WO2002016260A1 - Hydrogen purification apparatus - Google Patents

Hydrogen purification apparatus Download PDF

Info

Publication number
WO2002016260A1
WO2002016260A1 PCT/JP2001/006890 JP0106890W WO0216260A1 WO 2002016260 A1 WO2002016260 A1 WO 2002016260A1 JP 0106890 W JP0106890 W JP 0106890W WO 0216260 A1 WO0216260 A1 WO 0216260A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
hydrogen
shift
temperature
hydrogen gas
Prior art date
Application number
PCT/JP2001/006890
Other languages
English (en)
French (fr)
Inventor
Kunihiro Ukai
Kiyoshi Taguchi
Takeshi Tomizawa
Seiji Fujiwara
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2000248363A external-priority patent/JP2002060206A/ja
Priority claimed from JP2000323062A external-priority patent/JP4663095B2/ja
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to EP01955648A priority Critical patent/EP1314690A4/en
Publication of WO2002016260A1 publication Critical patent/WO2002016260A1/ja
Priority to US10/980,463 priority patent/US7279142B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/248Reactors comprising multiple separated flow channels
    • B01J19/2485Monolithic reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0006Controlling or regulating processes
    • B01J19/0013Controlling the temperature of the process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/001Controlling catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/008Details of the reactor or of the particulate material; Processes to increase or to retard the rate of reaction
    • B01J8/0085Details of the reactor or of the particulate material; Processes to increase or to retard the rate of reaction promoting uninterrupted fluid flow, e.g. by filtering out particles in front of the catalyst layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0446Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical
    • B01J8/0449Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical beds
    • B01J8/0453Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical beds the beds being superimposed one above the other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0446Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical
    • B01J8/0449Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical beds
    • B01J8/0457Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical beds the beds being placed in separate reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0496Heating or cooling the reactor
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/48Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents followed by reaction of water vapour with carbon monoxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00026Controlling or regulating the heat exchange system
    • B01J2208/00035Controlling or regulating the heat exchange system involving measured parameters
    • B01J2208/00044Temperature measurement
    • B01J2208/00061Temperature measurement of the reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00115Controlling the temperature by indirect heat exchange with heat exchange elements inside the bed of solid particles
    • B01J2208/00132Tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00168Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00168Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
    • B01J2208/00176Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles outside the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00477Controlling the temperature by thermal insulation means
    • B01J2208/00495Controlling the temperature by thermal insulation means using insulating materials or refractories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00504Controlling the temperature by means of a burner
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/0053Controlling multiple zones along the direction of flow, e.g. pre-heating and after-cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00054Controlling or regulating the heat exchange system
    • B01J2219/00056Controlling or regulating the heat exchange system involving measured parameters
    • B01J2219/00058Temperature measurement
    • B01J2219/00063Temperature measurement of the reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00076Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements inside the reactor
    • B01J2219/00081Tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00087Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/0015Controlling the temperature by thermal insulation means
    • B01J2219/00155Controlling the temperature by thermal insulation means using insulating materials or refractories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00157Controlling the temperature by means of a burner
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00159Controlling the temperature controlling multiple zones along the direction of flow, e.g. pre-heating and after-cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00191Control algorithm
    • B01J2219/00193Sensing a parameter
    • B01J2219/00195Sensing a parameter of the reaction system
    • B01J2219/00198Sensing a parameter of the reaction system at the reactor inlet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00191Control algorithm
    • B01J2219/00193Sensing a parameter
    • B01J2219/00195Sensing a parameter of the reaction system
    • B01J2219/00202Sensing a parameter of the reaction system at the reactor outlet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • C01B2203/0288Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step containing two CO-shift steps
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1076Copper or zinc-based catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1082Composition of support materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/1614Controlling the temperature
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/1614Controlling the temperature
    • C01B2203/1619Measuring the temperature
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/1614Controlling the temperature
    • C01B2203/1623Adjusting the temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a hydrogen purifying apparatus for reducing carbon monoxide generated when reforming a hydrocarbon component and water.
  • a cogeneration system using a fuel cell with high power generation efficiency is attracting attention as a distributed power generation device that can effectively use energy Phosphoric acid fuel cells that are being put into practical use, and polymer fuels that are being developed Most fuel cells, such as batteries, generate electricity using hydrogen as fuel.
  • a Fe—Cr-based catalyst and a Cu—Zn-based catalyst are used in combination. Since Fe-Cr-based catalysts are used at relatively high temperatures (300 ° C to 500 ° C), carbon monoxide cannot be significantly reduced. On the other hand, Cu-Zn catalysts are used at relatively low temperatures (200 ° C to 300 ° C) and can reduce the concentration of carbon monoxide to a considerably low concentration.
  • carbon monoxide is reduced to a concentration of about 5% using a Cu-Zn catalyst.
  • carbon monoxide is selectively oxidized or methanated using a platinum-based noble metal Pt or Ru-based catalyst, and finally the carbon monoxide is reduced to a level of about 20 ppm. It is configured to reduce it (of course, in order to effectively reduce carbon monoxide in the purification section, it is necessary to stably reduce carbon monoxide in the shift section).
  • the conversion catalyst of the Cu-Zn system has an activity in the shift reaction in the reduced state, and when the apparatus is operated continuously, it is always in the reduced state and the catalyst activity is hardly reduced. In the case of intermittent operation, the start and stop are repeated, so that air enters into the shift section, oxidizing the catalyst and greatly reducing the catalyst activity.
  • a catalyst prepared by supporting a platinum group noble metal on a metal oxide is used as a shift catalyst in order to improve oxidation resistance and heat resistance.
  • the catalyst prepared by supporting the platinum group noble metal on the metal oxide hardly causes aggregation due to sintering of the catalyst species even at a temperature of about 500 ° C, and changes the catalyst activity even in the acid state.
  • the metamorphic reactivity at low temperatures is slightly lower than that of the Cu-Zn catalyst, and the carbon monoxide concentration at the outlet of the metamorphic zone increases.
  • An object of the present invention is to provide a hydrogen purifying apparatus having good CO purification efficiency even in the case where starting and stopping are repeated frequently, for example, in consideration of the above conventional problems. .
  • the first invention (corresponding to claim 1) provides a precious metal and gold for converting carbon monoxide.
  • a shift unit having a shift catalyst body containing a group oxide;
  • a hydrogen gas supply unit for supplying a hydrogen gas containing carbon monoxide to the metamorphic unit, wherein the metamorphic hornworm medium has a (1) upstream temperature of substantially 300 ° with respect to the flow of the hydrogen gas.
  • This is a hydrogen purifier that keeps the downstream temperature substantially below 300 ° C.
  • a second aspect of the present invention is the hydrogen purification apparatus according to the first aspect of the present invention, wherein the metamorphic section has a cooling section for setting the downstream temperature to 150 ° C or more and 300 ° C or less. It is.
  • a third invention is the hydrogen purification apparatus according to the first invention, wherein the amount of the noble metal per unit volume of the shift catalyst is smaller on the upstream side than on the downstream side. It is.
  • a fourth invention is the hydrogen purification apparatus according to the first invention, wherein the flow rate of the hydrogen gas is higher on the upstream side than on the downstream side.
  • a fifth aspect of the present invention is that the cross-sectional area of the shift catalyst body perpendicular to the flow of the hydrogen gas is smaller at the upstream side than at the downstream side.
  • Water of the Invention provides a multi-stage metamorphosis unit having a metamorphosis catalyst body containing a noble metal and a metal oxide for metamorphizing carbon monoxide,
  • a hydrogen gas supply unit that supplies a hydrogen gas containing carbon monoxide to the plurality of shift units.
  • the temperature of the plurality of metamorphic sections is higher on the upstream side with respect to the flow of the hydrogen gas! / ⁇ Hydrogen purification equipment.
  • the noble metal is all or a part of Pt, Pd, Rh, and Ru;
  • the hydrogen purifier according to the first or sixth aspect of the present invention wherein the metal oxide is a complex oxide in which Zr and / or A1 is complexed with Ce.
  • An eighth aspect of the present invention is an element excluding oxygen in the composite oxidized product.
  • a hydrogen purifying apparatus according to the seventh aspect of the present invention, wherein Ce is 5 to 90 atomic percent and the balance is Zr and / or A1.
  • a ninth aspect of the present invention is the hydrogen purification apparatus according to the eighth aspect of the present invention, wherein the composite oxide forms a solid solution.
  • a tenth aspect of the present invention is the ninth aspect of the present invention, wherein the composition ratio of Ce in the shift catalyst body of each stage is higher on the upstream side with respect to the flow of the hydrogen gas.
  • the eleventh invention (corresponding to claim 11) is characterized in that (1) between the hydrogen gas supply unit and the shift unit, or (2) between the shift catalyst bodies in each stage.
  • a hydrogen purifier according to the first or sixth aspect of the present invention provided with a cooling unit for cooling hydrogen gas.
  • FIG. 1 is a vertical cross-sectional view of a main part of the hydrogen purification device according to Embodiment 1 of the present invention.
  • FIG. 3 is an explanatory diagram showing the relationship between the dani carbon concentration.
  • Fig. 2 (b); The relationship between catalyst temperature and carbon monoxide concentration when a gas containing 2% carbon oxide, 18% carbon dioxide, and 80% hydrogen was adjusted to a dew point of 65 ° C and passed through the catalyst.
  • FIG. 1 is a vertical cross-sectional view of a main part of the hydrogen purification device according to Embodiment 1 of the present invention.
  • FIG. 3 is a vertical cross-sectional view of a main part of the hydrogen purification device according to Embodiment 2 of the present invention.
  • FIG. 4 is a vertical cross-sectional view of a main part of the hydrogen purification device according to Embodiment 3 of the present invention.
  • FIG. 5 is a vertical cross-sectional view of a main part of the hydrogen purification device according to Embodiment 4 of the present invention.
  • FIG. 6 is a vertical cross-sectional view of a main part of the hydrogen purification apparatus according to Embodiment 5 of the present invention.
  • FIG. 7 is a vertical cross-sectional view of a main part of the hydrogen purification device according to Embodiment 6 of the present invention.
  • Metamorphosis first temperature measurement unit 0 Metamorphosis second temperature measurement unit 1
  • Purification first temperature measurement unit 2 Purification Erich second temperature measurement unit 3
  • a reforming section 1 is a means (hydrogen gas supply section) for supplying hydrogen (gas) provided with a reforming catalyst body la for a steam reforming reaction (reforming section).
  • a noble metal supported on an alumina substrate Ru / alumina, manufactured by Chemcat Corporation was used.
  • the heating unit 2 is a unit for heating the reforming unit 1 (a flame burner in the present embodiment).
  • the shift part 3 contains the (CO) shift catalyst 3a and is a means for shifting carbon monoxide.
  • the shift catalyst 3a is composed of Pt and Ce oxide.
  • a catalyst supported on an alumina pellet was used).
  • the J ⁇ i-Dani section 4 contains a J ⁇ -Dani catalyst body 4a and is a means for purifying mono-i-Dani carbon. The one supported on a light non-comb was used).
  • the raw material supply section 5 is a means for supplying a raw material mainly composed of hydrocarbons for the steam reforming reaction to the reforming section 1, and the water supply section 6 reforms water for the steam reforming reaction. It is a means for supplying to Part 1.
  • the gas ventilation path 7 is a means for flowing gas in the order of the reforming section 1, the shift section 3, and the purification section 4, and has an outlet in the purification section 4.
  • the air supply unit 8 is a means for supplying air as oxidizing gas to the gas ventilation path 7 between the shift unit 2 and the purification unit 3.
  • the shift first temperature detector 9 is a means for detecting the gas temperature before passing through the shift catalyst 3a
  • the shift second temperature detector 10 is for detecting the gas temperature after passing the shift catalyst 3a. These are both provided in the metamorphic unit 3. As will be described later, the temperature of the shift unit 2 is controlled (set) based on the gas temperature measurement results of the shift first temperature detecting unit 9 and shift second temperature detecting unit 10.
  • the purification first temperature detector 11 is a means for detecting the gas temperature before passing through the purification catalyst 4a
  • the purification second temperature detector 12 is a means for detecting the gas temperature after passing through the purification catalyst 4a. These are provided in the purification unit 4.
  • the reforming heating section 2 is operated to heat the reforming catalyst la in the reforming section 1 to a temperature of 700 to 750 ° C (a flame burner was used as the reforming heating body 2; It is not necessary to use heating means that can achieve the desired heating temperature V,).
  • a hydrocarbon component as a raw material is supplied from the raw material supply section 5 and water is supplied from the water supply section 6 to the reforming catalyst la being heated, and the steam reforming reaction proceeds.
  • the gas after the reforming section is passed through the gas ventilation path 7 to the shift section 3.
  • the metamorphic section includes noble metal and metal oxide.
  • a catalyst prepared and prepared from Pt and Ce oxide has a feature that its heat resistance is higher and its catalytic activity does not decrease even when it becomes an oxidized state at the time of shutdown, as compared with a Cu—Zn-based catalyst.
  • the conversion reactivity at low temperatures is slightly reduced. Therefore, the concentration of carbon monoxide at the outlet of the metamorphic zone tends to increase.
  • the portion of the shift catalyst body located upstream with respect to the hydrogen gas flow is set to a temperature in the range of 300 ° C or more and 500 ° C or less, and located downstream with respect to the hydrogen gas flow.
  • FIG. 2 (a) and 2 (b) show the catalytic properties of the catalysts prepared and prepared from Pt and Ce oxides.
  • Fig. 2 (a) shows the catalyst temperature and carbon monoxide concentration when a gas containing 10% carbon monoxide, 10% carbon dioxide, and 80% hydrogen was adjusted to a dew point of 65 ° C and passed through the catalyst.
  • FIG. 4 is an explanatory diagram (graph) showing the relationship of FIG. Figure 2 (b) shows the catalyst temperature and carbon monoxide concentration when a gas containing 2% carbon monoxide, 18% carbon dioxide, and 80% hydrogen was adjusted to a dew point of 65 ° C and passed through the catalyst.
  • FIG. 4 is an explanatory diagram (graph) showing the relationship of FIG.
  • the concentration of carbon monoxide is 2% or less. If the catalyst temperature is lowered when the concentration of carbon monoxide is high, the reaction rate decreases, so that carbon monoxide cannot be reduced sufficiently. Further, when the catalyst temperature is increased, the concentration of carbon is increased by reaction equilibrium. Therefore, in the present embodiment, the portion of the shift catalyst body located upstream with respect to the hydrogen gas flow was operated at a temperature in the range of 300 ° C. or more and 500 ° C. or less, with a carbon monoxide concentration of 2% as a guide. . However, this also indicates that carbon monoxide has not been sufficiently reduced as compared with the widely used Cu-Zn catalyst.
  • the catalyst temperature should be 150 ° C or more and 300 ° C or less when carbon monoxide (0.5% or less) is used as a guide, which is almost the same as the characteristics of Cu-Zn based catalysts that have been widely used in the past. This demonstrates that it is possible to achieve the target level of CO purification efficiency.
  • the temperature of the portion of the shift catalyst body located upstream with respect to the hydrogen gas flow is set to a temperature in the range of 300 ° C or more and 500 ° C or less, and Operate the located part at a temperature between 150 ° C and 300 ° C. Therefore, carbon monoxide can be further reduced by previously reducing the carbon monoxide on the upstream surface of the metamorphic catalytic medium and setting the temperature downstream thereof to a low temperature of 300 ° C. or lower.
  • the catalyst used in this example can be used at a higher temperature (300 ° C or more and 500 ° C or less) than the Cu-Zn catalyst, it has a superior reaction rate, and the catalyst volume is smaller than that of the Cu-Zn catalyst. can do.
  • the gas temperature before passing through the shift catalyst 3a is the shift first temperature detecting unit 9
  • the gas temperature after passing through the shift catalyst 3a is the shift second temperature detecting unit 10.
  • the hydrogen gas temperature after the reforming catalyst will be about 700 ° C. Therefore, it is also possible to provide a hydrogen gas cooling means such as air cooling or water cooling in the gas ventilation path between the reforming section and the shift section to control the temperature of the shift catalyst body on the upstream side of the gas flow.
  • a hydrogen gas cooling means such as air cooling or water cooling in the gas ventilation path between the reforming section and the shift section to control the temperature of the shift catalyst body on the upstream side of the gas flow.
  • FIG. 3 is a longitudinal sectional view of a main part of the hydrogen purifier in the second embodiment of the present invention.
  • the configuration of the hydrogen purifier of the present embodiment is almost the same as the configuration of the hydrogen purifier of Embodiment 1 (see FIG. 1) described above, and the description of the same parts is omitted.
  • the shift conversion unit 3 is constituted by the first shift catalyst unit 3c and the second shift catalyst unit 3e, and the shift third temperature measuring unit is provided after the first shift catalyst unit 3c.
  • the cross-sectional area of the first shift catalyst 3c in a plane perpendicular to the hydrogen gas flow is smaller than the cross-sectional area of the second shift catalyst 3e in the plane perpendicular to the hydrogen gas flow.
  • the hydrogen purifying apparatus of the present embodiment performs almost the same operation as the above-described hydrogen purifying apparatus of the first embodiment, and reduces carbon monoxide in the shift section 3.
  • the cross-sectional area of the upstream surface of the shift catalyst body in the vertical direction with respect to the hydrogen gas flow f is about 1/4 of the cross-sectional area of the downstream surface of the shift catalyst body in the vertical direction with respect to the hydrogen gas flow. It was made small. In other words, the feature is that the flow velocity of the hydrogen gas in the portion located upstream with respect to the hydrogen gas flow is about four times larger than that in the portion located downstream.
  • the first shift catalyst 3c located upstream with respect to the hydrogen gas flow of the shift catalyst body is operated at a temperature of 300 ° C or higher and 500 ° C or lower, which is higher than that of the second shift catalyst body 3e. When the temperature of the catalyst is high, the reaction speed of the catalyst is increased, and the reaction is sufficiently performed even when the flow rate of the hydrogen gas is increased.
  • the catalyst can be used effectively. This has the effect of stabilizing the reduction. As a result, it is possible to stably reduce carbon monoxide as a metamorphic portion. It should be noted that it is difficult to operate the catalyst at a temperature of 300 ° C. or more and 500 ° C. or less in the conventional Cu—Zn-based catalyst because it is difficult to reduce the catalyst activity. The carbon oxide reduction effect seems to be small.
  • FIG. 4 is a vertical cross-sectional view of a main part of the hydrogen purifying apparatus according to the third embodiment of the present invention.
  • the configuration of the hydrogen purifier of the present embodiment is the same as that of the hydrogen purifier of the first embodiment described above.
  • the configuration is almost the same as that of the device (see Fig. 1), and the description of the same parts is omitted, and only the differences will be described.
  • a shift cooling unit 13 is provided in the shift catalyst body of the shift unit 3.
  • the shift cooling unit 13 uses water as a cooling medium and exchanges heat with hydrogen gas for cooling.
  • the hydrogen purifying apparatus of the present embodiment performs almost the same operation as the above-described hydrogen purifying apparatus of the first embodiment, and reduces carbon monoxide in the shift section 3. .
  • the shift cooling unit 13 is operated to operate the shift catalyst located downstream of the hydrogen gas flow at a temperature of 150 ° C or more and 300 ° C or less.
  • the structure for cooling is a water-cooled structure in the present embodiment, but any structure that cools hydrogen gas can be used.
  • the upstream portion of the shift catalyst is operated at a temperature in the range of 300 ° C or more and 500 ° C or less, the sensible heat of hydrogen gas exceeding 300 ° C is downstream. In terms of surplus.
  • the metamorphic reaction between carbon monoxide and water vapor is an exothermic reaction (about 41.2 kJ / COmol).
  • the downstream surface of the metamorphic catalyst cannot be operated at a temperature of 150 ° C or more and 300 ° C or less, so that The carbon concentration increases (see Fig. 2 (b)).
  • the shift catalyst body located downstream with respect to the hydrogen gas flow is brought to a temperature of 150 ° C or more and 300 ° C or less. To control. It is possible to stably reduce carbon monoxide to 0.5% or less. In particular, even when the amount of hydrogen gas increases and the sensible heat and the heat of metamorphic reaction increase, carbon monoxide can be stably reduced.
  • FIG. 5 is a longitudinal sectional view of a main part of the hydrogen purifier according to the fourth embodiment of the present invention.
  • the configuration of the hydrogen purifier of the present embodiment is almost the same as the configuration of the hydrogen purifier of Embodiment 1 (see FIG. 1) described above, and the description of the same parts is omitted.
  • the shift unit 3 is a first shift unit 3b provided with the first shift catalyst unit 3c and a second shift unit 3d provided with the second shift catalyst unit 3e
  • the first shift unit The first metamorphic temperature measuring section 9 is provided in the second metamorphic section
  • the second metamorphic temperature measuring section 10 is provided in the second metamorphic section
  • hydrogen gas is supplied between the first metamorphic section 3b and the second metamorphic section 3d.
  • a metamorphic cooling fan 15 which is a cooling means for radiating heat is provided.
  • a honeycomb catalyst was used instead of a pellet catalyst. '
  • the hydrogen purifying apparatus of the present embodiment performs almost the same operation as the above-described hydrogen purifying apparatus of the first embodiment, and reduces carbon monoxide in the shift section 3.
  • the hydrogen purification apparatus of the present embodiment operates the upstream of the first shift catalyst body of the first shift section at a temperature in the range of 300 ° C or more and 500 ° C or less, and the second shift section of the second shift section. Operate downstream of the catalyst at a temperature of 150 ° C or more and 300 ° C or less.
  • the temperature of the second shift section downstream of the second shift catalyst body is controlled by cooling the hydrogen gas with the shift cooling fan 15. Since the temperature of the shift catalyst body depends on the flow rate of hydrogen gas, when the flow rate of hydrogen gas changes significantly, the temperature of the shift catalyst body also changes greatly. However, in the present embodiment, the metamorphic section is divided into the first metamorphic section and the second metamorphic section, so that the temperatures of the upstream surface and the downstream surface of the catalytic converter are less dependent on each other, and This makes it easier to control the temperature of the catalyst.
  • the temperature of the second shift catalyst body was controlled based on the temperature of the downstream face of the second shift catalyst body, and a temperature measuring section was provided on the upstream face of the second shift catalyst body, and the shift cooling unit was controlled based on the temperature. Ann may be operated to control the temperature of the second shift catalyst body.
  • the Fe-Cr based catalyst is heated at a relatively high temperature (300-500 ° C), and the Cu-Zn catalyst is heated at a relatively low temperature (200-300 ° C). It is used in combination as a two-stage or two-layer metamorphic unit as in this embodiment, and the configuration for reducing carbon monoxide is as follows. (High-concentration Fe-Cr catalysts reduce high-concentration carbon monoxide, while low-temperature Cu-Zn catalysts reduce carbon monoxide to low concentrations.) . However, with such a configuration, the Fe—Cr-based catalyst has low catalytic activity for the carbon monoxide conversion reaction, and the size of the shift portion increases. In both cases, the catalyst is lowered by oxidation, so it is desirable to operate continuously.
  • a catalyst prepared by preparing Pt and Ce oxides as a noble metal and a metal oxide was used. This makes it possible to cope with frequent start and stop due to its excellent resistance, and the catalytic activity for the carbon monoxide shift reaction is higher than that of Fe-Cr catalyst, so the size of the first-stage shift section can be reduced. This has the effect.
  • one metamorphic section can achieve the same carbon monoxide reduction effect as the conventional two-stage metamorphic section configuration (that is, the configuration can be simplified).
  • the same catalyst body can be used in the shift section, the recovery of the catalyst is simplified, and the catalyst recycling is further promoted.
  • a shift catalyst a catalyst containing Pt and Ce oxide as a constituent material is supported on an aluminum pellet, but Pt, Pd, Ru, or a noble metal in the shift catalyst is used. Similar results were obtained using any of Rh, and any of Ce, Zr, and Zn as metal oxides.
  • FIG. 6 is a longitudinal sectional view of a main part of a hydrogen purifying apparatus according to Embodiment 5 of the present invention.
  • a CO shift catalyst (also simply referred to as (shift) catalyst) 101 is installed inside a reaction chamber 102, and a reformed gas is introduced from a reformed gas inlet 103.
  • the reformed gas reacted by the CO shift catalyst 101 is discharged from the reformed gas outlet.
  • a diffusion plate 105 is provided upstream of the catalyst body 101 so that the reformed gas flows uniformly.
  • the outer periphery In order to keep the reactor at a constant temperature, the outer periphery must be Covered with heat insulation 106 per luka.
  • the catalyst body 101 a cordierite honeycomb coated with a catalyst in which Pt was carried on a composite oxide of cerium (hereinafter, referred to as Ce) and zirconia (hereinafter, referred to as Zr) was used. .
  • Ce cerium
  • Zr zirconia
  • Fuels used to generate the reformed gas to be supplied to the hydrogen purification unit include natural gas, methanol / gasoline, and gasoline.
  • the reforming methods are also partially reformed by steam reforming by adding steam and by adding air. Although there is a quality, etc., here, the case where the reformed gas is obtained by steam reforming natural gas will be described.
  • composition of the reformed gas when natural gas is subjected to steam reforming varies slightly depending on the temperature of the reforming catalyst, but the average value excluding steam is about 80% hydrogen, carbon dioxide, Each contains about 10% carbon monoxide.
  • the reforming reaction of natural gas is carried out at about 500 to 800 ° C, while the shift reaction in which CO and steam react at about 150 to 350 ° C. Cooling and supplying power before entrance 103.
  • the CO concentration after passing through the CO shift catalyst 101 is reduced to about 0.5%, and is discharged from the reformed gas outlet 104.
  • the CO shift reaction is a temperature-dependent equilibrium reaction, and the lower the temperature, the lower the CO concentration. On the other hand, when the temperature becomes low, the reaction rate on the catalyst decreases. Therefore, there are temperatures where the CO concentration has a minimum.
  • Copper-based shift catalysts such as copper-zinc and copper-chromium catalysts used as CO shift catalysts in conventional hydrogen purifiers can perform CO shift reactions at low temperatures of 150 to 250 ° C. Can reduce the CO concentration to several hundreds to around 1,000 ppm. .
  • a copper-based catalyst needs to be activated by flowing a reducing gas such as hydrogen / reforming gas after filling it in the reactor, and its heat resistance is low, around 300 ° C. According to Therefore, it is necessary to dilute the reducing gas with an inert gas, etc., and supply it, or to gradually react it at a small flow rate, so that the reaction heat at the time of activation does not exceed the heat resistance temperature, and the reaction takes a long time. . Also, when starting up the equipment, it is necessary to heat it slowly and for a long time so that the temperature does not exceed the heat-resistant temperature due to excessive temperature rise. There are many.
  • a noble metal catalyst Pt is used as the catalyst body 101, which has extremely high heat resistance as compared with the copper-based catalyst. Even at a high temperature of about 500 ° C, there is no significant deterioration of the catalyst. Further, unlike the copper-based catalyst, there is no need to perform a long-time reduction treatment. Also, even if air is mixed in when the device is stopped, the catalyst deteriorates less than the copper catalyst.
  • Noble metal catalysts containing Pt, Pd, Rh, Ru, etc. as active components have relatively low activity selectivity due to their high activity. Therefore, depending on the conditions, the methanation reaction of CO or carbon dioxide may also proceed as a side reaction of the CO conversion reaction, and there is a concern that the consumption of hydrogen due to the progress of the methanation reaction will reduce the efficiency of the entire system. Is done. However, in the temperature range of 150 to 500 ° C, where the CO shift reaction is performed, the methanation reaction becomes more pronounced at higher temperatures, but the methane production rate differs depending on the type of noble metal.
  • the activity of the Pt catalyst with respect to the CO shift reaction is improved, and the methanation reaction can be suppressed.
  • the higher the ratio of Ce contained in the carrier the more the methane sulfide reaction is suppressed; when cerium oxy cerium is used as the carrier, the low-temperature activity for the metamorphic reaction is the highest, and the methane sulfide reaction can also be suppressed.
  • cerium oxide is used under conditions where the heat resistance exceeds 600 ° C, which is lower than that of carriers such as alumina and zirconia, or if water condenses when starting or stopping the equipment May have reduced catalytic activity. This is because the specific surface area of cerium oxide is reduced by sintering by heat, or cerium oxide which is basic reacts with carbon dioxide in the modified gas. .
  • a composite oxide in which Ce is combined with Zr is used as the catalyst carrier, so that the stability of the catalyst carrier is improved, and the activity of the catalyst is hardly reduced.
  • zirconia is relatively stable and hardly causes a decrease in specific surface area due to heat or a reaction with carbon dioxide in reformed gas.
  • cerium oxide the catalytic activity in the conversion reaction at a low temperature is reduced, and the metanalysis reaction easily proceeds at a high temperature. Therefore, as in the present invention, a composite oxide obtained by compounding Zr with Ce is used as a catalyst carrier.
  • the ratio of Ce to Zr is such that the smaller the amount of Ce (that is, the more Zr), the higher the heat resistance and the more stable the force. The lower the Ce content, the easier the methane disulfide reaction proceeds in the high temperature region. . Therefore, the content of Ce is preferably at least 5 atomic%.
  • the method of compounding Zr with Ce is not particularly limited, and examples thereof include a coprecipitation method, a sol-gel method, and an alkoxide method.
  • the BET specific surface area is a specific surface area determined by a known measurement method in which nitrogen is adsorbed on a powder.
  • the upper limit of the BET specific surface area is not particularly limited to 100 to 200 square meters per lg, the effect of increasing the specific surface area is reduced when the force for obtaining high activity is 100 square meters or more per lg. If the BET specific surface area of the metal oxide / composite metal oxide is less than 10 square meters per lg, Pt is not sufficiently adsorbed and the degree of dispersion of Pt is reduced, and sufficient catalytic activity is obtained. Absent. When the amount of Pt supported is reduced in order to reduce the particle size of Pt, the number of active sites decreases, and sufficient activity cannot be obtained. Further, in the present embodiment, a composite oxide obtained by compounding Zr with Ce is used.
  • the composite oxide of the present invention may be any composite oxide in which Zr and / or A1 is composited with Ce.
  • the shape of the catalyst body used was a catalyst coated on cordierite honeycomb, but the shape of the support was pelletized, and the CO conversion catalyst body was impregnated with a Pt salt. Even if it is produced, a shift catalyst body having the same performance can be obtained.
  • FIG. 7 is a longitudinal sectional view of a main part of a hydrogen purifying apparatus according to Embodiment 6 of the present invention.
  • the hydrogen purifier according to the present embodiment divides the catalyst body into two stages and provides a cooling unit in the middle of the catalyst body, and most of the effects are the same as those of the fifth embodiment. It is similar. Therefore, the present embodiment will be described focusing on the different points.
  • the catalyst body is divided into a first catalyst body 111 and a second catalyst body 113, a cooling section is provided in the middle, and the reforming gas is cooled by a cooling fan 119 (hydrogen gas temperature control section), so that a small amount of catalyst can be obtained. Can reduce the CO concentration. Because the CO shift reaction is exothermic, the heat of reaction generated in the upstream part of the catalyst is transferred to the downstream part by the reformed gas. For this reason, even if the temperature of the catalyst body becomes higher in the downstream portion and the CO concentration is sufficiently reduced immediately in the upstream portion, the CO concentration increases due to the reverse reaction again in the high temperature downstream portion. Therefore, by setting the temperature of the second catalyst body 113 on the downstream side to be lower than that of the first catalyst body 111, the reverse reaction can be suppressed.
  • a composite oxide having a high Ce content for the catalyst body 111 on the upstream side where the temperature tends to be high.
  • the reason is that the use of a composite oxide containing a large amount of Ce on the upstream side, which is likely to become high in temperature, promotes the CO shift reaction even in a high temperature range where the operation of the device is limited by the methanation reaction. This is because the operating temperature range in which the operation can be performed can be expanded, and the control of the device can be more easily performed. ⁇
  • the catalyst body is divided into the first catalyst body 111 and the second catalyst body 113.
  • the number of stages is not particularly limited. If the configuration can be controlled to a suitable temperature, high characteristics can be obtained (for example, the same can be said for the fourth embodiment described above). (Example 1)
  • Conversion catalyst used in this example by using the Ce_ ⁇ 2 and Pt salt solution (nitrate Jinitorojiamin platinum complex), was prepared by causing sintered disperse loading Pt on Ce_ ⁇ 2.
  • the Ce_ ⁇ 2 carrying the Pt (amount of supported Pt is 3 wt%) were prepared by coating the alumina pellets (diameter 3 mm, length 3 mm).
  • a modified catalyst body was prepared by coating a cordierite honeycomb having a diameter of 100 mm and a length of 50 mm. Note that the honeycomb shape has an advantage that the surface area per unit volume can be easily adjusted by the number of cells per unit area, as compared with the honeycomb shape.
  • a modified catalyst using Zr, Zn, or Ce and a mixture or solid solution thereof as a metal oxide was prepared.
  • a conventional Rh-Ce-based catalyst was prepared in the same manner as described above.
  • the carbon monoxide concentration after the metamorphic zone was about twice that of the first startup, indicating a decrease in catalytic activity. This is because the catalyst is oxidized and the activity is reduced at the time of starting and stopping.
  • the catalytic activity of the Pt—Ce-based catalyst of this example is less likely to decrease as compared with the conventional Cu—Zn-based catalyst.
  • Rh-Ce catalyst Since the basic characteristics of the shift catalyst were almost unaffected by the decrease in catalytic activity due to oxidation, the properties of the Rh-Ce catalyst were almost the same as those of the Pt-Ce shift catalyst. However, in the case of Rh-Ce based catalyst, the activity of carbon dioxide or carbon monoxide and hydrogen for the metabolic reaction was better than that of P1: the methane concentration in the gas after the shift part increased slightly. When compared at a catalyst temperature of 300 ° C, the Pt-Ce conversion catalyst is 0.1% (dry base), while the Rh-Ce conversion catalyst is 0.2% (dry base). The concentration of carbon monoxide at the power outlet was almost constant.
  • Rh-Ce based catalysts can also be used as shift catalysts.
  • a catalytic catalyst prepared by using Zr, Zn, or Ce and a mixture or solid solution thereof as a metal oxide is a conversion catalyst excellent in oxidation resistance that is not found in a Cu—Zn conversion catalyst. Confirmed to work. However, the conversion reactivity was slightly different depending on each metal oxide.
  • the hydrogen gas supply unit was operated. Using methane gas as a raw material, 3 mol of water was added to 1 mol of methane gas, and steam reforming was performed to generate hydrogen gas containing about 10% of carbon monoxide and about 10% of carbon dioxide. This hydrogen gas was supplied to the metamorphic section to advance the metamorphic reaction to reduce carbon monoxide.
  • the part of the shift catalytic converter located upstream with respect to the hydrogen gas flow is at a temperature in the range of 300 ° C to 500 ° C, and the part located downstream with respect to the hydrogen gas flow is at least 150 ° C. It was operated at a temperature of less than or equal to ° C.
  • the amount of noble metal per unit volume of the shift catalyst body was the same for both the upstream and downstream.
  • the shift reaction of carbon monoxide could be sufficiently performed in the shift section, and it was possible to reduce to about 0.5%.
  • two examples in which operation was not performed at the catalyst temperature as described above are shown as comparative examples.
  • the upstream temperature of the catalyst was set at 250 ° C, the metamorphic reaction hardly progressed in the angular medium on the upstream surface, and the carbon monoxide concentration after the metamorphosis could only be reduced to about 2%.
  • the upstream temperature of the catalyst was set to a temperature exceeding 500 ° C, the carbon monoxide could not be sufficiently reduced by the equilibrium reaction, and the carbon monoxide concentration at the shift outlet was less than 0.5%.
  • the amount of the noble metal in one half of the shift catalyst body located upstream of the hydrogen gas flow was set to about 1Z4 of the amount of noble metal in the 1Z2 portion downstream, and the apparatus was operated to determine the tendency. It was confirmed that the amount of methane was about 1/2 compared to the case where the amount of noble metal was the same. On the other hand, the outlet carbon monoxide concentration was almost the same, less than 0.5%.
  • the operation was performed under substantially the same conditions and the same device configuration as the conditions described in Example 5 described above, but the cross-sectional area of the upstream surface of the shift catalyst in the hydrogen gas flow vertical plane was determined in the downstream surface of the shift catalyst in the hydrogen gas flow vertical plane.
  • the cross-sectional area was reduced to about 1Z4.
  • the flow velocity of the hydrogen gas in the portion located upstream with respect to the hydrogen gas flow is about four times greater than that in the portion located downstream.
  • the concentration of carbon monoxide at the metamorphic outlet was reduced to about 0.5%. This is because when the temperature of the catalyst is high, the reaction speed of the catalyst increases, and the reaction is sufficiently performed even when the flow rate of the hydrogen gas is increased.
  • Example 5 the cross-sectional area of the upper surface of the shift catalyst and the cross-sectional area of the downstream surface are the same. Therefore, as compared with Example 5, the flow velocity on the upstream surface of the shift catalyst body is about 4 times. In addition, the catalyst filling height in the shift part was almost the same as the catalyst height on the upstream surface. That is, the catalyst loading is smaller than that of Example 5, and when the catalyst loading of Example 5 is 1, the loading in this example is about 3/4.
  • the metamorphic cooling unit 3 uses water as a cooling medium and cools it by gas-liquid heat exchange with hydrogen gas. It is characterized by the following configuration.
  • the shift cooling section was operated, and the downstream surface of the shift catalyst body was operated at a temperature of 150 ° C or more and 300 ° C or less.
  • the carbon monoxide concentration at the metamorphic section outlet was reduced to 0.5% or less.
  • the operation was performed under substantially the same conditions and the same device configuration as those described in Example 7. That is, the amount of hydrogen gas supplied to the shift section was changed, and the concentration of carbon monoxide at the outlet of the shift section was confirmed. Since the temperature of the shift catalyst body depends on the flow rate of the hydrogen gas, when the flow rate of the hydrogen gas changes significantly, the temperature of the shift catalyst body also changes greatly.
  • the temperature of the upstream and downstream surfaces of the metamorphic catalyst body is less dependent on each other.
  • the temperature control of the shift catalyst is facilitated.
  • stable operation was possible up to about four times the amount of hydrogen gas as compared with Example 5.
  • a reformed gas containing 8% of carbon monoxide, 8% of carbon dioxide, 20% of water vapor and the balance of hydrogen was introduced at a flow rate of 10 liters per minute.
  • the composition of the gas discharged from the reformed gas outlet 114 was measured by gas chromatography.
  • the atomic percentage of Ce is 90 or more as in Sample 4 in Table 1 and Sample 16 in Table 2, and as in Samples 13 to 15 in Table 1 and Samples 25 to 27 in Table 2, If the percentage is less than 5, the results are not very good at both the CO concentration (after 10 shutdowns) and the methane concentration at 400 ° C.
  • the (carbon monoxide) shift catalyst body should be (1) the upstream temperature should be 300 ° C or more and 500 ° C or less, and (2) the downstream temperature should be 300 ° C or less. For example, a desired result can be obtained as compared with the conventional example described above.
  • A1 is Ru stable der as Zr as well as Ce and Ya make composite Sani ⁇ soon Al 2 ⁇ 3 alone. Therefore, specific data is omitted.
  • Ce (a) Al or (b) a composite oxide obtained by compounding Zr and A1 is used. The same experimental results as in the case of using the composite oxide obtained by compounding the above are obtained.
  • a reformed gas containing 8% of carbon monoxide, 8% of carbon dioxide, 20% of steam, and the balance of hydrogen was introduced at a flow rate of 10 liters per minute.
  • the methane concentration in the gas after the reaction at the lowest CO concentration and the temperature force of the first catalyst body 111 of 00 ° C was 0.09% and 0.06%, respectively.
  • the The operation was repeated 10 times, and the change in the activity of the catalyst was confirmed by measuring the C ⁇ concentration. The result was 0.11%.
  • Example 10 the ratios of Ce and Zr in the composite oxide used for the first catalyst 111 (see FIG. 7) and the second catalyst 113 (see FIG. 7) were 9: 1 and 1: 1 respectively. It was set to 9 to increase the content of Ce contained in the upstream catalyst body.
  • the lowest value of the CO concentration and the methane concentration in the gas after the reaction at a temperature force of 00 ° C. of the first catalyst body 111 were 0.09% and 0.01%, respectively.
  • the operation of stopping and restarting the device was repeated 10 times, and the C ⁇ concentration was measured to confirm a change in the activity of the catalyst. As a result, it was 0.09%.
  • a conventional copper-zinc catalyst was used as the catalyst 101 (see FIG. 6) in place of the composite oxidized product of the present invention supporting Pt. It was installed at 10 2 (see Fig. 6). From the reformed gas inlet 103 (see FIG. 6), reformed gas containing 8% of carbon monoxide, 8% of carbon dioxide, 20% of steam, and the balance of hydrogen was introduced at a flow rate of 10 liters per minute. After controlling the temperature of the reformed gas and causing the catalyst 101 to react, the composition of the gas discharged from the reformed gas outlet 104 (see FIG. 6) was measured by gas chromatography. The lowest degree was 0.08%. In addition, the operation of stopping and restarting the device was repeated 10 times, and the CO concentration was measured to confirm the change in the activity of the catalyst. The minimum value of the CO concentration was 4%.
  • the hydrogen purifying apparatus of the present invention operates stably for a long period of time under the influence of oxygen contamination even when the operation is repeatedly started and stopped. .
  • the present invention includes a conversion unit having a conversion catalyst body containing a noble metal and a metal oxide, and a hydrogen gas supply unit that supplies a hydrogen gas containing carbon monoxide to the conversion unit.
  • a hydrogen purifier that raises the temperature on the upstream side to substantially 300 ° C or higher and 500 ° C or lower
  • a multi-stage shift (reaction) unit having a shift catalyst body containing a noble metal and a metal oxide, and a hydrogen gas supply unit that supplies hydrogen gas containing carbon monoxide to the multiple-stage shift unit
  • the present invention also includes a hydrogen purification apparatus in which the temperature of the multiple-stage shift section is higher on the upstream side with respect to the flow of hydrogen gas).
  • a cooling unit for cooling the hydrogen gas is provided between (1) the hydrogen gas supply unit and the shift unit, or (2) between the shift catalyst units (all or a part) of each stage. It may be provided.
  • the hydrogen purification apparatus of the present invention includes, for example, a metamorphic unit provided with a metamorphic catalyst body made of a noble metal and a metal oxide, and at least a monoxide in the metamorphic unit. It has a hydrogen gas supply section that supplies hydrogen gas containing carbon and water vapor as subcomponents, and the shift section is a shift reaction section provided with a plurality of shift catalysts, and the shift section is located downstream of the hydrogen gas flow. It is characterized in that the temperature of the shift catalyst in the reaction section is lower than that of the shift reaction section located on the upstream side.
  • a first transformation section and a second transformation section are provided, and the first transformation section Maintain the temperature of the medium in the range of 300 ° C or more and 500 ° C or less, and keep the temperature of the second metamorphic conversion catalyst in the range of 150 ° C or more and 300 ° C or less, and the unit of the first metamorphic conversion catalyst.
  • One of the measures is to make the amount of noble metal per volume smaller than that of the second metamorphic conversion catalyst body and to provide a hydrogen gas cooling section between the first metamorphic section and the second metamorphic section by the above means. It was a means.
  • a hydrogen gas temperature adjusting section is provided between the hydrogen gas supply section and the shift section, and the upstream temperature of the shift catalytic converter is controlled within a range of 300 ° C or more and 500 ° C or less,
  • the precious metal of the medium contains at least one of Pt, Pd, Ru, and Rh, and the metal oxide metal of the shift catalyst contains at least one of Ce and Zr.
  • the present invention provides a simple configuration capable of stably reducing the amount of carbon monoxide in the conversion section so that carbon monoxide can be effectively reduced in the purification section. Provide a stable hydrogen supply equipment.
  • the present invention provides, for example, a reformed gas supply unit for supplying a reformed gas containing at least hydrogen gas, carbon monoxide, and water vapor, and a carbon monoxide conversion catalyst located downstream of the reformed gas supply unit.
  • a hydrogen purification apparatus comprising a reaction chamber comprising: a catalyst for converting carbon monoxide, wherein at least Pt is supported on a complex acid obtained by complexing Ce with at least Zr and Z or A1. It is characterized by having been done.
  • the composition ratio of the composite oxide is preferably such that Ce is 5 to 90 atomic% and the balance is Zr and Z or A1. Further, it is preferable that the composite oxide forms a solid solution.
  • the catalyst for converting carbon monoxide is divided into a plurality of stages, and a heat radiating portion or a cooling portion is provided between the catalyst members.
  • the composite oxide is It is preferable that the Ce content ratio is lower in the downstream part than in the upstream part with respect to the flow direction of the reformed gas.
  • the Pt, Pd, Rh, and Ru are not limited to Pt, but in other words, Pt, Pd, Rh, and Ru are supported on the composite acid product of the present invention. At least one is sufficient.
  • a noble metal catalyst containing Pd, Rh, Ru, or the like as an active component may cause the Methanich reaction to proceed. Therefore, it is most preferable to use Pt. Therefore, even when Pd, Rh, Ru, or the like is used, at least Pt is supported on the composite oxide, and it is preferable that Pt is mainly added.
  • the hydrogen purification apparatus of the present invention has improved durability of the CO shift catalyst, and can operate stably even when the apparatus is repeatedly started and stopped.
  • the present invention has an advantage that it is possible to provide a hydrogen purifying apparatus having good CO purification efficiency, for example, even when starting and stopping are repeated frequently.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)
  • Fuel Cell (AREA)

Description

技術分野
本発明は、炭化水素成分と水を改質する際に発生する一酸化炭素を低減するた めの水素精製装置に関する。
明 背景技術
エネルギーを有効に利用できる分散型発電装置として発電効率の高い燃料電池 を用いたコージェネレーションシステムが注目されている力 実用化されているリン酸 型燃料電池、開発が進められている高分子型燃料電池等燃料電池の多くは、水素 を燃料として発電する。
現在、水素は燃料インフラとして整備されていないため、設置場所で生成させる必 要がある。そのため、天然ガス、 LPG等の炭化水素成分、メタノール等のアルコール 、あるレ、はナフサ成分等の原料と水を改質触媒を設けた改質部で反応させ水素を発 生させる、水蒸気改質法、オートサーマル法が水素生成法として利用されている。 このような水と原料の改質反応では、一酸ィ匕炭素が副成分として生成する。低温 で作動する高分子型燃料電池では、一酸化炭素が燃料電池電極触媒の被毒成分 となるため、水と一酸化炭素を水素と二酸化炭素にシフト反応させる変成部、および 一酸ィ匕炭素を酸ィ匕あるいはメタン化反応させる浄ィヒ部が併用される。
通常、変成部では、 Fe— Cr系触媒、 Cu—Zn系触媒を併用して用いられている。 Fe— Cr系触媒は、比較的高温(300°C〜500°C)で使われるため、一酸化炭素は大 幅には低減できなレ、。一方、 Cu— Zn系触媒は、比較的低温(200°C〜300°C)で用 いられ、一酸ィヒ炭素をかなり低濃度まで低減できる。
そこで、変成部では、 Cu— Zn系触媒を用いて一酸化炭素を◦· 5%程度の濃度ま で低減し、浄化部では、白金属系貴金属である Ptあるいは Ru系触媒を用いて一酸 化炭素を選択的に酸ィヒあるいはメタン化して、最終的に一酸化炭素を 20ppm程度 のレベルまで低減する構成がとられている (もちろん、浄化部で一酸化炭素を効果的 に低減するためには、変成部で一酸化炭素を安定して低減する必要がある)。
し力 ながら、 Cu— Zn系の変成触媒は、還元状態でシフト反応に活性を有し、装 置を連続で運転する場合には、常に還元状態であって触媒活性の低下はほとんど ないが、断続運転などの場合には、起動停止を繰り返すため変成部内に空気が混 入し、触媒が酸化されて大幅に触媒活性が低下する。
従って、頻繁に起動停止を繰り返す用途で、変成部に Cu— Zn系触媒を用いた水 素生成器を使用した場合、変成触媒が酸化され十分に一酸ィ匕炭素を低減できなレヽ し、触媒を 300°C以上の高温状態で使用したとき等にも触媒活性が低下してしまう( したがって、 CO浄化効率も悪化する)。
なお、特願平 11— 115101では、耐酸化性おょぴ耐熱性を向上させるため、白金 族系貴金属を金属酸ィヒ物に担持し調製した触媒を変成触媒として用いている。この 白金族系貴金属を金属酸化物に担持し調製した触媒は、 500°C程度の温度で使用 しても触媒種のシンタリングによる凝集がほとんど起こらず、酸ィヒ状態に関しても触媒 活性に変化はみられないという優れた特徴を有するが、 Cu— Zn系触媒と比較して 低温での変成反応性が若干低下し、変成部出口での一酸ィヒ炭素濃度が増加してし まう。 · 発明の開示 .
本発明は、上記従来のこのような課題を考慮し、たとえば頻繁に起動停止を繰り返 す場合にも、良好な CO浄化効率を有する水素精製装置を提供することを目的とす るものである。
第一の本発明 (請求項 1に対応)は、一酸化炭素を変成するための、貴金属と金 属酸化物とを含む変成触媒体を有する変成部と、
前記変成部に一酸化炭素を含む水素ガスを供給する水素ガス供給部とを備え、 前記変成角虫媒体の、前記水素ガスの流れに対して、(1)上流側の温度を実質上 300°C以上 500°C以下とし、 (2)下流側の温度を実質上 300°C以下とする水素精製 装置である。
第二の本発明(請求項 2に対応)は、前記変成部は、前記下流側の温度を 150°C 以上 300°C以下とするための冷却部を有する第一の本発明の水素精製装置である。 第三の本発明(請求項 3に対応)は、前記貴金属の前記変成触媒体の単位体積 当たりの量は、前記上流側の方が前記下流側よりも少ない第一の本発明の水素精製 装置である。
第四の本発明(請求項 4に対応)は、前記水素ガスの流れの速さは、前記上流側 の方が前記下流側よりも大きい第一の本発明の水素精製装置である。
第五の本発明(請求項 5に対応)は、前記変成触媒体の前記水素ガスの流れに対 して垂直な断面積は、前記上流側の方が前記下流側よりも小さい第一の本発明の水 第六の本発明(請求項 6に対応)は、一酸ィ匕炭素を変成するための、貴金属と金 属酸化物とを含む変成触媒体を有する複数段の変成部と、
前記複数段の変成部に一酸化炭素を含む水素ガスを供給する水素ガス供給部と を備え、
前記複数段の変成部の温度は、前記水素ガスの流れに対してより上流側の方が より高!/ヽ水素精製装置である。
第七の本発明(請求項 7に対応)は、前記貴金属は、 Pt、 Pd、 Rh、 Ruの内の全部 または一部であり、
前記金属酸化物は、 Zrおよび/または A1が Ceに対して複合化された複合酸ィ匕物で ある第一または第六の本発明の水素精製装置である。
第八の本発明 (請求項 8に対応)は、前記複合酸ィ匕物における酸素を除いた元素 の組成比率は、 Ceが 5〜90原子パーセント、残りが Zrおよび/または A1である第七 の本発明の水素精製装置である。
第九の本発明(請求項 9に対応)は、前記複合酸化物は、固溶体を形成している 第八の本発明の水素精製装置である。
第十の本発明(請求項 10に対応)は、各段の前記変成触媒体における Ceの組成 比率は、前記水素ガスの流れに対してより上流側の方がより高い第九の本発明の水 第十一の本発明(請求項 11に対応)は、(1)前記水素ガス供給部と前記変成部と の間、または(2)各段の前記変成触媒体同士の間には、前記水素ガスの冷却を行う ための冷却部が設けられている第一または第六の本発明の水素精製装置である。 図面の簡単な説明
図 1は、本発明の実施の形態 1における水素精製装置の要部縦断面図である。 図 2は、図 2 (a);—酸ィ匕炭素 10%、二酸化炭素 10%、水素 80%のガスを、露点 65°Cに調整して触媒に通気した時の、触媒温度と一酸ィ匕炭素濃度の関係を示した 説明図である。図 2 (b);—酸化炭素 2%、二酸化炭素 18%、水素 80%のガスを、露 点 65°Cに調整して触媒に通気した時の、触媒温度と一酸化炭素濃度の関係を示し た説明図である。
図 3は、本発明の実施の形態 2における水素精製装置の要部縦断面図である。 図 4は、本発明の実施の形態 3における水素精製装置の要部縦断面図である。 図 5は、本発明の実施の形態 4における水素精製装置の要部縦断面図である。 図 6は、本発明の実施の形態 5における水素精製装置の要部縦断面図である。 図 7は、本発明の実施の形態 6における水素精製装置の要部縦断面図である。 符号の説明 改質部
a 改質触媒体
加熱部
変成部
a 変成触媒体
浄化部
a 浄化触媒体
原料供給部
水供給部
ガス通気経路.
空気供給部
変成第 1温度測定部0 変成第 2温度測定部1 浄化第 1温度測定部2 浄ィヒ第 2温度測定部3 変成冷却部
4 変成第 3温度測定部5 変成冷却ファン01 触媒体
02 反応室
03、 115 改質ガス入口04、 116 改質ガス出口05、 117 拡散板06、 118 断熱材11 第 1触媒体
12 第 1反応室 113 第 2触媒体
114 第 2反応室 '
119 冷却ファン 発明を実施するための最良の形態
以下では、本発明に力かる実施の形態について、図面を参照しつつ説明を行う。 (実施の形態 1)
はじめに、本発明の実施の形態 1における水素精製装置の要部縦断面図である 図 1を参照しながら、本実施の形態における水素精製装置の構成について説明する。 図 1において、改質部 1は、水蒸気改質反応のための改質触媒体 laが設けられた 、水素 (ガス)の供給を行うための手段 (水素ガス供給部)である(改質触媒体 laには 、貴金属をアルミナ基体に担持したもの (Ru/アルミナ、 Ν· E .ケムキャット社製)を 用いた)。
加熱部 2は、改質部 1を加熱するための手段 (本実施の形態では火炎バーナー) である。
変成部 3は、(CO)変成触媒体 3aを納めており、一酸化炭素を変成するための手 段である(変成触媒体 3aには、 Ptと Ce酸ィ匕物とを構成材とした触媒をアルミナペレ ットに担持して構成したものを用いた)。
浄ィ匕部 4は、浄ィ匕触媒体 4aを納めており、一酸ィ匕炭素を浄化するための手段であ る (浄ィ匕触媒体 4aには、 Pt触媒を構成材とし、コージライトノヽニカムに担持して構成 したものを用いた)。
原料供給部 5は水蒸気改質反応のための炭化水素を主成分とする原料を改質部 1に供給するための手段であり、水供給部 6は水蒸気改質反応のための水を改質部 1に供給するための手段である。ガス通気経路 7は、改質部 1、変成部 3、浄化部 4の 順でガスを流すための手段であり、浄ィヒ部 4に出口を有してレ、る。 空気供給部 8は、変成部 2と浄ィ匕部 3との間のガス通気経路 7に酸ィ匕ガスとしての 空気を供給するための手段である。
変成第 1温度検出部 9は変成触媒体 3aを経る前のガス温度を検出するための手 段であり、変成第 2温度検出部 10は変成触媒体 3aを経た後のガス温度を検出する ための手段であり、これらはともに変成部 3に設けられている。なお、後述されるように 、変成部 2の温度は、変成第 1温度検出部 9および変成第 2温度検出部 10でのガス 温度測定結果に基づいて制御 (設定)される。
浄ィ匕第 1温度検出部 11は浄化触媒体 4aを経る前のガス温度を検出するための手 段であり、浄化第 2温度検出部 12は浄ィヒ触媒体 4aを経た後のガス温度を検出する ための手段であり、これらはともに浄ィ匕部 4に設けられている。
つぎに、本実施の形態における水素精製装置の動作について説明する。
まず、改質加熱部 2を作動させ、改質部 1の改質触媒体 laを 700〜750°Cの温度 に加熱する(改質加熱体 2として火炎パーナ一を用いたが、これに限定されず、目的 の加熱温度が達せられる加熱手段であればよ V、)。
次いで、原料である炭化水素成分を原科供給部 5から、水を水供給部 6から加熱 中の改質触媒体 laに供給し、 7]<蒸気改質反応を進行させる。改質部後のガスは、ガ ス通気経路 7を通して変成部 3に通気する。
変成部には Fe— Cr系触媒および Cu— Zn系触媒が用いられることが多いが、そ の耐酸化性、耐熱性を向上させる観点から、本実施の形態では、変成部に貴金属と 金属酸化物、具体的には Ptおよび Ce酸ィ匕物を調製し作成した触媒を用いた。 特に、この触媒は Cu— Zn系触媒と比較して、耐熱温度が高ぐかつ停止時に酸 化状態となった場合でもその触媒活性は低下しない特徴を有する。しかし、 Cu-Z n系触媒と比較して、低温での変成反応性が若干低下する。そのため、変成部出口 での一酸ィヒ炭素濃度が増加する傾向がある。
本実施の形態では、変成触媒体の水素ガス流れに対して上流に位置する部分を 、 300°C以上 500°C以下の範囲の温度にし、水素ガス流れに対して下流に位置す る部分を、 150°C以上 300°C以下の温度にして動作させた。
図 2 (a)〜 (b)に、 Ptおよび Ce酸ィ匕物を調製し作成した触媒の触媒特性を示す。 なお、図 2(a)は、一酸化炭素 10%、二酸化炭素 10%、水素 80%のガスを、露点 6 5°Cに調整し、触媒に通気した時の、触媒温度と一酸化炭素濃度の関係を示した説 明図 (グラフ)である。また、図 2(b)は、一酸化炭素 2%、二酸化炭素 18%、水素 80 %のガスを、露点 65°Cに調整して触媒に通気した時の、触媒温度と一酸化炭素濃 度の関係を示した説明図 (グラフ)である。
図 2(a)に示されるように、触媒の温度が 300°C以上 500°C以下では、一酸化炭素 濃度は 2%以下である。一酸化炭素濃度が高い場合に触媒温度を低温にすると、反 応速度が低下するため、一酸化炭素が十分に低減できない。また、触媒温度を高温 にすると、反応平衡により一酸ィ匕炭素濃度が増加する。従って、本実施の形態では 、一酸化炭素濃度 2%を目安とし、変成触媒体の水素ガス流れに対して上流に位置 する部分を 300°C以上 500°C以下の範囲の温度で動作させた。しかし、これでは従 来力 広く用いられている Cu— Zn系触媒と比較して、一酸化炭素は十分に低減で きていないこともわ力る。
図 2 (b)に示されるように、触媒温度が低い場合、温度平衡により一酸ィ匕炭素を低 減できる。しかし、ある程度低温になった場合、反応速度が低下し一酸化炭素濃度 が増加する。
従って、従来から広く用いられている Cu—Zn系触媒の特性とほぼ同等の結果と なる一酸化炭素 0. 5%以下を目安にした場合、触媒温度を 150°C以上 300°C以下 にすることで、目標レベルの CO浄化効率の達成が可能であることがわ力る。
以上のことから、本実施の形態では、変成触媒体の水素ガス流れに対して上流に 位置する部分を、 300°C以上 500°C以下の範囲の温度にし、水素ガス流れに対して 下流に位置する部分を 150°C以上 300°C以下の温度で動作させる。従って、変成触 媒体上流面で一酸ィ匕炭素をあらかじめ低減し、その下流を 300°C以下の低温とする ことで、一酸化炭素をさらに低減できる。 また、一般的に Cu— Zn系触媒は、触媒の高温劣化の観点力 300°C以上の温 度で使用することは避けられている。従って、変成触媒の反応性を確保するために は、大きな容積が必要となる。本実施例で用いた触媒は、 Cu— Zn系触媒よりも高温 (300°C以上 5O0°C以下)で使用できる め、反応速度的に優位となり、 Cu— Zn系 触媒よりも触媒容積を低減することができる。
なお、本実施の形態では、水素ガス供給中、変成触媒体 3aを経る前のガス温度 を変成第 1温度検出部 9、変成触媒体 3aを経た後のガス温度を変成第 2温度検出部 10で測定し、上記温度範囲で変成部が動作しているかを確認した。
もちろん、メタン等の炭化水素原料を改質した場合、改質触媒後の水素ガス温度 は 700°C程度となる。そこで、改質部と変成部の間のガス通気経路に空冷あるいは 水冷等の水素ガス冷却手段を設け、変成触媒体におけるガスの流れに対する上流 側の温度を制御することも可能である。 - 次に、変成部 3を経た後のガスは、ガス通気経路 7より浄化部 4に通気する。浄化 部 4を経た後のガスは、ガス通気経路 7より外部に供給する。この時、空気供給部 8よ り変成部 3と浄ィ匕部 4の間のガス通気経路 7から変成部 3を経た後のガスに空気を供 給する。これにより、水素ガス中の一酸化炭素濃度を 20ppm程度まで低減する。 なお、固体高分子型燃料電池用の水素供給装置として用いる場合には、水素中 の一酸化炭素を 20ppm程度まで低減する必要があるが、一酸化炭素濃度をそれほ ど低下する必要のない場合には、一酸ィ匕炭素を選択的に酸化させる等の低減構成 を追加的に設ける必要はない。
(実施の形態 2)
つぎに、本発明の実施の形態 2における水素精製装置の要部縦断面図である図 3を参照しながら、本実施の形態における水素精製装置の構成について説明する。 本実施の形態の水素精製装置の構成は、前述した本実施の形態 1の水素精製装 置(図 1参照)の構成とほぼ同一構成であり、同一の部分の説明は省略し、相違点の みを説明する。 相違点は、 (1)変成部 3の変成触媒体を第 1変成触媒体 3cおよび第 2変成触媒体 3eで構成するとともに、変成第 3温度測定部を第 1変成触媒体 3c後に設けた点、お よび(2)第 1変成触媒体 3cの水素ガス流れに対する垂直面における断面積を第 2変 成触媒体 3eの水素ガス流れに対する垂直面における断面積よりも小さくした点であ る。
本実施の形態の水素精製装置は、前述した本実施の形態 1の水素精製装置とほ ぼ同様の動作を行い、変成部 3で一酸化炭素を低減する。
なお、本実施の形態では、変成触媒体上流面の水素ガス流れ fこ対する垂直面に おける断面積を、変成触媒体下流面の水素ガス流れに対する垂直面における断面 積よりも約 1/4となるように小さくした。すなわち、水素ガス流れに対して上流に位置 する部分の水素ガスの流速を、下流に位置する部分よりも約 4倍大きくすることを特 徴とする。これは、変成触媒体の水素ガス流れに対して上流に位置する第 1変成触 媒体 3cは、第 2変成触媒体 3eよりも高い 300°C以上 500°C以下の温度で動作させ る。触媒温度が高い場合、触媒での反応速度が速くなるため、水素ガスの流速を大 きくしても十分に反応するからである。
また、水素ガス流れに対する垂直面における断面積を小さくした場合、装置構成 上の変成触媒体断面における水素ガス流れ分布を向上し触媒が有効に使えるため 、第 1変成触媒体における一酸ィヒ炭素低減性を安定ィヒする効果が生まれる。その結 果、変成部として、一酸ィ匕炭素を安定的に低減することを可能とするものである。 なお、従来から用いられている Cu— Zn系触媒では、触媒温度を 300°C以上 500 °C以下の温度で動作させることは触媒活性低下の観点力 難しいため、このような構 成での一酸化炭素低減効果は小さいと思われる。
(実施の形態 3)
つぎに、本発明の実施の形態 3における水素精製装置の要部縦断面図である図 4を参照しながら、本実施の形態における水素精製装置の構成について説明する。 本実施の形態の水素精製装置の構成は、前述した本実施の形態 1の水素精製装 置 (図 1参照)の構成とほぼ同一構成であり、同一の部分の説明は省略し、相違点の みを説明する。
相違点は、変成部 3の変成触媒体に、変成冷却部 13を設けた点である。そして、 変成冷却部 13では、冷却媒体として水を用い、水素ガスと熱交換させ冷却する構成 とした。
本実施の形態の水素精製装置は、前述した本実施の形態 1の水素精製装置とほ ぼ同様の動作を行い、変成部 3で一酸化炭素を低減する。 .
ただし、本実施の形態の水素精製装置は、変成冷却部 13を作動させ、水素ガス 流れに対して下流に位置する変成触媒体を 150°C以上 300°C以下の温度で動作さ せる。もちろん、冷却を行うための構成は、本実施の形態では水冷構成としたが、水 素ガスを冷却する構成であればどのようなものでも力まわない。
前述した実施の形態 1で説明されたように、変成触媒体上流部は 300°C以上 500 °C以下の範囲の温度で作動させるため、 300°Cを上回る水素ガスの持つ顕熱は下 流面では余剰となる。また、一酸化炭素と水蒸気との変成反応は発熱反応 (約 41. 2kJ/COmol)である。
これら顕熱と変成反応熱量が変成部 3からの放熱量を上回った場合、変成触媒体 下流面は 150°C以上 300°C以下の温度で動作させることができず、変成部出口の一 酸ィ匕炭素濃度は増加する(図 2 (b)参照)。
そこで、変成冷却部 13を作動させ、変成部での余剰熱量を取り除くことにより、水 素ガス流れに対して下流に位置する変成触媒体を、 150°C以上 300°C以下の温度 となるように制御する。力べして、一酸化炭素を 0. 5%以下に安定低減できる。特に 、水素ガス量が増加し顕熱と変成反応熱量が増加する場合にも、安定して一酸化炭 素を低減できる。
(実施の形態 4)
つぎに、本発明の実施の形態 4における水素精製装置の要部縦断面図である図 5を参照しながら、本実施の形態における水素精製装置の構成について説明する。 本実施の形態の水素精製装置の構成は、前述した本実施の形態 1の水素精製装 置(図 1参照)の構成とほぼ同一構成であり、同一の部分の説明は省略し、相違点の みを説明する。
相違点は、(1)変成部 3を、第 1変成触媒体 3cを設けた第 1変成部 3bおよび第 2 変成触媒体 3eを設けた第 2変成部 3dとし、 (2)第 1変成部に変成第 1温度測定部 9 を、第 2変成部に変成第 2温度測定部 10をそれぞれ設けた点、および (3)第 1変成 部 3bと第 2変成部 3dとの間に水素ガスを放熱するための冷却手段である変成冷却 ファン 15を設けた点である。なお、変成触媒としては、ペレット形状ではなくハニカム 形状のものを用いた。 '
本実施の形態の水素精製装置は、前述した本実施の形態 1の水素精製装置とほ ぼ同様の動作を行い、変成部 3で一酸化炭素を低減する。
ただし、本実施の形態の水素精製装置は、第 1変成部の第 1変成触媒体の上流 を、 300°C以上 500°C以下の範囲の温度で作動させ、第 2変成部の第 2変成触媒体 の下流を 150°C以上 300°C以下の温度で動作させる。
なお、第 2変成部の第 2変成触媒体の下流の温度は、変成冷却ファン 15により水 素ガスを冷却することで制御する。変成触媒体温度は、水素ガス流量に依存するた め、水素ガス流量が大きく変化する場合は変成触媒体温度も大きく変化する。しかし 、本実施の形態では、変成部を第 1変成部と第 2変成部の 2つに分けることで、変成 触媒体上流面おょぴ下流面の温度が互いに依存することが少なくなり、変成触媒体 の温度制御が容易となるわけである。
もちろん、第 2変成触媒体下流面の温度をもとに第 2変成触媒体温度を制御した 、第 2変成触媒体の上流面に温度測定部を設けて、その温度をもとに変成冷却フ アンを作動させ、第 2変成触媒体温度を制御してもよい。
より具体的に説明すると、変成部において、 Fe— Cr系触媒を比較的高温 (300°C 〜500°C)で、 Cu— Zn系触媒を比較的低温 (200°C〜300°C)で併用し、本実施の 形態のように二段あるいは二層の変成部として用い、一酸化炭素を低減する構成は 行われている(高温部となる Fe— Cr系触媒では高濃度の一酸ィヒ炭素を低減し、低 温部となる Cu— Zn系触媒では低濃度まで一酸化炭素を低減するのである)。しかし 、そのような構成では、 Fe— Cr系触媒は一酸ィ匕炭素変成反応への触媒活性が低く 、変成部が大型化する。また、ともに酸化により触媒が低下するため、連続運転で運 用されることが望ましい。
そこで、本実施の形態では、貴金属と金属酸化物として Ptおよび Ce酸化物を調製 し作成した触媒を用いた。これにより、耐 化性に優れるため頻繁 起動停止に対 応できる、また、 Fe— Cr系触媒と比較して一酸化炭素変成反応への触媒活性が高 いため、一段目の変成部を小型化できるという効果を奏する。また、変成部内で温度 制御を行うことで、 1つの変成部で従来の 2段の変成部構成と同等の一酸化炭素低 減効果を得ることができる(すなわち、構成の単純化が行える)。また、変成部で同一 の触媒体を用いることができるため、触媒回収が簡便となって触媒リサイクルをさらに 推進する等、従来では容易に考案できない構成であり、優れた効果を奏する。
なお、本発明では、変成触媒体として、 Ptと Ce酸化物とを構成材とした触媒をァ ルミナぺレットに担持して構成したが、変成触媒体における貴金属として Pt、 Pd、 R u、または Rhのいずれ力、金属酸ィ匕物として Ce、 Zr、または Znのいずれかを用いて も、同様の結果が得られた。
(実施の形態 5)
はじめに、図 6を参照しながら、本実施の形態における水素精製装置の構成につ いて説明する。なお、図 6は、本発明の実施の形態 5における水素精製装置の要部 縦断面図である。
図 6において、 CO変成触媒体 (単に (変成)触媒体ともいう) 101は反応室 102の 内部に設置されており、改質ガス入口 103から改質ガスが導入される。 CO変成触媒 体 101で反応した改質ガスは、改質ガス出口より排出される。
なお、触媒体 101の上流側には、改質ガスが均一に流れるように拡散板 105を設 置してある。また、反応器を一定温度に保っために、必要箇所は、外周をセラミツクウ 一ルカ なる断熱材 106で覆った。
ここで、触媒体 101には、セリウム(以下 Ceと記す)とジルコユア(以下 Zrと記す)と の複合酸ィ匕物に Ptを担持した触媒を、コージエライトハニカムにコーティングしたもの を用いた。
つぎに、本実施の形態における水素精寧装置の動作について説明する。
水素精製装置に供給する改質ガスを発生させるために用いる燃料としては、天然 ガス、メタノー/レ、ガソリンなどがあり、改質方法も、水蒸気を加える水蒸気改質、空気 を加えておこなう部分改質などがあるが、ここでは、天然ガスを水蒸気改質して改質 ガスを得る場合にっレ、て述べる。
天然ガスを水蒸気改質した場合の改質ガスの組成は、改質触媒体の温度によつ て多少変化するが、水蒸気を除いた平均的な値として、水素が約 80%、二酸化炭素 、一酸化炭素がそれぞれ約 10%含まれる。
天然ガスの改質反応は、 500〜800°C程度でおこなうのに対し、 COと水蒸気が反 応する変成反応は、 150〜350°C程度で進行するため、改質ガスは、改質ガス入口 103の手前で冷却して力 供給する。 CO変成触媒体 101通過後の CO濃度は、約 0. 5%まで低減され、改質ガス出口 104より排出される。
次に、本実施の形態の水素精製装置の動作原理について説明する。
CO変成反応は、温度に依存する平衡反応であり、低温で反 させるほど、 CO濃 度を低減させることができる。一方、低温になると触媒上での反応速度が低下する。 したがって、 CO濃度が極小値をとる温度が存在する。
従来の水素精製装置において CO変成触媒として用いられる銅一亜鉛触媒、銅一 クロム触媒などの銅系の変成触媒は、 150〜250°Cの低温で CO変成反応を行うこ とができ、条件によっては、 CO濃度を数百〜千 ppm前後にまで低減させることがで きる。 .
しかし、銅系の触媒は、反応器に充填した後、水素ゃ改質ガスなどの還元ガスを 流通させて活性化させる必要があるとともに、耐熱性は 300°C前後と低い。したがつ て、活性化時の反応熱で耐熱温度を超えないように、還元ガスを不活性ガスなどで 希釈して供給するか、または少流量で徐々に反応させる必要があり、反応に長時間 を要する。また、装置の起動時にも、過昇温によって耐熱温度を超えなレ、ように、ゆ つくりと長時間かけて加熱する必要があり、瀕繁に起動停止を繰り返すような用途に は、問題点が多い。
一方、本実施の形態の水素精製装置 (の変成部)では、触媒体 101として貴金属 触媒 Ptを用いており、銅系の触媒と比較して非常に高い耐熱性を持っため、装置の 起動時に 500°C程度の高温になった場合でも、触媒の大きな劣化は無い。また、銅 系触媒のように、長時間の還元処理を行う必要もない。また、装置を停止させた場合 に空気が混入しても銅系触媒よりも触媒劣化は少ない。
なお、 Pt、 Pd、 Rh、および Ruなどを活性成分とする貴金属触媒は、活性が高い ために、反応の選択性が比較的低レ、。そのため、条件によっては、 CO変成反応の 副反応として、 COまたは二酸化炭素のメタン化反応も進行することがあり、メタン化 反応の進行による水素の消費が、装置全体の効率を低下させることが懸念される。 ただし、通常、 CO変成反応を行う 150〜500°Cの温度領域では、高温になるほど メタン化反応が顕著となるが、貴金属の種類によっても、メタン生成率は異なる。これ は、貴金属の種類によって COの吸着機構が異なるためであり、メタン化反応が進行 しゃすい COの吸着機構をもつ Pd、 R および Ruは、比較的低温でメタンを発生させ 、 CO変成反応を行うことができる温度領域が狭くなる。これに対して、本実施の形態 で用いる Pt触媒は、メタン化反応を起こしにくく、広い温度範囲で CO変成反応を行 うことができる。したがって、メタン化反応の進行によって大量の水素が消費されるこ とはなぐ本実施の形態の水素精製装置は、効率よく稼働することができる。
また、 Ceを助触媒として添加することによって、 Pt触媒の CO変成反応に対する活 性が向上するとともに、メタンィ匕反応を抑制することができる。担体に含有する Ceの 比率が高いほど、メタンィ匕反応を抑制する;とができ、酸ィ匕セリウムを担体として用い た場合が、最も変成反応に対する低温活性が高く、メタンィ匕反応も抑制できる。 ただし、酸化セリウムは、耐熱性がアルミナゃジルコニァなどの担体と比較して低 ぐ 600°Cを越える温度になるような条件で使用した場合や、装置の起動や停止時に 水凝縮が生じた場合には、触媒活性が低下する可能性がある。これは、熱による焼 結で、酸ィ匕セリウムの比表面積が低下したり、塩基性である酸ィ匕セリウムが、改質ガ ス中の二酸ィ匕炭素と反応することが原因である。
一方、本発明の水素精製装置では、触媒担体として、 Ceに Zrを複合化させた複 合酸化物を用いており、触媒担体の安定性が向上し、触媒の活性低下が生じにくい。 通常、ジルコニァは比較的安定で、熱による比表面積の低下、あるいは改質ガス中 の二酸化炭素との反応が起こりにくい。しかし、酸化セリウムと比較して低温での変成 反応での触媒活性がおとるとともに、高温でメタネーシヨン反応が進行しやすくなる。 そこで、本発明のように、 Ceに Zrを複合ィヒさせ複合酸ィ匕物としたものを触媒担体とし て用いる。酸化セリウムとジルコエアが共存して複合酸化物とした場合、酸化セリウム とジルコニァ間での電子のやりとりが容易となり、変成反応における触媒活性は酸化 セリウム単独の場合と比較しても遜色のない効果を発揮する。しかし、ジルコニァぉ よぴ酸ィ匕セリウムが複合ィ匕されずに単に共存した場合では電子のやりとりがないため 、この効果は大きく発揮されにくい。なお、 Ceと Zrの比率は、 Ceが少ない(すなわち 、 Zrが多レ、)ほど耐熱性も上がり安定である力 Ceの含有量の減少とともに、高温域 でのメタンィ匕反応が進行しやすくなる。そのため、 Ceの含有量は、 5原子%以上であ ることが好ましい。ただし、 Ceの含有量が 90原子%よりも高いと、酸ィ匕セリウムとほぼ 同じの性能しか得られない。なお、 Ceに対して Zrを複合化させる方法は、特に限定 はなぐ例えば共沈法、ゾルゲル法、アルコキシド法などを用いることができる。
また、 Ceに Zrを複合ィヒさせる方法として、後に表 1〜2を参照して詳述されるように 、酸ィ匕セリウムとジルコユアで固溶体を形成させる方法がある。固溶体を形成して均 一に複合化されている場合には、さらに担体の安定性が高くなるとともに、メタン化反 応の進行も抑制される。酸ィ匕セリウムやジルコニァが複合ィ匕および固溶せずに存在 していた場合に、それぞれ材料単独の耐熱性、メタンィヒ反応性の特性が現れやすい。 一方、固溶体を形成させた場合、酸ィ匕セリウムがジルコニァ結晶体中に取り込まれる ことで酸ィ匕セリウムの熱劣化が抑制でき、耐熱性がジルコニァ単独の場合とほぼ同等 となる。また、酸化セリウムおよぴジルコニァ同士での電子のやりとりがより容易となる ため、酸ィヒセリウム力 の酸素供給能力は維持できる。その結果、担体の安定性を高 くするとともに、メタン化反応の進行も抑制するという格別な効果を生む。なお、固溶 体の形成は、粉末 X線回折測定で確認でき、酸ィ匕セリウムやジルコニァの単相の回 折線強度が小さいほど、均一に固溶体が形成されていることが分かる。
さて、充分な触媒活性を得るためには Pt粒子を小さくし、多くの活性点を持つこと が必要である力 このためには、 BET比表面積が 1当たり 10平方メートル以上ある金 属酸ィ匕物に Ptを担持させるのが、好ましい。ここで、 BET比表面積とは、粉末に窒素 を吸着させておこなう公知の測定法で求められる比表面積のことである。
BET比表面積の上限は、特に限定はなぐ lg当たり 100〜200平方メートルであ つても、同様に高い活性が得られる力 lg当たり 100平方メートル以上になると、比 表面積増加による効果は小さくなる。金属酸化物おょぴ複合金属酸化物の BET比 表面積が、 lg辺り 10平方メートル未満であった場合には、 Ptが充分吸着せずに Pt の分散度が低下し、充分な触媒活性が得られない。なお、 Ptの粒径を小さくするた め、 Pt担持量を少なくした場合、活性点の数が減少し、充分な活性は得られない。 また、本実施の形態では、 Ceに対して Zrを複合ィ匕させた複合酸ィ匕物を用いたが 、ここに A1を添加することによって、高温域での比表面積減少が小さくなり、耐熱性が 向上する。また、 Zrの代わりに、 A1のみを複合化させた場合でも、同様の効果が得ら れる。要するに、本発明の複合酸化物は、 Zrおよび/または A1が Ceに対して複合 ィ匕された複合酸ィヒ物であればよい。
また、本実施の形態では、触媒体の形状は、触媒をコージヱライトノヽニカムにコー ティングしたものを用いたが、担体の形状をペレット形状とし、 Pt塩を含浸させて CO 変成触媒体を作製しても、同様の性能を有する変成触媒体が得られる。
(実施の形態 6) つぎに、図 7を参照しながら、本実施の形態における水素精製装置の構成と動作 について説明する。なお、図 7は、本発明の実施の形態 6における水素精製装置の 要部縦断面図である。
本実施の形態における水素精製装置は、図 7に示すように、触媒体を 2段に分割 して触媒体の中間に冷却部を設けており、作用効果の大部分は、実施の形態 5と類 似である。したがって、異なる点を中心に本実施の形態を説明する。
触媒体を第 1触媒体 111と第 2触媒体 113とに分割し、中間に冷却部を設け、冷 却ファン 119 (水素ガス温度調整部)で改質ガスを冷却することにより、少ない触媒量 で CO濃度を低減することができる。なぜならば、 CO変成反応は発熱反応であるた め、触媒体の上流部で発生した反応熱は、改質ガスによって下流部に伝達される。 このため、触媒体の温度は、下流部の方が高温になりやすぐ上流部で CO濃度を充 分に低減しても、高温の下流部で、再び逆反応により、 CO濃度が増加する。したが つて、下流側の第 2触媒体 113を第 1触媒体 111よりも低温にすることによって、逆反 応を抑制できるからである。
また、高温になりやすい上流側の触媒体 111に、 Ceの含有量の多い複合酸化物 を用いるのが、望ましい。なぜならば、 Ceの含有量の多い複合酸ィ匕物を高温になり やすい上流側に用いることにより、メタン化反応によって装置の作動が制限を受ける 高温域にぉ ヽても、 CO変成反応を促進することが可能な作動温度域を拡大するこ とができ、より装置の制御が容易にできるからである。 ·
さらに、起動時に水の凝縮が起こりやすい下流部に、 Ceの含有量の少ない複合 酸ィ匕物を用いることによりメタン化反応が進行しに《なり、前述したような水による特 性低下を抑制することができ、耐久寿命の長期化ができる。
なお、上述した本実施の形態では、触媒体を第 1触媒体 111と第 2触媒体 113と に分割する 2段構成としたが、特に段数に制限はなぐ各段の触媒体がそれぞれ最 適な温度に制御できる構成であれば、高い特性が得られる(たとえば、俞述した本実 施の形態 4についてもこのようなことがいえる)。 (実施例 1)
本実施例で使用した変成触媒は、 Ce〇2と Pt塩溶液 (ジニトロジァミン白金錯体の 硝酸塩)とを用いて、 Ce〇2に Ptを分散担持させ焼結させることで調製した。この Ptを 担持した Ce〇2(Ptの担持量は 3重量%)を、アルミナペレット(直径 3mm、長さ 3mm )にコーティングして作成した。また、直径 100mm、長さ 50mmのコージエライトハニ カムにコーティングすることでも、変成触媒体を作製した。なお、ハニカム形状は、ぺ レット形状のものよりも、単位体積あたりの表面積を単位面積あたりのセル数で容易 に調整でさるメリットがある。
同様の方法により、金属酸ィ匕物として Zrあるいは Zn、もしくは Ceとそれらの混合物 あるいは固溶物を用いた変成触媒体も作製した。また、比較のために、従来の Rh— Ce系触媒についても、上記と同様に作製した。
この結果、本実施例の変成触媒は、従来の Rh—Ce系触媒よりも良好な CO浄ィ匕 効率を有することが明らかとなった。
(実施例 2)
触媒活性の低下について、本発明の Pt— Ce系触媒と従来の Cu— Zn系触媒との 比較を行った。
Pt— Ce系触媒を用いた場合、起動停止を 10回以上繰り返し行っても、変成部触 媒体の触媒活性の低下はほとんどないものとなった。これは、 Pt— Ce系触媒が、酸 化による触媒活性低下の影響がほとんどないためである。
Cu— Zn系触媒を用いた場合、装置の起動停止を 10回以上行うと、起動 1回目と 比較して変成部後の一酸化炭素濃度は約 2倍となり、触媒活性の低下を示した。こ れは、起動停止時に、触媒が酸化され活性が低下するためである。
従って、本実施例の: Pt— Ce系触媒は、従来の Cu— Zn系触媒と比較して、触媒 活性が低下しにくい。
(実施例 3)
変成触媒特性について、本実施例における Pt— Ce系触媒と Rh—Ce系触媒との 比較を、図 1に示す水素精製装置の構成を利用して行った。
変成触媒としての基本特性は、酸ィ匕による触媒活性低下の影響がほとんどないた め、 Rh— Ce系触媒からは、 Pt— Ce系変成触媒とほぼ同等の特性が得られた。しか し、 Rh—Ce系触媒では、二酸ィヒ炭素あるいは一酸化炭素と水素のメタネーシヨン反 応に対する活性は P1:よりもよいため、変成部後ガス中のメタン濃度が若干増加した。 そして、 300°Cの触媒温度で比較すると、 Pt—Ce系変成触媒では 0. 1% (dryベー ス)であるのに対し、 Rh—Ce系変成触媒では 0. 2% (dryベース)となった力 出口 の一酸化炭素濃度はほぼ一定の値を示した。
もちろん、この程度のメタン濃度増加は、実用上何ら問題なぐ Rh—Ce系触媒も 変成触媒として使用できる。
なお、ここに示す Ptと Rh触媒との組み合わせのみが触媒活性を示すものではな ぐそれぞれの貴金属によってその特性は若干相違するが、他の貴金属においても 同等の変成反応性を示すことを確認した。
(実施例 4)
実施例 1に記載される様々な変成触媒の変成反応性を、各実施例において確認 した。
その結果、金属酸ィ匕物として Zrあるいは Zn、もしくは Ceとそれらの混合物あるいは 固溶物を用いて調製した触媒力 Cu— Zn系変成触媒にはない耐酸ィ匕性の優れた 変成触媒体として働くことを確認した。ただし、それぞれの金属酸化物により若干変 成反応性は相違した。
例えば、 Zrを用いた場合、二酸化炭素あるいは一酸ィヒ炭素と水素とのメタネーシ ヨン反応が進行しやすくなり、変成部出口のメタン濃度が若干増加する傾向が得られ た。触媒条件により相違するが、 300°Cの触媒温度で比較すると、 Pt— Ce系変成触 媒では 0. 1% (dryベース)であるのに対し、 Pt— Zr系変成触媒では 0 · l 5% (dryベ ース)となった。
また、 Znを用いた場合、低温での酸素供与性が Ceより優れるため低温度での変 成反応性が向上するが、高温 (例えば 500°C以上)で用いた場合、 Zn酸化物の還元 傾向が大きくなり触媒活性が低下する傾向となった。しかし、 Ce酸ィ匕物との組み合わ せのみが触媒活性を示すものではなく、他の金属酸ィ匕物においても、同等の変成反 応性を示すことを確認した。
(実施例 5)
前述した本実施の形態 1における水素精製装置の一動作例を示す。
まず、水素ガス供給部を作動させた。原料としてメタンガスを用い、メタンガス 1モル に対して 3モルの水を付加して、水蒸気改質させ一酸化炭素を約 10%、二酸化炭素 を約 10%含む水素ガスを発生させた。この水素ガスを変成部に供給し、変成反応を 進行させ一酸化炭素を低減した。この時、変成触媒体の水素ガス流れに対して上流 に位置する部分を 300°C以上 500°C以下の範囲の温度に、水素ガス流れに対して 下流に位置する部分を 150°C以上 300°C以下の温度にして動作させた。
なお、変成触媒体の単位体積当たりの貴金属量は、上下流とも同じ値のものを用 いた。上記温度で作動させた場合、変成部で十分に一酸化炭素を変成反応させる ことができ、約 0. 5%まで低減することができた。 - ここで、上述のような触媒温度で動作させな力 た二例を比較例として示す。触媒 上流温度を 250°Cにした場合、上流面で角媒で変成反応がほとんど進行せず、変成 後の一酸化炭素濃度は約 2%程度までしか低減できな力 た。また、触媒上流温度 を 500°Cを越す温度とした場合、平衡反応により十分に一酸化炭素が低減できず、 変成出口一酸化炭素濃度は 0. 5%以下の値となった。
なお、触媒温度が高い場合、一酸ィ匕炭素および二酸ィヒ炭素が水素と反応してメタ ンが生じる。触媒の貴金属量が多いほどその傾向が大きくなる。メタンィ匕は、水素を 消費するため、あまり望ましい反応ではない。
本実施例では、水素 ス流れ上流に位置する変成触媒体の 1/2部分の貴金属 量を、下流の 1Z2部分の貴金属量の約 1Z4とし、装置動作を行い、その傾向を見 極めた。貴金属量が同じ場合と比較して、メタン量は約 1/2となることが確認できた。 一方、出口一酸化炭素濃度はほぼ同等の 0. 5%以下の値となった。
本実施例からもわ力 ように、比較的高温で使用する水素ガス流れに対して上流 に位置する部分の貴金属量は、水素ガスの流れに対して下流に位置する部分よりも 少なくできることを可能とする。
(実施例 6)
前述した本実施の形態 2における水素精製装置の一動作例を示す。
前述した実施例 5に示す条件とほぼ同じ条件、装置構成で動作を行ったが、変成 触媒体上流面の水素ガス流れ垂直面における断面積を、変成触媒体下流面の水素 ガス流れ垂直面における断面積よりも約 1Z4となるように小さくした。これにより、水 素ガス流れに対して上流に位置する部分の水素ガスの流速を、下流に位置する部 分よりも約 4倍大きくなる。しかし、変成出口の一酸化炭素濃度は、約 0. 5%まで低 減できた。これは、触媒温度が高い場合、触媒での反応速度が速くなるため、水素ガ スの流速を大きくしても十分に反応するからである。
次に、実施例 5との比較を行う。実施例 5では、変成触媒体上^面と下流面の断面 積は同じとなる構成である。従って、実施例 5と比較すると変成触媒体上流面の流速 は約 4倍となる。なお、変成部での触媒充填高さは上流面の触媒高さはほぼ同じ高 さとした。すなわち触媒充填量は、実施例 5と比較して少なくなつており、実施例 5の 触媒充填量を 1とした場合、本実施例での充填量は約 3/4となっている。
しかし、実施例 5と同等の一酸ィ匕炭素濃度まで低減することが可能となった。これは 、水素ガス流れ垂直面における断面積を小さくした場合、装置構成上断面における 水素ガス流れ分布を向上し触媒が有効に使えるため、第 1変成触媒体における一酸 化炭素低減性を安定化する効果が生まれるからである。その結果、変成触媒充填量 を低減しても、一酸化炭素を安定的に低減することを可能とする。
(実施例 7)
前述した本実施の形態 3における、水素精製装置の一動作例を示す。本実施で は変成冷却部 3は冷却媒体として水を用い、水素ガスとの気液熱交換により冷却す る構成を特徴とする。
前述した実施例 5に示す条件とほぼ同じ条件、装置構成で動作を行った場合、大 きな問題は起こらない。しかし、変成部に供給する水素量ガス量を増加させた場合、 水素ガスの持つ顕熱は下流面では余剰となる。また、一酸化炭素と水蒸気との変成 反応は発熱反応である。これら顕熱と変成反応熱量が変成部 3からの放熱量を上回 つた場合、変成触媒体下流面は 150°C以上 300°C以下の温度で動作できないこと がある。例えば、実施例 5に示す条件において、水素ガス供給量を 2倍とした場合、 変成触媒体下流面を 300°C以下の温度で動作できず、出口一酸化炭素濃度が増加 する結果となった。
そこで、本実施例では、変成冷却部を作動させ、変成触媒体下流面は 150°C以上 300°C以下の温度で動作させた。その結果、変成部出口一酸化炭素濃度を 0. 5% 以下まで低減できた。 .
(実施例 8)
前述した本実施の形態 4における水素精製装置の一動作例を示す。
実施例 7に示す条件とほぼ同じ条件および装置構成で、動作を行った。すなわち 、変成部に供給する水素ガス量を変化させ、変成部出口の一酸化炭素濃度を確認 した。変成触媒体温度は水素ガス流量に依存するため、水素ガス流量が大きく変化 する場合には変成触媒体温度も大きく変化する。
しかし、本実施例に示すように変成部を第 1変成部および第 2変成部の 2つに分け ることで、変成触媒体上流面および下流面の温度がお互いに依存することが少なく なるため、変成触媒体の温度制御が容易となる。その結果、変成部出口の一酸化炭 素濃度を安定して低減することを可能とする。なお、実施例 5と比較して約 4倍の水素 ガス量まで安定して動作できることを確認した。
(実施例 9)
表 1に示す組成の金属酸化物、または複合酸化物 1〜15に、 Ptを 1重量%担持し た。これをコージエライトノヽニカムにコーティングして、反応室 112 (図 6参照)に設置 した。
改質ガス入口 113(図 6参照)より、一酸ィ匕炭素 8%、二酸化炭素 8%、水蒸気 20 %、残りが水素である改質ガスを、毎分 10リットルの流量で導入した。改質ガス温度 を制御し、触媒体 111 (図 6参照)で反応させた後に、改質ガス出口 114(図 6参照) より排出されるガスの組成をガスクロマトグラフィで測定した。
CO濃度の最低値、触媒温度が 400°Cにおける反応後のガス中のメタン濃度を測 定し、さらに、装置を停止させた後、再び起動させる動作を 10回繰り返し、 CO濃度 を測定して触媒の活性変化を確認した。これらの結果を、表 1にまとめて示す。 表 1 試料 金属酸化物または複合酸 c o 濃 度 10 回起動停止 400でにおける
N 0 . 化物 (%) 後の メ タ ン 濃 度
CO濃度 (%) (%)
1 酸化セリウム 0. 1 3 0. 6 5 0. 0 1
2 アルミナ 1. 2 5 1. 2 5 2. 2 5
3 ジルコニァ 0. 6 2 0. 6 3 1. 5 2
4 Ce0.95Zr0.05Ox 0. 1 3 0. 6 4 0. 0 3
5 CeO.9ZrO.10x 0. 1 3 0. 1 5 0. 0 5
6 CeO.5ZrO.50x 0. 13 0. 1 4 0. 10
7 Ce0.05Zr0.95Ox 0. 14 0. 1 4 0. 30
8 Ce0.03Zr0.97Ox 0. 50 0. 5 1 1. 02
9 Ce0.01Zr0.99Ox 0. 55 0. 5 6 1. 25
1 0 Ce0.95AI0.5Ox 0. 13 0. 6 4 0. 02
1 1 Ce0.9A10.lOx 0. 13 0. 1 4 0. 05
1 2 Ce0.5A10.5Ox 0. 13 0. 1 3 0. 12
1 3 Ce0.05A10.95Ox 0. 15 0. 1 5 0. 33
1 4 Ce0.03A10.97Ox 0. 66 0. 6 7 0. 81
1 5 Ce0.01A10.99Ox 0. 89 0. 9 0 1. 20 表 1に示された実験結果より、前述したつぎのような事実が裏付けられる。たとえば 、酸ィヒセリウム (セリア)は、変成反応に対する活性が極めて高ぐメタンィヒ反応も抑制 できるが、アルミナやジルコユアなどと比較して、装置の起動停止の繰り返しにより触 媒活性が低下しやすい。また、触媒担体として Ceに Zrを複合ィ匕させた複合酸ィヒ物を 用いるとき、 Ceの比率が少ないほど、(1)触媒の活性低下は生じにくいが、(2)たと えば高温域でのメタン化反応は進行しやすくなる。
さて、表 1に結果を示した実験における試料では、 X線回折測定による回折ピーク が約 20%であって、セリア、ジルコニァ、ァノレミナが単一相として残存しており、固溶 体が十分には形成されていない。そこで、セリア、ジルコユア、アルミナの単一相に帰 属する回折ピークが見られなくなる程度に固溶体が十分に形成された試料を使用し た実験の結果を、表 2にまとめて示す。
10回起動停止後の 400°Cにおける 試料 No. 金属酸化物または複合酸化物 ∞濃度 (¾) CO濃度 (%) メタン濃度 (%)
16 CeO.95ZrO.050x 0.13 0.55 0.02
17 CeO.9ZrO.10x 0.13 0.14 0.04
18 CeO.5ZrO.50x 0.13 0.14 0.06
19 CeO.05ZrO.950x 0.14 0.14 0.20
20 CeO.03ZrO.970x 0.50 0.51 0.80
21 CeO. OlZrO.990x 0.55 0.56 1.10
22 Ce0.95A10.5Ox 0.13 0.54 0.02
23 CeO.9A10.10x 0.13 0.14 0.03
24 CeO.5A10.50x 0.13 0.13 0.07
25 CeQ.05A10.95Ox 0.15 0.15 0.25
26 Ce0.03A10.97Ox 0.65 0.65 0.50
27 Ge0.01A10.99Ox 0.89 0.90 1.05 表 1〜2に示された実験結果より、(a)セリアの比率が高いときに発生しやすい触媒 劣化や、(b)ジルコユア、アルミナの比率が高いときに発生しやすいメタン化反応は 、固溶体を十分に形成することによりかなり抑制されることがわかる。なお、均一な固 溶体を形成するための方法としては、共沈法、ゾルゲル法、アルコキシド法などを利 用すればよい。
なお、表 1における試料 4や表 2における試料 16のように Ceの原子パーセントが 9 0以上である場合や、表 1における試料 13〜15および表 2における試料 25〜27の ように Ceの原子パーセントが 5以下である場合には、(10回起動停止後の) CO濃度 、および 400°Cにおけるメタン濃度の何れにおいても、結果はあまり芳しくない。ただ し、上述したように、(一酸化炭素)変成触媒体の、(1)上流側の温度を 300°C以上 500°C以下とし、(2)下流側の温度を 300°C以下とすれば、前述の従来例における よりは望ましレ、結果を得ることができる。
また、 A1は、 Zrと同様に Ceと複合酸ィ匕物を作りやすぐ Al23単体としても安定であ る。したがって、具体的なデータは省略する力 Ceに対して、(a)Al、または (b) Zrお よび A1を複合化させた複合酸ィ匕物を用いた場合にも、 Ceに対して Zrを複合ィ匕させ た複合酸化物を用いた場合と同様の実験結果が得られる。
(実施例 10)
実施例 9で用いた表 1中の試料 6に示した Zrと Ceの比率が原子数にして 1対 1で ある複合酸化物に、 Ptを 1重量%担持した。これをコージエライトノヽニカムにコーティ ングし、第 1触媒体 111 (図 7参照)と第 2触媒体 113 (図 7参照)との体積の合計を実 施例 1と同じにして、第 1反応室 112 (図 7参照)と第 2反応室 114 (図 7参照)とにそれ ぞれ設置した。
改質ガス入口 115 (図 7参照)より、一酸化炭素 8%、二酸ィ匕炭素 8%、水蒸気 20 %、残りが水素である改質ガスを、毎分 10リットルの流量で導入した。 CO濃度の最 低値、第 1触媒体 111の温度力 00°Cにおける反応後のガス中のメタン濃度は、そ れぞれ 0. 09%, 0. 06%であった。さらに、装置を停止させた後、再び起動させる動 作を 10回繰り返し、 C〇濃度を測定して触媒の活性変化を確認したところ、 0. 11% であった。
このように、本実施例における触媒体を用いた場合、何れの CO濃度も、メタン濃 度も、実施例 1における試料 6を利用した触媒体を用いた場合よりも低くなつている。 したがって、実施の形態 2で説明された冷却部は、 CO濃度を低減させる方向への反 応の進行を促進し、水素精製装置の高能率稼働に寄与していることが裏付けられた。
(実施例 11) .
実施例 10で、第 1触媒体 111 (図 7参照)、第 2触媒体 113 (図 7参照)に用いる複 合酸ィ匕物における Ceと Zrとの比率を、それぞれ 9対 1、 1対 9とし、上流側の触媒体 に含まれる Ceの含有量を多くなるようにした。実施例 2と同様に、 CO濃度の最低値 、第 1触媒体 111の温度力 00°Cにおける反応後のガス中のメタン濃度を測定する と、それぞれ 0. 09%、 0. 01%であった。さらに、装置を停止させた後、再び起動さ せる動作を 10回繰り返し、 C〇濃度を測定して触媒の活性変化を確認したところ、 0. 09%であった。
このように、本実施例における触媒体を用いた場合、何れの CO濃度も、メタン濃 度も、実施例 10における触媒体を用いた場合よりも低くなる傾向が見られる。特に、 メタン濃度に関して、この傾向は顕著である。したがって、前述されたように、 Ceの含 有量の多い複合酸ィヒ物を高温になりやすい上流側に用いることにより、メタンィヒ反応 の進行が抑制され、水素精製装置の高能率稼働が促進されることが裏付けられた。
(比較例 1)
本発明の複合酸ィ匕物に Ptを担持させたものの代わりに、本比較例においては、触 媒体 101 (図 6参照)として従来の銅亜鉛触媒を用い、実施例 9と同様に、反応室 10 2 (図 6参照)に設置した。改質ガス入口 103 (図 6参照)より、一酸化炭素 8%、二酸 化炭素 8%、水蒸気 20%、残りが水素である改質ガスを、毎分 10リットルの流量で導 入した。改質ガス温度を制御し、触媒体 101で反応させた後に、改質ガス出口 104 (図 6参照)より排出されるガスの組成をガスクロマトグラフィで測定したところ、 CO濃 度の最低値は 0. 08%であった。さらに、装置を停止させた後、再び起動させる動作 を 10回繰り返し、 CO濃度を測定して触媒の活性変化を確認したところ、 CO濃度の 最低値は 4%であった。
このように、本比較例における触媒体を用いた場合、 10回起動停止後の CO濃度 は、前述の実施例における触媒体を用いた場合よりも著しく高い。したがって、前述 されたように、本発明の水素精製装置は、運転の起動停止を繰り返した場合にも、酸 素混入などによる影響を受けにくぐ長期間にわたって安定に動作することが裏付け られた。 .
要するに、本発明は、貴金属と金属酸化物とを含む変成触媒体を有する変成部と 、変成部に一酸ィヒ炭素を含む水素ガスを供給する水素ガス供給部とを備え、変成触 媒体の、水素ガスの流れに対して、(1)上流側の温度を実質上 300°C以上 500°C以 下とし、 (2)下流側の温度を実質上 300°C以下とする水素精製装置である (もちろん 、貴金属と金属酸化物とを含む変成触媒体を有する複数段の変成 (反応)部と、複数 段の変成部に一酸化炭素を含む水素ガスを供給する水素ガス供給部とを備え、複 数段の変成部の温度は、水素ガスの流れに対してより上流側の方がより高い水素精 製装置も、本発明に含まれる)。
なお、(1)水素ガス供給部と変成部との間、または(2)各段の変成触媒体同士 (全 部または一部)の間には、水素ガスの冷却を行うための冷却部が設けられていてもよ レ、。
以上述べたところから明らかなように、本発明の水素精製装置は、たとえば、貴金 属と金属酸化物を構成材料とする変成触媒体を設けた変成部と、変成部に少なくと も一酸化炭素と水蒸気を副成分として含む水素ガスを供給する水素ガス供給部を有 し、変成部を複数の変成触媒体を設けた変成反応部とし、水素ガス流れに対して下 流側に位置する変成反応部の変成触媒体温度を上流側に位置する変成反応部よ りも低くすることを特長とする。
さらにその装置において、第 1変成部および第 2変成部を設け、第 1変成部変成触 媒体の温度を 300°C以上 500°C以下の範囲で維持し、第 2変成部変成触媒体の温 度を 150°C以上 300°C以下にすること、第 1変成部変成触媒体の単位体積当たりの 貴金属量を第 2変成部変成触媒体よりも少なくすること、および、上記の手段におい て、第 1変成部と第 2変成部の間に水素ガスの冷却部を設けることもその一手段とし た。
さらに、上記装置において、水素ガス供給部と変成部との間に水素ガス温度調整 部を設け、変成部変成触媒体上流温度を 300°C以上 500°C以下の範囲で制御する こと、変成触媒体の貴金属が、 Pt、 Pd、 Ru、および Rhの少なくとも 1種類を含有する こと、変成触媒体の金属酸化物金属が、 Ceおよび Zrの少なくとも 1種類を含有する こともその手段とした。
上記手段により、本発明は、浄ィヒ部で一酸化炭素を効果的に低減できるように、変 成部で一酸ィ匕炭素を安定して低減することができる、安易な構成で水素を安定供給 する水素精製装置を提供する。
したがって、本発明により、たとえば、炭化水素成分を水蒸気改質し水素を供給す る水素精製装置の変成部における、 Ptと金属酸化物を構成材料とする変成触媒に おいて、変成部の一酸化炭素低減特性を安定的に発揮させることを可能とし、水素 の安定供給を実現する装置を安易に提供することができた。
また、本発明は、たとえば、少なくとも水素ガス、一酸化炭素および水蒸気を含む 改質ガスを供給する改質ガス供給部、および前記改質ガス供給部の下流側に位置 する一酸化炭素変成触媒体を具備した反応室を備える水素精製装置であって、前 記一酸化炭素変成触媒体は、 Ceに対して少なくとも Zrおよび Zまたは A1が複合ィ匕 された複合酸ィヒ物に少なくとも Ptを担持させてあることを特徴とするものである。 このとき、複合酸化物における組成比率は、 Ceが 5〜90原子%、残りが Zrおよび Zまたは A1であることが好ましい。また、複合酸化物が固溶体を形成していることが 好ましい。また、一酸ィ匕炭素変成触媒体が複数段に分割されており、各触媒体の中 間に放熱部、もしくは冷却部が設けられてあることが好ましい。また、複合酸化物は、 改質ガスの流れ方向に対して上流部より下流部における Ceの含有比率が低いこと が好ましい。
なお、本発明の複合酸ィヒ物に担持されているのは、上述された本実施の形態で は、 Ptであった力 これに限らず、要するに、 Pt、 Pd、 Rh、 Ruの内の少なくとも一つ であればよい。ただし、 Pd、 Rh、 Ruなどを活性成分とする貴金属触媒は、前述した ようにメタンィヒ反応を進行させてしまうことがあるため、 Ptを利用することが最も好まし い。よって、 Pd、 Rh、 Ruなどを利用する場合にも、前記複合酸化物には少なくとも P tが担持されており、これらは Ptを主体として添加されていることが望ましい。
このように、本発明の水素精製装置は、 CO変成触媒体の耐久性が改善されてお り、装置の起動停止を繰り返した場合でも安定に動作することができる。
なお、上記の文献の全ての開示は、そっくりそのまま引用する(参照する)こ とにより、ここに一体化する。 産業上の利用可能性
以上述べたところから明らかなように、本発明は、たとえば頻繁に起動停止を繰り 返す場合にも、良好な CO浄ィ匕効率を有する水素精製装置を提供することができる という長所を有する。

Claims

求 の 囲
1. 一酸ィ匕炭素を変成するための、貴金属と金属酸化物とを含む変成触媒体を 有する変成部と、 ·
前記変成部に一酸ィヒ炭素を含む水素ガスを供給する水素ガス供給部とを備え、 前記変成触媒体の、前記水素ガスの流れに対して、(1)上流側の温度を実質上
300°C以上 500°C以下とし、 (2)下流側の温度を実質上 300°C以下とする水素精製
2. 前記変成部は、前記下流側の温度を 150°C以上 300°C以下とするための冷 却部を有する請求項 1記載の水素精製装置。
3. 前記貴金属の前記変成触媒体の単位体積当たりの量は、前記上流側の方 が前記下流側よりも少ない請求項 1記載の水素精製装置。
4. 前記水素ガスの流れの速さは、前記上流側の方が前記下流側よりも大きい 請求項 1記載の水素精製装置。
5. 前記変成触媒体の前記水素ガスの流れに対して垂直な断面積は、前記上 流側の方が前記下流側よりも小さい請求項 1記載の水素精製装置。
6. 一酸ィ匕炭素を変成するための、貴金属と金属酸ィヒ物とを含む変成触媒体を 有する複数段の変成部と、
前記複数段の変成部に一酸化炭素を含む水素ガスを供給する水素ガス供給部と を備え、
前記複数段の変成部の温度は、前記水素ガスの流れに対してより上流側の方が より高い水素精製装置。
7. 前記貴金属は、 Pt、 Pd、 Rh、 Ruの内の全部またはー部ャあり、
前記金属酸化物は、 Zrおよび/または A1が Ceに対して複合ィヒされた複合酸ィヒ物で ある請求項 1または 6記載の水素精製装置。
8. 前記複合酸化物における酸素を除いた元素の組成比率は、 Ceが 5〜90原 子パーセント、残りが Zrおよび Zまたは A1である請求項 7記載の水素精製装置。
9. 前記複合酸化物は、固溶体を形 している請求項 8記載の水素精製装置。
10. 各段の前記変成触媒体における Ceの組成比率は、前記水素ガスの流れに 対してより上流側の方がより高い請求項 9記載の水素精製装置。 '
11 . (1)前記水素ガス供給部と前記変成部との間、または (2)各段の前記変成触 媒体同士の間には、前記水素ガスの冷却を行うための冷却部が設けられている請求 項 1または 6記載の水素精製装置。
PCT/JP2001/006890 2000-08-18 2001-08-10 Hydrogen purification apparatus WO2002016260A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP01955648A EP1314690A4 (en) 2000-08-18 2001-08-10 DEVICE FOR PURIFYING HYDROGEN
US10/980,463 US7279142B2 (en) 2000-08-18 2004-11-03 Hydrogen refining apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2000-248363 2000-08-18
JP2000248363A JP2002060206A (ja) 2000-08-18 2000-08-18 水素生成装置
JP2000-323062 2000-10-23
JP2000323062A JP4663095B2 (ja) 2000-10-23 2000-10-23 水素精製装置

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10110831 A-371-Of-International 2001-08-10
US10/980,463 Division US7279142B2 (en) 2000-08-18 2004-11-03 Hydrogen refining apparatus

Publications (1)

Publication Number Publication Date
WO2002016260A1 true WO2002016260A1 (en) 2002-02-28

Family

ID=26598076

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/006890 WO2002016260A1 (en) 2000-08-18 2001-08-10 Hydrogen purification apparatus

Country Status (4)

Country Link
US (2) US20030129100A1 (ja)
EP (1) EP1314690A4 (ja)
CN (2) CN1209279C (ja)
WO (1) WO2002016260A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002059038A1 (fr) * 2001-01-26 2002-08-01 Matsushita Electric Industrial Co., Ltd. Dispositif de purification d'hydrogene et systeme de generation de puissance a pile a combustible
US6455182B1 (en) * 2001-05-09 2002-09-24 Utc Fuel Cells, Llc Shift converter having an improved catalyst composition, and method for its use
US7160341B2 (en) * 2002-04-29 2007-01-09 General Motors Corporation System for controlling front and back end temperatures of a shift reactor
US7265076B2 (en) * 2002-12-26 2007-09-04 Matsushita Electric Industrial Co, Ltd. CO removal catalyst, method of producing CO removal catalyst, hydrogen purifying device and fuel cell system
US6932848B2 (en) * 2003-03-28 2005-08-23 Utc Fuel Cells, Llc High performance fuel processing system for fuel cell power plant
DE602004028555D1 (de) * 2003-07-29 2010-09-23 Panasonic Corp Wasserstoffgenerator und Brennstoffzellenstromversorgungssystem
CN100429814C (zh) * 2004-03-25 2008-10-29 中国科学院大连化学物理研究所 一种一氧化碳水汽变换催化剂及制备方法和应用
WO2007029872A2 (en) 2005-09-08 2007-03-15 Casio Computer Co., Ltd. Reformer for power supply of a portable electronic device
US7721681B1 (en) 2006-10-06 2010-05-25 Russell Sr Charles William Hydrocarbon and water hybrid engine
US8221511B2 (en) * 2007-05-31 2012-07-17 Panasonic Corporation Hydrogen producing apparatus
CN108649101B (zh) * 2018-05-09 2020-11-03 江西展宇新能源股份有限公司 一种氢原子钝化方法及氢原子钝化装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000119004A (ja) * 1998-10-09 2000-04-25 Matsushita Electric Ind Co Ltd 水素精製装置
JP2000178007A (ja) * 1998-12-18 2000-06-27 Matsushita Electric Ind Co Ltd 水素精製装置
EP1046612A1 (en) * 1999-04-22 2000-10-25 Matsushita Electric Industrial Co., Ltd. Hydrogen refinement apparatus
JP2001180912A (ja) * 1999-12-28 2001-07-03 Matsushita Electric Ind Co Ltd 水素精製装置
JP2001316682A (ja) * 2000-03-21 2001-11-16 Dmc 2 Degussa Metals Catalysts Cerdec Ag 水素含有気体混合物中で水を用いての一酸化炭素の触媒的変換方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1578365A (en) * 1977-05-09 1980-11-05 Ici Ltd Hydrogen
US4522894A (en) * 1982-09-30 1985-06-11 Engelhard Corporation Fuel cell electric power production
FR2567866B1 (fr) * 1984-07-20 1987-01-02 Shell Int Research Procede de preparation d'un gaz riche en hydrogene
US4708946A (en) * 1985-05-23 1987-11-24 Nippon Shokubai Kagaku Kogyo Co., Ltd. Catalyst for purifying exhaust gas
GB9226453D0 (en) * 1992-12-18 1993-02-10 Johnson Matthey Plc Metal oxide catalyst
JPH11115101A (ja) 1997-10-09 1999-04-27 Toyo Tire & Rubber Co Ltd 複層構成の熱可塑性エラストマ−層をもつ積層布の製造方法
DE69924682T2 (de) 1998-09-09 2005-09-29 Matsushita Electric Industrial Co., Ltd., Kadoma Vorrichtung zur Herstellung von Wasserstoff
DE10013894A1 (de) * 2000-03-21 2001-10-04 Dmc2 Degussa Metals Catalysts Verfahren zur katalytischen Umsetzung von Kohlenmonoxid in einem Wasserstoff enthaltenden Gasgemisch mit verbessertem Kaltstartverhalten und Katalysator hierfür

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000119004A (ja) * 1998-10-09 2000-04-25 Matsushita Electric Ind Co Ltd 水素精製装置
JP2000178007A (ja) * 1998-12-18 2000-06-27 Matsushita Electric Ind Co Ltd 水素精製装置
EP1046612A1 (en) * 1999-04-22 2000-10-25 Matsushita Electric Industrial Co., Ltd. Hydrogen refinement apparatus
JP2001180912A (ja) * 1999-12-28 2001-07-03 Matsushita Electric Ind Co Ltd 水素精製装置
JP2001316682A (ja) * 2000-03-21 2001-11-16 Dmc 2 Degussa Metals Catalysts Cerdec Ag 水素含有気体混合物中で水を用いての一酸化炭素の触媒的変換方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LEONARDO MENDELOVICI ET AL.: "Methanation and water-gas shift reactions over Pt/CeO2", JOURNAL OF CATALYSIS, vol. 96, 1985, pages 285 - 287, XP001055088 *

Also Published As

Publication number Publication date
US20030129100A1 (en) 2003-07-10
CN1550450A (zh) 2004-12-01
US7279142B2 (en) 2007-10-09
CN1209279C (zh) 2005-07-06
EP1314690A1 (en) 2003-05-28
CN1388792A (zh) 2003-01-01
CN1266028C (zh) 2006-07-26
US20050138863A1 (en) 2005-06-30
EP1314690A4 (en) 2005-09-14

Similar Documents

Publication Publication Date Title
US6972119B2 (en) Apparatus for forming hydrogen
JP5015690B2 (ja) コンパクト燃料プロセッサーの起動のために触媒を加熱する装置及び方法
WO2000048261A1 (fr) Convertisseur de co et systeme de production pour pile a combustible
JP4185952B2 (ja) 一酸化炭素除去触媒及びその製造方法並びに一酸化炭素除去装置
WO2002059038A1 (fr) Dispositif de purification d&#39;hydrogene et systeme de generation de puissance a pile a combustible
WO2002016260A1 (en) Hydrogen purification apparatus
JP4829779B2 (ja) 燃料電池発電設備用の高性能燃料処理システム
WO2005120693A2 (en) Hybrid water gas shift system
US20040241509A1 (en) Hydrogen generator and fuel cell system
JP3574469B2 (ja) Coのco2への酸化方法及び燃料電池用の水素含有ガスの製造方法
JPH10302821A (ja) 固体高分子燃料電池用一酸化炭素低減装置及びその運転方法
JP2005034682A (ja) Co変成触媒およびその製造方法
JP2001212458A (ja) 改質ガス中の一酸化炭素の選択酸化触媒
JP4663095B2 (ja) 水素精製装置
Castaldi Removal of trace contaminants from fuel processing reformate: preferential oxidation (Prox)
CA2405932A1 (en) Process for the selective oxidation of carbon monoxide
JP2002226204A (ja) 水素精製装置
JPH07309603A (ja) 燃料電池用水素含有ガスの製造方法
JP2006008434A (ja) 水素生成装置、燃料電池発電システム、水素生成方法
JP4759221B2 (ja) Co除去触媒体、co除去触媒体の製造方法、水素精製装置、および燃料電池システム
JP2005082409A (ja) 水素生成装置
JP2005082409A6 (ja) 水素生成装置
JP2002060206A (ja) 水素生成装置
JP3773967B2 (ja) 燃料電池用水素含有ガスの製造方法
JP2002348103A (ja) 水素精製装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2001955648

Country of ref document: EP

Ref document number: 018024440

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 10110831

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2001955648

Country of ref document: EP