WO2002033467A1 - 8-spiegel-mikrolithographie-projektionsobjektiv - Google Patents
8-spiegel-mikrolithographie-projektionsobjektiv Download PDFInfo
- Publication number
- WO2002033467A1 WO2002033467A1 PCT/EP2001/012110 EP0112110W WO0233467A1 WO 2002033467 A1 WO2002033467 A1 WO 2002033467A1 EP 0112110 W EP0112110 W EP 0112110W WO 0233467 A1 WO0233467 A1 WO 0233467A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mirror
- projection lens
- microlithography projection
- field
- image
- Prior art date
Links
- 238000001900 extreme ultraviolet lithography Methods 0.000 claims abstract description 9
- 238000001393 microlithography Methods 0.000 claims description 53
- 230000003287 optical effect Effects 0.000 claims description 27
- 239000013598 vector Substances 0.000 claims description 8
- 238000001459 lithography Methods 0.000 claims description 6
- 210000001747 pupil Anatomy 0.000 claims description 6
- 238000004519 manufacturing process Methods 0.000 claims description 5
- 238000003384 imaging method Methods 0.000 claims description 4
- 238000000034 method Methods 0.000 claims description 4
- 238000005286 illumination Methods 0.000 claims description 3
- 230000005855 radiation Effects 0.000 claims 2
- 239000000758 substrate Substances 0.000 claims 2
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims 1
- 230000009466 transformation Effects 0.000 abstract 1
- 238000000926 separation method Methods 0.000 description 4
- 210000003734 kidney Anatomy 0.000 description 3
- 241000264877 Hippospongia communis Species 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000003702 image correction Methods 0.000 description 2
- 230000004075 alteration Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B3/00—Simple or compound lenses
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70216—Mask projection systems
- G03F7/70233—Optical aspects of catoptric systems, i.e. comprising only reflective elements, e.g. extreme ultraviolet [EUV] projection systems
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B17/00—Systems with reflecting surfaces, with or without refracting elements
- G02B17/02—Catoptric systems, e.g. image erecting and reversing system
- G02B17/06—Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror
- G02B17/0647—Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror using more than three curved mirrors
- G02B17/0657—Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror using more than three curved mirrors off-axis or unobscured systems in which all of the mirrors share a common axis of rotational symmetry
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70216—Mask projection systems
- G03F7/70275—Multiple projection paths, e.g. array of projection systems, microlens projection systems or tandem projection systems
Definitions
- the invention relates to a microlithography objective according to the preamble of claim 1, a projection exposure system according to claim 18 and a chip production method according to claim 19.
- Wavelength of the incident light and NA denotes the image-side, numerical aperture of the system.
- the reflectivity of the multilayer layers used is currently at most in the range of approximately 70%, so that a requirement is met
- a projection objective for EUV microlithography is to use as few optical components as possible in order to achieve a sufficient light intensity.
- the beam path within a projection lens is free of shading or obscuring.
- the projection objectives should not have mirrors with transmissive areas, in particular openings, since such transmissive areas lead to shadowing.
- the lens has no mirrors with transmissive areas, the lens has an obscuration-free beam path and the exit pupil of the lens is free of shadowing.
- no shading device has to be arranged in the aperture diaphragm of such shading-free systems or in planes conjugated to the aperture diaphragm.
- Schwarzschild mirror systems is that structures of a certain size can only be imaged to a limited extent.
- the exit pupil is defined as the image of the aperture diaphragm, imaged by the lens part that lies in the beam path between the aperture diaphragm and the image plane.
- 6-mirror systems for microlithography are known from the documents US-A-5 153 898, EP-A-0 252734, EP-A-0947 882, US-A-5686728, EP 0 779 528, US 5 815 310, WO 99/57606 and US 6 033 079 become known.
- Such systems 6-mirror systems have an image-side numerical aperture ⁇ 0.3, which leads to a resolution limit in the range of 30 nm when using X-ray light with a wavelength of 10 to 30 nm.
- a microlithography projection lens with eight mirrors is from the US
- a first object of the invention is to provide a projection lens which is suitable for lithography with short EUV wavelengths in the range from 10 to 30 nm and which is different from those known to date
- EUV microlithography projection systems are characterized by a large numerical aperture and improved possibilities of image correction.
- Another object of the invention is to use for lithography
- Wavelengths ⁇ 193 nm a microlithography projection lens to specify, which has both a large aperture and is easy to manufacture.
- the first object is achieved by a microlithography projection objective for EUV lithography with a wavelength in the
- Range 10 to 30 nm solved by the fact that the microlithography projection lens comprises eight mirrors instead of the four or six mirrors.
- Objective provides both a sufficient light intensity, as well as a sufficiently large numerical aperture to meet the requirements for high resolution, as well as sufficient options for image correction.
- the numerical aperture of the projection objective on the image side is greater than 0.2.
- the image-side numerical aperture of the projection system according to the invention is advantageously limited to NA ⁇ 0.5.
- the projection lens is designed such that at least one in the beam path of the projection lens between the object field and the image field
- the useful area of a mirror is understood to mean the part of a mirror in which the light rays that are guided through the projection objective strike.
- the distance of the useful area is the distance of the point of incidence of the main beam of the central field point from the optical axis.
- the diaphragm is arranged in the light path between the first and third mirrors, preferably on or near the first or on or near the second mirror ,
- “near” is understood to mean a distance of the diaphragm from the respective closest mirror, which is less than 1/10 of the distance from the preceding mirror to the respective mirror close to the diaphragm.
- near S2 means that:
- the radius of curvature of at least one mirror is chosen to be larger than the overall length of the projection objective.
- the overall length of the system is understood to mean the distance from the object to be imaged to its image in the present application. It is particularly advantageous if this is for the
- Microlithography projection lens designed such that the The main beam angle on the object is smaller than twice the value of the aperture NAO on the object. This is advantageous because it reduces shading effects on the masks.
- the first intermediate picture at. a system with two intermediate images is preferably formed between the second and third mirrors.
- the projection lens is designed such that the second intermediate image between the sixth and seventh mirrors in the beam path is trained. It is particularly preferred if in a system with two
- the angle of incidence of the main beam of the field point which lies on the axis of symmetry in the middle of the object field, is less than 20 ° on all mirrors.
- At least one of the eight mirror surfaces is spherical.
- the mirror or mirrors of the objective are spherical, the useful area of which is the most distant from the optical axis of the projection objective, since the interferometric testability of off-axis aspheres lies far outside the optical axis The further the useful area is from the optical axis, the more difficult the useful area becomes.
- the sixth mirror is the mirror with the most distant useful area. In such an embodiment, this is advantageously spherically shaped for the sake of easier interferometric testability.
- the invention also provides a projection exposure system, the projection exposure system including an illumination device for illuminating a ring field and a projection lens according to the
- Invention includes.
- Figure 1 the definition of the useful area of a mirror
- Figure 2 the shape of the field in the object or image plane of the
- Figure 3 a first embodiment of an inventive
- Figure 5 a second embodiment of an inventive
- 6A-6H Usable areas of the S1-S8 of the second embodiment.
- Figure 7 the basic structure of a
- FIG. 1 shows what is mentioned in the present application
- Usable area and diameter of the usable area is to be understood.
- FIG. 1 shows, by way of example, a field in the shape of a kidney for an illuminated field 1 on a mirror of the projection objective.
- a shape is expected for the useful area when using the objective according to the invention in a microlithography projection exposure system.
- the enveloping circle 2 completely surrounds the kidney shape and coincides with the edge 10 of the kidney shape at two points 6, 8.
- the envelope circle is always the smallest circle that encompasses the useful area.
- the diameter D of the useful area then results from the diameter of the enveloping circle 2.
- FIG. 2 shows the object field 11 of a projection exposure system in the object plane of the projection objective, which is imaged with the aid of the projection objective according to the invention in an image plane in which a light-sensitive object, for example a wafer, is arranged.
- the shape of the image field corresponds to that of the object field. With reduction lenses, as are often used in microlithography, the image field is reduced by a predetermined factor compared to the object field.
- the object field 11 has the shape of a segment of a ring field.
- the segment has an axis of symmetry 12.
- the axes spanning the object or image plane namely the x-axis and the y-axis, are shown in FIG. As from a figure
- the axis of symmetry 12 of the ring field 11 runs in the direction of the y-axis.
- the y-axis coincides with the scan direction of an EUV projection exposure system, which is designed as a ring field scanner.
- the x direction is then the direction that is perpendicular to the scan direction within the object plane.
- the unit vector x in the direction of the x axis is also shown in FIG. 12.
- the optical axis HA of the system extends in the z direction.
- the object is imaged in the object plane 100 into the image plane 102, in which, for example, a wafer can be arranged, by the projection objective.
- the projection objective according to the invention comprises a first mirror S1, a second mirror S2, a third mirror S3, a fourth mirror S4, a fifth mirror S5, a sixth mirror S6, a seventh mirror S7 and an eighth mirror S8.
- all mirrors S1, S2, S3, S4, S5, S6, S7 and S8 are designed as aspherical mirrors.
- the system comprises an intermediate image Z1 between the fifth S5 and the sixth S6 mirror.
- the y and z directions of the right-handed x, y, z coordinate system are also shown in FIG.
- the z-axis runs parallel to the optical axis HA and the orientation of the z-axis points from the object plane 100 to the image plane 102.
- the y-axis runs parallel to the symmetry axis 12 of the object field 11.
- the object field 11 is shown in FIG.
- the orientation of the y-axis is from the optical axis HA to
- the system is centered on the optical axis HA and on the image side, i.e. in the image plane 102 telecentric.
- Image-side telecentricity is understood to mean that the main beam CR is at an angle of close to or approximately 90 ° to the
- Image plane 102 meets.
- the main beam CR is reflected on the fourth mirror S4 in such a way that it runs away from the optical axis.
- the characteristic quantities are defined as the scalar product between the unit vector x in the direction of the x-axis and the vector product of a unit vector n j before having the direction of the th i-to mirror the incident principal ray, and a unit vector ni after which the direction of the main beam reflected at the i-th mirror, that is
- the main beam CR incident on the mirror is reflected in the positive or negative y direction, it being important to note whether the main beam CR is incident from the direction of the object plane 100 or from the direction of the image plane 102. It holds that C j > 0 when the main beam strikes the mirror from the direction of the object plane 100 and in the direction of the negative y-
- C; ⁇ 0 applies if the main beam comes from the direction of the Object plane 100 strikes the mirror and is reflected in the direction of the positive y-axis.
- C;> 0 applies when the main beam hits the mirror from the direction of the image plane 102 and is reflected in the direction of the positive y-axis, and
- C j ⁇ 0 applies when the main beam hits the mirror from the direction of the image plane 102 and in the direction the negative y-
- the angle of incidence of the main beam CR is the central one
- Field point on the respective mirror surface in the exemplary embodiment according to FIG. 3 is less than 26 °.
- the angles of incidence of the main radiator of the central field point are shown in Table 1 below:
- Table 1 Angle of incidence of the main beam of the central field point for the embodiment according to. Figure 3
- NA 0.4 on the image side
- NAO 0.1
- the maximum main beam angle on the object is only 6.1 ° with the specified object-side numerical aperture NAO of 0.1 and is thus significantly smaller than the maximum main beam angle of 13 ° on the object according to US Pat. No. 5,686,728.
- the physical aperture is located on the second mirror S2. This allows a minimal separation of the beams in the front part of the lens, which reduces the angles of incidence to S1, S2 and S3. Furthermore, this has the effect that the useful area of S3 lies directly below the optical axis and almost mirror image of the useful area S1, in contrast, for example, to the 8-mirror lens shown in US Pat. No. 5,686,728 for wavelengths> 126 nm. This measure also reduces the angles of incidence on S4 and S5, since the distance of the beam from the optical axis between S4 and S5 becomes minimal.
- the useful areas of the individual mirror segments are shown in FIGS. 4A-4H. 4A is the useful area on mirror S1, in FIG. 4B the useful area on mirror S2, in FIG. 4C the useful area on mirror S3, in FIG. 4D the useful area on mirror S4, in FIG. 4E the useful area on mirror S5, in FIG. 4F the usable area on mirror S6, in
- FIG. 4G shows the useful area on mirror S7 and in FIG. 4H the useful area on mirror S8 of the embodiment of an 8-mirror lens according to FIG. 3.
- all useful areas of the mirrors S1 to S8 are free from shading or obscuration. This means that the beam path of a light bundle that passes through the lens from the object plane to the image plane and that maps the object field in the object plane into the image field in the image plane is free from shading or obscuration.
- the radii of curvature become at least one of the mirrors
- S2 to S4 selected as large, preferably larger than the overall length of the Projection objectives that drift distances are as large as possible and the beam paths from S1 to S2 and from S3 to S4 are almost parallel. The same applies to the beam paths from S2 to S3 and from S4 to S5. This also results in minimal separation of the beam.
- the wavefront has a maximum fms value of less than 0.030 ⁇ .
- the distortion is corrected to a maximum value of 1 nm via the scanning slot and has the form of a third degree polynomial, so that the dynamic distortion averaged over the scanning process is minimized.
- Image field curvature is corrected by taking the Petzval condition into account.
- FIG. 5 shows a second embodiment of an 8-mirror lens according to the invention with mirrors S1, S2, S3, S4, S5, S6, S7 and S8.
- the same components as in Figure 3 are given the same reference numerals.
- the x-axis, the y-axis and the z-axis as well as the characteristic quantities are defined as in the description of FIG. 3.
- the characteristic quantities C j as defined in the description of FIG. 3, the following applies: 0 ⁇ 0, C 2 ⁇ 0, C 3 ⁇ 0, C 4 > 0, C 5 ⁇ 0, C 6 > 0, C 7 > 0, C 8 ⁇ 0.
- the mirror be made spherical with the axis remote useful area.
- the embodiment according to FIG. 5 has two intermediate images Z1, Z2.
- mirrors S1, S2, S3, S4, S5 as well as S7 and S8 are aspherical, while mirror S6 with the useful area furthest from the axis is spherical.
- the mirror S6 is shaped as an asphere, it would be difficult to test with on-axis inspection optics. It is therefore spherically shaped in accordance with the invention.
- the angles of incidence of the main beam of the central field point are shown in Table 3 below:
- Table 3 Angle of incidence of the main beam of the central field point for the exemplary embodiment according to FIG. 5
- FIGS. 6A-6H The useful areas of the individual mirror segments are shown in FIGS. 6A-6H. 6A is the useful area on mirror S1 in FIGS. 6A-6H. 6A is the useful area on mirror S1 in FIGS. 6A-6H. 6A is the useful area on mirror S1 in FIGS. 6A-6H.
- FIGS. 6A-6H all useful areas of the mirrors S1 to S8 are free from shading or obscuration. This means that the beam path of a light bundle that passes through the objective from the object plane to the image plane and that maps the object field in the object plane into the image field in the image plane is free from shading or obscuration.
- the distances between the useful areas of the mirrors are advantageously kept small in order to generate small angles of incidence on the mirrors. Since these can be varied as required by appropriate scaling, these distances are given here by their size ratio to the overall length of the mirrors.
- Table 5 shows the ratios of the distances between the useful areas divided by the overall length for all mirrors of the two exemplary embodiments:
- FIG. 7 shows a projection exposure system for microlithography with an 8-mirror projection objective 200 according to the invention.
- the lighting system 202 can, as for example in EP 99106348.8 with the title “Lighting system, in particular for EUV lithography” or US serial no. 09 / 305,017 with the title “Illumination System particulary for EUV-Lithography", the disclosure content of which is fully incorporated in the present application.
- Such a lighting system comprises an EUV light source 204.
- the light from the EUV light source is collected by the collector mirror 206.
- the reticle 212 is illuminated with the aid of a first mirror 207 comprising raster elements - so-called field honeycombs - and a second mirror 208 comprising raster elements - so-called pupil honeycombs - and a mirror 210.
- the light reflected by the reticle 212 is imaged onto a carrier 214 comprising a light-sensitive layer by means of the projection objective according to the invention.
- the projection lens presented is characterized by a high aperture with a shading-free or obscuration-free beam path. This leads to a shadow-free exit pupil.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Lenses (AREA)
Abstract
Description
Claims
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2003-7004654A KR20030045817A (ko) | 2000-10-20 | 2001-10-19 | 8-거울 마이크로리소그래피 투사 대물렌즈 |
EP01982439A EP1327172A1 (de) | 2000-10-20 | 2001-10-19 | 8-spiegel-mikrolithographie-projektionsobjektiv |
JP2002536594A JP2004512552A (ja) | 2000-10-20 | 2001-10-19 | 8反射鏡型マイクロリソグラフィ用投影光学系 |
US10/418,515 US7177076B2 (en) | 2000-10-20 | 2003-04-18 | 8-mirror microlithography projection objective |
US11/592,065 US7372624B2 (en) | 2000-10-20 | 2006-11-02 | 8-mirror microlithography projection objective |
US12/012,825 US7508580B2 (en) | 2000-10-20 | 2008-02-06 | 8-mirror microlithography projection objective |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10052289.0 | 2000-10-20 | ||
DE10052289A DE10052289A1 (de) | 2000-10-20 | 2000-10-20 | 8-Spiegel-Mikrolithographie-Projektionsobjektiv |
US25521600P | 2000-12-13 | 2000-12-13 | |
US60/255,216 | 2000-12-13 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/418,515 Continuation US7177076B2 (en) | 2000-10-20 | 2003-04-18 | 8-mirror microlithography projection objective |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2002033467A1 true WO2002033467A1 (de) | 2002-04-25 |
Family
ID=26007445
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2001/012110 WO2002033467A1 (de) | 2000-10-20 | 2001-10-19 | 8-spiegel-mikrolithographie-projektionsobjektiv |
Country Status (5)
Country | Link |
---|---|
US (3) | US7177076B2 (de) |
EP (1) | EP1327172A1 (de) |
JP (1) | JP2004512552A (de) |
KR (1) | KR20030045817A (de) |
WO (1) | WO2002033467A1 (de) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1434093A2 (de) * | 2002-12-27 | 2004-06-30 | Canon Kabushiki Kaisha | Katoptrisches Projektionssystem, Belichtungsapparat und Verfahren zur Herstellung einer Vorrichtung |
JP2004246343A (ja) * | 2003-01-21 | 2004-09-02 | Nikon Corp | 反射光学系及び露光装置 |
JP2005189248A (ja) * | 2003-12-24 | 2005-07-14 | Nikon Corp | 投影光学系および該投影光学系を備えた露光装置 |
Families Citing this family (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW538256B (en) * | 2000-01-14 | 2003-06-21 | Zeiss Stiftung | Microlithographic reduction projection catadioptric objective |
WO2002033467A1 (de) * | 2000-10-20 | 2002-04-25 | Carl Zeiss | 8-spiegel-mikrolithographie-projektionsobjektiv |
US8208198B2 (en) | 2004-01-14 | 2012-06-26 | Carl Zeiss Smt Gmbh | Catadioptric projection objective |
US7466489B2 (en) * | 2003-12-15 | 2008-12-16 | Susanne Beder | Projection objective having a high aperture and a planar end surface |
JP5102492B2 (ja) * | 2003-12-19 | 2012-12-19 | カール・ツァイス・エスエムティー・ゲーエムベーハー | 結晶素子を有するマイクロリソグラフィー投影用対物レンズ |
CN102169226B (zh) | 2004-01-14 | 2014-04-23 | 卡尔蔡司Smt有限责任公司 | 反射折射投影物镜 |
US20080151365A1 (en) * | 2004-01-14 | 2008-06-26 | Carl Zeiss Smt Ag | Catadioptric projection objective |
US7463422B2 (en) * | 2004-01-14 | 2008-12-09 | Carl Zeiss Smt Ag | Projection exposure apparatus |
WO2005098504A1 (en) * | 2004-04-08 | 2005-10-20 | Carl Zeiss Smt Ag | Imaging system with mirror group |
KR101213831B1 (ko) | 2004-05-17 | 2012-12-24 | 칼 짜이스 에스엠티 게엠베하 | 중간이미지를 갖는 카타디옵트릭 투사 대물렌즈 |
TW200622304A (en) * | 2004-11-05 | 2006-07-01 | Nikon Corp | Projection optical system and exposure device with it |
WO2006087978A1 (ja) * | 2005-02-15 | 2006-08-24 | Nikon Corporation | 投影光学系、露光装置、およびデバイスの製造方法 |
JP4750183B2 (ja) * | 2005-05-03 | 2011-08-17 | カール・ツァイス・エスエムティー・ゲーエムベーハー | マイクロリソグラフィー投影光学系 |
JP2007114750A (ja) * | 2005-09-09 | 2007-05-10 | Asml Netherlands Bv | 投影システム設計方法、リソグラフィー装置およびデバイス製造方法 |
KR101127346B1 (ko) | 2005-09-13 | 2012-03-29 | 칼 짜이스 에스엠티 게엠베하 | 마이크로리소그라피 투영 광학 시스템, 디바이스 제작 방법 및 광학 표면을 설계하기 위한 방법 |
US20070085980A1 (en) * | 2005-10-18 | 2007-04-19 | Scott Lerner | Projection assembly |
DE102005056914A1 (de) | 2005-11-29 | 2007-05-31 | Carl Zeiss Smt Ag | Projektionsbelichtungsystem |
DE102006014380A1 (de) | 2006-03-27 | 2007-10-11 | Carl Zeiss Smt Ag | Projektionsobjektiv und Projektionsbelichtungsanlage mit negativer Schnittweite der Eintrittspupille |
US7920338B2 (en) * | 2006-03-28 | 2011-04-05 | Carl Zeiss Smt Gmbh | Reduction projection objective and projection exposure apparatus including the same |
US7738188B2 (en) * | 2006-03-28 | 2010-06-15 | Carl Zeiss Smt Ag | Projection objective and projection exposure apparatus including the same |
CN101416117B (zh) | 2006-04-07 | 2014-11-05 | 卡尔蔡司Smt有限责任公司 | 微光刻投影光学系统、工具及其制造方法 |
EP2035897B1 (de) | 2006-07-03 | 2015-10-28 | Carl Zeiss SMT GmbH | Verfahren zur Revidierung bzw. Reparatur eines lithographischen Projektionsobjektivs |
JP5154564B2 (ja) | 2006-12-01 | 2013-02-27 | カール・ツァイス・エスエムティー・ゲーエムベーハー | 像収差を低減するための交換可能で操作可能な補正構成を有する光学システム |
US7929114B2 (en) | 2007-01-17 | 2011-04-19 | Carl Zeiss Smt Gmbh | Projection optics for microlithography |
EP1950594A1 (de) | 2007-01-17 | 2008-07-30 | Carl Zeiss SMT AG | Abbildende Optik, Projektionsbelichtunsanlage für die Mikrolithographie mit einer derartigen abbildenden Optik, Verfahren zur Herstellung eines mikrostrukturierten Bauteils mit einer derartigen Projektionsbelichtungsanlage, durch das Herstellungsverfahren gefertigtes mikrostrukturiertes Bauelement sowie Verwendung einer derartigen abbildenden Optik |
DE102007009867A1 (de) * | 2007-02-28 | 2008-09-11 | Carl Zeiss Smt Ag | Abbildungsvorrichtung mit auswechselbaren Blenden sowie Verfahren hierzu |
WO2008113605A2 (de) * | 2007-03-20 | 2008-09-25 | Carl Zeiss Smt Ag | Verfahren zum verbessern von abbildungseigenschaften eines optischen systems sowie derartiges optisches system |
JP2008258461A (ja) * | 2007-04-06 | 2008-10-23 | Canon Inc | 反射型縮小投影光学系、露光装置及びデバイスの製造方法 |
DE102008002377A1 (de) | 2007-07-17 | 2009-01-22 | Carl Zeiss Smt Ag | Beleuchtungssystem sowie Projektionsbelichtungsanlage für die Mikrolithografie mit einem derartigen Beleuchtungssystem |
DE102008033341A1 (de) | 2007-07-24 | 2009-01-29 | Carl Zeiss Smt Ag | Projektionsobjektiv |
DE102007045396A1 (de) | 2007-09-21 | 2009-04-23 | Carl Zeiss Smt Ag | Bündelführender optischer Kollektor zur Erfassung der Emission einer Strahlungsquelle |
DE102007051671A1 (de) | 2007-10-26 | 2009-05-07 | Carl Zeiss Smt Ag | Abbildende Optik sowie Projektionsbelichtungsanlage für die Mikrolithographie mit einer derartigen abbildenden Optik |
DE102009008644A1 (de) * | 2009-02-12 | 2010-11-18 | Carl Zeiss Smt Ag | Abbildende Optik sowie Projektionsbelichtungsanlage für die Mikrolithografie mit einer derartigen abbildenden Optik |
DE102009035582A1 (de) * | 2009-07-29 | 2011-02-03 | Carl Zeiss Sms Gmbh | Vergrößernde abbildende Optik sowie Metrologiesystem mit einer derartigen abbildenden Optik |
DE102010029049B4 (de) * | 2010-05-18 | 2014-03-13 | Carl Zeiss Smt Gmbh | Beleuchtungsoptik für ein Metrologiesystem für die Untersuchung eines Objekts mit EUV-Beleuchtungslicht sowie Metrologiesystem mit einer derartigen Beleuchtungsoptik |
CN103038690B (zh) * | 2010-07-30 | 2016-08-03 | 卡尔蔡司Smt有限责任公司 | 成像光学系统以及具有该类型成像光学系统的用于微光刻的投射曝光设备 |
US9075322B2 (en) * | 2010-09-10 | 2015-07-07 | Nikon Corporation | Reflective imaging optical system, exposure apparatus, and method for producing device |
DE102012208793A1 (de) * | 2012-05-25 | 2013-11-28 | Carl Zeiss Smt Gmbh | Abbildende Optik sowie Projektionsbelichtungsanlage für die Projektionslithographie mit einer derartigen abbildenden Optik |
US9448343B2 (en) * | 2013-03-15 | 2016-09-20 | Kla-Tencor Corporation | Segmented mirror apparatus for imaging and method of using the same |
DE102015226531A1 (de) * | 2015-04-14 | 2016-10-20 | Carl Zeiss Smt Gmbh | Abbildende Optik zur Abbildung eines Objektfeldes in ein Bildfeld sowie Projektionsbelichtungsanlage mit einer derartigen abbildenden Optik |
CN111487753B (zh) * | 2019-01-25 | 2021-06-01 | 清华大学 | 自由曲面离轴三反成像系统 |
CN111487754B (zh) * | 2019-01-25 | 2021-04-23 | 清华大学 | 自由曲面离轴三反成像系统 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0779528A2 (de) * | 1995-12-12 | 1997-06-18 | Svg Lithography Systems, Inc. | Verkleinerndes optisches Ringfeldsystem mit hoher numerischer Apertur |
US5686728A (en) * | 1996-05-01 | 1997-11-11 | Lucent Technologies Inc | Projection lithography system and method using all-reflective optical elements |
WO1999057606A1 (en) * | 1998-05-06 | 1999-11-11 | Koninklijke Philips Electronics N.V. | Mirror projection system for a scanning lithographic projection apparatus, and lithographic apparatus comprising such a system |
US6033079A (en) * | 1999-03-15 | 2000-03-07 | Hudyma; Russell | High numerical aperture ring field projection system for extreme ultraviolet lithography |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0947882B1 (de) | 1986-07-11 | 2006-03-29 | Canon Kabushiki Kaisha | Verkleinerndes Projektionsbelichtungssystem des Reflexionstyps für Röntgenstrahlung |
US5315629A (en) | 1990-10-10 | 1994-05-24 | At&T Bell Laboratories | Ringfield lithography |
US6003079A (en) * | 1997-02-27 | 1999-12-14 | Hewlett Packard Company | System and method for continuously measuring quality of service in a federated application environment |
DE59914179D1 (de) * | 1999-02-15 | 2007-03-22 | Zeiss Carl Smt Ag | Mikrolithographie-Reduktionsobjektiveinrichtung sowie Projektionsbelichtungsanlage |
EP1093021A3 (de) * | 1999-10-15 | 2004-06-30 | Nikon Corporation | Projektionsbelichtungssystem sowie ein solches System benutzendes Gerät und Verfahren |
WO2002033467A1 (de) * | 2000-10-20 | 2002-04-25 | Carl Zeiss | 8-spiegel-mikrolithographie-projektionsobjektiv |
DE10052289A1 (de) * | 2000-10-20 | 2002-04-25 | Zeiss Carl | 8-Spiegel-Mikrolithographie-Projektionsobjektiv |
TW573234B (en) * | 2000-11-07 | 2004-01-21 | Asml Netherlands Bv | Lithographic projection apparatus and integrated circuit device manufacturing method |
-
2001
- 2001-10-19 WO PCT/EP2001/012110 patent/WO2002033467A1/de active Application Filing
- 2001-10-19 EP EP01982439A patent/EP1327172A1/de not_active Withdrawn
- 2001-10-19 KR KR10-2003-7004654A patent/KR20030045817A/ko active IP Right Grant
- 2001-10-19 JP JP2002536594A patent/JP2004512552A/ja active Pending
-
2003
- 2003-04-18 US US10/418,515 patent/US7177076B2/en not_active Expired - Fee Related
-
2006
- 2006-11-02 US US11/592,065 patent/US7372624B2/en not_active Expired - Fee Related
-
2008
- 2008-02-06 US US12/012,825 patent/US7508580B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0779528A2 (de) * | 1995-12-12 | 1997-06-18 | Svg Lithography Systems, Inc. | Verkleinerndes optisches Ringfeldsystem mit hoher numerischer Apertur |
US5686728A (en) * | 1996-05-01 | 1997-11-11 | Lucent Technologies Inc | Projection lithography system and method using all-reflective optical elements |
WO1999057606A1 (en) * | 1998-05-06 | 1999-11-11 | Koninklijke Philips Electronics N.V. | Mirror projection system for a scanning lithographic projection apparatus, and lithographic apparatus comprising such a system |
US6033079A (en) * | 1999-03-15 | 2000-03-07 | Hudyma; Russell | High numerical aperture ring field projection system for extreme ultraviolet lithography |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1434093A2 (de) * | 2002-12-27 | 2004-06-30 | Canon Kabushiki Kaisha | Katoptrisches Projektionssystem, Belichtungsapparat und Verfahren zur Herstellung einer Vorrichtung |
EP1434093A3 (de) * | 2002-12-27 | 2006-08-02 | Canon Kabushiki Kaisha | Katoptrisches Projektionssystem, Belichtungsapparat und Verfahren zur Herstellung einer Vorrichtung |
JP2004246343A (ja) * | 2003-01-21 | 2004-09-02 | Nikon Corp | 反射光学系及び露光装置 |
JP4496782B2 (ja) * | 2003-01-21 | 2010-07-07 | 株式会社ニコン | 反射光学系及び露光装置 |
JP2005189248A (ja) * | 2003-12-24 | 2005-07-14 | Nikon Corp | 投影光学系および該投影光学系を備えた露光装置 |
Also Published As
Publication number | Publication date |
---|---|
EP1327172A1 (de) | 2003-07-16 |
US20070047069A1 (en) | 2007-03-01 |
US20040012866A1 (en) | 2004-01-22 |
US20080137183A1 (en) | 2008-06-12 |
US7372624B2 (en) | 2008-05-13 |
JP2004512552A (ja) | 2004-04-22 |
US7177076B2 (en) | 2007-02-13 |
US7508580B2 (en) | 2009-03-24 |
KR20030045817A (ko) | 2003-06-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2002033467A1 (de) | 8-spiegel-mikrolithographie-projektionsobjektiv | |
DE10052289A1 (de) | 8-Spiegel-Mikrolithographie-Projektionsobjektiv | |
EP1282011B1 (de) | Reflektives Projektionsobjektiv für EUV-Photolithographie | |
DE60208045T2 (de) | Objektiv mit pupillenverdeckung | |
DE69635725T2 (de) | Verkleinerndes optisches Ringfeldsystem mit hoher numerischer Apertur | |
EP1035445B1 (de) | Mikrolithographie-Reduktionsobjektiveinrichtung sowie Projektionsbelichtungsanlage | |
EP1480082B1 (de) | Ringfeld-4-Spiegelsysteme mit konvexem Primärspiegel für die EUV-Lithographie | |
DE69030231T2 (de) | Vorrichtung für Halbleiterlithographie | |
EP1828829B1 (de) | Hochaperturiges objektiv mit obskurierter pupille | |
DE102014208770A1 (de) | Projektionsoptik zur Abbildung eines Objektfeldes in ein Bildfeld sowie Projektionsbelichtungsanlage mit einer derartigen Projektionsoptik | |
DE102015226531A1 (de) | Abbildende Optik zur Abbildung eines Objektfeldes in ein Bildfeld sowie Projektionsbelichtungsanlage mit einer derartigen abbildenden Optik | |
WO2016012425A2 (de) | Abbildende optik für ein metrologiesystem zur untersuchung einer lithographiemaske | |
DE102005042005A1 (de) | Hochaperturiges Objektiv mit obskurierter Pupille | |
DE102008043162A1 (de) | Abbildende Optik sowie Projektionsbelichtungsanlage für die Mikrolithographie mit einer derartigen abbildenden Optik | |
DE10210899A1 (de) | Refraktives Projektionsobjektiv für Immersions-Lithographie | |
DE102015221984A1 (de) | Abbildende Optik zur Abbildung eines Objektfeldes in ein Bildfeld sowie Projektionsbelichtungsanlage mit einer derartigen abbildenden Optik | |
DE102018207277A1 (de) | Lithografiemaske, optisches System zur Übertragung von Original Strukturabschnitten der Lithografiemaske sowie Projektionsoptik zur Abbildung eines Objektfeldes, in dem mindestens ein Original-Strukturabschnitt einer Lithografiemaske anordenbar ist | |
WO2005050321A1 (de) | Refraktives projektionsobjektiv für die immersions-lithographie | |
EP1178356B1 (de) | 6-Spiegel-Mikrolithographie-Projektionsobjektiv | |
DE102016205617A1 (de) | Projektionsbelichtungsverfahren und Projektionsbelichtungsanlage | |
EP1037115B1 (de) | Mikrolithographie-Projektionsobjektiveinrichtung sowie Projektionsbelichtungsanlage | |
WO2018104178A1 (de) | Katadioptrisches projektionsobjektiv und verfahren zu seiner herstellung | |
DE102023203223A1 (de) | Abbildende EUV-Optik zur Abbildung eines Objektfeldes in ein Bildfeld | |
DE102022206112A1 (de) | Abbildende EUV-Optik zur Abbildung eines Objektfeldes in ein Bildfeld | |
DE19948240A1 (de) | Mikrolithographie-Reduktionsobjektiveinrichtung sowie Projektionsbelichtungsanlage |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): JP KR US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2001982439 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020037004654 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2002536594 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 10418515 Country of ref document: US |
|
WWP | Wipo information: published in national office |
Ref document number: 1020037004654 Country of ref document: KR |
|
WWP | Wipo information: published in national office |
Ref document number: 2001982439 Country of ref document: EP |