WO2002019447A1 - Procede et dispositif de fabrication de plaque d'electrode pour pile et pile mettant en oeuvre une telle plaque d'electrode - Google Patents

Procede et dispositif de fabrication de plaque d'electrode pour pile et pile mettant en oeuvre une telle plaque d'electrode Download PDF

Info

Publication number
WO2002019447A1
WO2002019447A1 PCT/JP2001/007444 JP0107444W WO0219447A1 WO 2002019447 A1 WO2002019447 A1 WO 2002019447A1 JP 0107444 W JP0107444 W JP 0107444W WO 0219447 A1 WO0219447 A1 WO 0219447A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
battery
core material
electrode plate
manufacturing
Prior art date
Application number
PCT/JP2001/007444
Other languages
English (en)
French (fr)
Inventor
Masaharu Miyahisa
Hideyuki Kumakiri
Takehiko Matsunaga
Koichi Kojima
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to EP01961179A priority Critical patent/EP1317007B1/en
Priority to DE60133472T priority patent/DE60133472T2/de
Priority to US10/111,665 priority patent/US6878173B2/en
Publication of WO2002019447A1 publication Critical patent/WO2002019447A1/ja
Priority to US12/291,848 priority patent/US20090081533A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • H01M4/0435Rolling or calendering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/28Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/30Nickel accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/345Gastight metal hydride accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0416Methods of deposition of the material involving impregnation with a solution, dispersion, paste or dry powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/26Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • H01M4/808Foamed, spongy materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte
    • H01M6/06Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid
    • H01M6/10Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid with wound or folded electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • Y10T29/49115Electric battery cell making including coating or impregnating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4998Combined manufacture including applying or shaping of fluent material
    • Y10T29/49982Coating

Definitions

  • the present invention relates to a battery electrode plate used for a secondary battery such as a nickel-metal hydride battery and a nickel-cadmium battery, and more particularly, to a non-sintered battery electrode in which a core material of a foamed metal is filled with an active material.
  • the present invention relates to a plate manufacturing method and a manufacturing apparatus, and a battery using the same. Background art
  • the electrode plate for secondary batteries foamed metal having a three-dimensional mesh structure is used as the core material, and the core material filled with an active material is widely used because of its relatively excellent discharge capacity. ing. Furthermore, in recent years, batteries have been strongly required to have improved high-rate discharge characteristics.
  • Japanese Patent Application Laid-Open No. 2000-77054 discloses a battery for a battery as shown in FIGS. 7A to 7E. A method for manufacturing an electrode plate is disclosed. First, in the first pressing step, two groove portions 2 parallel to both sides and having a predetermined groove width are formed in the core material 1 made of foamed metal.
  • the active material 3 accumulated in the groove 2 is removed using a brush or the like.
  • the core material 1 is pressed three times to form a shape such that the entire surface is flush with the groove bottom of the groove 2 as shown in FIG. 7C. Is done.
  • the portion where the groove 2 has been formed in advance becomes an exposed core 4 as shown in FIG. 7D through an active material removing step using a brush and an air probe.
  • the core material 1 is cut to form a battery electrode plate 7.
  • the battery electrode plate 7 is formed on one side thereof with a current collecting portion 7b composed of a core material exposed portion 4.
  • a cylindrical electrode group formed by winding the electrode plate is provided on an end face thereof.
  • a current collector is formed. This electrode group uniformly collects power over the entire length of the battery electrode plate, thereby improving the overall current collection efficiency.
  • the above-mentioned evening breath method in which current collecting lead pieces are welded to the current collecting section significantly improves the current collecting characteristics and can meet the demand for improving the high-rate discharge characteristics.
  • the battery electrode plate 7 manufactured through the above steps has various problems described below.
  • the first problem is that since the packing density of the active material 3 varies in the active material filled portion 7a, the battery made using the battery electrode plate 7 has a variation in capacity.
  • the second problem is that since the boundary 7c between the active material filling portion 7a and the current collecting portion 7b is not a straight line, the accuracy of the dimensions and shape of the battery electrode plate 7 is low. This is because the current collecting function of the battery formed using the electrode plate 7 for the battery is reduced, and high-rate discharge characteristics cannot be obtained.
  • the third problem is that, because the active material 3 is not sufficiently removed from the current collecting portion 7b, poor welding is likely to occur when attaching a current collecting lead to the current collecting portion 7b, and the yield is low. It is to do. Active material removal using a brush and air blow is inefficient and results in reduced productivity.
  • the fourth problem is that the width of the exposed core material 4 before cutting shown in FIG. 7D is different from the set value. As a result, a method of forming the current collecting portion by bending the exposed portion of the core material at a right angle and then compressing the exposed portion cannot be applied, so that the mechanical strength and high current collecting efficiency of the current collecting portion cannot be secured.
  • the fifth problem is that bowing is likely to occur in the battery electrode plate 7 obtained by cutting the core material 1. This causes the electrode group to be formed in a defective shape when the electrode group is formed by spirally winding the battery electrode plate 7 to form an electrode group. In addition, not only warpage occurs but also microscopic observation with a microscope reveals that fine cracks have occurred at the boundary between the active material filling section 7a and the current collecting section 7b. It was confirmed that part of the metal skeleton was destroyed and the strength was reduced. As a result, the battery electrode plate 7 is liable to cause problems such as dropping of the active material 3, short-circuit failure, and decrease in electric conductivity.
  • the above-mentioned Japanese Patent Application Laid-Open No. 2000-77054 discloses another method for manufacturing a battery electrode plate.
  • the entire core material made of foamed metal is filled with the active material, and then pressed to compress the entire material to a predetermined thickness, and the active material at the required locations is removed using an ultrasonic vibrator.
  • a core material exposed portion is formed.
  • the boundary between the active material-filled portion and the current collecting portion of the battery electrode plate is formed. Since the straight line does not fall exactly, the current collecting function of the battery formed using this battery electrode plate is reduced, and high-rate discharge characteristics cannot be obtained.
  • the present invention has been made in view of the above-mentioned conventional problems, and there is no variation in the filling density of the active material, and the boundary between the active material filling portion and the current collecting portion becomes an accurate straight line. It is an object of the present invention to provide a method and an apparatus for manufacturing a battery electrode plate in which the residual ratio of an active material in a battery is low and the entire current collector has a predetermined width, and a battery using the same. . Disclosure of the invention
  • a method for manufacturing a battery electrode plate according to the present invention includes an active material filling step of filling an active material into the entire porous and thin plate core material; A pressing step of forming a plurality of rail-shaped residual ridges by pressing; and an active material for removing the active material by applying ultrasonic vibration to the residual ridges to form a core material exposed portion.
  • a cutting step for dividing into electrode plates for use includes an active material filling step of filling an active material into the entire porous and thin plate core material; A pressing step of forming a plurality of rail-shaped residual ridges by pressing; and an active material for removing the active material by applying ultrasonic vibration to the residual ridges to form a core material exposed portion.
  • the electrode group formed by spirally winding the positive and negative electrode plates for a battery manufactured by this manufacturing method through a separator between the two is housed in a cylindrical battery case, and the cylindrical battery case is formed. Is preferable.
  • another method for producing a battery electrode plate according to the present invention includes an active material filling step of filling the whole porous and thin plate-shaped core material with an active material, and pressing the active material-filled core material.
  • a prismatic battery by housing an electrode group formed by alternately laminating positive and negative electrode plates for a battery produced by this production method via a separator in a prismatic battery case. It is.
  • the device for manufacturing a battery electrode plate of the present invention is characterized in that the active material-filled core material in which the active material is completely filled in the porous thin plate-shaped core material is subjected to press working to form a plurality of rail-shaped residual convex portions.
  • an active material removing device including a vacuum suction machine I for sucking the active material removed by the application of ultrasonic vibration.
  • Another manufacturing apparatus for a battery electrode plate according to the present invention includes a plurality of rail-shaped residual cores which are formed by pressing a core material filled with an active material in which a porous thin plate-shaped core material is entirely filled with an active material.
  • a striping mouth press machine for forming a ridge, an ultrasonic vibrator for applying ultrasonic vibration by bringing an ultrasonic generating horn into contact with the remaining ridge, and a lower portion relative to each ultrasonic vibrator.
  • An active material removing device comprising a vacuum suction device installed at a position facing the active material to suck the active material removed by the application of ultrasonic vibration; and a core material exposed portion processed by the active material removing device.
  • the apparatus is provided with a welding device for seam welding the dope hoop, and a cutting machine for cutting at least a predetermined portion including the lead hoop and dividing it into individual battery electrode plates.
  • FIGS. 1A, 1B, 1C, 1D, 1E, and 1F illustrate manufacturing steps embodying the method for manufacturing a battery electrode plate according to the first embodiment of the present invention.
  • FIG. 2A is a front view showing a stripe roll press machine used in a pressing step in the manufacturing method of the above, and
  • FIG. 2B is an enlarged view of IIB portion in FIG. 2A.
  • FIG. 3A is a front view showing an active material removing apparatus used in the active material removing step
  • FIG. 4 is a partially cut perspective view showing a cylindrical battery housing the battery electrode plate obtained by the above-described manufacturing method.
  • 5A, 5B, 5C, 5D, 5E, 5F, and 5G embody a method for manufacturing a battery electrode plate according to the second embodiment of the present invention. It is a perspective view showing the manufacturing process in order,
  • FIG. 6 is a partially cut perspective view showing a prismatic battery containing the battery electrode plate obtained by the above-described manufacturing method.
  • 7A, 7B, 7C, 7D, and 7E are perspective views sequentially showing the manufacturing steps of a conventional method for manufacturing a battery electrode plate.
  • FIG. 1A to FIG. 1F are perspective views sequentially showing manufacturing steps that embody a method for manufacturing a battery electrode plate according to a first embodiment of the present invention.
  • the entire core material 1 made of a rectangular foamed metal having a predetermined size shown in FIG. 1A is filled with an active material 3.
  • the active material 3 is filled into the core material 1 having no irregularities before the press working, so that the active material 3 is filled so as to have a uniform charge density over the whole, and the core material 1 has irregularities, that is, high and low levels. Since there is no difference, it is held inside without flowing and dried while maintaining a uniform packing density.
  • the core material 1 is a three-dimensional network structure foam metal made of nickel in this embodiment, and is a rectangular thin plate having a thickness of, for example, 1.24 mm.
  • the manufacturing method of this embodiment is preferably applied to a continuous band-shaped core material, that is, a hoop core material.
  • the core material 1 uniformly filled with the active material 3 is subjected to press working on all other parts except the part which becomes the core material exposed part 13 in a later process.
  • the thickness is reduced to approximately 1/2 mm from the above-mentioned 1.24 mm to 0.6 mm, for example.
  • two parallel rail-shaped remaining ridges 8, 8 having a thickness of about 0.9 mm to about LI mm are formed. You.
  • a stripe roll press 9 as shown in FIG. 2A is used.
  • FIG. 2A is a front view of the stripe roll press machine 9, and FIG. 2B is an enlarged view of a part shown in FIG. 2A.
  • the striped roll press 9 is composed of a receiving press roll 10 and a processing press port 11, and the receiving press roll 10 is supported in a rotating manner in a fixed position, and the processing press
  • the roll 11 is configured to apply a predetermined pressing force in a direction toward the receiving press roll 10. Therefore, the working press roll 11 has rigidity to withstand the pressing force, and two predetermined groove portions of the working press roll 11 for forming the remaining protruding ridges 8 are provided. 2, 12 are provided on the peripheral surface.
  • the opening edges of both side walls 12a and 12b of the annular groove 12 are round surfaces having a radius of curvature R of 0.3 mm to 0.6 mm, for example.
  • both press ports 10 and 11 are relatively large, for example, 550 mm.
  • the active material that has passed between both press rolls 10 and 11 has been filled.
  • the core 1 is pressed from a state shown in FIG. 1B to a state shown in FIG.
  • the pitch between the two rail-shaped remaining ridges 8, 8 formed in this way is determined by the dimensions of the ⁇ -shaped groove 12 of the working press roll 11, and is exactly as set.
  • the conventional method of manufacturing a battery electrode plate has two pressing steps, whereas the manufacturing method of this embodiment requires a pressing step for forming the two remaining ridges 8. Since the core material is present only once, the elongation and deformation of the core material are suppressed. However, it is necessary to secure the above-described predetermined thickness and the predetermined filling density of the active material 3 by one press step. According to the experimental results, it was found that a load of 3 ton per 1 cm of electrode plate width was required. In practical use, the gap between the two press rolls 10 and 11 is preferably wide, for example, about 0.3 mm, in order to keep the width of the remaining ridge 8 constant throughout. Requires a force of 10 ton / cm [f pressure.
  • the core material 1 of the battery electrode plate a foamed metal made of pure nickel, which is highly extensible, is used. Becomes larger. This variation in elongation can be suppressed by increasing the diameter of the press rolls 10 and 11. For example, use it in the second pressing step in the conventional manufacturing method shown in Fig. 7C! / In the case of a press mouth with a 400 mm round hole, elongation of 3.3% to 3.5% occurs in the length direction, whereas the hole diameter used in the pressing process in the present embodiment is With a 550 mm press orifice 10 and 11, only 1.7% to 1.9% elongation occurs in the length direction at the same compression ratio. That is, the elongation of the core material 1 decreases as the roll diameter increases.
  • the opening rims of both side walls 1 2 a 1 b of the annular groove 12 of the working press roll 11 have a radius of curvature R of 0.3 mn! 0.6 mm round surface, the boundary between the remaining ridges 8, 8 and the peripheral part is clear, and the metal skeleton of the core 1 does not break or deteriorate during press working .
  • the radius of curvature R of the radius surface is set to be larger than 0.3 mm to 0.6 mm, the active material 3 on the edge of the remaining ridges 8 and 8 falls off and the remaining ridges 8 and 8 and the peripheral portion If the boundary of the battery is not clear, and if it is set smaller than the above value, the metal skeleton of the core material 1 will be broken or deteriorated, and the current collection efficiency when a battery is manufactured using this battery electrode plate Decrease.
  • FIG. 3A is a front view
  • FIG. 3B is a right side view.
  • the active material removing device 14 is activated by applying ultrasonic vibration by bringing its own ultrasonic generating horns 17a and 17a into contact with the upper portions of the remaining ridges 8 and 8, respectively.
  • a pair of ultrasonic vibrators 17 and 17 for peeling and removing the substance 3, and the separated and removed actives are disposed at positions below and opposed to the ultrasonic vibrators 17 and 17. It is provided with a pair of vacuum suction machines 18 and 18 for sucking the substance 3.
  • the ultrasonic generating horn 17a has a slope 17b having a downward slope in the transfer direction of the core 1 on the contact surface with the core 1 filled with the active material.
  • the surface 17b prevents the core 1 from being damaged.
  • the inclined surface 17b and the flat contact surface 17c connected to the inclined surface 17b are formed by using a cemented carbide material to reduce abrasion.
  • the main body of the horn 1 ⁇ ⁇ ⁇ a is made of titanium.
  • the ultrasonic horns 17a and 17a of a pair of ultrasonic vibrators 17 and 17 whose positions are fixed respectively attach the upper portions of the protruding ridges 8 and 8 respectively to the ultrasonic horns 17a and 17a.
  • the core material 1 filled with the active material is transferred in the direction of the arrow shown in FIG. 3B in the contact state.
  • the metal skeleton is crushed, and the active material 3 inside the skeleton is peeled off and removed.
  • the active material 3 which is filled in the lower part of each of them is removed by suction.
  • the active material 3 inside the remaining convex portion 8 and the portion below the convex portion 8 is almost completely removed, and the high quality core exposed portion 13 is obtained.
  • the active material 3 to be removed in the active material removing step is a material filled in the remaining ridges 8. In this state, the active ridges 8 are not pressed. Extremely easy to remove. Therefore, even if this active material 3 contains a binder, which was extremely difficult to remove in the conventional process, the ultrasonic vibration of the ultrasonic vibrator 17 It is easily and completely removed by vacuum suction with a vacuum suction machine 18 from below while applying ultrasonic vibration by contact of the wave generation horn 17a.
  • the residual ratio of the active material in the exposed portion 13 of the core material formed through the above-mentioned active material removing step was 1 to 4%.
  • the active material remaining ratio of the exposed core material 4 obtained by the conventional manufacturing method is as high as 10% or more, and a lump of the active material 3 remains partially. This was the main cause of spark generation when welding pieces. Therefore, the lumps are manually removed, which is one of the causes of further lowering of the productivity.c
  • the evaluation of the residual ratio of the active material is based on the acetic acid in which nickel, which is the material of the core material 1, is not dissolved. Only the active material 3 was dissolved by immersion in a water solution, and the weight of the active material 3 remaining in the exposed portion 4 or 13 of the core was measured and calculated from the weight change rate of the dissolved active material 3.
  • the gap C between 7c and 0.7mn! It is preferable to use it by setting it to 0.8 mm. Since the thickness D after pressing of the core material 1 filled with the active material shown in FIG. 1C is exactly 0.58 mm, the gap C is 0.7 mn! Although it can be set to a value smaller than 0.8 mm, even if it is set to such a small value, the residual ratio of the active material does not change. On the other hand, the gap C is 0.7mn! When it is set to a value larger than 0.8 mm, the residual ratio of the active material increases.
  • the active material removing device 14 described above has a condition that the active material 3 in the remaining ridges 8 is in an easily removable state, and that the active material-filled core material 1 is placed on the ultrasonic vibrator 17 at a fixed position.
  • the active material 3 can be removed while being continuously transferred at a high speed, and the active material 3 is evacuated by the vacuum suction device 18 from below the remaining ridges 8 so that the active material 3 can be removed. It is removed efficiently and productivity is greatly improved.
  • the core material 1 filled with the active material can be transferred at a high speed of about 450 mmZsec because the active material 3 is easily removed.
  • the ultrasonic vibrator 17 is set and driven so that the amplitude is in the range of 25 to 50_im. This is because if the amplitude is smaller than the above range, the time required to remove the active material 3 is longer, and if the amplitude is larger than the above range, the efficiency of removing the active material 3 is higher. The metal skeleton is destroyed and the mechanical strength is deteriorated, so that the current collecting function is reduced.At the same time, the active material 3 in the vicinity of the exposed core material 13 is partially separated, and the exposed core material 13 and other parts are removed. This is because the linearity of the boundary line with the point is deteriorated.
  • the strength of the core material 1 does not deteriorate even though the active material 3 is removed by applying ultrasonic vibration. This effect was confirmed by the evaluation results of the tensile tester.
  • the strength of the core material 1 is generally reduced by about 50 to 70%.
  • the core material 1 filled with the active material 3 is subjected to press working, and thereafter, ultrasonic vibration is applied to a portion to be a current collector. This is because the active material 3 is in a state that is extremely difficult to remove.
  • the active material 3 filled in the remaining ridges 8, 8 which are hardly pressed is removed, and the remaining ridges 8 in which the ultrasonic vibration is projected are formed. Since it is applied only to the upper portion of the core 8 and does not affect other portions, the strength of the core 1 does not deteriorate.
  • the exposed core material 13 is lightly pressed by a press roll (not shown) different from that shown in FIG. 2A, and is filled with the active material 3 as shown in FIG. 1E. It will be in a state where it is flush with the existing location.
  • four electrode plates 19 for battery as shown in Fig.1F are obtained by cutting along the three cutting lines indicated by dashed lines in Fig.1E.c Each of the electrode plates 19 has the same band shape, and a boundary line 19 c between the active material filled portion 19 a and the current collecting portion 19 b from which the active material 3 has been removed along the longitudinal direction. have.
  • the linearity of the boundary line 19 c between the active material filled portion 19 a and the current collecting portion 19 b in the battery electrode plate 19 obtained through the above process is based on the measured value of a measurement using a microscope. ,Traditional While the error was as large as 0.8 mm in the battery electrode plate 7 manufactured by the method, it was suppressed to a small error of 0.2 mm or less.
  • the conventional manufacturing method has a pressing step in which pressing is repeated three times for the purpose of achieving a predetermined packing density after filling the active material 3, as compared with the present embodiment.
  • the core material 1 filled with the active material is subjected to only one press working for forming the remaining protruding portions 8, 8 shown in FIG. 1C. Therefore, the battery electrode plate 19 obtained in this embodiment can be formed by bending the core exposed portion 13 and then compressing it to form the current collecting portion 19b.
  • the current collecting portion 19b has an increased mechanical strength and density and an improved current collecting efficiency.
  • the variation in the packing density of the active material filled portion 19a is suppressed to 1.5% or less. This is because the active material 3 was filled into the core material 1 having no unevenness before the pressing.
  • the battery electrode plate 7 obtained through the conventional manufacturing process since the active material 3 is filled into the core material 1 having the unevenness by press working, it is possible to fill the electrode material into an even amount throughout. It was not possible, and the packing density of the active material filled part 7a had a variation of 3.5% or more.
  • FIG. 4 shows an electrode group 51 formed by spirally winding the positive and negative electrode plates 19 p and 19 q for the battery manufactured by the above-described manufacturing method via a separator 55 between them.
  • the positive electrode terminal 56 of the sealing plate 57 and the positive battery electrode plate 19p are electrically connected via leads, and the battery case 52, which is a negative electrode can, and the negative electrode can be connected to each other.
  • the battery electrode plate 19 q is electrically connected via a lead.
  • the battery case 52 is filled with an electrolytic solution.
  • FIGS. 5A to 5G show a manufacturing process embodying the manufacturing method of the battery electrode plate according to the second embodiment of the present invention.
  • FIG. 5A the same reference numerals as those in FIGS.1A to 1F denote the same or equivalent parts in FIGS.5A to 5G. It is attached.
  • FIG. 5B the entire core material 1 made of a rectangular or band-shaped foamed metal having a predetermined size shown in FIG. 5A is filled with an active material 3.
  • the active material 3 is filled into the core material 1 having no unevenness before the press working, the active material 3 is filled with a uniform charge density throughout, and the core material 1 has no unevenness, that is, no height difference. Therefore, it is held inside without flowing, and dried while maintaining a uniform packing density.
  • the core material 1 uniformly filled with the active material 3 as described above is subjected to press working on all parts except for the part that becomes the core material exposed part in a later step. Then, the thickness is reduced to approximately 1/2, and the portion that becomes the exposed core material in the subsequent process remains as two parallel rail-shaped remaining protruding portions 20 and 20.
  • the basic structure is the same as that of the strip roll press 9 shown in FIG. 2A, and an annular groove is provided in an arrangement capable of forming the remaining convex ridges 20 and 20 in FIG. 5C.
  • a stripper press (not shown) equipped with a working press roll is used.
  • the active material removing step the two remaining convex portions 20 and 20 are removed from the two core exposed portions 21 and 2 by removing the active material 3 filled therein. It is set to 1.
  • an active material removing device (not shown) having substantially the same configuration as the active material removing device 14 having the ultrasonic vibrator 17 shown in FIGS. 3A and 3B was used. Thus, the processing is performed in the same manner as in the first embodiment.
  • the core exposed portions 21 and 21 are lightly pressed by a press roll (not shown), as in the first embodiment, to be flush with a portion where the active material 3 is filled. Compressed to state. Further, as shown in FIG. 5E, the core exposed portions 21 and 21 are compressed by a press roll to a position where the upper surface is lower than a position where the active material 3 is filled. Thereafter, a strip-shaped lead, that is, a lead hoop 22 is seam-welded to both core exposed portions 21 and 21. Finally, a plurality of battery electrode plates 23 as shown in FIG. 5G can be obtained by cutting or punching along each cutting line indicated by a chain line in FIG. 5F.
  • Each of the battery electrode plates 23 has the same shape, and the active material filled portion 23a and the current collecting portion 23b from which the active material 3 has been removed are fixed to the current collecting portion 23b. And a lead piece 23c. Since the manufacturing method of the battery electrode plate 23 goes through substantially the same steps as in the first embodiment, it is possible to obtain the same effects as the various effects of the first embodiment. Thus, a high-quality battery electrode plate 23 used for a rectangular battery can be manufactured with high productivity. Instead of the step of welding the lead hoop 22, that is, cutting the active material-filled core material 1 to which the lead hoop 22 was not welded along the cutting line at the center in FIG.
  • the core material exposed portion 21 may be bent and then compressed to form a current collecting portion, and then divided into individual battery electrode plates. Since the mechanical strength and density of the current collector are increased and the current collection efficiency is also improved by the above-described processing, the current collector is provided with a lead piece 23 c formed by cutting the lead hoop 22. A stable lead piece of similar quality can be formed.
  • FIG. 6 shows an electrode group 53 formed by alternately laminating the positive and negative electrode plates 23 3 and 23 q for the battery manufactured by the above-described manufacturing method via a separator 58, and forming a rectangular cylindrical shape.
  • a nickel-metal hydride battery housed in a battery case 54 of FIG. In this prismatic battery, a positive electrode terminal 60 of a sealing plate 59 and a positive electrode plate 23 p for a battery are electrically connected via a lead, and a battery case 54 serving as a negative electrode can and a negative electrode battery The electrode plate 23 q is electrically connected via a lead.
  • the battery case 54 is filled with an electrolytic solution.
  • the present invention is useful for efficiently producing a battery having a high rate discharge characteristic.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Description

明 細 書 電池用電極板の製造方法と製造装置およびそれを用いた電池 技術分野
本発明は、ニッケル水素電池、ニッケル力ドミゥム電池などの二次電池に用いられ る電池用電極板に関し、特に、発泡メタルの芯材に活物質が充填されてなる非焼結式 の電池用電極板の製造方法と製造装置およびそれを用いた電池に関する。 背景技術
二次電池の電極板としては、 三次元の網目構造を有する発泡メタルを芯材として、 この芯材に活物質を充填したものが、放電容量が比較的優れていることから、広く採 用されている。 さらに、 近年の電池には高率放電特性の向上が強く求められており、 その対応策として、 例えば、 特開 2000— 77054号公報には、 図 7 A〜図 7 Eに示すよ うな電池用電極板の製造方法が開示されている。まず、発泡メタルからなる芯材 1に、 第 1のプレス工程において、両側辺に平行であって所定の溝幅を有する 2本の溝部 2 が形成される。芯材 1に活物質 3を充填した後、溝部 2内に溜まっている活物質 3は ブラシなどを用いて除去される。続いて、芯材 1は、第 2のプレス工程において、 プ レス加工を 3回経ることにより、図 7 Cに示すような、全体が溝部 2の溝底と面一と なるような形状に加工される。その後、溝部 2を予め形成しておいた部分は、 ブラシ とエアープロ一による活物質除去工程を経て、図 7 Dに示すように、芯材露出部 4と なる。 この芯材 1を切断して、 電池用電極板 7を作成する。
この電池用電極板 7には、その一辺に芯材露出部 4からなる集電部 7 bが形成され ており、 この電極板を卷き回して形成した円筒状の電極群は、その端面に集電部が形 成される。この電極群は、電池用電極板の全長にわたって均一に集電するため全体の 集電効率が向上する。さらに、上記の集電部に集電用リード片を溶接する夕ブレス方 式によつて集電特性が格段に向上し、 高率放電特性を向上させる要望に対応できる。 しかしながら、 上記工程を経て製作された電池用電極板 7には、 以下に説明する 種々の問題がある。第 1の問題は、活物質充填部 7 aにおいて活物質 3の充填密度に ばらつきが生じるため、この電池用電極板 7を用いて作成した電池には容量のばらつ きがあり、 パック電池に適用した場合に過充電や過放電が発生しやすいことである。 第 2の問題は、活物質充填部 7 aと集電部 7 bとの境界線 7 cが正確な直線になら ないことから、電池用電極板 7の寸法や形状の精度が低く、 この電池用電極板 7を用 いて構成した電池の集電機能が低下して高率放電特性が得られないことである。 第 3の問題は、集電部 7 bにおける活物質 3の除去が不十分であることから、 この 集電部 7 bに集電用リード片を取り付ける際に溶接不良が発生しやすく歩留りが低 下することである。ブラシとエア一ブローを用いた活物質除去は効率が悪く、生産性 の低下をも招いている。
第 4の問題は、図 7 Dに示す切断前の芯材露出部 4の幅が設定値とは異なる値とな つてしまうことである。その結果、芯材露出部を直角に折り曲げた後、圧縮して集電 部を形成する方法が適用できず、集電部の機械的な強度や高い集電効率を確保するこ とができない。
第 5の問題は、芯材 1を切断して得られる電池用電極板 7に弓反りが発生し易いこ とである。 これは、 電池用電極板 7を渦巻き状に卷回して電極群を構成したときに、 巻きずれが発生して電極群が不良形状となる原因となる。 しかも、反りが発生するだ けでなく、顕微鏡で拡大して観察したところ、活物質充填部 7 aと集電部 7 bとの境 界部分に微細なクラックが発生しており、芯材 1の金属骨格の一部が破壊されて強度 が低下していることが確認された。その結果、 この電池用電極板 7には活物質 3の脱 落、 短絡不良および電気伝導性の低下などの不具合が発生し易い。
一方、 上述の特開 2000— 77054号公報には、 電池用電極板の他の製造方法も開示さ れている。 この製造方法は、発泡メタルからなる芯材の全体に活物質を充填し、 その 後、全体を所定の厚みに圧縮するプレス加工を行い、所要箇所の活物質を超音波振動 器を用いて除去して芯材露出部を形成するものである。
ところが、 この製造方法では、電池用電極板の活物質充填部と集電部との境界線が 正確な直線にほならないために、この電池用電極板を用いて構成した電池の集電機能 が低下して高率放電特性が得られない。これは、プレス加工後に活物質を除去するた めには振幅の大きな超音波振動を付与する必要があるが、その結果、芯材露出部を形 成すべき箇所の周辺部の活物質までもが脱落するためである。さらに、芯材の金属骨 格は、 振幅の大きな超音波振動を受けると、 損傷や劣化の恐れがある。
そこで、本発明は、 上記従来の課題に鑑みてなされたもので、活物質の充填密度に ばらつきがなく、活物質充填部と集電部との境界線が正確な直線となり、集電部にお ける活物質の残存率が低く、集電部の全体が所定の幅を有している電池用電極板の製 造方法と製造装置、 およびそれを用いた電池を提供することを目的とする。 発明の開示
上記目的を達成するために、本発明の電池用電極板の製造方法は、多孔質で薄板状 の芯材の全体に活物質を充填する活物質充填工程と、前記活物質充填済み芯材にプレ ス加工を施して複数のレール状残存凸条部を形成するプレス工程と、前記残存凸条部 に超音波振動を付与することにより活物質を除去して芯材露出部を形成する活物質 除去工程と、前記芯材露出部の上部を押圧して他の部分と面一となる状態まで圧縮す る平坦化工程と、少なくとも前記芯材露出部を含む所定箇所を切断して個々の電池用 電極板に分割する切断工程とを有していることを特徴としている。
この製造方法により製造された正極および負極の電池用電極板を両者間にセパレ —夕を介して渦卷状に卷回してなる電極群を、円筒状の電池ケース内に収納して円筒 形電池を構成すると好適である。
また本発明の電池用電極板の他の製造方法は、多孔質で薄板状の芯材の全体に活物 質を充填する活物質充填工程と、前記活物質充填済み芯材にプレス加工を施して複数 のレ一ル状残存凸条部を形成するプレス工程と、前記残存凸条部に超音波振動を付与 することにより活物質を除去して芯材露出部を形成する活物質除去工程と、前記芯材 露出部を押圧して圧縮する芯材露出部圧縮工程と、前記芯材露出部にリードフープを シ一ム溶接するリ一ド溶接工程と、少なくとも前記リードフープを含む所定箇所を切 断して個々の電池用電極板に分割する切断工程とを有していることを特徴としてい る。
この製造方法により製造された正極および負極の電池用電極板をセパレ一夕を介 して交互に積層してなる電極群を、角筒状の電池ケース内に収納して角形電池を構成 すると好適である。
本発明の電池用電極板の製造装置は、多孔質で薄板状の芯材の全体に活物質が充填 された活物質充填済み芯材にプレス加工を施して複数のレール状残存凸条部を形成 するストライプロールプレス機と、前記残存凸条部に超音波発生ホーンを接触させて 超音波振動を付与する超音波振動器およびこの各超音波振動器に対し下方で相対向 する位置に設置されて超音波振動の付与により除去される活物質を吸引する真空吸 弓 I機とからなる活物質除去装置とを備えて構成されている。
また本発明の電池用電極板の他の製造装置は、多孔質で薄板状の芯材の全体に活物 質が充填された活物質充填済み芯材にプレス加工を施して複数のレール状残存凸条 部を形成するストライプ口一ルプレス機と、前記残存凸条部に超音波発生ホーンを接 触させて超音波振動を付与する超音波振動器およびこの各超音波振動器に対し下方 で相対向する位置に設置されて超音波振動の付与により除去される活物質を吸引す る真空吸引機とからなる活物質除去装置と、前記活物質除去装置によって加工された 芯材露出部にリ一ドフープをシ一ム溶接する溶接装置と、少なくとも前記リードフ一 プを含む所定箇所を切断して個々の電池用電極板に分割する切断機とを備えて構成 されている。 図面の簡単な説明
図 1 A、 図 1 B、 図 1 C、 図 1 D、 図 1 E、 図 1 Fは本発明の第 1の実施の形態に 係る電池用電極板の製造方法を具現化した製造工程を順に示した斜視図であり、 図 2 Aは同上の製造方法におけるプレス工程に用いられるストライプロールプレ ス機を示す正面図であり、 図 2 Bは図 2 Aの II B部の拡大図であり、
図 3 Aは活物質除去工程に用いられる活物質除去装置を示す正面図であり、図 3 B は右側面図であり、
図 4は上記製造方法により得られた電池用電極板を収納した円筒形電池を示す一 部切断斜視図であり、
図 5 A、 図 5 B、 図 5 C、 図 5 D、 図 5 E、 図 5 F、 図 5 Gは本発明の第 2の実施 の形態に係る電池用電極板の製造方法を具現化した製造工程を順に示す斜視図であ 、
図 6は上記製造方法により得られた電池用電極板を収納した角形電池を示す一部 切断斜視図であり、
図 7 A、 図 7 B、 図 7 C、 図 7 D、 図 7 Eは従来の電池用電極板の製造方法の製造 工程を順に示した斜視図である。 発明を実施するための最良の形態
以下、本発明の好ましい実施の形態について図面を参照しながら説明する。図 1 A 〜図 1 Fは本発明の第 1の実施の形態に係る電池用電極板の製造方法を具現化した 製造工程を順に示した斜視図である。先ず、図 1 Aに示す所定サイズの矩形状の発泡 メタルからなる芯材 1の全体に、図 1 Bに示すように活物質 3を充填する。この場合、 活物質 3は、 プレス加工前であって全く凹凸のない芯材 1に充填されるので、全体に わたって均一な充電密度になるよう充填されるとともに、芯材 1に凹凸つまり高低差 がないことから流動することなく内部に保持されて、均一な充填密度を保持したまま 乾燥する。なお、芯材 1は、 この実施の形態においてニッケルからなる三次元の網目 構造の発泡メタルであって、厚みが例えば 1.24mmの矩形の薄板である。但し、 この 実施の形態の製造方法は、連続的な帯状の芯材、すなわちフープ芯材に適用すること が好ましい。
つぎに、活物質 3が均一に充填された芯材 1は、図 1 Cに示すように、後工程にお いて芯材露出部 1 3となる部分を除く他の全ての部分にプレス加工が施されて、例え ば厚みが上述の 1.24mmから 0.6mmにほぼ 1 / 2に圧縮される。このとき、 0.9mm 〜: L I mm程度の厚みを有する 2本の平行なレール状の残存凸条部 8、 8が形成され る。このプレス加工には、図 2 Aに示すようなストライプロールプレス機 9が用いら れ 。
図 2 Aはストライプロールプレス機 9の正面図、図 2 Bは図 2 Aの Π Β部の拡大図 である。このストライプロールプレス機 9は、受けプレスロール 1 0と加工プレス口 ール 1 1とによって構成され、受けプレスロール 1 0は位置を固定した状態で回転自 在に支持されているとともに、加工プレスロール 1 1は受けプレスロール 1 0に向け た方向に所定の加圧力が加えられるようになつている。 したがって、加工プレスロー ル 1 1は加圧力に耐えられる剛性を有しており、この加工プレスロール 1 1の所定の 2箇所には、残存凸条部 8、 8を形成するための環状溝部 1 2、 1 2が周面に設けら れている。上記環状溝部 1 2の両側壁 1 2 a、 1 2 bの開口縁部は、 図 2 Bに明示す るように、 例えば曲率半径 Rが 0.3mm〜0.6mmのアール面になっている。
また、 両プレス口一ル 1 0、 1 1は、 ロール径が例えば 550mmと比較的大きく、 この実施の形態のプレス工程では、両プレスロール 1 0、 1 1間を通過する活物質充 填済み芯材 1に、 例えば 300 0 nの比較的大きな加圧力を加える 1回のプレス加工 により、図 1 Bの状態から一挙に図 1 Cに示す状態に加工する。これにより形成され た 2つのレール状残存凸条部 8、 8のピッチは、加工プレスロール 1 1の璟状溝部 1 2の寸法で決定されて、 正確に設定値どおりとなる。
ところで、従来の電池用電極板の製造方法は、 2回のプレス工程を有するのに対し、 この実施の形態の製造方法では、 2つの残存凸条部 8、 8を形成するためのプレスェ 程が 1回存在するだけなので芯材の延びや変形が抑制されるが、その 1回のプレスェ 程によつて上述した所定の厚みと活物質 3の所定の充填密度とを確保する必要があ る。そのためには、 実験結果によると、極板幅 1 c m当たり 3 t o nの荷重を必要と することが判明した。実用上においては、残存凸条部 8の幅を全体にわたり一定値と するために、 両プレスロール 1 0、 1 1間のギャップを広く、 例えば 0.3mm程度に 設定するのが好ましく、 この場合には 10 t o n/ c mの力 [f圧力を必要とする。
また、電池用電極板の芯材 1としては、展延性に富んだ純ニッケルからなる発泡メ タルが用いられているので、 プレス工程では、活物質 3の充填密度の高い部分の延び が大きくなる。この延びのばらつきは、 プレスロール 1 0、 1 1の口一ル径を大きく することによつて抑制することができる。例えば、図 7 Cに示す従来の製造方法にお ける 2回目のプレス工程で用いて!/、る口一ル径が 400mmのプレス口ールでは、 長さ 方向に 3.3%〜3.5%もの延びが発生するのに対し、本実施の形態におけるプレス工程 で用いている口一ル径が 550mmのプレス口一ル 1 0、 1 1では、 同じ圧縮率におい て長さ方向に 1.7%〜; 1.9%の延びしか発生しない。すなわち、芯材 1の延びはロール 径が大きい程小さくなる。これは、 プレスロールのロール径が大きくなる程平面的な プレス加工に近くなるからである。したがって、ロール径の大きなプレスロール 1 0、 1 1を用いれば、活物質 3の充填密度のばらつきに起因する延び率の違いを抑制する ことができる。
そして、 従来の製造方法における 2回目のプレス工程では、 口一ル径が 400mmと 小さなプレスロールによるプレスを、 3回繰り返して行っており、長さ方向に 6 %も の延びが生じていた。これが、芯材 1を個々の電池用電極板 7に分割したときの弓反 りの原因になっている。これに対し、 この実施の形態の製造方法におけるプレス工程 では、比較的大きな口一ル径のプレスロール 1 0、 1 1による 1回のプレス加工を行 うだけであるから、長さ方向の延びは上述のように 1.7%〜; I · 9%に抑制することがで き、後工程において芯材 1を個々の電池用電極板 1 9に分割したときに、弓反りゃク ラックが殆ど発生しない。
しかも、上記プレス工程では、加工プレスロール 1 1の環状溝部 1 2の両側壁 1 2 a 1 2 bの開口縁部が上述のように曲率半径 Rが 0.3mn!〜 0.6mmのァ一ル面にな つているので、残存凸条部 8、 8と周辺部との境界が明確であり、 かつプレス加工時 に芯材 1の金属骨格に破壊や劣化が生じない。アール面の曲率半径 Rを 0.3mm〜0.6 mmより大きく設定した場合には、残存凸条部 8、 8の縁部の活物質 3が脱落して残 存凸条部 8、 8と周辺部との境界が明確にならず、 また上記値よりも小さく設定した 場合には芯材 1の金属骨格の破壊や劣化を招いて、この電池用電極板を用いて電池を 製造したときの集電効率が低下する。
続いて、 2つの残存凸条部 8、 8は、 図 I Dに示す活物質除去工程において、 自体 の内部に充填されている活物質 3が除去されて、 2つのレール状の芯材露出部 1 3、 1 3とされる。図 3 A、 図 3 Bは、 この活物質除去工程に用いられる活物質除去装置 1 4を示し、図 3 Aは正面図、図 3 Bは右側面図である。この活物質除去装置 1 4は、 自体の超音波発生ホ一ン 1 7 a、 1 7 aをそれそれ各残存凸条部 8、 8の上部に接触 させて超音波振動を付与することにより活物質 3を剥離して除去する一対の超音波 振動器 1 7、 1 7と、 この各超音波振動器 1 7、 1 7に対し下方で相対向する位置に 配置されて剥離 ·除去された活物質 3を吸引する一対の真空吸引機 1 8、 1 8とを備 えて構成されている。
なお、上記超音波発生ホーン 1 7 aは、活物質充填済み芯材 1への当接面に、芯材 1の移送方向へ向け下り勾配の傾斜面 1 7 bが形成されており、この傾斜面 1 7 bに よって芯材 1にダメ一ジを与えないように図っている。また、上記傾斜面 1 7 bおよ びこの傾斜面 1 7 bに連続する平坦な接触面 1 7 cは、磨耗を軽減するために超硬材 料を用いて形成されており、超音波発生ホーン 1 Ί aの本体部分はチタンで形成され ている。
この活物質除去装置 1 4では、位置固定の一対の超音波振動器 1 7、 1 7の各々の 超音波発生ホーン 1 7 a、 1 7 aにそれそれ残存凸条部 8、 8の上部を接触させた状 態で活物質充填済み芯材 1を図 3 Bに示す矢印方向に移送する。残存凸条部 8に超音 波振動を付与することにより、金属骨格を圧潰しつつ、その内部の活物質 3を剥離し て除去するとともに、下方の真空吸引機 1 8によって残存凸条部 8およびこれの下方 箇所にそれそれ充填されている活物質 3を吸引して除去する。これにより、残存凸条 部 8およびこれの下方箇所は、内部の活物質 3がほぼ完全に除去されて、高品質の芯 材露出部 1 3となる。
つぎに、芯材露出部 1 3において活物質 3の残存率が極めて低い理由について説明 する。上記活物質除去工程における除去対象の活物質 3は、残存凸条部 8に充填され ているものであり、 この状態の活物質 3は、残存凸条部 8がプレス加工されていない ことから、極めて除去し易い。 したがって、 この活物質 3は、従来の工程において除 去が極めて困難であったバインダ一入りのものであっても、超音波振動器 1 7の超音 波発生ホーン 1 7 aの接触により超音波振動を付与しながら下方から真空吸引機 1 8で真空吸引することにより、 容易にかつ完全に除去される。
実測値によると、上記活物質除去工程を経て形成した芯材露出部 1 3の活物質残存 率は 1〜 4 %であった。これに対し従来の製造方法により得られた芯材露出部 4の活 物質残存率は 1 0 %以上と高い上に、部分的に活物質 3の塊が残っており、 この塊が 集電リード片を溶接する際のスパーク発生の主な原因になっていた。そのため、上記 塊は手作業によって除去されており、生産性のさらなる低下を招く一因になっている c なお、上記活物質残存率の評価は、芯材 1の素材であるニッケルが溶解しない酢酸水 溶液に浸漬して活物質 3のみを溶解させ、その溶解した活物質 3の重量変化率から芯 材露出部 4または 1 3に残存する活物質 3の重量を測定算出して行った。
また、芯材露出部 1 3の活物質残存率の低下を図るためには、活物質除去装置 1 4 において、活物質充填済み芯材 1の下面と獰音波発生ホーン 1 7 aの接触面 1 7 cと の間の隙間 Cを、 残存凸条部 8の厚み Bが 1.1mm程度で、 活物質充填済み芯材 1の プレス加工後の厚み Dが 0.6mm程度である場合に、 0.7mn!〜 0.8mmに設定して使 用するのが好ましい。上記隙間 Cは、図 1 Cに示す活物質充填済み芯材 1のプレス加 ェ後の厚み Dが正確には 0.58mmであることから、上記の 0.7mn!〜 0.8mmよりも小 さい値に設定することが可能であるが、そのような小さな値に設定しても活物質残存 率は変わらない。一方、上記隙間 Cを 0.7mn!〜 0.8mmより大きい値に設定した場合 には、 活物質残存率が高くなる。
さらに、上記活物質除去装置 1 4は、残存凸条部 8の活物質 3は除去が容易な状態 であることと、位置固定の超音波振動器 1 7に対し活物質充填済み芯材 1を高速で連 続的に移送させながら活物質 3の除去を行えることと、残存凸条部 8の下方から真空 吸引機 1 8で活物質 3を真空吸引していることとにより、活物質 3が効率よく除去さ れ、生産性が格段に向上する。実測値によると、活物質充填済み芯材 1は、 活物質 3 の除去が容易な状態であることから 450mmZ s e c程度の高速で移送することが可 能である。この活物質除去工程では、活物質充填済み芯材 1の移送速度を SOmmZs e cより遅くして活物質 3を除去する時間を長く設定すると、生産性が低下するだけ でなく、 芯材 1が破壊されて恰も虫食い状態に穴があくという不具合が生じる。
また、上記活物質除去工程では、超音波振動器 1 7を振幅が 25〜50 _imの範囲内に なるよう設定して駆動している。これは、振幅が上記範囲より小さくなると、活物質 3を除去するのに要する時間が長くなり、逆に振幅が上記範囲より大きくなると、活 物質 3の除去効率が高くなるが、芯材 1の金属骨格が破壊されて機械的強度が劣化す るため集電機能が低下するとともに、芯材露出部 1 3の近傍の活物質 3が部分的に剥 離されて芯材露出部 1 3と他の箇所との境界線の直線性が悪くなるためである。
本願発明の実施の形態の活物質除去工程では、超音波振動の付与によつて活物質 3 を除去するにも拘わらず、芯材 1における強度の劣化が生じない。この効果は、引つ 張り試験機による評価結果によって確認できた。これに対し、従来の芯材 1に充填し た活物質 3を超音波振動の付与によって除去する場合には、芯材 1の強度が一般的に 50〜70%程度低下していた。これは、従来の何れの電池用電極板の製造方法において も、活物質 3を充填した芯材 1に対しプレス加工を施し、 その後に、集電部とすべき 箇所に超音波振動を付与しているため、活物質 3が極めて除去し難い状態となってい ることに起因している。これに対し、本実施の形態では、殆どプレス加工されていな い残存凸条部 8、 8に充填されている活物質 3を除去することと、超音波振動が突出 状態の残存凸条部 8、 8の上部のみに付与されて他の箇所に影響を与えないので、芯 材 1の強度劣化が生じない。
つぎに、上記芯材露出部 1 3は、 図 2 Αに図示のものとは異なるプレスロール(図 示せず)で軽く押さえられて、 図 1 Eに示すように、活物質 3が充填されている箇所 に対し面一となる状態とされる。最後に、図 1 Eに 1点鎖線で示す 3本の切断線に沿 つて切断されることにより、図 1 Fに示すような 4個の電池用電極板 1 9が得られる c この各電池用電極板 1 9は、いずれも同一の帯形状であって、その長手方向に沿って 活物質充填部 1 9 aと活物質 3が除去された集電部 1 9 bとの境界線 1 9 cを有し ている。
上記工程を経て得られた電池用電極板 1 9における活物質充填部 1 9 aと集電部 1 9 bとの境界線 1 9 cの直線性は、顕微鏡を用いた測定の実測値によると、従来の 方法により製造された電池用電極板 7において 0.8mmもの誤差が生じていたのに対 して、 0.2mm以下の小さな誤差に抑制されていた。 これは、 従来の製造方法では、 活物質 3の充填後に所定の充填密度にすることを目的として 3回のプレスが繰返さ れるプレス工程を有しているのに比較して、本実施の形態の製造方法において、活物 質充填済み芯材 1に対し図 1 Cに示す残存凸条部 8、 8を形成するためのプレス加工 を 1回施すだけであることに起因する。 したがって、 この実施の形態で得られた電池 用電極板 1 9は、芯材露出部 1 3を折り曲げた後圧縮して集電部 1 9 bを作成するこ とが可能であり、 それにより、集電部 1 9 bは、機械的な強度や密度が高められ、且 つ集電効率が向上する。
また、上記製造工程を経て得られた電池用電極板 1 9は、活物質充填部 1 9 aの充 填密度のばらつきが 1.5%以下に抑制されている。 これは、 プレス加工が施される前 の凹凸のない芯材 1に活物質 3を充填したことによる。これに対し、従来の製造工程 を経て得られた電池用電極板 7では、プレス加工されて凹凸のある芯材 1に活物質 3 を充填することから全体にわたって均等な充填量に充填することができず、活物質充 填部 7 aの充填密度に 3.5%以上のばらつきがあった。
図 4は、上記製造方法により製造された正極および負極の電池用電極板 1 9 p、 1 9 qを、両者間にセパレ一夕 5 5を介して渦巻状に卷回してなる電極群 5 1を、 円筒 状の電池ケース 5 2内に収納してなるニッケル水素電池を示している。この円筒形電 池は、封口板 5 7の正極端子 5 6と正極の電池用電極板 1 9 pとがリードを介して電 気的に接続され、負極缶である電池ケース 5 2と負極の電池用電極板 1 9 qとがリー ドを介して電気的に接続されている。電池ケース 5 2内には電解液が充填されている c 図 5 A〜図 5 Gは本発明の第 2の実施の形態に係る電池用電極板の製造方法を具 現ィ匕した製造工程を順に示す斜視図である。上記第 1の実施の形態では、渦巻き状電 極群を構成して円筒形電池に用いる電池用電極板 1 9の製造方法について説明した が、 この第 2の実施の形態では、積層型電極群を構成して角形電池に用いる電池用電 極板の製造方法に関するものであり、図 5 A〜図 5 Gにおいて、図 1 A〜図 1 Fと同 一若しくは同等のものには同一の符号を付してある。 先ず、図 5 Aに示す所定サイズの矩形状もしくは帯状の発泡メタルからなる芯材 1 の全体に、 図 5 Bに示すように活物質 3を充填する。 この場合、 活物質 3は、 プレス 加工前であって全く凹凸のない芯材 1に充填されるので、全体にわたり均一な充電密 度に充填されるとともに、芯材 1に凹凸つまり高低差がないことから流動することな く内部に保持されて、 均一な充填密度を保持したまま乾燥される。
つぎに、上述のように活物質 3が均一に充填された芯材 1は、図 5 Cに示すように、 後工程において芯材露出部となる部分を除く全ての部分がプレス加工を施されて厚 みをほぼ 1 / 2に圧縮され、後工程で芯材露出部となる部分が 2本の平行なレール状 の残存凸条部 2 0、 2 0として残存する。このプレス加工には、 図 2 Aに示したスト ライプロールプレス機 9と基本構造が同じであって、環状溝部が図 5 Cの残存凸条部 2 0、 2 0を形成できる配置に設けられた加工プレスロールを備えたストライプ口一 ルプレス機 (図示せず) が用いられる。
続いて、 2つの残存凸条部 2 0、 2 0は、活物質除去工程において、 自体の内部に 充填されている活物質 3が除去されることにより、 2つの芯材露出部 2 1、 2 1とさ れる。 この活物質除去工程では、 図 3 A、 図 3 Bに示した超音波振動器 1 7を備えた 活物質除去装置 1 4とほぼ同様の構成を有する活物質除去装置(図示せず)を用いて、 第 1の実施の形態と同様に処理される。
上記芯材露出部 2 1、 2 1は、第 1の実施の形態と同様に、 プレスロール(図示せ ず)で軽く押さえられて、活物質 3が充填されている箇所に対し面一となる状態まで 圧縮される。さらに図 5 Eに示すように、 上記芯材露出部 2 1、 2 1は、 その上面が 活物質 3が充填されている箇所より低くなる位置までプレスロールによって圧縮さ れる。その後に、 両芯材露出部 2 1、 2 1には、 帯状リードすなわちリードフープ 2 2がシーム溶接される。最後に、図 5 Fに 1点鎖線で示す各切断線に沿って切断また は打ち抜きされることにより、図 5 Gに示すような複数の電池用電極板 2 3が得られ る。この各電池用電極板 2 3は、 いずれも同一形状であって、活物質充填部 2 3 aと 活物質 3が除去された集電部 2 3 bと、この集電部 2 3 bに固着されたリ一ド片 2 3 cとを有している。 この電池用電極板 2 3の製造方法は、第 1の実施の形態とほぼ同様の工程を経るこ とから、上述した第 1の実施の形態の種々の効果と同様の効果を得ることができ、角 形電池に用いる高品質の電池用電極板 2 3を生産性良く製造することができる。なお、 リードフープ 2 2を溶接する工程に代えて、つまりリードフープ 2 2を溶接していな い活物質充填済み芯材 1を、 図 5 Fの中央の切断線に沿って切断して二つに分割し、 芯材露出部 2 1を折り曲げた後圧縮して集電部を作成し、その後に個々の電池用電極 板に分割するようにしてもよい。集電部は上述した処理によって機械的な強度や密度 が高められ、且つ集電効率も向上しているので、 リードフープ 2 2を切断してなるリ ード片 2 3 cを設けた場合と同様の品質の安定したリ一ド片を形成することができ る。
図 6は、上記製造方法により製造された正極および負極の電池用電極板 2 3 p、 2 3 qをセパレ一夕 5 8を介して交互に積層してなる電極群 5 3を、角筒状の電池ケ一 ス 5 4内に収納してなるニッケル水素電池を示している。この角形電池は、封口板 5 9の正極端子 6 0と正極の電池用電極板 2 3 pとがリードを介して電気的に接続さ れ、負極缶である電池ケース 5 4と負極の電池用電極板 2 3 qとがリードを介して電 気的に接続されている。 電池ケース 5 4内には電解液が充填されている。 産業上の利用可能性
以上のように本発明によれば、活物質の充填密度にばらつきがなく、活物質充填部 と集電部との境界線が正確な直線であり、集電部における活物質の残存率が低く、集 電部の全体が所定の幅を有している電池用電極板が得られる。従って、本発明は、高 率放電特性の高い電池を効率よく作成する上で有用である。

Claims

請 求 の 範 囲
1 . 多孔質で薄板状の芯材( 1 )の全体に活物質( 3 ) を充填する活物質充填 工程と、
前記活物質充填済み芯材にプレス加工を施して複数のレール状残存凸条部( 8 )を 形成するプレス工程と、
前記残存凸条部に超音波振動を付与することにより活物質を除去して芯材露出部 ( 1 3 ) を形成する活物質除去工程と、
前記芯材露出部を押圧して他の部分と面一となる状態まで圧縮する平坦化工程と、 少なくとも前記芯材露出部を含む所定箇所を切断して電池用電極板(1 9 )を作成 する切断工程とを有することを特徴とする電池用電極板の製造方法。
2 . 多孔質で薄板状の芯材( 1 )の全体に活物質( 3 ) を充填する活物質充填 工程と、
前記活物質充填済み芯材にプレス加工を施して複数のレール状残存凸条部 (2 0 ) を形成するプレス工程と、
前記残存凸条部に超音波振動を付与することにより活物質を除去して芯材露出部 ( 2 1 ) を形成する活物質除去工程と、
前記芯材露出部を押圧して圧縮する芯材露出部圧縮工程と、
前記芯材露出部にリードフープ (2 2 ) をシ一ム溶接するリード溶接工程と、 少なくとも前記リードフープを含む所定箇所を切断して電池用電極板( 2 3 )を作 成する切断工程とを有することを特徴とする電池用電極板の製造方法。
3 . 多孔質で薄板状の芯材( 1 ) の全体に活物質( 3 ) が充填された活物質充 填済み芯材にプレス加工を施して複数のレール状残存凸条部(8 )を形成するストラ イブロールプレス機 (9 ) と、
前記残存凸条部に超音波発生ホーン(1 7 a)を接触させて超音波振動を付与する 超音波振動器( 17)およびこの各超音波振動器に対し下方で相対向する位置に設置 されて超音波振動の付与により除去される活物質を吸引する真空吸引機(18)とか らなる活物質除去装置(14)とを備えることを特徴とする電池用電極板の製造装置。
4. 多孔質で薄板状の芯材 ( 1 )の全体に活物質が充填された活物質充填済み 芯材にプレス加工を施して複数のレール状残存凸条部(8)を形成するストライプ口 —ルプレス機 (9) と、
前記残存凸条部に超音波発生ホーン(17 a)を接触させて超音波振動を付与する 超音波振動器 ( 17)およびこの各超音波振動器に対し下方で相対向する位置に設置 されて超音波振動の付与により除去される活物質を吸引する真空吸引機( 18)とか らなる活物質除去装置 (14) と、
前記活物質除去装置によって加工された芯材露出部( 21 )にリードフープ( 22 ) をシ一ム溶接する溶接装置と、
少なくとも前記リードフープを含む所定箇所を切断して電池用電極板(23)を作 成する切断機とを備えること'を特徴とする電池用電極板の製造装置。
5. ストライプロールプレス機(9) は、位置を固定した状態で支持された受 けプレスロール(10) と、 残存凸条部(8) を形成するための環状溝部 ( 12) が 周面の所定箇所に設けられて、前記受けプレス口ールに向けた方向に所定の加圧力が 加えられる加工プレスロール(11) とを備えて構成されているとともに、前記環状 溝部の両側壁( 12 a、 12 b)の開口縁部が所定のアール面になっている請求項 3 または 4に記載の電池用電極板の製造装置。
6. 活物質除去装置(14)の超音波発生ホーン (17 a) の接触面は、 レー ル状残存凸状部(8)の反対面を基準として、 ストライプロールプレス加工済み部分 の厚みよりも大きく、且つレール状残存凸条部の厚みよりも小さい隙間を介在して対 向するよう設置されている請求項 3または 4に記載の電池用電極板の製造装置。
7. 請求項 1に記載の製造方法で製造された正極および負極の電池用電極板 ( 19p、 19q)を、 両者間にセパレ一夕 (55)を介して渦卷状に巻回してなる電 極群 (51) を、 円筒状の電池ケース (52) 内に収納してなる円筒形電池。
8. 正極と負極の電池用電極板のうちいずれかが請求項 1に記載の製造方法で 製造され、両極の電池用電極板の間にセパレ一夕 (55)を介して渦巻状に卷回して なる電極群を、 円筒状の電池ケース (52) 内に収納してなる円筒形電池。
9. 請求項 2に記載の製造方法で製造された正極および負極の電池用電極板
(23p、 23q)を、 両者間にセパレ一夕 (58)を介して交互に積層してなる電 極群 (53) を、 角筒状の電池ケース (54) 内に収納してなる角形電池。
10. 正極と負極の電池用電極板のうちいずれかが請求項 2に記載の製造方法 で製造され、両極の電池用電極板の間にセパレ一夕 (58)を介して交互に積層して なる電極群を、 角筒状の電池ケース (54) 内に収納してなる角形電池。
PCT/JP2001/007444 2000-08-30 2001-08-29 Procede et dispositif de fabrication de plaque d'electrode pour pile et pile mettant en oeuvre une telle plaque d'electrode WO2002019447A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP01961179A EP1317007B1 (en) 2000-08-30 2001-08-29 Method and device for manufacturing electrode plate for cell, and cell using the electrode plate
DE60133472T DE60133472T2 (de) 2000-08-30 2001-08-29 Verfahren und vorrichtung zur herstellung von elektrodenplatten für zellen und diese elektrodenplatten verwendende zelle
US10/111,665 US6878173B2 (en) 2000-08-30 2001-08-29 Method for manufacturing electrode plate for cell
US12/291,848 US20090081533A1 (en) 2000-08-30 2008-11-14 Method and apparatus for manufacturing battery electrode plate and battery using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-261471 2000-08-30
JP2000261471A JP4023990B2 (ja) 2000-08-30 2000-08-30 電池用電極板の製造方法および製造装置

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US10/111,665 A-371-Of-International US6878173B2 (en) 2000-08-30 2001-08-29 Method for manufacturing electrode plate for cell
US10/823,863 Division US20040191613A1 (en) 2000-08-30 2004-04-14 Method and apparatus for manufacturing battery electrode plate and battery using the same
US10/823,919 Division US20040191620A1 (en) 2000-08-30 2004-04-14 Method and apparatus for manufacturing battery electrode plate and battery using the same

Publications (1)

Publication Number Publication Date
WO2002019447A1 true WO2002019447A1 (fr) 2002-03-07

Family

ID=18749307

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/007444 WO2002019447A1 (fr) 2000-08-30 2001-08-29 Procede et dispositif de fabrication de plaque d'electrode pour pile et pile mettant en oeuvre une telle plaque d'electrode

Country Status (8)

Country Link
US (4) US6878173B2 (ja)
EP (1) EP1317007B1 (ja)
JP (1) JP4023990B2 (ja)
KR (1) KR100438262B1 (ja)
CN (1) CN1206755C (ja)
DE (1) DE60133472T2 (ja)
TW (1) TW511312B (ja)
WO (1) WO2002019447A1 (ja)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4023990B2 (ja) * 2000-08-30 2007-12-19 松下電器産業株式会社 電池用電極板の製造方法および製造装置
US7846574B2 (en) 2004-08-27 2010-12-07 Panosonic Corporation Positive electrode plate for alkaline storage battery and method for producing the same
JP4292125B2 (ja) * 2004-08-27 2009-07-08 パナソニック株式会社 アルカリ蓄電池用正極板およびその製造法
JP4674805B2 (ja) * 2005-07-14 2011-04-20 日立粉末冶金株式会社 冷陰極蛍光ランプ用電極材の製造方法
CN1933215B (zh) * 2005-09-13 2010-05-05 比亚迪股份有限公司 碱性二次电池正极极板的制备方法
JP4634322B2 (ja) * 2006-03-02 2011-02-16 住友電気工業株式会社 電池用電極
KR100777797B1 (ko) * 2006-05-30 2007-11-28 에너그린(주) 니켈/수소저장합금 축전지의 극판 연결 방법
US8865345B1 (en) 2007-01-12 2014-10-21 Enovix Corporation Electrodes for three-dimensional lithium batteries and methods of manufacturing thereof
US8691450B1 (en) 2007-01-12 2014-04-08 Enovix Corporation Three-dimensional batteries and methods of manufacturing the same
US9166230B1 (en) 2007-01-12 2015-10-20 Enovix Corporation Three-dimensional battery having current-reducing devices corresponding to electrodes
US8663730B1 (en) 2007-01-12 2014-03-04 Enovix Corporation Method to fabricate a three dimensional battery with a porous dielectric separator
US8216712B1 (en) 2008-01-11 2012-07-10 Enovix Corporation Anodized metallic battery separator having through-pores
CN101584065B (zh) 2007-01-12 2013-07-10 易诺维公司 三维电池及其制造方法
DE102008055775A1 (de) * 2008-11-04 2010-05-06 Vb Autobatterie Gmbh & Co. Kgaa Elektrode für einen Akkumulator
US8011559B2 (en) * 2009-11-09 2011-09-06 GM Global Technology Operations LLC Active material-augmented vibration welding system and method of use
JP5461267B2 (ja) * 2010-03-26 2014-04-02 三菱重工業株式会社 電極板製造装置、及び電極板製造方法
KR101124964B1 (ko) * 2010-04-28 2012-03-27 주식회사 이아이지 이차전지의 양극리드 또는 음극리드를 외부 부재와 연결하는 방법
JP5663008B2 (ja) * 2010-05-10 2015-02-04 株式会社日立ハイテクノロジーズ 核酸分析デバイスの製造方法
US9843027B1 (en) 2010-09-14 2017-12-12 Enovix Corporation Battery cell having package anode plate in contact with a plurality of dies
JP2012186134A (ja) * 2011-02-18 2012-09-27 Sumitomo Electric Ind Ltd 集電体用三次元網状アルミニウム多孔体及びその製造方法
TW201246658A (en) * 2011-05-09 2012-11-16 Phoenix Silicon Int Corp Battery structure
JP5724930B2 (ja) * 2012-03-30 2015-05-27 株式会社豊田自動織機 蓄電装置及び二次電池並びに蓄電装置の製造方法
JP5228133B1 (ja) * 2012-10-01 2013-07-03 株式会社日立エンジニアリング・アンド・サービス 電極材料用ロールプレス設備及び電極シートの製造方法
JPWO2017018347A1 (ja) * 2015-07-28 2018-05-17 Necエナジーデバイス株式会社 電極シートの製造方法
KR20180001229A (ko) 2016-06-27 2018-01-04 삼성에스디아이 주식회사 이차 전지의 제조 방법 및 이를 이용한 이차 전지
JP7070436B2 (ja) * 2017-01-24 2022-05-18 三洋電機株式会社 電池用極板の製造方法、電池の製造方法、及び電池
CN217788446U (zh) * 2022-05-16 2022-11-11 宁德时代新能源科技股份有限公司 制痕装置及极片生产系统
KR102663774B1 (ko) * 2022-12-21 2024-05-03 주식회사 엘지에너지솔루션 건식 전극용 코팅층 처리 장치 및 이를 포함하는 건식 전극 제조 시스템

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62136759A (ja) * 1985-12-10 1987-06-19 Matsushita Electric Ind Co Ltd 電池用電極の製造法
JPS6340253A (ja) * 1986-08-04 1988-02-20 Sanyo Electric Co Ltd 電池用電極の製造法
JPH0963575A (ja) * 1995-08-30 1997-03-07 Furukawa Electric Co Ltd:The 電池用極板の製造方法
JPH10247493A (ja) * 1997-03-04 1998-09-14 Matsushita Electric Ind Co Ltd 電池用電極の製造法及びアルカリ蓄電池
JP2000077054A (ja) * 1998-09-01 2000-03-14 Sanyo Electric Co Ltd 電池とその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4115627A (en) * 1977-08-15 1978-09-19 United Technologies Corporation Electrochemical cell comprising a ribbed electrode substrate
US4426340A (en) * 1981-09-29 1984-01-17 United Technologies Corporation Process for fabricating ribbed electrode substrates and other articles
US5045415A (en) * 1988-12-13 1991-09-03 Pita Witehira Electrode plate structure
JP3261688B2 (ja) * 1994-08-23 2002-03-04 キヤノン株式会社 二次電池及びその製造方法
DE69711269T2 (de) * 1996-06-17 2002-10-24 Dainippon Printing Co Ltd Verfahren zur Herstellung von poröser Beschichtung und Verfahren zur Herstellung einer Elektrodenplatte für Sekundärbatterie mit nichtwässerigem Elektrolyt
JP4023990B2 (ja) * 2000-08-30 2007-12-19 松下電器産業株式会社 電池用電極板の製造方法および製造装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62136759A (ja) * 1985-12-10 1987-06-19 Matsushita Electric Ind Co Ltd 電池用電極の製造法
JPS6340253A (ja) * 1986-08-04 1988-02-20 Sanyo Electric Co Ltd 電池用電極の製造法
JPH0963575A (ja) * 1995-08-30 1997-03-07 Furukawa Electric Co Ltd:The 電池用極板の製造方法
JPH10247493A (ja) * 1997-03-04 1998-09-14 Matsushita Electric Ind Co Ltd 電池用電極の製造法及びアルカリ蓄電池
JP2000077054A (ja) * 1998-09-01 2000-03-14 Sanyo Electric Co Ltd 電池とその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1317007A4 *

Also Published As

Publication number Publication date
KR20020043258A (ko) 2002-06-08
EP1317007B1 (en) 2008-04-02
US20040191620A1 (en) 2004-09-30
JP2002075345A (ja) 2002-03-15
CN1206755C (zh) 2005-06-15
JP4023990B2 (ja) 2007-12-19
DE60133472D1 (de) 2008-05-15
US20020182483A1 (en) 2002-12-05
US6878173B2 (en) 2005-04-12
CN1388994A (zh) 2003-01-01
TW511312B (en) 2002-11-21
DE60133472T2 (de) 2009-05-20
KR100438262B1 (ko) 2004-07-02
US20040191613A1 (en) 2004-09-30
US20090081533A1 (en) 2009-03-26
EP1317007A1 (en) 2003-06-04
EP1317007A4 (en) 2007-08-08

Similar Documents

Publication Publication Date Title
WO2002019447A1 (fr) Procede et dispositif de fabrication de plaque d'electrode pour pile et pile mettant en oeuvre une telle plaque d'electrode
US6605388B1 (en) Battery cell electrode core plate, fabrication method therefor, and battery cell made therewith
US6025095A (en) Battery electrode and manufacturing method thereof
JP5096745B2 (ja) ニッケル水素蓄電池用負極の製造方法
JP2000208144A (ja) 電池用電極基板とその製造方法
JP4578311B2 (ja) 二次電池用電極板の製造方法及びこれを用いて製造される二次電池用電極板
US6984251B2 (en) Alkaline storage battery and process for producing the same
JP2708123B2 (ja) ペースト式電極の製造方法
JPH10125332A (ja) 電池電極の製造方法
JP3738125B2 (ja) 非焼結式電極を用いたアルカリ蓄電池およびその製造方法
JP2692533B2 (ja) 角筒形電池
JPH09129223A (ja) 捲回形電池用電極
JPH10241734A (ja) 巻回式二次電池
JPH11273661A (ja) 電池用シート電極及びその製造方法
JP2003346883A (ja) 角形電池およびその製造法
JP5396702B2 (ja) 電池
JPH10106584A (ja) 積層型アルカリ蓄電池
JPH07153468A (ja) 蓄電池用電極板
JP3606139B2 (ja) 電池用電極の製造法
JPH09204911A (ja) 正極板の製造方法
JPH1064533A (ja) 二次電池用電極とその製造方法
JP2001250531A (ja) 電池用電極の製造法
CN115280549A (zh) 非水电解质二次电池以及非水电解质二次电池的制造方法
JP2002289167A (ja) 電極及びアルカリ二次電池
JP2001126721A (ja) アルカリ二次電池用正極、アルカリ二次電池及びアルカリ二次電池用正極の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

WWE Wipo information: entry into national phase

Ref document number: 018026087

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020027005535

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2001961179

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10111665

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020027005535

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2001961179

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1020027005535

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 2001961179

Country of ref document: EP