である。
図 12は、 図 1 1の送信機の概観を示す図である。 発明を実施するための最良の形態
以下、 本発明の実施の形態による無線通信装置について、 図を用いて説明する。 図中、 同一部分または相当部分には同一記号を付し、 その説明を省略する。
[第 1の実施の形態]
第 1の実施の形態による無線通信装置について説明する。 第 1の実施の形態に よる無線通信装置は、 図 1に示されるミリ波送信機 1.5と図 2に示されるミリ波 受信機 29とを備える。
ミリ波送信機 15について説明する。 ミリ波送信機 1 5は、 I F多重化回路 1、 ミリ波アップコンバータ 4、 およびミリ波アンテナ 3を備える。
I F多重化回路:!.について説明する。 接続端子 6, 5のそれぞれには、 第 1お よび第 2の TV放送波 (TV :テレビジョン) が入力される。 なお、 第 1および 第 2の TV放送波には、 衛星放送の中間周波数波が含まれている。 第 ΐおよび第 2の TV放送波のそれぞれは、 増幅器 2 a , 2 bによりレベル調整された'後、 信 号結合器 9により後述する信号合成器 8の出力と結合される D 信号結合器 9によ り、 周波数多重波が生成きれる。
-方、 ステレオ旮声信号入力端子 20 L, 20 Rから音声信号が入力され、 映 像入力端子 2 OVからビデオ映像信号が入力される。 入力端子 20Lで受ける音 声信号を 20 L、 入力端子 2 ORで受ける音声信号を 2 OR、 入力端子 20 Vで 受ける映像信号を 20 Vと記す。
ステレオ音声信号入力端子 21 L, 21 Rから音声信号が入力され、 映像入力 端子 21 Vからビデオ映像信号が入力される。 入力端子 2 1 Lで受ける音声信号 を 21 L、 入力端子 21 Rで受ける音声信号を 21 R、 入力端子 2 IVで受ける 映像信号を 2 I Vと記す。
ステレオ音声信号入力端子 22 L, 22Rから音声信号が入力され、 映像入力 端子 22 Vからビデオ映像信号が入力される。 入力端子 22 Lで受ける音声信号 を 22 L、 入力端子 22 Rで受ける音声信号を 22 R、 入力端子 22 Vで受ける 映像信号を 22 Vと記す。
さらに、 ステレオ音声信号入力端子 23 L, 23 Rから音声信号が入力され、 映像入力端子 23 Vからビデオ映像信号が入力される。 入力端子 23 Lで受ける 音声信号を 23 L、 入力端子 23 Rで受ける音声信号を 23 R、 入力端子 23 V で受ける映像信号を 23 Vと記す。
音声信号 2 OR, 20 Lと映像信号 2 OVとに基づき、 第 1の変調回路 121 により、 マイクロ波領域で第 1の変調波信号が形成される。 音声信号 21R, 2 ]. Lと映像信号 21 Vとに基づき、 第 2の変調回路 122により、 マイクロ波領 域で第 2の変調波信号が形成される。 音声信号 22R, 22 Lと映像信号 22V とに基づき、 第 3の変調回路 123により、 マイクロ波領域で第 3の変調波信号 が形成される。 音声信号 23 R, 23 Lと映像信号 23 Vとに基づき、 第 4の変 調回路 124により、 マイクロ波領域で第 4の変調波信号が形成される。
第 1の変調回路 .1 21の具体例を述べる。 音声信号 20 L, 2 ORを受けるス テレオモジユレ一タによりステレオコンポジッ ト信号が生成される。 そして、 生 成されたステレオコンポジット信号は FM変調きれる。 その後、 映像信号 20 V と多重化され、 映像■音声多重信号が生成される。 映像■音声多重信号は、 マイ クロ波領域で FM変調器により FM変調される。 この結果、 第 1の変調信号波が 生成される。
なお、 旮声信号や映像信号は、 Aノ D (アナログノディジタル) 変換および P CMエンコード (pulse code modulation) され、 位相変調方式等によるディジ 夕ル変調されるように構成してもよく、 または VHF帯 (very high frequency) で変調をかけて、 マイクロ波帯へアップコンバートされるように構 成してもよレ、。
第 2の変調回路 1 22、 第 3の変調回路 123および第 4の変調回路 1 24の それぞれは、 第 1の変調回路 1 2 1 と同様の構成および機能を有する。
第 1〜第 4の変調信号波は、 信号合成器 8で合成された後、 信号結合器 9に入 力される。 信号結合器 9により、 第 1および第 2の TV放送波と第 1〜第 4の变 調信号波とが結合される。 この結果、 周波数軸上に多重波が生成される。
ディジタル'放送のハイビジョン信号を取り扱うときには、 0端子25, 55を 用いる。. D端子は、 ディジタル放送のハイビジョン信号の入出力のための端子で あり、 14ピンで構成されている。 D端子の信号は情報量が多く帯域幅が広いた め、 輝度信号 Y、 色差信号 P b (Cb) , P r (C r) は、 個々独立に伝送され る。 D端子には、 受信した放送の走査線数、 スペク トル比を切り眷える制御信号 用の端子も含まれている。 図においては、 D端子 25は、 端子 2 I V, 22 V, 23 Vの信号線と接続され、 D端子 55は、 端子 51 V, 52 V, 53Vの信号 線と接続されている。
D端子は、 これらの信号をまとめて並列のケーブルで送るためのィンターフェ ースとなる。 D端子の使用例については、 第 2の実施の形態において説明する。 当該多重波を受けるミリ波アップコンパ^ ~タ 4について説明する。 ミリ波アツ プコンパ」タ 4は、 I Fアンプ 10、 局部発振器 1 '1、 周波数混合器 (アップコ ンバ一タ) 1 2、 フィルタ 1 3、 およびミリ波増幅器 14を備える。
I Fアンプ 10は、 多重波を受ける。 I Fアンプ 10の出力は、 局部発振器; L 1の出力 (fLOl) に墓づき周波数混合器 12においてアップコンバートされる。 周波数混合器 12の出力は、 フィルタ 1 3に入力された後、 ミリ波増幅器 14で 増幅される。 ミリ波増幅器 14の出力は、 ミリ波アンテナ 3から放射される u 多重波は、 図 3 A〜図 3 Cに示すように、 UHF帯領域 (ultra high frequency) からマイクロ波領域に周波数配列される。 以下、 配列方法について へる。
図 3 Aに示すように、 周波数の低いほうから、 地上波放送波 (UHF) の周波 数帯 6 1、 ュ一ザ領域 62、 第 1の衛星放送波 (B S) の周波数^ 63、 および 第 2 の衛星放送波 (C S— R , C S - L ) の周波数悟- 6 4, 6 5 の順に配列する。 なお、 周波数帯と信号とを同一記号を用いて表す。
ここで、 ユーザ領域とは、 地上波デジタル放送波、 衛星放送波以外の信号であ つて、 個人情報、 たとえば、 ビデオカメラの映像信号を変調した信号 (ユ ザ領 域信号波) 等の周波数領城を意味する。 また、 地上波放送波の無線周波数は、 地 上から伝播される際の放送周波数そのものであり、 第 1の衛星放送波はパラボラ アンテナに取付けられている低雑音ブロックコンバータ (L N B ) から I F (中 間) 周波数へ周波数変換された I F周波数信号そのものであり、 第 2の衛星放送 波も同様に低雑音プロックコンバータにより周波数変換された I F周波数信号そ のものである。
ただし、 パラボラアンテナ (通常、 低雑音ブロックコンバータが装荷されてい る) の種類によっては、 第 2の衛星放送波が水平 Z垂直偏波の両信号、 水平もし くは垂直偏波のどちらかの成分が周波数変換されて周波数軸上に再配置されてい てもよい。 同様に、 右 teZ左旋偏波の両信号を使用している場合には、 右旋もし くは左旋のどちらかの成分が周波数変換されて周波数軸上に再配置されていても よい。
第 1〜第 4 の変調回路 1 2 1〜1 2 4を用いて、 ュ ザ領域 6 2を地上波放送 波の周波数帯 6 1と衛星放送波の中間周波数帯 6 3との間に配置する。 より詳し くは、 第 1〜第 4の変調回路の被変調信号 (キャリア) の周波数を、 ユ ザ領域 6 2が地上波放送波の周波数帯 6 1と衛星放送波の中間周波数帯 6 3との間に配 置されるように决定する。 これにより、 ミリ波帯にアップコ ンパ トした際に、 周波数帯に不要な隙間がなくなるため周波数を効率的に使用することが可能にな る。
屋内■家庭内での使い方によっては、 地上波放送波 6 1、 ユーザ領域信号波 6 2、 第 1の衛星放送波 6 3、 および第 2の偉 ϊ星放送波 6 4 , 6 5のすベてを使用 しなレ、場合もある。 各 T V放送波のミリ波帯の周波数を固定した; ^鶴で、 下記に 示すように配列することも可能である。
( i ) 地上波放送波 (U H Fバンド) +ユーザ領域信号波 +第 1の衛星放送波 + 第 2の衛星放送波、 ( i i ) ユーザ領域信号波 +第 1の衛星放送波 +第 2の衛星 放送波、 ( i i i ) 地上波放送波 (UHFバンド) ·ユーザ領域信号波 +第丄の 衛星放送波、 ( i V ) ユーザ領域信号波 +第 1の衛星放送波、 (V ) 地上波放送 波 (UHFバンド) + ザ領域信号波
図 3 Bは、 地上波放送波 (UHF) 61、 ユーザ領域信号波 62、 第 1の衛星 放送波 63、 および第2の衛星放送波 64の関係を、 図3 Cは、 地上波放送波
(UHF) 6 1、 ユーザ領域信号波 62、 第 1の衛星放送波 63の関係を示して いる。 図 3 B、 図 3 Cいずれにおいても、 ユ^"ザ領域 62は、 地上波放送波の周 波数帯 6 1と衛星放送波の中間周波数帯 63との間に配置される。
図 4 Aは、 ユーザ領域信号波 6 2、 第 1の衛星放送波 63、 および第 2の衛星 放送波 64 , 65の関係を、 図 4 Bは、 ユ^"ザ領域信号波 62、 第 1の衛星放送 波 63、 および第 2の衛星放送波 64の関係を、 図 4 Cは、 ュ ザ領域信号波 6 2と第 1の衛星放送波 63との関係を示している。
望ましくは、 送受信機間で使用する周波数配列が互いに同じであることが望ま しいが、 ( i ) のタイプの送信機を使用して、 ( i i ) (V ) のいずれのタイ プの受信機をも使用することは可能である u また、 ユーザ領域信号波は、 使用す る機種間で互換性があれば使レ、勝手のよいものとなる。
ここで、 アナログ地上波放送波に関しては、 受信地域によっては映像特性が劣 悪な環境-の場合も想定され、 ミリ波帯での無線伝送ではアナログ映像の品質の劣 化が顕荖となり伝送距離が +分に確保できない可能性が考えられる。 このような 場合には、 アナログ地上波放送波の伝送のためにユーザ領域を使用する。 具体的 には、 T Vまたはビデオから出力される地上波アナ口グ钕送のビデオ信号出力を 当該送信機の映像端子/音声端子 (たとえば、 図 1における端子 20 V 20 L, 20 R、 端子 21V, 21 L 21 R、 端子 22V, 22 L, 22R、 端子 23 V 23 L, 23 R) に入力する。 これにより、 アナログ地上波放送波は 4チャンネ ルまで無線伝送することが可能になる。
ユーザ領域信号波として、 ビデオカメラやビデオレコーダ等の個人情報を伝送 するにあたり、 ュ」ザ領域信号波に秘話性をもたせることが必要になる場合もあ る。
このため、 送信機側については、 周波数を初期製品の段階である周波数範囲お よびある周波数間隔でランダムに割当て、 受信側については、 最初に使用する際 にユーザ領域信号用のユーザチャンネルを設定するように送受信機を構成する。 具体的には、 ミリ波送信機] 5側については、 ュ一ザ領域を 1 O MH z 〜 1 0 0 MH zにシフトできるような構成とし、 あらかじめユ ザ領域の周波数を数タ ィプ用意しておく。 ミリ波受信機 2 9側はユーザ領域で当該シフトを考慮して周 波数合わせを行えるように構成し、 使用チヤンネルが初期設定できるような構成 であるようにすることが望ましい。
そして、 使用を開始した後についても、 送信側は周波数を可変とし、 送受信側 で周波数合わせを行えるようにする。 より具体的には、 ミリ波送信機 1 5側 ' ミ リ波受信機 2 9側も周波数変換機能を有し、 送信側と受信側とで混信が起こらな いように周波数領域での周波数合わせを行い、 使用チャンネルを設定する機能を 備えることが望ましい。
次に、 図 2に示されるミリ波受信機 2 9について説明する。 ミリ波受信機 2 9 は、 アンテナ 3 1、 ミリ波ダウンコンバータ 3 2、 および出力処理回路 = 5を備 える。
ミリ波ダウンコンパ^"タ 3 2について説明する。 ミリ波ダウンコンバータ 3 2 は、 低雑音増幅器 3 4、 フィルタ 3 5、 周波数混合器 3 6、 増幅器 3 7および局 部発振器 4 0を含む。
アンテナ 3 1により受信された受信波は、 低雑音増幅器 3 4で増幅される。 フ ィルタ 3 5は、 低雑音増幅器 3 4の出力波のうち所望の信号波のみを通過きせる。 フィルタ 3 5の出力波は、 局部発振器 4 0の出力(fL0 2 ) に基づき周波数混合器 3 6において中間周波数帯へダウンコンバートきれる。 ここで、 局部発振器 4 0 の周波数として、 送信側のミリ波局部発¾ 1 1と同じ周波数を用いることによ り、 周波数混合器 3 6の出力する多重波信号は、 送信側の信号結合器 9の出力信 号と周波数成分が同じになる。 周波数混合器 3 6の出力は、 増幅器 3 7により增 幅さ る。
次に、 出力処理回路 4 5について説明する。 増幅器 3 7の出力である多重信号 波は、 周波数分配器 3 8により 3分配される (第 1信号波、 第 2信号波、 第 3信 号波と称す) 。 周波数分配器 3 8の出力する第 1信 波、 第 2信号波、 第 3信号 波のそれぞれは、 所望の信号のみが帯域通過するフィルタ 39 a , 39 b, 39 cで滤波される。
フィルタ 39 a , 39 bを通過した丁 V放送波 (第 1信号波、 第 2信号波) は、 増幅器 56 a, 56 bでレベル調整される。 増幅器 56 aの出力を受ける出力端 子 43からは, 衛星放送波の中間周波数信号が出力される。 増幅器 56 bの出力 を受ける出力端子 44からは, UHF地上波放送波の信号が出力される。
フィルタ 39 cを通過したユーザ領域信号波 (第 3信号波) は、 I F帯局部発 振器 41の出力(fL03) に基づき周波数混合器 42でダウンコンバートされた後、 4分酉己される。
周波数混合器 42から出力される 4つの信号波は、 第 1の復調回路 46、 第 2 の復調回路 47、 第 3の復調回路 48、 第 4の復調回路 49にそれぞれ供給され る。
第 1の復調回路 46により、 周波数混合器 42から出力される 4つの信号波の うちの 1つが復調される。 これにより、 映像信号 5 OVが出力端子 50Vから、 音声信号 50 R, 50 Lが出力端子 50R, 50 Lからそれぞれ出力される。 第 2の復調回路 47により、 周波数混合器 42から出力される 4つの信号波のうち の 1つが復調される。 これにより、 映像信号 51 Vが出力端子 51 Vから、 音声 信号 51R, 5 1 Lが出力端子 51R, 51 Lからそれぞれ出力される。 第 3の 復調回路 48により、 周波数混合器 42から出力される 4つの信号波のうちの 1 つが復調される。 これにより、 映像信号 52 Vが出力端子 52 Vから、 音声信号 52 R, 52 Lが出力端子 52R, 52 Lからそれぞれ出力される。 さらに、 第 4の復調回路 49により、 周波数混合器 42から出力される 4つの信号波のうち の 1つが復調される。 これにより、 映像信号 53 Vが出力端子 53 Vから、 音声 信号 53R, 53 Lが出力端子 53 R, 53 Lからそれぞれ出力される。
第 1の実施の形態によるミリ波送信機 15およびミリ波受信機 29の使用例を、 図 5を用いて説明する D 図 5では、 1台のミリ波送信機 15と 1台のミリ波受信 機 29 aを家庭内の部屋 Aに、 1台のミリ波受信機 29 bを部屋 Aと異なる部屋 Bに配置した例を示している。 ミリ波受信機 29 a , 29 bのそれぞれの構成は、 ミリ波受信機 29と同じである。 第 1の衛星放送波および第 2の衛星放送波の中間周波数信号の混合波が入力端 子 6より、 地上ディジタル放送波 (UHF) は入力端子 5より、 ミリ波送信機 1 5に入力される。 地ヒ波アナ口グ放送波は、 T V装置■ ビデオ装置 80で一 Bビ デ才信号 (ベースバンド信号波) に変換される u 丁 装¾ ' ビデオ装置 80から 当該ビデオ信号がユーザ領域信号波として、 第 1の入力端子 20からミリ波送信 機 1 5に入力される。
また、 第 2のビデオ装置 8 1から出力される映像 ·音声信号は、 第 2の入力端 子 21からミリ波送信機 15に入力される。
また、 ビデオカメラ 82から出力される映像 '音声信号は、 第 3の入力端子 2 2からミリ波送信機 15に入力される。
さらに、 DVD 83から出力きれる映像 '音声信号は、 第 4の入力端子 23か らミリ波送信機 15に入力される。
入力端子 20は、 図 1に示す端子 20 L, 20 R, 20Vを、 入力端子 21は、 端子 21 L, 21 R, 21 Vを、 入力端子 22は、 図 1に示す端子 22 L, 22 R, 22 Vを、 入力端子 23は、 図 1に示す端子 23 L, 23 R, 23 Vをそれ ぞれ含んでいる。
上述したように、 これらの放送波信号波とユーザ領域信号波とは多重化され I F多重信号波となった後、 ミリ波帯信号にアップコンパ トされて無線伝送され る。
無線送信されたミリ波信号波 90は、 部屋 Aのミリ波受信機 29 a、 部屋 Bの ミリ波受信機 29 bにそれぞれ供給される。 部屋 Aでは、 ミリ波受信機 29 aの 出力端子 44 aから第 1および第 2の衛星放送波の中間周波数信号波が出力され、 衛星放送用チューナを介して第 1の TV受信装置 84 aに入力される。 また、 ミ リ波受信機 29 aの出力端子 43 aから UHF帯の地上波ディジタル信号波が出 力され、 第 1の TV受信装置 84 aに入力される。
ュ一ザ領域信 ^波として伝送された地上波アナ口グ放送波は、 ミリ波受信機 2 9 aの映像 ·音声端子 50 aから出力され、 第 1の丁 V受信装置 84 aに入力さ れる。 ュ ^ザ領域信 ^波として伝送された第 2のビデオ装置 8 1の映像 ·音声信 ^は、 ミリ波受信機 29 aの映像 ·音声端子 51 aから出力され、 映像■音声端 子を有するバソコン 8 5 aに入力される。
ユーザ領域信号波として伝送されたビデオ力メラ 8 2の映像 '音声信号は、 ミ リ波受信機 2 9 aの映像 '音声端子 5 2 aカゝら出力され、 液晶ディスプレイ 8 6 a 入力される。 ユーザ領域信号波として伝送された DVD 8 3の映像 ·音声信 号は、 ミ リ波受信機 2 9 aの映像■音声端子 5 3 aから出力され、 ビデオ力メラ
8 7 aへ入力される。
同様に、 部屋 Bにおいては、 ミリ波受信機 2 9 bの出力端子 44 bから第 1お よび第 2の衛星放送波の中間周波数信号波が出力され、 衛星放送用チューナを介 して第 2の TV受信装置 84 bに入力される。 また、 ミリ波受信機 2 9 bの出力 端子 4 3 bから UHF帯の地上はディジタル信号波が出力され、 第 Lの TV受信 装置 8 4 bに入力される。
ザ領域信号波として伝送された地上波アナログ放送波は、 ミリ波受信機 2
9 bの映像 ·音声端子 5 0 bから出力され、 第 2の TV受信装置 8 4 bに入力さ れる。 ユーザ領域信号波として伝送された第 2のビデオ装置 8 1の映像 ·音声信 号は、 ミリ波受信機 2 9 bの映像 ·音声端子 5 1 bから出力され、 映像 .音声端 子を有するパソコン 8 5 bに入力される。
ユーザ領域信号波として伝送されたビデオ力メラ 8 2の映像 ·音声信号は、 ミ リ波受信機 2 9 bの映像■音声端子 5 2 bから出力され、 液晶ディスプレイ 8 6 b 入力される。 ユーザ領域信号波として伝送された DVD 8 3の映像■音声信 号は、 ミリ波受信機 2 9 bの映像■音声端子 5 3 bから出力され、 ビデオカメラ
8 7 b 入力される。
なお、 端子 4 3 a , 4 3 bは、 図 2における端子 43に、 端子 44 a , 4 4 b は、 図 2における端子 44にそれぞれ対応している。 また、 端子 5 0 a 5 0 b は、 図 2における端子 5 ◦ V, 5 0 L, 5 O Rを、 端子 5 l a , 5 1 bは、 図 2 における端子 5 I V, 5 1 L, 5 11¾を、 端子5 2 , 5 2 bは、 図 2における 端子 5 2 V, 5 2 L, 5 2 Rを、 端子 5 3 a, 5 3 bは、 図 2における端子 5 3
V 5 3 L, 5 3 Rをそれぞれ含んでいる。
ミリ波伝送された放送波 (UHF地上ディジタル放送波、 第 1の衛星放送波、 第 2の衛星放送波) は、 第 1の TV受信装置 8 4 a、 第 2の TV受信装置 8 4 b でそれぞれ選局される。 また、 ュ ザ領域を用いて伝送される信号波 (電子機器 の信号) は、 再生のための対応するデバイス (部屋 Aでは、 デバイス 8 5 a , 8 6 aまたは 8 7 aに、 部屋 Bでは、 デバイス 8 5 b, 8 6 bまたは 8 7 b) に供 糸合される。
このように構成することにより、 放送波と放送波以外の電子機器からの信号波 とを同時かつ独立に無線接続することができる。 また、 TV放送波およびビデオ 映像■音声信号は多チャンネルに対応できる。
[第 2の実施の形態]
第 2の実施の形態による無線通信装置について説明する。 第 2の実施の形態に よる無線通信装置は、 基本構成として上述したミリ波送信機 1 5およびミリ波受 信機 2 9を有する。
第 2の実施の形態による無線通信装置の使用例について、 図 6を用いて説明す る。 図 6では、 1台のミリ波送信機 1 5と 1台のミリ波受信機 2 9 aを家庭内の 部屋 Aに、 1台のミリ波受信機 2 9 bを部屋 Aと異なる部屋 Bに配置した例を示 している。 第 2の実施の形態では、 第 2のビデオ装置 8 1、 ビデオカメラ 8 2、 D VD 8 3に代わり、 映像コンポーネント信号を出力するディジタルビデオレコ —ダ 9 1を用いた例を示している。
第 2の実施の形態においては、 ユーザ領域信号波を受ける 4つの端子のうち 3 端子 2 1, 2 2, 2 3を用いて映像コンポーネント信号を伝送する。 映像コンポ 一ネント信号は、 輝度信号 Y、 色差信号: P b (Cb) , P r (C r ) で構成され る。 当該輝度信号 Y、 色差信号 P b, P rを、 端子 (変調器) 2 1, 2 2, 2 3 を介してミリ波送信機 1 5に含まれる第 2〜第 4の変調回路 1 2 2, 1 2 3, 1
24にそれぞれ独立して入力する。 そして、 3つの信号を変調回路 1 2 2, 1 2
3, 1 24を用いて独立に変調する。
変調された信号を信号合成器 8で合成、 信号結合器 9により端子 5, 6で受け る放送波と変調信号波とが結合される。 信号結合器 9により周波数多虽化きれ I F多重波が生成された後、 ミリ波アップコンバータ 4で I F多重波がミリ波帯へ アップコンパ^ ~トされる。 そして、 ミリ波無線伝送が行われる。
なお、 映像コンポ ネント信号に対 する音声ステレオ信号 (R, L) は、 上 記 3端子 2 1 L, 21 R、 22 L, 22R、 23 L, 23 Rのどの音声端子に入 力されてもよい。 望ましくは、 伝送帯域の狭い色差信号 P r対応の端子 23に含 まれる音声端子 23 Rおよび 23 Lに入力されるのが好ましい。
無線送信されたミリ波信号波 9◦は、 部屋 Aのミリ波受信機 29 a、 部屋 Bの ミリ波受信機 29 bにそれぞれ供給され、 ダウンコンパ^ "卜される。 ダウンコン バ"トされた信号は、 中間周波数段階でユーザ領域信号波と放送波とに分離され る。 さらに、 ュ一ザ領域信号波は、 ダウンコンバートされた後、 第: L〜第 4の復 調回路 46〜49において独立に復調される。
復調された地上波アナ口グ放送波は、 第 1の実施の形態と同様、 端子 50 a, 50 bから出力される。 復調された信号 Yは、 端子 5 1 a, 51 bから、 復調さ れた信号 P b (Cb) は、 端子 52 a, 52 bから、 復調された信号 P r (C r ) は、 端子 53 a, 53 bからそれぞれ出力され、 音声信号は端子 53R, 5 3 Lから出力される。
ミリ波受信機 29 aの端子 43 a , 50 aの出力、 およびミリ波受信機 29 a. の端子 44 aの出力 (衛星放送用チューナを介す) は、 ハイビジョン用 TV受信 装置 1 84 aに入力される。 ミリ波受信機 29 bの端子 43 b, 50 bの出力、 およびミリ波受信機 29 bの端子 44 bの出力 (衛星放送用チューナを介す) は、 ハイビジョン用 TV受信装置 184 bに入力される。
ミリ波受信機 29 aの端子 51 a, 52 a, 53 aの出力は、 たとえば、 D端 子を有する液晶ディスプレ 92 aに供給され、 ミリ波受信機 29 bの端子 5 1 b, 52 b, 53 bの出力は、 たとえば、 D端子を有する DVD 93に供給される。 ユ^ザ領域信号波としては、 ハイビジョン対応の映像が 1チヤンネル無線伝送 されるだけであるが、 通常の NTS G (National Television System
Committee) 方式の標準画像と比較して、 髙精細な画像を受信することが可能に なる。
また、 第 2の実施の形態による使用例によると、 ミリ波送信機 1 5とデイジタ ルビデオレコーダ 9 1とは映像コンポ一ネン ト用のケーブルで接続される。 しか しながら、 図 1に示すように、 ミリ波送信機 15側で映像コンポーネント信号か ら D端子側への変換器 (映像コンポーネント信号である 21 V, 22 V, 23 V と D端子とを接続することにより形成される) を設けることも可能である。 この 場合、 ディジタルビデオレコーダとミリ波送信機との間は、 D端子ケーブルで接 続することが可能になる。
同様に、 ミリ波受信機 29 a, 29 bとハイビジョン TVとの間の接続も、 ミ リ波受信機内に映像コンポーネント信号から D端子 55側への変換器を設けるこ とにより、 D端子ケーブルで接続することが可能になる。
なお、 上記実施の形態では、 TV放送波として、 地上波ディジタル放送波、 な らびに第 1および第 2の衛星放送波を用いたが、 ケーブルテレビジョン (CAT V: cable television/community antenna televisionノの ig号波 (CATV波ノ も使用可能である。
CATV波においては、 ミリ波送信機 1 5内に 1 GHz〜2GHZ帯に一旦周 波数上昇変換する周波数変換器を設け、 図 7に示すように C A T V波のダウンリ ンク信号部 73の高域側 74.にユーザ領域の信号波 (USER) を配列し、 CA TV波のアップリンク信 部 72は、 ダウンリンク信号部 73の低域側に配置す る。 そして、 このように配列きれた信号を (I F信号) をミリ波変換するように 構成する。
具体例を、 図 8, 図 9に示す。 図 8に示すミリ波送信機 15 Gは、 T F多重化 回路 1 C、 ミリ波アップコンバータ 4、 およびミリ波アンテナ 3を備える。
多重化回路 1 Cは、 増幅器 2 a, 2 bに代わって周波数変換器 200を備える。 周波数変換器 200は、 增幅器 2、 周波数混合器 201および局部発振器 202 を含む。 端子 6で受ける CATV波信号は、 増幅器 2で増幅される。 局部発振器 202の出力に某づき、 周波数混合器 201により増幅器 2の出力の周波数が図 6に示す関係を満たすように変換される。 周波数変換器 200の出力と信号合成 器 8の出力と力 信号結合器 9により結合される。
図 9に示すミリ波受信機 29 Cは、 アンテナ 3 1、 ミリ波ダウンコンバータ 3
2、 および出力処理回路 45 Cを備える。 出力処理回路 45 Cは、 フィルタ 39 a , 39 bおよび增幅器 56 a , 56 bに代わって周波数変換器 210を備える c 周波数変換器 210は、 フィルタ 39, 周波数混合器 2 1 1, 局部発振器 21 2 および増幅器 56を含む。 周波数分配器 38により分配されるュ"ザ領域信号波 は、 上述したように第 1〜第 4の復調回路で復調される。 それ以外の C A T V波 は、 锆域通過フィルタ 3 9を通過する。 そして、 局部発振器 2 1 2の出力に基づ き、 周波数混合器 2 1 1により周波数が変換される。 周波数混合器 2 1 1の出力 は、 増幅器 5 6により増幅された後、 端子 4 3に出力される。
この発明に係る無線通信装置によれば、 屋內■家庭内で、 T V放送波とビデ ォ -テレビカメラ ·パソコン等の電子機器からの映像■音声信号とを同時にかつ 独立に無線接続できる。 このため、 当該電子機器を部屋間を持ち運びでき、 かつ 同時に異なった場所で複数台使用することが可能になる。 さらに、 T V放送波お よびビデオ映像 ·音声信号は多チャンネルに対応できるため、 複数台の電子機器 はそれぞれ異なった映像 ·音声情報を有することが可能になる。
きらに、 当該無線通信装置によれば、 衛星放送の中間周波数帯および地上波放 送の周波数锆でュ一ザ領域の周波数帯と周波数多重化している。 このため、 従来 のように 6 G H z帯や 1 5 0 G H z帯のマイク口波帯の周波数変換器を使用する ことなく、 7 0 0 MH z〜 1 G H z付近の; F M変調器で対 することができるた め、 周波数安定性に優れ、 かつ避倍する必要もなくなる。 この結果、 良好な周波 数安定性を得ることができるのみならず、 衛星放送、 地上波放送、 C A T V放送 とも周波数多重化することが可能になる。 そして、 I F周波数帯で周波数多重化 した後、 ミリ波帯に周波数上昇変換し無線通信を行うことが可能になる。 産業上の利用可能性
以上のように、 この発明に係る無線通信装置によれば、 複数の異なった信号波 を安定して送受信することができるので、 屋内 '家庭内で、 T V放送波とビデ ォ■テレビカメラ . パソコン等の電子機器からの映像 ·音声信号とを同時にかつ 独立に無線接続できる。 このため、 当該電子機器を部屋間を持ち運びでき、 かつ 同時に異なった場所で複数台使用することが可能になる。 さらに、 T V放送波お よびビデオ映像 ·宫-声信'号は多チャンネルに対応できるため、 複数合の電子機器 はそれぞれ異なった映像 ·音声情報を有することが可能になる。

Claims

請求の範囲
1 . 地上波放送波、 衛星放送波またはケ ブルテレビ放送波を含む放送波と前記 放送波と異なるュ ザ専用信号波とを周波数軸上で互いに異なる位置に配置した 多重波をミリ波送信する構成を有する送信機 (1 5 ) と、
前記送信機の出力を受けて、 前記放送波と前記ユーザ専用信号波とを周波数下 降変換する構成を有する受信機 (2 9 ) とを備える、 無線通信装置。
2 . 前記送信機は、
前記放送波と前記ユーザ専用信号波とを前記配置に従って多重化するための多 重化回路 (1 ) と、
前記多重化回路の出力する前記多重波をミリ波に上昇変換するアップコンバー タ (4 ) とを含み、
前記受信機は、
前記送信機の出力を受ける受信部 (3 1 ) と、
前記受信部で受ける前記多重波を周波数下降変換するダウンコンバータ (3
2 ) とを含む、 請求項 1に記載の無線通信装置。
3 . 前記ユーザ専用信号波は、
テレビ受信機、 ビデオレコーダ、 ビデオ力メラおよび ソナルコンピュータ を含む少なくとも 1以上の電子機器からの映像信号■音声信号を含む、 請求項 2 に記載の無線通信装匱。
4 . 前記ユーザ専用 ί言号波は、
中間周波数の段階にある前記衛星放送波と多重化される、 請求項 1に記載の無
5 . 前記ユーザ専用信号波の周波数帯は、
前記衛星放送波の周波数帯の低域側に配置される、 請求項 4に記載の無線通信
6 . 前記ユーザ専用信号波は、
地上から伝播される前記地上波放送波そのものと多重化される、 請求項 1に記 載の無線通信装匿。
7 . 前記ュ"ザ専用信号波の周波数帯は、
前記地上放送波の周波数帯の髙域側に配置される、 請求項 6に記載の無線通
8 . 前記ユーザ専用信号波は、
中問周波数の段階にある前記衛皇放送波と地上から伝播される前記地上波放送 波そのものと多重化される、 請求項 1に記載の無線通信装置。
9 . 前記ユーザ専用信号波の周波数帯は、
前記地上波放送波の周波数帯と前記衛星放送波の周波数帯との間に配置される、 請求項 8に記載の無線通信装置。
1 0 . 前記多重化回路は、
前記ケーブルテレビ放送波を中間周波数に変換する変換回路 (2 0 0 ) と、 前記中間周波数の前記ケーブルテレビ放送波と前記ユーザ専用信号波とを多重 化するための回路 (9 ) とを含む、 請求項 2に記載の無線通信装置。
1 1 . 前記受信機は、
前記ダウンコンバータの出力を、 前記放送波と前記ユーザ専用信号波とに分配 する分配器 ( 3 8 ) と、
前記分配器の出力を受けて前記ユーザ専用信号波を復調する復調器 (4 6— 4 9 ) とをさらに含む、 請求項 2に記載の無線通信装置。
1 2 . 前記送信機は、
前記ユーザ専用信号波の周波数領域を変更する機能を有し、
前記受信機は、
前記ュ ザ専用信号波の前記周波数帯に応じて、 前 Bユーザ専用信号波の使用 チャンネルを設定する機能を有する、 請求項 1に記載の無線通信装置。
1 3 . 前記ユーザ専用信号波として、
映像コンポーネン卜信号と音声信号とが入力され、
前記多重化回路は、
前記映像コンポーネント信号と前記音声信号とを変調する変調手段 (1 2 1— 1 2 4 ) と変調後に多重化する回路 (8 ) とを含む、 請求項 2に記載の無線通信
1 4 . 前記ユーザ専用信号波として、
ハイビジョン用の D端子映像信号と音声信号とが入力され、 ■ 前記多重化回路は、
前記 D端子映像信号と前記音声信号とを変調する変調手段 ( L 2 2— 1 2 4 ) と変調後に多重化する回路 (8 ) とを含む、 請求項 2に記載の無線通信装置。
1 5 . 地上波放送波、 衛星放送波またはケーブルテレビ放送波を含む放送波と前 記放送波と異なるユーザ専用信号波とを周波数軸上で互いに異なる位置に配置す るように多重化するための多重化回路 (1 ) と、
前記多重化回路の出力する前記多重波をミリ波に上昇変換するアップコンバー タ (4 ) とを備える、 送信装置。
1 6 . 前記ユーザ専用信号波は、
テレビ受信機、 ビデオレコーダ、 ビデオ力メラおよびバーソナルコンピュータ を含む少なくとも 1以上の電子機器からの映像信号 ·音声信号を含む、 請求項 1 5に記載の送信装置。 '
1 7 . 前記ュ'一ザ専用信号波は、
中問周波数の段階にある前記衛星放送波と多重化される、 請求項 1 5に記載の
1 8 . 前記ュ"ザ専用信号波の周波数帯は、
前記衛星放送波の周波数帯の低域側に配置される、 請求項 1 7に記載の送信装 置。
1 9 . 前記ユーザ専用信号波は、
地上から伝播される前記地上波放送波そのものと多重化される、 請求項 1 5に 記載の送信装置。
2 0 . 前記ュ"ザ専用信号波の周波数帯は、
前記地上放送波の周波数帯の高域側に配置される、 請求項 1 9に記載の送信装
2 1 . 前記ユーザ専用信号波は、
中問周波数の段階にある前記衛星放送波と地上から伝播される前記地上波放送 波そのものと多重化される、 請求項 1 5に記載の送信装置。
22. 前記ュ ザ専用信号波の周波数帯は、
前記地上波放送波の周波数帯と前記衛星放送波の周波数帯との間に配置される、 請求項 21に記載の送信装置。 .
23. 前記多重化回路は、
前記ケーブルテレビ放送波を中間周波数に変換する変換问路 (200) と、 前記中間周波数の前記ケーブルテレビ放送波と前記ユーザ専用信号波とを多重 化するための回路 (9) とを含む、 請求項 L 5に記載の送信装置。
24. 前記ユーザ専用信号波として、
映像コンポ ネント信号と音声信号とが入力され、
前記多重化回路は、
前記映像コンポ"ネント信号と前記音声信号とを変調する変調手段 (121— 1 24) と変調後に多重化する回路 (8) とを含む、 請求項 ].5に記載の送信装 置。
25. 前記ユーザ専用信号波として、
ハイビジョン用の D端子映像信号と音声信号とが入力され、
前記多重化回路は、
前記 D端子映像信号と前記音声信号とを変調する変調手段 (1 22— 124) と変調後に多重化する回路 (8) とを含む、 請求項 1 5に記载の送信装置。
26. 地上波放送波、 衛星放送波またはケ一プルテレビ放送波を含む放送波と前 記放送波と異なるユーザ専用信号波とを周波数軸上で互いに異なる位置に配置し た多重波をミリ波送信する構成を有する送信装置に対応するミリ波受信する受信 装置であって、
前記多重波を受信する受信部 (31) と、
前記放送波と前記ユーザ専用信 波とを周波数下降変換するダウンコンバータ ( 32 ) と、
前記ダウンコンパ -タの出力を、 前記放送波と前記ユーザ専用信号波とに分配 する分配器 (38) と、
前記分配器の出力を受けて前記ユーザ専用信号波を復調する復調器 (46-4 9) とを備える、 受信装置。
2 7 . 前記ュ ザ専用信号波は、
テレビ受信機、 ビデオレコ ダ、 ビデオカメラおよびパーソナルコンピュータ を含む少なくとも丄以上の電子機器からの映像信号■音声信号を含む、 請求項 2 6に記載の受信装置。
2 8 . 前記ュ ザ専用信号波の周波数帯は、 前記送信装置により可変であり、 前記ユーザ専用信号波の前記周波数帯に応じて、 前記ユーザ専用信号波の使用 チャンネルを設定する機能をさらに有する、 請求項 2 6に記载の受信装置。
PCT/JP2001/009105 2000-10-18 2001-10-17 Dispositif de radiocommunication, dispositif d'emission et dispositif de reception WO2002033862A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP01976710A EP1330059B1 (en) 2000-10-18 2001-10-17 Radio communication apparatus, transmitter apparatus and receiver apparatus
US10/399,566 US7697574B2 (en) 2000-10-18 2001-10-17 Radio communication apparatus, transmitter apparatus and receiver apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-317988 2000-10-18
JP2000317988A JP2002125206A (ja) 2000-10-18 2000-10-18 無線通信装置,送信装置および受信装置

Publications (1)

Publication Number Publication Date
WO2002033862A1 true WO2002033862A1 (fr) 2002-04-25

Family

ID=18796686

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/009105 WO2002033862A1 (fr) 2000-10-18 2001-10-17 Dispositif de radiocommunication, dispositif d'emission et dispositif de reception

Country Status (4)

Country Link
US (1) US7697574B2 (ja)
EP (1) EP1330059B1 (ja)
JP (1) JP2002125206A (ja)
WO (1) WO2002033862A1 (ja)

Families Citing this family (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040139477A1 (en) * 2003-01-15 2004-07-15 Russell David B. 60 GHz RF CATV repeater
JP4039373B2 (ja) * 2004-02-16 2008-01-30 ソニー株式会社 ワイヤレス送受信システム
KR100911146B1 (ko) * 2006-11-15 2009-08-06 삼성전자주식회사 무선 네트워크에서 핸드오버를 수행하는 방법 및 장치
US8936191B2 (en) * 2010-06-30 2015-01-20 General Electric Company Field-portable impedance reader and methods of making the same
US9538657B2 (en) 2012-06-29 2017-01-03 General Electric Company Resonant sensor and an associated sensing method
US9589686B2 (en) 2006-11-16 2017-03-07 General Electric Company Apparatus for detecting contaminants in a liquid and a system for use thereof
US9658178B2 (en) 2012-09-28 2017-05-23 General Electric Company Sensor systems for measuring an interface level in a multi-phase fluid composition
US9536122B2 (en) 2014-11-04 2017-01-03 General Electric Company Disposable multivariable sensing devices having radio frequency based sensors
US10914698B2 (en) 2006-11-16 2021-02-09 General Electric Company Sensing method and system
US8873585B2 (en) 2006-12-19 2014-10-28 Corning Optical Communications Wireless Ltd Distributed antenna system for MIMO technologies
WO2009081376A2 (en) 2007-12-20 2009-07-02 Mobileaccess Networks Ltd. Extending outdoor location based services and applications into enclosed areas
US8498592B2 (en) 2008-09-08 2013-07-30 Wisconsin Alumni Research Foundation Method and apparatus for improving energy efficiency of mobile devices through energy profiling based rate adaptation
JP2010103982A (ja) 2008-09-25 2010-05-06 Sony Corp ミリ波伝送装置、ミリ波伝送方法、ミリ波伝送システム
WO2010040256A1 (en) 2008-10-09 2010-04-15 Corning Cable Systems Llc Fiber optic terminal having adapter panel supporting both input and output fibers from an optical splitter
CN102396171B (zh) 2009-02-03 2015-09-30 康宁光缆系统有限责任公司 基于光纤的分布式天线系统、组件和用于监视和配置基于光纤的分布式天线系统、组件的相关方法
US9673904B2 (en) 2009-02-03 2017-06-06 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
CN102369678B (zh) 2009-02-03 2015-08-19 康宁光缆系统有限责任公司 基于光纤的分布式天线系统、组件和用于校准基于光纤的分布式天线系统、组件的相关方法
US8045592B2 (en) 2009-03-04 2011-10-25 Laird Technologies, Inc. Multiple antenna multiplexers, demultiplexers and antenna assemblies
US9590733B2 (en) 2009-07-24 2017-03-07 Corning Optical Communications LLC Location tracking using fiber optic array cables and related systems and methods
US8280259B2 (en) 2009-11-13 2012-10-02 Corning Cable Systems Llc Radio-over-fiber (RoF) system for protocol-independent wired and/or wireless communication
US8275265B2 (en) 2010-02-15 2012-09-25 Corning Cable Systems Llc Dynamic cell bonding (DCB) for radio-over-fiber (RoF)-based networks and communication systems and related methods
CN102845001B (zh) 2010-03-31 2016-07-06 康宁光缆系统有限责任公司 基于光纤的分布式通信组件及系统中的定位服务以及相关方法
US8570914B2 (en) 2010-08-09 2013-10-29 Corning Cable Systems Llc Apparatuses, systems, and methods for determining location of a mobile device(s) in a distributed antenna system(s)
US9252874B2 (en) 2010-10-13 2016-02-02 Ccs Technology, Inc Power management for remote antenna units in distributed antenna systems
WO2012054454A2 (en) 2010-10-19 2012-04-26 Corning Cable Systems Llc Transition box for multiple dwelling unit fiber optic distribution network
US8542023B2 (en) 2010-11-09 2013-09-24 General Electric Company Highly selective chemical and biological sensors
WO2012148940A1 (en) 2011-04-29 2012-11-01 Corning Cable Systems Llc Systems, methods, and devices for increasing radio frequency (rf) power in distributed antenna systems
WO2012148938A1 (en) 2011-04-29 2012-11-01 Corning Cable Systems Llc Determining propagation delay of communications in distributed antenna systems, and related components, systems and methods
US9219546B2 (en) 2011-12-12 2015-12-22 Corning Optical Communications LLC Extremely high frequency (EHF) distributed antenna systems, and related components and methods
US10110307B2 (en) 2012-03-02 2018-10-23 Corning Optical Communications LLC Optical network units (ONUs) for high bandwidth connectivity, and related components and methods
WO2013148986A1 (en) 2012-03-30 2013-10-03 Corning Cable Systems Llc Reducing location-dependent interference in distributed antenna systems operating in multiple-input, multiple-output (mimo) configuration, and related components, systems, and methods
US9781553B2 (en) 2012-04-24 2017-10-03 Corning Optical Communications LLC Location based services in a distributed communication system, and related components and methods
EP2842245A1 (en) 2012-04-25 2015-03-04 Corning Optical Communications LLC Distributed antenna system architectures
EP2883416A1 (en) 2012-08-07 2015-06-17 Corning Optical Communications Wireless Ltd. Distribution of time-division multiplexed (tdm) management services in a distributed antenna system, and related components, systems, and methods
US10598650B2 (en) 2012-08-22 2020-03-24 General Electric Company System and method for measuring an operative condition of a machine
US9746452B2 (en) 2012-08-22 2017-08-29 General Electric Company Wireless system and method for measuring an operative condition of a machine
US10684268B2 (en) 2012-09-28 2020-06-16 Bl Technologies, Inc. Sensor systems for measuring an interface level in a multi-phase fluid composition
US9455784B2 (en) 2012-10-31 2016-09-27 Corning Optical Communications Wireless Ltd Deployable wireless infrastructures and methods of deploying wireless infrastructures
WO2014085115A1 (en) 2012-11-29 2014-06-05 Corning Cable Systems Llc HYBRID INTRA-CELL / INTER-CELL REMOTE UNIT ANTENNA BONDING IN MULTIPLE-INPUT, MULTIPLE-OUTPUT (MIMO) DISTRIBUTED ANTENNA SYSTEMS (DASs)
US9647758B2 (en) 2012-11-30 2017-05-09 Corning Optical Communications Wireless Ltd Cabling connectivity monitoring and verification
US9158864B2 (en) 2012-12-21 2015-10-13 Corning Optical Communications Wireless Ltd Systems, methods, and devices for documenting a location of installed equipment
EP3008828B1 (en) 2013-06-12 2017-08-09 Corning Optical Communications Wireless Ltd. Time-division duplexing (tdd) in distributed communications systems, including distributed antenna systems (dass)
WO2014199384A1 (en) 2013-06-12 2014-12-18 Corning Optical Communications Wireless, Ltd. Voltage controlled optical directional coupler
US9247543B2 (en) 2013-07-23 2016-01-26 Corning Optical Communications Wireless Ltd Monitoring non-supported wireless spectrum within coverage areas of distributed antenna systems (DASs)
US9661781B2 (en) 2013-07-31 2017-05-23 Corning Optical Communications Wireless Ltd Remote units for distributed communication systems and related installation methods and apparatuses
US9385810B2 (en) 2013-09-30 2016-07-05 Corning Optical Communications Wireless Ltd Connection mapping in distributed communication systems
KR101474358B1 (ko) * 2013-11-08 2014-12-19 한국과학기술원 저전력 소모형 기가비트 데이터 무선 통신 제어 시스템
US9178635B2 (en) 2014-01-03 2015-11-03 Corning Optical Communications Wireless Ltd Separation of communication signal sub-bands in distributed antenna systems (DASs) to reduce interference
US9775123B2 (en) 2014-03-28 2017-09-26 Corning Optical Communications Wireless Ltd. Individualized gain control of uplink paths in remote units in a distributed antenna system (DAS) based on individual remote unit contribution to combined uplink power
US9357551B2 (en) 2014-05-30 2016-05-31 Corning Optical Communications Wireless Ltd Systems and methods for simultaneous sampling of serial digital data streams from multiple analog-to-digital converters (ADCS), including in distributed antenna systems
US9525472B2 (en) 2014-07-30 2016-12-20 Corning Incorporated Reducing location-dependent destructive interference in distributed antenna systems (DASS) operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US9730228B2 (en) 2014-08-29 2017-08-08 Corning Optical Communications Wireless Ltd Individualized gain control of remote uplink band paths in a remote unit in a distributed antenna system (DAS), based on combined uplink power level in the remote unit
US9602210B2 (en) 2014-09-24 2017-03-21 Corning Optical Communications Wireless Ltd Flexible head-end chassis supporting automatic identification and interconnection of radio interface modules and optical interface modules in an optical fiber-based distributed antenna system (DAS)
US9420542B2 (en) 2014-09-25 2016-08-16 Corning Optical Communications Wireless Ltd System-wide uplink band gain control in a distributed antenna system (DAS), based on per band gain control of remote uplink paths in remote units
US9729267B2 (en) 2014-12-11 2017-08-08 Corning Optical Communications Wireless Ltd Multiplexing two separate optical links with the same wavelength using asymmetric combining and splitting
US20160249365A1 (en) 2015-02-19 2016-08-25 Corning Optical Communications Wireless Ltd. Offsetting unwanted downlink interference signals in an uplink path in a distributed antenna system (das)
US9681313B2 (en) 2015-04-15 2017-06-13 Corning Optical Communications Wireless Ltd Optimizing remote antenna unit performance using an alternative data channel
US9948349B2 (en) 2015-07-17 2018-04-17 Corning Optical Communications Wireless Ltd IOT automation and data collection system
US10560214B2 (en) 2015-09-28 2020-02-11 Corning Optical Communications LLC Downlink and uplink communication path switching in a time-division duplex (TDD) distributed antenna system (DAS)
EP3185568A1 (en) 2015-12-23 2017-06-28 Samsung Electronics Co., Ltd. Display apparatus and control method for connecting external sources
US9648580B1 (en) 2016-03-23 2017-05-09 Corning Optical Communications Wireless Ltd Identifying remote units in a wireless distribution system (WDS) based on assigned unique temporal delay patterns
US10236924B2 (en) 2016-03-31 2019-03-19 Corning Optical Communications Wireless Ltd Reducing out-of-channel noise in a wireless distribution system (WDS)
KR20190036893A (ko) * 2017-09-28 2019-04-05 삼성전자주식회사 메모리 장치 및 그것의 제어 방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000067119A (ja) * 1998-08-19 2000-03-03 Sharp Corp ホームオートメーションシステム
JP2000307495A (ja) * 1999-04-23 2000-11-02 Sharp Corp 無線通信システム

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS645238U (ja) 1987-06-26 1989-01-12
JPS6469128A (en) * 1987-09-10 1989-03-15 Toshiba Corp Radio wave sender of artificial satellite
JP2679445B2 (ja) 1991-06-03 1997-11-19 日本電気株式会社 送信電力制御方式
JP3424379B2 (ja) * 1995-03-30 2003-07-07 カシオ計算機株式会社 選択呼出受信装置
US5706048A (en) * 1995-04-24 1998-01-06 Motorola, Inc. Wireless digital data access system and method
US5930231A (en) 1995-06-30 1999-07-27 Scientific-Atlanta, Inc. Block spectrum receiver for a broadband communications system
CA2229904C (en) 1997-02-19 2006-10-24 Next Level Communications In-home wireless
JPH1141122A (ja) 1997-07-15 1999-02-12 Nippon Telegr & Teleph Corp <Ntt> 通信装置
JP3889885B2 (ja) * 1998-02-27 2007-03-07 シャープ株式会社 ミリ波送信装置、ミリ波受信装置、ミリ波送受信システム及び電子機器
JP3663323B2 (ja) * 1999-04-05 2005-06-22 シャープ株式会社 ミリ波送信装置およびミリ波受信装置
JP3796372B2 (ja) * 1999-06-07 2006-07-12 シャープ株式会社 ミリ波帯通信装置
EP1172953A3 (en) * 2000-06-30 2008-08-20 Matsushita Electric Industrial Co., Ltd. Broadcast apparatus and reception apparatus comprising a means for avoiding delays in the reproduction of additional data when one program changes to another

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000067119A (ja) * 1998-08-19 2000-03-03 Sharp Corp ホームオートメーションシステム
JP2000307495A (ja) * 1999-04-23 2000-11-02 Sharp Corp 無線通信システム

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
FUTOSHI KUROKI ET AL.: "Multimedia jouhou densou-you 60Ghz-tai NRD guide soujushinki", DENSHI JOUHOU TSUUSHIN GAKKAI SOUGOU TAIKAI KOUEN RONBUNSHUU SC-3-8, 7 March 2000 (2000-03-07), pages 428 - 429, XP002907986 *
HIDEHARU SUEMATSU ET AL.: "Millimeter-ha eizou tajuu densou system no kaihatsu (2) shuuha-suu haichi to C/N kaisen sekkei", DENSHII JOUHOU TUUSHIN GAKKAI SOUGOU TAIKAI KOUEN RONBUNSHUU SC-3-2, 7 March 2000 (2000-03-07), pages 417 - 418, XP002907985 *
HIROYO OGAWA: "60Ghz-tai katei-you musen T.V. eizou tajuu densou system no jitsugen wo mezashite", JOUHOU TSUUSHIN JOURNAL, vol. 18, no. 7, 1 July 2000 (2000-07-01), pages 37 - 38, XP002907983 *
KIYOSHI HAMAGUCHI ET AL.: "Millimeter-ha eizou tajuu densou system no kaihatsu (1) kenkyuu kaihatsu no gaiyou", DENSHI JOUHOU TSUUSHIN GAKKAI SOUGOU TAIKAI KOUEN RONBUNSHUU SC-3-1, 7 March 2000 (2000-03-07), pages 415 - 416, XP002907984 *
KIYOSHI HAMAGUCHI ET AL.: "Millimeter-ha eizou tajuu densou system no kaihatsu II-system gaiyou-", DENSHI JOUHOU TSUUSHIN GAKKAI SOUGOU TAIKAI KOUEN RONBUNSHUU C-2-97, 7 March 2001 (2001-03-07), pages 144, XP002907987 *

Also Published As

Publication number Publication date
JP2002125206A (ja) 2002-04-26
US7697574B2 (en) 2010-04-13
EP1330059A4 (en) 2009-07-29
US20040015990A1 (en) 2004-01-22
EP1330059B1 (en) 2011-08-24
EP1330059A1 (en) 2003-07-23

Similar Documents

Publication Publication Date Title
WO2002033862A1 (fr) Dispositif de radiocommunication, dispositif d&#39;emission et dispositif de reception
US4747160A (en) Low power multi-function cellular television system
US6992990B2 (en) Radio communication apparatus
US6915529B1 (en) Milliwave transmitting device, milliwave receiving device and milliwave transmission and reception system capable of simplifying wiring of a receiving system of terrestrial broadcasting service and satellite broadcasting service
US9363116B2 (en) Multi-standard front end using wideband data converters
US6377314B1 (en) Methods and apparatus for transmitting analog and digital information signals
JP3812599B2 (ja) 受信システムおよび受信方法、並びに信号処理装置および方法
US7301994B2 (en) Modulation apparatus for reducing time delay of on-channel repeater in terrestrial digital TV broadcasting system
JP2563401B2 (ja) 受信装置
JP4777715B2 (ja) 無線送信装置および無線送受信システム
US7345715B2 (en) Apparatus and method for transmitting and receiving multiple signals inclusively
JPH09168104A (ja) 共同受信施設
JP2506466B2 (ja) 衛星放送受信装置
JP4029894B2 (ja) 送信方法
JP2004096332A (ja) デジタル放送用フロントエンド装置およびそれを用いたデジタル放送視聴システム
KR100476565B1 (ko) 복합 프론트 엔드 장치
JPH11150719A (ja) ディジタルcatvシステムとその受信装置
JP2006148963A (ja) 受信システム
JP3097277B2 (ja) Catv用pcm音楽放送受信機
KR0153114B1 (ko) 28GHz대 LMDS 시스템
JP2006060558A (ja) テレビジョン受信装置
JP2004173110A (ja) ミリ波帯送受信システム、送信装置、及び受信装置
JP2006042128A (ja) デジタル放送受信装置
JP2000307495A (ja) 無線通信システム
JPH0630470A (ja) ホームバスコントローラ

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10399566

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2001976710

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2001976710

Country of ref document: EP