WO2002018665A1 - Procede de fabrication de bandes tres minces en alliage aluminium-fer - Google Patents

Procede de fabrication de bandes tres minces en alliage aluminium-fer Download PDF

Info

Publication number
WO2002018665A1
WO2002018665A1 PCT/FR2001/002664 FR0102664W WO0218665A1 WO 2002018665 A1 WO2002018665 A1 WO 2002018665A1 FR 0102664 W FR0102664 W FR 0102664W WO 0218665 A1 WO0218665 A1 WO 0218665A1
Authority
WO
WIPO (PCT)
Prior art keywords
strip
thickness
alloy
strips
less
Prior art date
Application number
PCT/FR2001/002664
Other languages
English (en)
Inventor
Philippe Tavernier
Jacques Gagniere
Hervé GEHANNO
Sylvain Henry
Régine DEBREUX
Bruno Chenal
Original Assignee
Pechiney Rhenalu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=8853787&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2002018665(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Pechiney Rhenalu filed Critical Pechiney Rhenalu
Priority to AU2001286007A priority Critical patent/AU2001286007A1/en
Priority to BRPI0113532-5A priority patent/BR0113532B1/pt
Publication of WO2002018665A1 publication Critical patent/WO2002018665A1/fr
Priority to NO20030932A priority patent/NO20030932L/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon

Definitions

  • the invention relates to a process for manufacturing very thin strips of thickness less than or equal to 12 ⁇ m, from an alloy of the aluminum - iron type. Such strips are used in particular for the manufacture of multilayer complexes comprising a layer of paper or cardboard, a layer of aluminum alloy and a layer of polymer, usable for making aseptic, flexible or rigid food packaging of the type bricks.
  • the properties of use sought for very thin strips of aluminum alloy are good mechanical strength, sufficient elongation, a very small number of holes per unit area and good resistance to tearing and bending.
  • the absence of holes is mainly linked to the grain size, which must in any case be less than the final thickness.
  • alloys usually used for this application are alloys of the 1100 or 1200 type containing less than 1% by weight for the sum of the silicon and iron contents. It is also known to use, to improve mechanical strength, alloys with higher iron and addition of manganese, such as alloys 8006 and 8015, registered with the Aluminum Association respectively in 1978 and 1988.
  • the registered composition of 8006 is (% by weight):
  • a major drawback of high iron alloys is the difficulty of recycling the production scrap for other applications; indeed, the production of very thin strips is a delicate operation which leads to a significant mileage by generating a lot of scrap.
  • One way of avoiding this drawback is to use a continuous casting machine for the production of blanks, for example continuous casting between rolls, which allows direct recycling of the production scrap and scrap in the feed furnace. the machine. This advantage is added to the intrinsic advantages of continuous casting, in particular the low investment cost.
  • Patent EP 0750685 (Alcan International), filed in 1994, relates to a thin sheet of thickness between 5 and 40 ⁇ m, of composition (% by weight): Si ⁇ 0.4 Fe: 1.2 - 2.0 Mn : 0.2 - 1.0 Mg and / or Cu: 0.1 - 0.5 Zn ⁇ 0.1, with an average grain size of less than 5 ⁇ m after final annealing.
  • the metal can be cast by conventional semi-continuous casting, or by continuous casting between cylinders or between belts.
  • the object of the invention is to provide a process for manufacturing aluminum-iron alloy strip of thickness less than or equal to 12 ⁇ m, and preferably less than 9 ⁇ m, using continuous casting between cylinders, and leading to tapes having both good mechanical strength and high resistance to tearing and folding, under technical and economic conditions compatible with significant industrial production.
  • the subject of the invention is a process for manufacturing strips of aluminum alloy with a thickness less than or equal to 12 ⁇ m, and preferably ⁇ 9 ⁇ m, comprising: the preparation of an alloy of composition (% by weight) : Si: 0.15 - 0.40 Fe: 1.10 - 1.70 Mg ⁇ 0.02 Mn: 0.30 - 0.50 other elements ⁇ 0.05 each and ⁇ 0.15 in total, aluminum remains continuous casting between cylinders of a strip of this alloy with a thickness of between 2 and 10 mm, the homogenization of this strip at a temperature between 450 and 620 ° C.
  • the cold rolling of this strip the intermediate annealing of the cold rolled strip at a temperature between 200 and 400 ° C, and of a duration between 8 and 15 h, the cold rolling of the annealed strip to the final thickness less than or equal to 12 ⁇ m, the final annealing of the strip at a temperature between 200 and 300 ° C., for a duration of at least 50 h.
  • the method according to the invention combines a particular composition inside the AA composition of 8006 and a manufacturing range, leading to advantageous properties of use for the manufacture of complexes for food packaging, avoiding penalizing constraints on the industrial plan.
  • the composition of the alloy has a silicon content, between 0.15 and 0.40%, which does not require the use of a pure base and therefore does not need to be particularly controlled, unlike teaching the US patent 5,380,379 which recommends a silicon content of less than 0.2% to avoid the formation of AlFeSi and AIMnSi intermetallics.
  • the iron content between 1.1 and 1.7%, and preferably ⁇ 1.4%, is in the low range of 8006, and is in that of 8015.
  • the manganese content, between 0 , 3 and 0.5%, is also in the low range of 8006.
  • the magnesium and copper contents are kept at low levels.
  • the alloy is cast using a continuous strip casting machine between two cooled cylinders, such as for example the Jumbo 3C TM from the company Pechiney
  • Rhenalu The casting takes place at a thickness of between 2 and 10 mm, at a casting speed of between 0.5 and 3 m / min. It is possible to recycle all of the production scrap and scrap in the machine's feed oven.
  • the cast strip is then homogenized at a temperature between 450 and 620 ° C for a period between 8 and 40 h, then cooled slowly.
  • a cold roughing rolling is carried out to a thickness of between 0.8 and 0.3 mm, then an intermediate annealing at a temperature of between 200 and 400 " C, so as to obtain a fine structure , and preferably between 302 ° C and 370 ° C to obtain a recrystallized structure, with a grain size not exceeding 30 ⁇ m, and preferably 15 ⁇ m.
  • the strip is then cold rolled to the final thickness according to the usual technique, then subjected to a final degreasing annealing at a temperature between 200 and 300 ° C, for a period of at least 50 h., depending in particular on the width of the strip.
  • the strips according to the invention have a breaking strength greater than 100
  • a homogeneous distribution of particles of sufficiently large size and maximum desaturation of the solid manganese solution lead to recrystallization with fine and homogeneous grains, which contributes to the good mechanical properties, in particular the resistance to tearing and folding, as well as to the low porosity of the product.
  • the strips obtained by the process according to the invention are particularly suitable for the manufacture of multilayer complexes, for example paper or cardboard - aluminum - polymer complexes intended for making aseptic food packaging of the brick type. They can also be used bare, lacquered or varnished for various types of packaging.
  • the alloy was cast in width 1500 mm , at a thickness of 8 mm and at a speed of 0.96 m / min on a casting machine between two cooled cylinders of the Jumbo 3C TM brand from the company Pechiney Rhenalu.
  • the cast strip was homogenized for 12 h at a temperature of 600 ° C.
  • the strip was then cold rolled to the thickness of 0.5 mm, then subjected to an intermediate annealing on a coil for 12 h at 350 ° C., so that the metal recrystallized with fine grains. It was then re-rolled to the final thickness of 6.60 ⁇ m, then subjected to a final degreasing annealing for approximately 80 h at 280 ° C.
  • the porosity of the strip was also measured by the number of holes at dm according to standard EN 546-4. This porosity is 6 holes per dm, compared to an average value of 13 holes per dm 2 for the 1200 alloy in conventional casting.
  • Tear resistance tests were carried out for sheets cut from strips of 1200 alloy from conventional casting and of thickness 6.3, 6.6 and 9 ⁇ m, and from strips according to the invention of the same thickness. .
  • the tests were carried out by the Elmendorf method according to standard EN 21974 (ISO 1974).
  • the test consists of determining the force necessary to propagate a tear on a test piece.
  • a first test without predefined slot gives an indicator of the resistance to initiation and propagation of a crack, and a second with predefined slot makes it possible to quantify the resistance to propagation alone.
  • the force chosen from the list in paragraph 1 of appendix A of the standard is 4 N for the initiated tear, and 32 N for the unstarted tear.
  • Each test piece consists of a sandwich of 8 sheets, the rolling direction of which coincides with the direction of crack propagation.
  • the results (average of several tests) relating to the average force required for tearing FI (with crack initiation) and F2 (without crack initiation) are collated in Table 2.
  • Table 2 The results (average of several tests) relating to the average force required for tearing FI (with crack initiation) and F2 (without crack initiation) are collated in Table 2.
  • the sheets according to the invention have a higher tear strength than those produced by conventional casting.
  • Bending resistance measurements were carried out according to ISO 5626, using the Lhomargy apparatus.
  • the folding stress is produced by a reciprocating movement of a slot located between 4 cylinders which control the folding angle.
  • the tape fastening device and the tension force have been slightly modified to take into account the difference between aluminum and paper.
  • the distance between the jaws has been extended to 35 mm (instead of 28.5 mm) and the counterweight system adjusted to give tensions of 0.4 N, 1.7 N and 3 N (instead of 9.81 N and 8 N).
  • the samples used have the dimensions 170 mm x 15 mm (instead of 100 x 15 mm), the rolling direction being aligned with the folding blade, that is to say perpendicular to the direction of the tensile force. .
  • the tests were carried out on 1200 alloy strips of thickness 6.6 and 9 ⁇ m, obtained from conventional casting, and strips according to the invention of the same thickness.
  • the strips according to the invention although more mechanically resistant, have a rather better bending resistance than the 1200 alloy in conventional casting for the thickness 6.6 ⁇ m, and roughly equivalent for the thickness 9 .mu.m.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metal Rolling (AREA)
  • Continuous Casting (AREA)
  • Package Frames And Binding Bands (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

L'invention a pour objet un procédé de fabrication de bandes en alliage d'aluminium d'épaisseur inférieurs ou égale à 12 νm, comportant: l'élaboration d'un alliage de composition (% en poids): Si: 0,15 0,40 Fe: 1,10 1,70 Mg < 0,02 Mn: 0,30 0,50 autres éléments < 0,05 chacun et < 0,15 au total, reste aluminium: la coulée continue entre cylindres d'une bande de cet alliage d'épaisseur comprise entre 2 et 10 mm; l'homogénéisation de cette bande à une température comprise entre 450 et 620 °C d'une durée comprise entre 8 et 40 h: le laminage à froid de cette bande; le recuit intermédiaire de la bande laminée à froid à une température comprise entre 200 et 400 °C, et d'une durée comprise entre 8 et 15 h; le laminage à froid de la bande recuite jusqu'à l'épaisseur finale inférieure ou égale à 12 νm; le recuit final de la bande à une température comprise entre 200 et 300 °C, d'une durée d'au moins 50 h. Le procédé s'applique notamment à la fabrication de bandes destinées à des emballages alimentaires aseptiques du type briques.

Description

Procédé de fabrication de bandes très minces en alliage aluminium-fer.
Domaine de l'invention
L'invention concerne un procédé de fabrication de bandes très minces d'épaisseur inférieure ou égale à 12 μm, en alliage du type aluminium - fer. De telles bandes sont utilisées notamment pour la fabrication de complexes multicouches comportant une couche de papier ou de carton, une couche d'alliage d'aluminium et une couche de polymère, utilisables pour la confection d'emballages alimentaires aseptiques, flexibles ou rigides de type briques.
Etat de la technique
Les propriétés d'usage recherchées pour les bandes très minces en alliage d'aluminium sont une bonne résistance mécanique, un allongement suffisant, un très faible nombre de trous par unité de surface et une bonne résistance au déchirement et au pliage. L'absence de trous est liée essentiellement à la taille de grain, qui doit, en toute hypothèse, être inférieure à l'épaisseur finale.
Par ailleurs, sur le plan de la fabrication industrielle du produit, il est important que l'alliage choisi puisse se couler et se laminer facilement, qu'il ne soit pas trop coûteux à élaborer, notamment qu'il n'exige pas une teneur en silicium trop basse, et qu'enfin la gamme de transfoπnation du produit ne soit pas trop compliquée, en particulier qu'elle évite un trop grand nombre de traitements thermiques. Les alliages utilisés habituellement pour cette application sont des alliages du type 1100 ou 1200 contenant moins de 1% en poids pour la somme des teneurs en silicium et en fer. Il est connu également d'utiliser, pour améliorer la résistance mécanique, des alliages à plus haut fer et addition de manganèse, tels que les alliages 8006 et 8015, enregistrés à l'Aluminum Association respectivement en 1978 et 1988. La composition enregistrée du 8006 est (% en poids) :
Si < 0,4 Fe : 1,2 - 2 Cu < 0,30 Mn : 0,3 - 1 Mg < 0,10 Zn < 0,10 La composition enregistrée du 8015 est : Si < 0,30 Fe : 0,8 - 1,4 Cu < 0,10 Mn : 0,10 - 0,40 Mg < 0,10 Zn < 0,10
Un inconvénient important des alliages à haut fer est la difficulté de recycler les chutes de fabrication pour d'autres applications ; en effet, la fabrication de bandes très minces est une opération délicate qui conduit à une mise au mille importante en générant beaucoup de rebuts. Un moyen d'éviter cet inconvénient est d'utiliser, pour la production des ébauches, une machine de coulée continue, par exemple une coulée continue entre cylindres, qui permet de recycler directement les chutes et rebuts de fabrication dans le four d'alimentation de la machine. Cet avantage s'ajoute aux avantages intrinsèques de la coulée continue, notamment le faible coût d' investissement.
Le brevet US 5,380,379, déposé en 1993 au nom d'Alcoa Aluminio Do Nordeste, décrit une bande d'aluminium de composition (% en poids) :
Si < 0,2 Fe : 1,35 - 1,6 Cu :0,l - 0,4 Mn : 0,3 - 0,6 B : 0,01 - 0,02 élaborée par coulée continue entre cylindres à une épaisseur comprise entre 4,8 et 10 mm, recuit à plus de 450°C et laminage à froid. Dans le cas où l'épaisseur finale de la bande est inférieure à 9 μm, le brevet préconise un recuit intermédiaire supplémentaire.
Le brevet EP 0750685 (Alcan International), déposé en 1994, concerne une feuille mince d'épaisseur comprise entre 5 et 40 μm, de composition (% en poids) : Si < 0,4 Fe : 1,2 - 2,0 Mn : 0,2 - 1,0 Mg et/ou Cu : 0,1 - 0,5 Zn < 0,l avec une taille moyenne de grain inférieure à 5 μm après recuit final. Le métal peut être coulé par coulée semi-continue conventionnelle, ou par coulée continue entre cylindres ou entre courroies.
La demande WO 98/45492 (Alcan International) décrit une feuille mince recyclable, destinée notamment aux applications ménagères, de composition :
Si : 0,2 - 0,5 Fe : 0,4 - 0,8 Cu : 0,1 - 0,3 Mn : 0,05 - 0,3 contenant au moins 2% en poids de dispersoïdes et au moins 0,1% de cuivre et/ou de manganèse en solution solide. L'alliage est coulé en continu et on procède à un recuit intermédiaire au cours du laminage à froid.
Objet de l'invention Le but de l'invention est de fournir un procédé de fabrication de bandes en alliage du type aluminium - fer d'épaisseur inférieure ou égale à 12 μm, et de préférence inférieure à 9 μm, utilisant une coulée continue entre cylindres, et conduisant à des bandes présentant à la fois une bonne résistance mécanique et une résistance élevée au déchirement et au pliage, dans des conditions techniques et économiques compatibles avec une production industrielle importante.
L'invention a pour objet un procédé de fabrication de bandes en alliage d'aluminium d'épaisseur inférieure ou égale à 12 μm, et de préférence < 9 μm, comportant : l'élaboration d'un alliage de composition (% en poids) : Si : 0,15 - 0,40 Fe : 1,10 - 1,70 Mg < 0,02 Mn : 0,30 - 0,50 autres éléments < 0,05 chacun et < 0,15 au total, reste aluminium, la coulée continue entre cylindres d'une bande de cet alliage d'épaisseur comprise entre 2 et 10 mm, l'homogénéisation de cette bande à une température comprise entre 450 et 620°C d'une durée comprise entre 8 et 40 h, le laminage à froid de cette bande le recuit intermédiaire de la bande laminée à froid à une température comprise entre 200 et 400°C, et d'une durée comprise entre 8 et 15 h, le laminage à froid de la bande recuite jusqu'à l'épaisseur finale inférieure ou égale à 12 μm, le recuit final de la bande à une température comprise entre 200 et 300°C, d'une durée d'au moins 50 h.
Description de l'invention
Le procédé selon l'invention combine une composition particulière à l'intérieur de la composition AA du 8006 et une gamme de fabrication, conduisant à des propriétés d'emploi intéressantes pour la fabrication des complexes pour emballages alimentaires, en évitant des contraintes pénalisantes sur le plan industriel. La composition de l'alliage présente une teneur en silicium, comprise entre 0,15 et 0,40%, qui ne nécessite pas l'utilisation d'une base pure et n'a donc pas besoin d'être particulièrement contrôlée, contrairement à l'enseignement du brevet US 5,380,379 qui préconise une teneur en silicium inférieure à 0,2% pour éviter la formation d' intermétalliques AlFeSi et AIMnSi. La teneur en fer, comprise entre 1,1 et 1,7%, et de préférence < 1,4%, se situe dans la fourchette basse du 8006, et se situe dans celle du 8015. La teneur en manganèse, comprise entre 0,3 et 0,5%, est, elle aussi, dans la fourchette basse du 8006. Les teneurs en magnésium et en cuivre sont maintenues à des niveaux bas.
L'alliage est coulé à l'aide d'une machine de coulée continue de bandes entre deux cylindres refroidis, comme par exemple le Jumbo 3C ™ de la société Pechiney
Rhenalu. La coulée se fait à une épaisseur comprise entre 2 et 10 mm, à une vitesse de coulée comprise entre 0,5 et 3 m/mn. Il est possible de recycler la totalité des chutes et rebuts de fabrication dans le four d'alimentation de la machine. La bande coulée est ensuite homogénéisée à une température comprise entre 450 et 620°C pendant une durée comprise entre 8 et 40 h, puis refroidie lentement.
On procède ensuite à un laminage à froid d'ébauchage jusqu'à une épaisseur comprise entre 0,8 et 0,3 mm, puis à un recuit intermédiaire à une température comprise entre 200 et 400"C, de manière à obtenir une structure fine, et de préférence entre 302°C et 370°C pour obtenir une structure recristallisée, avec une taille de grain ne dépassant pas 30 μm, et de préférence 15 μm. La bande est ensuite laminée à froid jusqu'à l'épaisseur finale selon la technique habituelle, puis soumise à un recuit final de dégraissage à une température comprise entre 200 et 300°C, pendant une durée d'au moins 50 h., dépendant notamment de la largeur de la bande.
Les bandes selon l'invention présentent une résistance à la rupture supérieure à 100
MPa, une limite élastique supérieure à 80 MPa, un allongement à la rupture supérieur à 3% et une porosité selon la norme EN 546-4 inférieure à 10 trous par dm2. Elles présentent également une résistance au déchirement et au pliage améliorées par rapport aux bandes issues de coulée classique.
On peut noter qu'on obtient une bande de moins de 12 μm avec des propriétés d'emploi tout à fait satisfaisantes en n'ayant qu'un seul recuit intermédiaire, alors que, pour la même gamme d'épaisseur, le brevet US 5,380,379 préconise un premier recuit intermédiaire entre 200 et 250°C, à une épaisseur comprise entre 0,31 et 0,38 mm, puis un second recuit intermédiaire entre 200 et 300°C, à une épaisseur comprise entre 20 et 45 μm. Ces performances sont obtenues grâce à un contrôle précis de la recristallisation au moyen de la taille, de la morphologie et de la distribution des particules intermétalliques. Une distribution homogène de particules de taille suffisamment importante et une désaturation maximale de la solution solide de manganèse conduisent à une recristallisation à grains fins et homogènes, qui contribue aux bonnes propriétés mécaniques, notamment la résistance au déchirement et au pliage, ainsi qu'à la faible porosité du produit.
Les bandes obtenues par le procédé selon l'invention conviennent particulièrement à la fabrication de complexes multicouches, par exemple les complexes papier ou carton - aluminium — polymère destinés à la confection d'emballages alimentaires aseptiques du type briques. Elles peuvent également être utilisées nues, laquées ou vernies pour divers types d'emballages.
Exemples
Exemple 1
On a préparé un alliage de composition : Si = 0,23% Fe = l,26% Cu = 0,017% Mn ≈ 0,37% Mg = 0,0032% Ti ≈ 0,008% L'alliage a été coulé en largeur 1500 mm, à l'épaisseur 8 mm et à une vitesse de 0,96 m/mn sur une machine de coulée entre deux cylindres refroidis de marque Jumbo 3C ™ de la société Pechiney Rhenalu. La bande coulée a été homogénéisée pendant 12 h à une température de 600°C. La bande a été ensuite laminée à froid jusqu'à l'épaisseur de 0,5 mm, puis soumise à un recuit intermédiaire en bobine de 12 h à 350°C, pour que le métal recristallise à grains fins. Elle a été ensuite relaminée jusqu'à l'épaisseur finale de 6,60 μm, puis soumise à un recuit final de dégraissage pendant environ 80 h à 280°C.
On a mesuré la résistance à la rupture Rm, la limite d'élasticité conventionnelle à 0,2% d'allongement R0, (en MPa) et l'allongement à la rupture A (en %), en les comparant aux propriétés de bandes de même épaisseur en alliage 1200 coulé en coulée semi-continue traditionnelle. Les résultats sont indiqués au tableau 1. Tableau 1
Figure imgf000007_0001
On a mesuré également la porosité de la bande par le nombre de trous au dm selon la norme EN 546-4. Cette porosité est de 6 trous au dm , à comparer à une valeur moyenne de 13 trous au dm2 pour l'alliage 1200 en coulée classique.
Exemple 2
On a procédé à des essais de résistance au déchirement pour des feuilles découpées dans des bandes en alliage 1200 issues de coulée classique et d'épaisseur 6,3, 6,6 et 9 μm, et dans des bandes selon l'invention de mêmes épaisseurs. Les essais ont été réalisés par la méthode Elmendorf selon la norme EN 21974 (ISO 1974). L'essai consiste à déterminer la force nécessaire pour propager un déchirement sur une éprouvette. Un premier test sans fente prédéfinie donne un indicateur de la résistance à l'amorçage et à la propagation d'une fissure, et un deuxième avec fente prédéfinie permet de quantifier la résistance à la propagation seule. La force choisie dans la liste du paragraphe 1 de l'annexe A de la norme est de 4 N pour le déchirement amorcé, et de 32 N pour le déchirement non amorcé. Chaque éprouvette est constituée d'un sandwich de 8 feuilles, dont la direction de laminage coïncide avec la direction de propagation de fissure . Les résultats (moyenne de plusieurs essais) relatifs à la force moyenne nécessaire au déchirement FI (avec amorçage de fissure) et F2 (sans amorçage de fissure) sont rassemblés au tableau 2. Tableau 2
Figure imgf000008_0001
On constate que les feuilles selon l'invention présentent une résistance au déchirement plus élevée que celles élaborées par coulée classique.
Exemple 3
On a procédé à des mesures de résistance au pliage selon la norme ISO 5626, en utilisant l'appareil de Lhomargy. La sollicitation de pliage est réalisée par un mouvement de va-et-vient d'une fente située entre 4 cylindres qui contrôlent l'angle de pliage. Le dispositif d'attache de la bande et l'effort de tension ont été légèrement modifié pour tenir compte de la différence entre l'aluminium et le papier. La distance entre les mors a été allongée à 35 mm (au lieu de 28,5 mm) et le système de contrepoids ajusté pour donner des tensions de 0,4 N, 1,7 N et 3 N (au lieu de 9,81 N et 8 N). Les échantillons utilisés ont pour dimensions 170 mm x 15 mm (au lieu de 100 x 15 mm), la direction de laminage étant alignée avec la lame de pliage, c'est-à- dire perpendiculaire à la direction de l'effort de tension. Les essais ont été réalisés sur des bandes en alliage 1200 d'épaisseur 6,6 et 9 μm, issues de coulée classique, et des bandes selon l'invention de mêmes épaisseurs.
On a mesuré le nombre de cycles à rupture C pour différents types de sollicitations (tension et contrainte). Les résultats (moyenne de plusieurs essais) sont indiqués au tableau 3. Tableau 3
Figure imgf000009_0001
On constate que les bandes selon l'invention, bien que plus résistantes mécaniquement, présentent une résistance au pliage plutôt meilleure que l'alliage 1200 en coulée classique pour l'épaisseur 6,6 μm, et à peu près équivalente pour l'épaisseur 9 μm.

Claims

REVENDICATIONS
1. Procédé de fabrication de bandes en alliage d'aluminium d'épaisseur inférieure ou égale à 12 μm, comportant :
- l'élaboration d'un alliage de composition (% en poids) :
Si : 0,15 - 0,40 Fe : 1,10 - 1,70 Mg < 0,02 Mn : 0,30 - 0,50 autres éléments < 0,05 chacun et < 0,15 au total, reste aluminium, la coulée continue entre cylindres d'une bande de cet alliage d'épaisseur comprise entre 2 et 10 mm,
- l'homogénéisation de cette bande à une température comprise entre 450 et 620°C d'une durée comprise entre 8 et 40 h, le laminage à froid de cette bande, - le recuit intermédiaire de la bande laminée à froid à une température comprise entre 200 et 400°C, et d'une durée comprise entre 8 et 15 h,
- le laminage à froid de la bande recuite jusqu'à l'épaisseur finale inférieure ou égale à 12 μm,
- le recuit final de la bande à une température comprise entre 200 et 300°C, d'une durée d'au moins 50 h.
2. Procédé selon la revendication 1, caractérisé en ce que l'épaisseur de la bande est inférieure à 9 μm.
3. Procédé selon l'une des revendications 1 ou 2, caractérisé en ce que la teneur en fer de l'alliage est inférieure à 1,40%.
4. Procédé selon l'une des revendications 1 à 3, caractérisé en ce que le recuit intermédiaire est unique, c'est-à-dire qu'il n'y en a pas d'autre entre deux étapes de laminage à froid.
5. Bande en alliage d'aluminium d'épaisseur inférieure ou égale à 12 μm, fabriquée par un procédé selon l'une des revendications 1 à 4, caractérisé en ce qu'elle présente une résistance à la rupture Rm > 100 MPa, une limite élastique R0,2 > 80
Mpa, un allongement à la rupture À > 3% et une porosité selon la norme EN 546-
4 < 10 trous/dm2.
6. Utilisation de bandes selon la revendication 5 pour la fabrication d'emballages alimentaires aseptiques de type briques.
PCT/FR2001/002664 2000-08-29 2001-08-24 Procede de fabrication de bandes tres minces en alliage aluminium-fer WO2002018665A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2001286007A AU2001286007A1 (en) 2000-08-29 2001-08-24 Method for making very thin aluminium-iron alloy strips
BRPI0113532-5A BR0113532B1 (pt) 2000-08-29 2001-08-24 processo de fabricação de cintas em liga de alumìnio e cinta em liga de alumìnio produzida por este processo.
NO20030932A NO20030932L (no) 2000-08-29 2003-02-27 Fremgangsmåte for fremstilling av meget tynne bånd av aluminium-jernlegering

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR00/11025 2000-08-29
FR0011025A FR2813316B1 (fr) 2000-08-29 2000-08-29 Procede de fabrication de bandes tres minces en alliage aluminium-fer

Publications (1)

Publication Number Publication Date
WO2002018665A1 true WO2002018665A1 (fr) 2002-03-07

Family

ID=8853787

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2001/002664 WO2002018665A1 (fr) 2000-08-29 2001-08-24 Procede de fabrication de bandes tres minces en alliage aluminium-fer

Country Status (16)

Country Link
US (2) US6517646B2 (fr)
EP (1) EP1184474B1 (fr)
CN (1) CN1226437C (fr)
AR (1) AR037074A1 (fr)
AT (1) ATE317459T1 (fr)
AU (1) AU2001286007A1 (fr)
BR (1) BR0113532B1 (fr)
CA (1) CA2354828C (fr)
DE (1) DE60117118T2 (fr)
DK (1) DK1184474T3 (fr)
ES (1) ES2257389T3 (fr)
FR (1) FR2813316B1 (fr)
MY (1) MY122535A (fr)
NO (1) NO20030932L (fr)
RU (1) RU2254392C2 (fr)
WO (1) WO2002018665A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104439980A (zh) * 2014-12-12 2015-03-25 西南铝业(集团)有限责任公司 一种5083h321铝合金板材的加工工艺

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100445414C (zh) * 2006-12-06 2008-12-24 云南冶金集团总公司 用铸轧坯料生产5xxx系列铝板加工工艺中的热处理方法
TWI393784B (zh) * 2007-12-28 2013-04-21 China Steel Corp Method for making heat resistant softened aluminum alloy
JP2011052292A (ja) * 2009-09-03 2011-03-17 Shingijutsu Kenkyusho:Kk アルミニウム合金物品、アルミニウム合金部材およびその製造方法
CN101705459B (zh) * 2009-12-04 2013-08-28 山东富海实业股份有限公司 3005合金铝带材的加工方法
CN101812616A (zh) * 2010-04-22 2010-08-25 镇江鼎胜铝业股份有限公司 餐具用铝箔材料及餐具用铝箔的制造方法
CN102383008B (zh) * 2011-11-15 2013-05-15 镇江鼎胜铝业股份有限公司 电容器外壳用铝带材料及其制造方法
DE102013009984A1 (de) * 2013-06-14 2014-12-18 Huhtamaki Flexible Packaging Germany, Zweigniederlassung Der Huhtamaki Flexible Packaging Germany Gmbh & Co. Kg "Aluminiumlaminat, insbesondere zur Herstellung von geprägten Gegeständen sowie Deckelplatine aus einem solchen Aluminiumlaminat"
CN104607463A (zh) * 2014-12-10 2015-05-13 徐州工程学院 铸轧5052铝合金中心疏松愈合的一种新方法
CN107034396B (zh) * 2017-04-26 2018-08-31 洛阳龙鼎铝业有限公司 一种高铁声屏障用铝带的制备方法
CN106929719B (zh) * 2017-04-26 2018-08-31 洛阳龙鼎铝业有限公司 一种汽车空调用铝箔的制备方法
CN107099701B (zh) * 2017-04-26 2018-08-31 洛阳龙鼎铝业有限公司 一种锂离子电池用高强度铝箔的制备方法
CN106929714B (zh) * 2017-04-26 2018-05-04 洛阳龙鼎铝业有限公司 一种高强度餐具铝箔的制备方法
CN107012371B (zh) * 2017-04-26 2018-08-31 洛阳龙鼎铝业有限公司 一种建筑装饰用铝带的制备方法
CN108359851B (zh) * 2018-02-05 2020-06-26 奥科宁克(昆山)铝业有限公司 一种打包带的制造工艺
EP4015658A1 (fr) 2020-12-18 2022-06-22 Speira GmbH Feuille d'aluminium à propriétés de barrière améliorées
CN112893464A (zh) * 2021-01-13 2021-06-04 安徽力幕新材料科技有限公司 一种动力电池用铝箔的加工方法
CN113235023B (zh) * 2021-05-10 2022-05-31 广西正润新材料科技有限公司 一种电容器用低压电子铝箔及其制备工艺
CN113444924B (zh) * 2021-07-20 2022-05-27 华北铝业有限公司 一种8000铝合金容器箔及其坯料制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1524355A (en) * 1975-10-31 1978-09-13 Alcan Res & Dev Aluminium alloy sheet products
US5080728A (en) * 1989-04-28 1992-01-14 Vereinigte Aluminium-Werke Aktiengellschaft Rolled aluminum product and method for its production
US5380379A (en) * 1993-08-18 1995-01-10 Alcoa Aluminio Do Nordeste S.A. Aluminum foil product and manufacturing method
WO1995025825A1 (fr) * 1994-03-18 1995-09-28 Alcan International Limited Feuille en aluminium
WO1998045492A1 (fr) * 1997-04-04 1998-10-15 Alcan International Limited Composition en alliage d'aluminium et procede de fabrication

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0223737B1 (fr) * 1985-10-30 1989-12-27 Schweizerische Aluminium Ag Support pour plaque d'impression lithographique
WO1998049377A1 (fr) * 1997-04-25 1998-11-05 Alcan International Limited Piece d'aluminium

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1524355A (en) * 1975-10-31 1978-09-13 Alcan Res & Dev Aluminium alloy sheet products
US5080728A (en) * 1989-04-28 1992-01-14 Vereinigte Aluminium-Werke Aktiengellschaft Rolled aluminum product and method for its production
US5380379A (en) * 1993-08-18 1995-01-10 Alcoa Aluminio Do Nordeste S.A. Aluminum foil product and manufacturing method
WO1995025825A1 (fr) * 1994-03-18 1995-09-28 Alcan International Limited Feuille en aluminium
WO1998045492A1 (fr) * 1997-04-04 1998-10-15 Alcan International Limited Composition en alliage d'aluminium et procede de fabrication

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ALUM. ALLOYS PACKAG. II, PROC. (1996), 245-51. EDITOR(S): MORRIS, J. G.;DAS, S. K.; GOODRICH, H. S. PUBLISHER: MINERALS, METALS & MATERIALS SOCIETY, WARRENDALE, PA., 1996 *
DATABASE CHEMABS [online] CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; EKSTROEM, HANS-ERIK ET AL: "Strip cast aluminum foil", XP002169114, retrieved from STN Database accession no. 124:238761 CA *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104439980A (zh) * 2014-12-12 2015-03-25 西南铝业(集团)有限责任公司 一种5083h321铝合金板材的加工工艺

Also Published As

Publication number Publication date
US6517646B2 (en) 2003-02-11
CA2354828C (fr) 2009-10-20
ES2257389T3 (es) 2006-08-01
CA2354828A1 (fr) 2002-02-28
CN1449454A (zh) 2003-10-15
MY122535A (en) 2006-04-29
US20030079812A1 (en) 2003-05-01
DE60117118D1 (de) 2006-04-20
RU2254392C2 (ru) 2005-06-20
FR2813316B1 (fr) 2002-10-18
EP1184474B1 (fr) 2006-02-08
NO20030932D0 (no) 2003-02-27
AU2001286007A1 (en) 2002-03-13
NO20030932L (no) 2003-02-27
ATE317459T1 (de) 2006-02-15
CN1226437C (zh) 2005-11-09
US20020043310A1 (en) 2002-04-18
BR0113532A (pt) 2003-07-29
AR037074A1 (es) 2004-10-20
DK1184474T3 (da) 2006-05-15
FR2813316A1 (fr) 2002-03-01
BR0113532B1 (pt) 2010-09-08
DE60117118T2 (de) 2006-08-03
EP1184474A1 (fr) 2002-03-06

Similar Documents

Publication Publication Date Title
EP1184474B1 (fr) Procédé de fabrication de bandes très minces en alliage aluminium-fer
CA2832085C (fr) Alliages aluminium cuivre magnesium performants a haute temperature
DK2219860T3 (en) Coated sheet metal product and process for its manufacture
US20090081072A1 (en) Aluminum alloy sheet and method for manufacturing the same
CA2961712C (fr) Toles isotropes en alliage d&#39;aluminium-cuivre-lithium pour la fabrication de fuselages d&#39;avion
JP5870791B2 (ja) プレス成形性と形状凍結性に優れたアルミニウム合金板およびその製造方法
EP0983129B1 (fr) Procede de fabrication de bandes en alliages d&#39;aluminium par coulee continue mince entre cylindres
CN103710580A (zh) 高强度铝合金挤压材料及其制造方法
CA2739484C (fr) Charge pour produit en feuille metallique et procede de fabrication associe
CA2923109A1 (fr) Tole d&#39;intrados a proprietes de tolerance aux dommages ameliorees
EP1644545B1 (fr) Feuilles ou bandes minces en alliage al-fe-si
CA3115014A1 (fr) Tole en alliage 2xxx a haute performance pour fuselage d&#39;avion
EP1483422B1 (fr) Utilisation de bandes minces en alliage aluminium-fer
FR2805827A1 (fr) Procede de fabrication de bandes en alliage d&#39;aluminium aptes a la fabrication de corps de boites
JPH09268341A (ja) スコア部の耐応力腐食割れ性に優れた缶蓋材用Al合金焼付塗装板とその製造方法
JPH09279281A (ja) 耐蝕性に優れた缶蓋材用Al合金焼付塗装板とその製造方法
WO2023144492A1 (fr) Tole mince amelioree en alliage d&#39;aluminium-cuivre-lithium
CA2091390A1 (fr) Feuille mince, deformable, en alliage d&#39;aluminium a structure fine et homogene ayant une limite elastique elevee

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 018147941

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2003108739

Country of ref document: RU

Kind code of ref document: A

Format of ref document f/p: F

Country of ref document: RU

Kind code of ref document: A

Format of ref document f/p: F

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref country code: JP